# Investigation on the Regioselectivities of

## Intramolecular Oxidation of Unactivated C-H Bonds

## by Dioxiranes Generated in Situ

Man-Kin Wong, Nga-Wai Chung, Lan He, Xue-Chao Wang, Yeung-Chiu Tang,

and Dan Yang\*

Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong

yangdan@hku.hk

### **SUPPORTING INFORMATION**

#### **Table of Contents**

| Characterization data of ketones 1–11, 13 and 14 and corresponding precursors                 | S2-S18  |
|-----------------------------------------------------------------------------------------------|---------|
| Characterization Data of Hemiketals 3a-6b, 9a, 9c, 11a, 13a and 14c-f                         | S19-S25 |
| 2D NOESY studies of cyclohemiketals 3a-4a and 13a                                             | S26     |
| HPLC Analysis of compound 5a                                                                  | S27     |
| <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of ketones, its precursors, and hemiketals | S28-S89 |

**General Methods.** All reactions were performed in oven-dried apparatus. Air and moisture-sensitive compounds were introduced via syringes through a rubber septum. Diethyl ether and tetrahydrofuran were distilled from sodium-benzophenone. Dichloromethane, toluene, pyridine, triethylamine and *N*,*N*-dimethylformamine were distilled over calcium hydride. Flash column chromatography was performed using the indicated solvent system on E. Merck silica gel 60 (230–400 mesh ASTM).

The preparations of ketones **1**, **2** and **12** were reported in the previous communication: Yang, D.; Wong, M.-K.; Wang, X.-C.; Tang, Y.-C. *J. Am. Chem. Soc.* **1998**, *120*, 6611.

#### Preparation of ketone 3.

Ketone **3** was synthesized from 3-cyclopentylpropionic acid according to a literature procedure (Boivin, J.; Kaim, L. E.; Zard, S. Z. *Tetrahedron Lett.* **1992**, *33*, 1285).

$$\bigcirc \mathsf{OH} \qquad \stackrel{\mathsf{a}}{\longrightarrow} \qquad \bigcirc \mathsf{CF}_{3}$$

(a) i, oxalyl chloride, CH<sub>2</sub>Cl<sub>2</sub>; ii, (CF<sub>3</sub>CO)<sub>2</sub>O, pyridine, CH<sub>2</sub>Cl<sub>2</sub>.

To a solution of 3-cyclopentylpropionic acid (2.0 g, 14.1 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (20 mL) was added oxalyl chloride (2.5 mL, 28.2 mmol) at room temperature under nitrogen atmosphere. Stirring was continued for 2 h. The solvent and excess oxalyl chloride were evaporated off under reduced pressure. The resulting acid chloride was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (40 mL) and treated successively with trifluoroacetic anhydride (12 mL, 84.6 mmol) and pyridine (9.2 mL, 112.8 mmol) at 0 °C under nitrogen. The reaction mixture was stirred at room temperature under nitrogen for 2 h and quenched slowly with water at 0 °C. Then the mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub>, washed with diluted hydrochloric acid and saturated NaHCO<sub>3</sub> solution. The organic layer was dried over

S2

anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated. The residue was purified by vacuum distillation (b.p. 56 °C at ca. 3 mmHg) to afford ketone **3** (0.84 g, 0.47 mmol, 34% yield) as a colourless liquid. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  2.73 (t, J = 7.5 Hz, 2H), 1.47–1.84 (m, 9H), 1.07–1.13 (m, 2H); <sup>13</sup>C NMR (125.76 MHz, CDCl<sub>3</sub>)  $\delta$  191.77 (q, <sup>2</sup> $J_{C, F}$  = 34.6 Hz), 115.83 (q, <sup>1</sup> $J_{C, F}$  = 292.2 Hz), 39.47, 35.82, 32.51, 28.69, 25.22; IR (CH<sub>2</sub>Cl<sub>2</sub>) 1731 cm<sup>-1</sup>; EIMS (20 eV) m/z 194 (M<sup>+</sup>, 5); HRMS (EI) for C<sub>9</sub>H<sub>13</sub>OF<sub>3</sub> (M<sup>+</sup>), calcd 194.0918, found 194.0929.

#### Preparation of ketone 4.

Ketone **4** was synthesized from 3-cyclopentylpropionic acid according to a literature procedure (Wong, M.-K.; Yu, C.-W.; Yuen, W.-H.; Yang, D. *J. Org. Chem.* **2001**, *66*, 3606).

(a) Ph<sub>3</sub>P=CHCN, EDCI, DMAP, CH<sub>2</sub>Cl<sub>2</sub>; (b) dimethyldioxirane, MeOH, CH<sub>2</sub>Cl<sub>2</sub>.

To a solution of 3c (1.4 g, 10 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (50 mL) was added Ph<sub>3</sub>P=CHCN (3.6 g, 12 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (2.5 g, 13 mmol) and 4-dimethylaminopyridine (0.12 g, 1.0 mmol) under N<sub>2</sub> at room temperature. After stirring overnight, the reaction mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> and washed successively with 5% NaHCO<sub>3</sub> solution, brine, and water. The organic layer was separated, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by flash column chromatography (50% EtOAc in hexane) to give 4c as a white solid (1.3 g, 1.5 mmol, 30% yield). M.p. 130 °C. Analytical TLC (silica gel 60), 50% EtOAc in n-hexane,  $R_f = 0.4$ ; <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>)  $\delta$  7.46–7.64 (m, 15 H), 2.70 (t, J = 7.8 Hz, 2H), 1.47–1.85 (m, 9H), 1.13–1.26 (m, 2H); <sup>13</sup>C NMR (67.80 MHz, CDCl<sub>3</sub>)  $\delta$  197.57, 133.47 (d, J = 10.1 Hz, 6C), 132.87, 128.95 (d, J = 12.9 Hz, 6C), 123.44 (d, J = 93.5 Hz, 3C), 122.62 (d, J = 16.0 Hz, CN), 48.07 (d, J = 127.1 Hz), 39.82, 38.87 (d, J = 6.7 Hz), 32.44,

31.66, 25.09; IR (CH<sub>2</sub>Cl<sub>2</sub>) 2174, 1538 cm<sup>-1</sup>; EIMS (20 eV) m/z 425 (M<sup>+</sup>, 22), 356 (10), 328 (26); HRMS (EI) for C<sub>28</sub>H<sub>28</sub>NOP (M<sup>+</sup>), calcd 425.1908, found 425.1907.

To a solution of 4c (0.5 g, 1.2 mmol) in dry MeOH (24 mL) was added dimethyldioxirane (0.04 M in acetone, 60 mL, 2.4 mmol) at room temperature. After 20 min, TLC analysis indicated the disappearance of starting materials. The reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (10% EtOAc in hexane) to give 4 as a colourless oil (0.15 g, 0.82 mmol, 68% yield). Analytical TLC (silica gel 60), 50% EtOAc in n-hexane,  $R_f = 0.7$ ; <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>)  $\delta$  3.87 (s, 3H), 2.85 (t, J = 7.5 Hz, 2H), 1.52–1.79 (m, 9H), 1.47–1.85 (m, 9H), 1.07–1.11 (m, 2H); <sup>13</sup>C NMR (75.48 MHz, CDCl<sub>3</sub>)  $\delta$  194.46, 161.63, 53.40, 39.46, 38.67, 32.43, 29.08, 25.09; IR (CH<sub>2</sub>Cl<sub>2</sub>) 1731 cm<sup>-1</sup>; EIMS (20 eV) m/z 184 (M<sup>+</sup>, 4), 153 (100), 125 (78); HRMS (EI) for C<sub>10</sub>H<sub>16</sub>O<sub>3</sub> (M<sup>+</sup>), calcd 184.1099, found 184.1096.

#### Preparation of ketone 5.

(a) ethyl (triphenylphosphoranylidene)acetate,  $CH_2CI_2$ , rt, overnight; (b)  $H_2$ , 10% Pd-C, MeOH, rt, 3 h; (c) LiOH· $H_2O$ , THF/EtOH/ $H_2O$ , rt, overnight; (d) Ph<sub>3</sub>P=CHCN, EDCI, DMAP,  $CH_2CI_2$ , rt,  $N_2$ , overnight; (e) dimethyldioxirane, MeOH, rt, 20 min.

To a solution of **5g** (76% e.e. determined by optical rotation measurement, 1.2 mL, 6.5 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (50 mL) was added ethyl (triphenylphosphoranylidene)acetate (2.5 g, 7.1 mmol) at room temperature. After stirring overnight, the reaction mixture was concentrated to give a white solid, which was then dissolved in CH<sub>2</sub>Cl<sub>2</sub> and passed through a short pad of silica gel to remove

Ph<sub>3</sub>P=O. The pad of celite was further washed with 50% EtOAc in hexane. The filtrate was concentrated under reduced pressure, and the residue was purified by flash column chromatography (5% EtOAc in hexane) to give **5f** as a yellow oil (1.2 g, 5.4 mmol, 83% yield). Analytical TLC (silica gel 60), 5% EtOAc in n-hexane,  $R_f = 0.63$ ;  $[\alpha]^{20}_D +3.33^\circ$  (c 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>)  $\delta$  6.93 (quintet, J = 7.7 Hz, 1H), 5.80 (d, J = 15.4 Hz, 1H), 5.08 (t, J = 7.3 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 2.09–2.24 (m, 1H), 1.93–2.06 (m, 3H), 1.64 (d, J = 11.2 Hz, 6H), 1.19–1.45 (m, 2H), 0.86–1.02 (m, 1H), 0.91 (d, J = 6.7 Hz, 3H); <sup>13</sup>C NMR (67 MHz, CDCl<sub>3</sub>)  $\delta$  166.63, 148.16, 131.44, 124.41, 122.40, 60.10, 39.63, 36.68, 32.08, 25.68, 25.49, 19.48, 17.62, 14.26; IR (CH<sub>2</sub>Cl<sub>2</sub>) 1711 cm<sup>-1</sup>; EIMS (20 eV) m/z 224 (M<sup>+</sup>, 27), 181 (27), 151 (5), 136 (100); HRMS (EI) for C<sub>14</sub>H<sub>24</sub>O<sub>2</sub> (M<sup>+</sup>), calcd 224.1776, found 224.1777. (ref: Balu, N.; Bhat, S. V. *J. Chem. Soc., Chem. Commun.* **1994**, 7, 903).

To a solution of **5f** (3 g, 13.3 mmol) in MeOH (50 mL) was added 10% Pd/C (0.15 g) at room temperature. After stirring under hydrogen atmosphere for 3 h, the reaction mixture was filtered through a short pad of celite to remove Pd/C. The silica gel pad was further washed with MeOH and EtOAc. Concentration of the filtrate under reduced pressure provided **5e** as a colourless oil (2.9 g, 12.7 mmol, 98% yield). Analytical TLC (silica gel 60), 5% EtOAc in n-hexane,  $R_f = 0.68$ ;  $[\alpha]^{20}_D + 0.16^{\circ}$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta = 4.14$  (dd, J = 7.2 Hz, 2H), 2.27 (t, J = 7.2 Hz, 2H), 1.06–1.69 (m, 12H), 1.26 (d, J = 7.2 Hz, 3H), 0.86 (d, J = 6.5 Hz, 9H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta = 176.42$ , 59.88, 39.25, 37.06, 36.42, 34.49, 32.49, 27.89, 24.68, 22.59, 22.48, 19.44, 14.14; IR (CH<sub>2</sub>Cl<sub>2</sub>) 1727 cm<sup>-1</sup>; EIMS (20 eV) m/z = 228 (M<sup>+</sup>, 7), 185 (100); HRMS (EI) for C<sub>14</sub>H<sub>28</sub>O<sub>2</sub> (M<sup>+</sup>) calcd 228.2089, found 228.2079. (ref: Kikumasa, S.; Shioji, M.; Masao, H. *J. Org. Chem.* **1976**, *32*, 177).

To a solution of **5e** (2.5 g, 11 mmol) in THF / EtOH /  $H_2O$  (30 mL / 7.5 mL / 7.5 mL) was added LiOH ·  $H_2O$  (0.92 g, 21.9 mmol) at 0 °C. After stirring at room temperature for 3 h, the reaction mixture was concentrated under reduced pressure, acidified with hydrochloric acid to pH 2–3 at 0

°C, and extracted with EtOAc. The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (20% EtOAc in hexane) to provide **5d** as a colourless oil (2.1 g, 10.5 mmol, 98% yield). Analytical TLC (silica gel 60), 25% EtOAc in n-hexane,  $R_f = 0.40$ ; [ $\alpha$ ]<sup>20</sup><sub>D</sub> +0.93° (c 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  2.33 (t, J = 7.5 Hz, 2H), 1.10–1.65 (m, 12H), 0.86 (d, J = 6.5 Hz, 9H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  180.73, 39.45, 37.22, 36.54, 34.59, 32.69, 28.12, 24.88, 22.85, 22.75, 22.42, 19.66; IR (CH<sub>2</sub>Cl<sub>2</sub>) 1731 cm<sup>-1</sup>; EIMS (20 eV) m/z 200 (M<sup>+</sup>, 10), 157 (77); HRMS (EI) for C<sub>12</sub>H<sub>24</sub>O<sub>2</sub> (M<sup>+</sup>), calcd 200.1776, found 200.1775. (ref: Kazuaki, A.; Keiichiro, I.; Hiroshi, O. *Bunseki Kagaku*, **1999**, 48, 1085).

**5c**: prepared from **5d** following the procedure for **4c**, as a white solid (4.6 g, 9.5 mmol, 95% yield). M.p. 95–96 °C. Analytical TLC (silica gel 60), 50% EtOAc in n-hexane,  $R_f = 0.68$ ;  $[α]^{20}$ <sub>D</sub> +0.83° (c 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>) δ 7.59 (m, 15H), 2.67 (t, J = 7.4 Hz, 2H), 1.07–1.68 (m, 12H), 0.85 (d, J = 6.7 Hz, 9H); <sup>13</sup>C NMR (67 MHz, CDCl<sub>3</sub>) δ 197.59, 133.60 (d, J = 10.2 Hz, 6C), 133.05 (s, 3C), 129.16 (d, J = 12.8 Hz, 6C), 123.48 (d, J = 93.6 Hz, 3C), 122.86 (d, J = 16.7 Hz, CN), 48.48 (d, J = 126.6 Hz), 39.85 (d, J = 6.8 Hz), 39.37, 37.28, 36.77, 32.76, 27.97, 24.80, 23.21, 22.78, 22.67, 19.69; IR (CH<sub>2</sub>Cl<sub>2</sub>) 2173, 1733 cm<sup>-1</sup>; FABMS m/z 484 (M<sup>+</sup>+1); HRMS (EI) for C<sub>32</sub>H<sub>38</sub>NOP (M<sup>+</sup>), calcd 483.2691, found 483.2687.

5: prepared from **5c** following the procedure for **4**, as a colourless oil (0.2 g, 0.8 mmol, 82% yield). Analytical TLC (silica gel 60), 20% EtOAc in n-hexane,  $R_f = 0.56$ ;  $[\alpha]^{20}_D + 0.69^{\circ}$  (c 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  3.86 (s, 3H), 2.81 (t, J = 7 Hz, 2H), 1.62 (m, 2H), 1.32 (m, 6H), 1.09 (m, 4H), 0.86 (d, J = 6.5 Hz, 9H); <sup>13</sup>C NMR (67 MHz, CDCl<sub>3</sub>)  $\delta$  194.44, 161.72, 52.95, 39.72, 39.39, 37.15, 36.36, 32.06, 28.06, 24.80, 22.79, 22.70, 20.65, 19.57; IR (CH<sub>2</sub>Cl<sub>2</sub>) 1729 cm<sup>-1</sup>; EIMS (20 eV) m/z 242 (M<sup>+</sup>, 3), 183 (55), 165 (65); HRMS (EI) for C<sub>14</sub>H<sub>26</sub>O<sub>3</sub> (M<sup>+</sup>), calcd 242.1881, found 242.1878.

#### Preparation of ketone 6

(a) MeOH, concentrated  $H_2SO_4$ , reflux; (b) LDA, DMPU, Etl, THF, -78  $^{\circ}$ C to rt, 15 h; (c) DIBALH,  $CH_2CI_2$ , 0  $^{\circ}$ C to rt; (d) PDC, celite,  $CH_2CI_2$ , rt, 1 h; (e)  $Ph_3P=CHCO_2Et$ ,  $CH_2CI_2$ , rt; (f)  $H_2$ , 10% Pd-C, MeOH; (g) LiOH· $H_2O$ , THF/EtOH/ $H_2O$ , rt; (h)  $Ph_3P=CHCN$ , DMAP, EDCI,  $CH_2CI_2$ , rt, overnight; (i) dimethyldioxirane, MeOH, rt, 6 h.

To a solution of **6k** (8.0 g, 56 mmol) in MeOH (50 mL) was added concentrated sulfuric acid (2 drops). After refluxing overnight, the reaction mixture was concentrated under reduced pressure to give a white solid, which was then dissolved in Et<sub>2</sub>O, washed with 5% NaHCO<sub>3</sub> solution, brine, and H<sub>2</sub>O. The organic layer was separated, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by flash column chromatography (5% EtOAc in hexane) to give **6j** as a yellow oil (8 g, 51 mmol, 91% yield). Analytical TLC (silica gel 60), 5% EtOAc in n-hexane,  $R_f$  = 0.63; <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>)  $\delta$  3.65 (s, 3H), 2.18 (d, J = 6.9 Hz, 2H), 1.59–1.80 (m, 6H), 0.87–1.32 (m, 5H); <sup>13</sup>C NMR (67 MHz, CDCl<sub>3</sub>)  $\delta$  173.59, 51.33, 42.01, 34.93, 33.08, 26.19, 26.08; IR (CH<sub>2</sub>Cl<sub>2</sub>) 1700 cm<sup>-1</sup>. (ref: Inokuchi, T; Sugimoto, T; Kusumoto, M; Torii, S. *Bull. Chem. Soc. Jpn.* **1992**, 65, 3200)

To a solution of diisopropylamine (1.9 mL, 13.8 mmol) in dry THF (10 mL) at -78 °C was added n-BuLi (1.38 M in hexane, 10 mL, 13.8 mmol) under nitrogen atmosphere. After stirring for 1 h, the mixture was warmed to 25 °C for 10 min, and then cooled to -78 °C, followed by the addition of 1,3-dimethyl-3,4,5,6-tetrahydro-2(1*H*)-pyrimidinone (14 mL, 12 mmol) and a solution of 6j (2 g, 12 mmol) in THF (10 mL). The reaction mixture was stirred for 1 h at -78 °C. After addition of EtI (2.0 g, 12 mmol), the reaction mixture was stirred for 2 h at -78 °C and then warmed

up to room temperature for 12 h. The reaction mixture was quenched with brine. The organic layer was separated, and the aqueous layer was extracted with diethyl ether. The combined organic layers were washed with water, dried over anhydrous MgSO<sub>4</sub>. The crude residue was purified by flash column chromatography (5% EtOAc in n-hexane) to afford **6i** as a colourless oil (2.2 g, 11.9 mmol, 95 % yield). Analytical TLC (silica gel 60), 5% EtOAc in n-hexane,  $R_f$  = 0.64; <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>)  $\delta$  3.46 (s, 3H), 2.01–2.18 (m, 1H), 1.45–1.80 (m, 8H), 0.80–1.29 (m, 5H), 0.85 (t, J = 7 Hz, 3H); <sup>13</sup>C NMR (67 MHz, CDCl<sub>3</sub>)  $\delta$  175.12, 53.13, 39.53, 30.53, 30.15, 25.91, 25.83, 21.94, 11.47; IR (CH<sub>2</sub>Cl<sub>2</sub>) 1733 cm<sup>-1</sup>; EIMS (20 eV) m/z 184 (M<sup>+</sup>, 10), 153 (32), 125 (62); HRMS (EI) for C<sub>11</sub>H<sub>20</sub>O<sub>2</sub> (M<sup>+</sup>), calcd 184.1463, found 184.1454. (ref: Metzger, J. O.; Klenke, K.; Hartmanns, J.; Eisermann, D. *Chem. Ber.* **1986**, *119*, 508).

To a solution of **6i** (5.7 g, 31 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (20 mL) was added diisobutylaluminum hydride (1 M in toluene, 93 mL, 93 mmol) at 0 °C. After stirring at room temperature overnight, the reaction mixture was quenched with H<sub>2</sub>O slowly, and acidified with diluted hydrochloric acid to pH 2 at 0 °C. The organic layer was separated, and the aqueous layer was extracted twice with CH<sub>2</sub>Cl<sub>2</sub>, The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by flash column chromatography (5% EtOAc in n-hexane) to afford **6h** as a yellow oil (4.0 g, 25.6 mmol, 83% yield). Analytical TLC (silica gel 60), 20% EtOAc in n-hexane,  $R_f = 0.51$ ; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  3.52–3.65 (m, 2H), 1.90 (br.s, 1H), 1.60–1.74 (m, 5H), 0.96–1.47 (m, 9H), 0.90 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  63.04, 47.90, 38.26, 30.33, 30.11, 27.00, 26.96, 26.88, 20.71, 12.33; IR (CH<sub>2</sub>Cl<sub>2</sub>) 3618, 3465 cm<sup>-1</sup>. EIMS (20 eV) m/z 138 (M<sup>+</sup>-H<sub>2</sub>O), 109 (68); HRMS (EI) for C<sub>10</sub>H<sub>18</sub> (M<sup>+</sup>-H<sub>2</sub>O), calcd 138.1408, found 138.1397. (ref: Choi, J. H.; Lee, S. J.; Joo, C. R.; Kim, J. S. Beak, D. J. *Bull. Korean Chem. Soc.* **1999**, 20, 1384).

To a solution of **6h** (3.5 g, 22 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (50 mL) were added PDC (7.2 g, 33 mmol) and celite (7.2 g) at room temperature. After stirring for 1 h, the reaction mixture was filtered through

celite, and the filtrate was evaporated under reduced pressure. The residue was purified by flash column chromatography (10% EtOAc in n-hexane) to afford **6g** as a yellow oil (2.77 g, 17.7 mmol, 81% yield). Analytical TLC (silica gel 60), 5% EtOAc in n-hexane,  $R_f = 0.40$ ; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  9.60 (d, J = 3.7 Hz, 1H), 1.92–2.61 (m, 1H), 1.49–1.81 (m, 7H), 0.91–1.38 (m, 7H), 0.88 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  206.36, 59.53, 38.03, 30.98, 30.31, 26.48, 19.15, 12.15. (ref: Lai, R.; Ucciani, E. C. R. *Acad. Sci., Ser. C* **1973**, 276, 425).

To a solution of **6g** (2.5 g, 16 mmol) in toluene (50 mL) was added ethyl (triphenylphosphoranylidene)acetate (6.2 g, 18 mmol). After refluxing overnight, the reaction mixture was diluted with brine, and extracted with CH<sub>2</sub>Cl<sub>2</sub>. The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by flash column chromatography (5% EtOAc in n-hexane) to give **6f** as a yellow oil (3.2 g, 14.3 mmol, 88% yield). Analytical TLC (silica gel 60), 5% EtOAc in n-hexane,  $R_f$  = 0.65; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  6.67 (dd, J = 15.5, 9.9 Hz, 1H), 5.75 (d, J = 15.5 Hz, 1H), 4.18 (q, J = 7.2 Hz, 2H), 1.81–1.91 (m, 1H), 1.51–1.74 (m, 6H), 1.24–1.38 (m, 2H), 1.29 (t, J = 7.2 Hz, 3H), 0.90–1.20 (m, 5H), 0.82 (t, J = 7.4 Hz, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  167.00, 152.24, 121.94, 60.08, 50.47, 41.34, 31.13, 29.93, 26.57, 26.53, 26.52, 24.03, 14.27, 12.05; IR (CH<sub>2</sub>Cl<sub>2</sub>) 1706, 1650, 1449 cm<sup>-1</sup>; EIMS (20 eV) m/z 224 (M<sup>+</sup>), 151 (20), 142 (100); HRMS (EI) for C<sub>14</sub>H<sub>24</sub>O<sub>2</sub> (M<sup>+</sup>), calcd 224.1776 found 224.1777.

To a solution of **6f** (3.16 g, 14 mmol) in MeOH (50 mL) was added 10% Pd/C (0.15 g) at room temperature. After stirring under H<sub>2</sub> overnight, the reaction mixture was filtered through a pad of celite to remove Pd/C. The pad of celite was further washed with MeOH and EtOAc. Concentration of the filtrate provided **6e** as a colourless oil (2.3 g, 10.2 mmol, 74% yield). Analytical TLC (silica gel 60), 8% EtOAc in n-hexane,  $R_f = 0.33$ ; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  4.11 (d, J = 7.1 Hz, 2H), 2.24–2.31 (m, 2H), 0.90–1.75 (m, 16H), 1.25 (t, J = 7.1 Hz, 3H), 0.86 (t, J = 7.3 Hz, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  174.40, 60.32, 44.72, 39.76, 32.95, 29.97, 29.78, 27.06, 26.99, 25.64, 22.96,

14.41, 12.13; IR (CH<sub>2</sub>Cl<sub>2</sub>) 1726, 1650, 1449 cm<sup>-1</sup>; EIMS (20 eV) m/z 197 (M<sup>+</sup>-C<sub>2</sub>H<sub>5</sub>); HRMS (EI) for C<sub>12</sub>H<sub>21</sub>O<sub>2</sub> (M<sup>+</sup>-C<sub>2</sub>H<sub>5</sub>), calcd 197.1543, found 197.1527.

To a solution of **6e** (2.27 g, 10 mmol) in THF / EtOH / H<sub>2</sub>O (40 mL / 10 mL / 10 mL) was added LiOH·H<sub>2</sub>O (2.3 mg, 55 mmol) at 0 °C. After stirring at room temperature overnight, the reaction mixture was concentrated under reduced pressure. The reaction mixture was acidified with hydrochloric acid to pH 2 at 0 °C, and extracted with EtOAc. The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (20% EtOAc in hexane) to provide **6d** as a yellow oil (1.9 g, 9.6 mmol, 95% yield). Analytical TLC (silica gel 60), 50% EtOAc in n-hexane,  $R_f = 0.66$ ; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  2.28–2.40 (m, 2H), 0.95–1.78 (m, 16H), 0.90 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  180.95, 44.62, 39.73, 32.67, 29.98, 29.75, 27.03, 25.36, 22.92, 12.08 cm<sup>-1</sup>; IR (CH<sub>2</sub>Cl<sub>2</sub>) 3496, 1744, 1708 cm<sup>-1</sup>; EIMS (20 eV) m/z 198 (M<sup>+</sup>, 2), 139 (29), 115 (100); HRMS (EI) for C<sub>12</sub>H<sub>22</sub>O<sub>2</sub> (M<sup>+</sup>), calcd 198.1619, found 198.1615.

**6c**: prepared from **6d** following the procedure for **4c**, as a white solid (4.0 g, 8.3 mmol, 87% yield). M.p. 131–132 °C. Analytical TLC (silica gel 60), 20% EtOAc in n-hexane,  $R_f = 0.56$ ; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.45–7.64 (m, 15H), 2.65 (t, J = 7.7 Hz, 2H), 1.00–1.73 (m, 16H), 0.86 (d, J = 7 Hz, 3H); <sup>13</sup>C NMR (67 MHz, CDCl<sub>3</sub>)  $\delta$  198.15, 133.73 (d, J = 10.2 Hz, 6C), 133.12 (s, 3C), 129.22 (d, J = 12.8 Hz, 6C), 124.10 (d, J = 93.6 Hz, 3C), 122.95 (d, J = 14.5 Hz, CN), 48.32 (d, J = 12.8 Hz), 44.87, 39.77, 38.23, 29.90 (d, J = 9.3 Hz), 27.10, 26.31, 23.06, 12.27; IR (CH<sub>2</sub>Cl<sub>2</sub>) 2173, 1733 cm<sup>-1</sup>; FABMS m/z 482 (M<sup>+</sup>+1, 100); HRMS (EI) for C<sub>32</sub>H<sub>36</sub>NOP (M<sup>+</sup>), calcd 481.2534, found 481.2543.

6: prepared from **6c** following the procedure for **4**, as a colourless oil (0.50g, 2.3 mmol, 76% yield). Analytical TLC (silica gel 60), 10% EtOAc in n-hexane,  $R_f = 0.44$ ; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  3.86 (s, 3H), 2.80 (t, J = 7.9 Hz, 2H), 1.00–1.75 (m, 16H), 0.87 (d, J = 7.4 Hz, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  194.67, 161.69, 52.90, 44.54, 39.69, 37.87, 29.87, 29.70, 26.92, 23.43,

22.91, 11.99; IR (CH<sub>2</sub>Cl<sub>2</sub>) 1728, 1606 cm<sup>-1</sup>; EIMS m/z 240 (M<sup>+</sup>), 163 (10); HRMS (EI) for C<sub>14</sub>H<sub>24</sub>O<sub>3</sub> (M<sup>+</sup>), calcd 240.1725, found 240.1730.

#### Preparation of ketones 7–10.

Ketones **7–10** were synthesized by coupling of pyruvic chloride with the corresponding alcohols. The preparation of pyruvic chloride follows a literature procedure (Ottenheijm, H. C. J; DE Man, J. H. M. *Syn. Comm.* **1975**, *5*, 163). The preparation of ketone **7** was given as an example.

$$OH \xrightarrow{a} O O$$

$$7a \qquad 7$$

$$O Me$$

a) CH<sub>3</sub>COCOCI, pyridine, CH<sub>2</sub>CI<sub>2</sub>, rt

 $\alpha$ , $\alpha$ -Dichloromethyl methyl ether (3.3 mL, 37 mmol) was added dropwise to pyruvic acid (3.2 g, 37 mmol) at room temperature. The reaction mixture was heated at 50 °C for 45 min. Then the crude acid chloride was added dropwise to a solution of **7a** (0.84 g, 7.3 mmol) and pyridine (5 mL) in CH<sub>2</sub>Cl<sub>2</sub> (70 mL) at 0 °C. After stirring at room temperature for 1 h, the reaction mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub>. The organic layer was washed with diluted aqueous HCl, saturated aqueous NaHCO<sub>3</sub>, dried over anhydrous MgSO<sub>4</sub> and concentrated under reduced pressure. The residue was purified by flash column chromatography (20% EtOAc in n-hexane) to give **7** (0.49 g, 2.66 mmol, 36% yield) as a colourless oil. Analytical TLC (silica gel 60), 30% EtOAc in n-hexane,  $R_f$  = 0.5; <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>)  $\delta$  4.05 (t, J = 7.3 Hz, 2H), 2.33 (s, 3H), 1.47–1.77 (m, 6H), 0.88–1.37 (m, 5H); <sup>13</sup>C NMR (75.48 MHz, CDCl<sub>3</sub>)  $\delta$  191.44, 160.52, 70.39, 36.55, 29.14, 26.22, 25.87, 25.20; IR (CH<sub>2</sub>Cl<sub>2</sub>) 1731 cm<sup>-1</sup>; EIMS (20 eV) m/z 184 (M<sup>+</sup>, 1), 113 (100); HRMS (EI) for C<sub>11</sub>H<sub>12</sub>O<sub>3</sub> (M<sup>+</sup>), calcd 184.1098, found 184.1099.

**8** (45% yield). Analytical TLC (silica gel 60), 30% EtOAc in n-hexane,  $R_f = 0.5$ ; as a colourless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.14–7.31 (m, 5H), 4.41 (t, J = 7.1 Hz, 2H), 3.00 (t, J = 7.1 Hz, 2H), 2.37 (s, 3H); <sup>13</sup>C NMR (75.48 MHz, CDCl<sub>3</sub>)  $\delta$  191.63, 160.55, 136.97, 128.93, 128.61, 126.82, 66.64, 34.75, 26.64; IR (CH<sub>2</sub>Cl<sub>2</sub>) 1750, 1733 cm<sup>-1</sup>; EIMS (20 eV) m/z 192 (M<sup>+</sup>, 2); HRMS (EI) for C<sub>11</sub>H<sub>12</sub>O<sub>3</sub> (M<sup>+</sup>), calcd 192.0786, found 192.0786.

**9** (36% yield). A white solid. M.p. 165 °C. Analytical TLC (silica gel 60), 50% EtOAc in n-hexane,  $R_f = 0.65$ ; <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>)  $\delta$  4.78–4.89 (m, 1H), 2.46 (s, 3H), 2.40–2.49 (m, 1H), 0.68–2.07 (m, 21H), 0.87 (s, 3H), 0.86 (s, 3H); <sup>13</sup>C NMR (67.94 MHz, CDCl<sub>3</sub>)  $\delta$  221.04, 192.38, 160.40, 76.18, 54.22, 51.31, 47.72, 44.63, 36.58, 35.78, 35.60, 34.97, 33.52, 31.48, 30.73, 28.18, 27.06, 26.62, 21.73, 20.43, 13.77, 12.17; IR (CH<sub>2</sub>Cl<sub>2</sub>) 1750, 1733 cm<sup>-1</sup>; EIMS (20 eV) m/z 360 (M<sup>+</sup>, 8), 272 (100); HRMS (EI) for C<sub>22</sub>H<sub>32</sub>O<sub>4</sub> (M<sup>+</sup>), calcd 360.2301, found 360.2307.

**10** (45% yield) as a white solid. M.p. 164 °C. Analytical TLC (silica gel 60), 20% EtOAc in n-hexane,  $R_f = 0.29$ ; <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>)  $\delta$  5.16–5.30 (m, 1H), 2.48 (s, 3H), 0.90–2.40 (m,

22H), 0.87 (s, 3H), 0.85 (s, 3H);  $^{13}$ C NMR (67.94 MHz, CDCl<sub>3</sub>)  $\delta$  221.07, 192.39, 160.51, 72.99, 54.17, 51.46, 47.77, 40.02, 35.96, 38.81, 35.02, 32.74, 32.60, 31.53, 30.63, 27.96, 26.79, 25.94, 21.73, 20.07, 13.82, 11.34; IR (CH<sub>2</sub>Cl<sub>2</sub>) 1750, 1733 cm<sup>-1</sup>; EIMS (20 eV) m/z 360 (M<sup>+</sup>, 2), 272 (100); HRMS (EI) for  $C_{22}H_{32}O_4$  (M<sup>+</sup>), calcd 360.2301, found 360.2300.

#### Preparation of ketone 11.

a) Pentylmagnesium bromide, ether, 10  $^{\rm o}$ C, N<sub>2</sub>; b) 1M HCl, reflux; c) i) CHCl<sub>2</sub>OMe, CH<sub>2</sub>Cl<sub>2</sub>, 50  $^{\rm o}$ C, ii) Epiandrosterone, pyridine CH<sub>2</sub>Cl<sub>2</sub>, DMAP

To a solution of diethyl oxalate (5.48 mL, 40 mmol) in Et<sub>2</sub>O (30 mL) was added pentylmagnesium bromide (2 M in ether, 10 mL, 20 mmol) at -10 °C under nitrogen atmosphere. The reaction mixture was warmed to room temperature and stirred for 1 h, then quenched with brine and extracted with Et<sub>2</sub>O. The combined organic layers were dried over anhydrous MgSO<sub>4</sub> and concentrated under reduced pressure. The residue was purified by flash column chromatography (3% EtOAc in n-hexane) to furnish ketone **11c** (0.96 g, 5.6 mmol, 28% yield) as a colourless oil. Analytical TLC (silica gel 60), 10% EtOAc in n-hexane,  $R_f = 0.48$ ; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  4.31 (q, J = 7.3 Hz, 3H), 2.82 (t, J = 7.3 Hz, 2H), 1.64 (t, J = 7.3 Hz, 3H), 1.25–1.42 (m, 8H), 0.90 (t, J = 6.7 Hz, 3H); <sup>13</sup>C NMR (100.61 MHz, CDCl<sub>3</sub>)  $\delta$  194.81, 161.30, 62.32, 39.22, 31.08, 22.65, 22.31, 13.98, 13.82; IR (CH<sub>2</sub>Cl<sub>2</sub>) 1723 cm<sup>-1</sup>. (ref: Barry, J.; Kagan, H. B. *Synthesis* **1981**, 6, 453).

A solution of ketone **11c** (0.38 g, 2.2 mmol) in 1 M HCl was heated to reflux for 6 h. The reaction mixture was extracted with EtOAc, dried over anhydrous MgSO<sub>4</sub> and concentrated under reduced pressure to furnish acid **11b** (0.29 g, 2.0 mmol, 91% yield) as a colourless oil; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.93 (t, J = 7.1 Hz, 2H), 1.65–1.68 (m, 2H), 1.21–1.35 (m, 4H), 0.91 (t, J =

6.0 Hz, 3H); <sup>13</sup>C NMR (100.61 MHz, CDCl<sub>3</sub>) δ 195.98, 159.79, 37.38, 31.01, 22.73, 22.27, 13.78; IR (CH<sub>2</sub>Cl<sub>2</sub>) 3536, 1722 cm<sup>-1</sup>. (ref: Barry, J.; Kagan, H. B. *Synthesis* **1981**, *6*, 453).

α, α-Dichloromethyl methyl ether (0.26 mL, 2.2 mmol) was added dropwise to **11c** (0.29 g, 2.0 mmol) at room temperature. The reaction mixture was heated at 50 °C for 45 min. Then the crude acid chloride was added dropwise to a solution of epiandrosterone (0.58 g, 2.0 mmol) and pyridine (1.6 mL) in CH<sub>2</sub>Cl<sub>2</sub> (10 mL) at 0 °C. After stirring for 15 min, the reaction mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub>. The organic layer was washed with diluted aqueous HCl, saturated aqueous NaHCO<sub>3</sub>, dried over anhydrous MgSO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by flash column chromatography (10% EtOAc in n-hexane) to furnish ketone **11** (0.18 g, 22% yield) as a white solid. M.p. 167 °C. Analytical TLC (silica gel 60), 30% EtOAc in n-hexane,  $R_f$  = 0.63; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 5.16–5.18 (m, 1H), 2.81 (t, J = 7.3 Hz, 3H), 0.83–2.48 (m, 36H); <sup>13</sup>C NMR (100.61 MHz, CDCl<sub>3</sub>) δ 221.25, 195.30, 160.73, 72.79, 70.14, 54.14, 51.42, 47.77, 40.00, 39.40, 35.93, 35.82, 34.98, 32.73, 32.58, 31.50, 30.76, 28.00, 27.94, 26.08, 25.93, 22.78, 21.73, 20.05, 13.81, 11.34; IR (CH<sub>2</sub>Cl<sub>2</sub>) 1735 cm<sup>-1</sup>; EIMS m/z 272 (M<sup>+</sup>–C<sub>7</sub>H<sub>12</sub>O<sub>3</sub>, 100); HRMS (EI) for C<sub>19</sub>H<sub>29</sub>O (M<sup>+</sup>–C<sub>7</sub>H<sub>12</sub>O<sub>3</sub>), calcd 272.2139, found 272.2131.

#### Preparation of ketone 13.

Alcohol **13c** was prepared from acid **13e** according to a literature procedure (Gargiulo, D.; Blizzard, T. A.; Nakanishi, K. *Tetrahedron* **1989**, *45*, 5423.)

a) hv, iodosobenzene diacetate (IBDA),  $I_2$ , 70 °C; b)  $Ag_2CO_3$ , aq. acetone, 50 °C; c) PDC, DMF, rt; d) i, oxalyl chloride,  $CH_2CI_2$ ; ii,  $(CF_3CO)_2O$ , pyridine,  $CH_2CI_2$ .

**13d** (64% yield). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  4.95–5.05 (m, 1H), 4.89–4.93 (m, 1H), 4.52–4.63 (m, 1H), 3.07–3.29 (m, 2H), 2.14 (s, 3H), 2.08 (s, 3H), 2.05 (s, 3H), 0.95–2.05 (m, 24H), 0.92 (s, 3H), 0.81 (d, J = 6.0 Hz, 3H), 0.75 (s, 3H); <sup>13</sup>C NMR (67.94 MHz, CDCl<sub>3</sub>)  $\delta$  170.50, 170.46, 170.34, 75.34, 74.07, 70.66, 47.29, 45.15, 43.39, 40.91, 40.04, 37.72, 36.42, 34.68, 34.60, 34.33, 31.23, 28.87, 27.21, 26.89, 25.56, 22.78, 22.56, 21.62, 21.49, 21.45, 17.05, 12.23, 4.66.

**13c** (81% yield). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  5.10–5.12 (m, 1H), 4.89–4.92 (m, 1H), 4.52–4.63 (m, 1H), 3.60–3.70 (m, 3H), 2.14 (s, 3H), 2.09 (s, 3H), 2.05 (s, 3H), 0.94–2.01 (m, 24H), 0.92 (s, 3H), 0.85 (d, J = 6.4 Hz, 3H), 0.75 (s, 3H); <sup>13</sup>C NMR (67.94 MHz, CDCl<sub>3</sub>)  $\delta$  170.55, 170.40, 75.45, 74.12, 70.73, 60.72, 47.99, 45.15, 43.43, 40.95, 38.69, 37.76, 34.72, 34.62, 34.36, 32.18, 31.28, 28.91, 27.41, 26.91, 25.59, 22.86, 22.58, 21.64, 21.51, 21.47, 18.06, 12.24.

To a solution of alcohol **13c** (2.2 g, 4.3 mmol) in DMF (45 mL) was added freshly prepared pyridinium dichromate (16.5 g, 44 mmol). After stirring at room temperature overnight, the reaction mixture was poured into  $H_2O$ , and extracted with diethyl ether. The organic phase was separated, washed with brine, dried over anhydrous MgSO<sub>4</sub>, and concentrated under reduced pressure to give acid **13b** (1.8 g, 3.4 mmol, 80% yield) as a white solid. M.p. 123–125 °C. <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>)  $\delta$  5.05–5.12 (m, 1H), 5.88–4.95 (m, 1H), 4.47–4.72 (m, 1H), 2.45 (dd, J = 15, 3 Hz, 1H), 2.14 (s, 3H), 2.09 (s, 3H), 2.05 (s, 3H), 0.98–1.98 (m, 22H), 0.92 (s, 6H), 0.77 (s, 3H); <sup>13</sup>C NMR (67.94 MHz, CDCl<sub>3</sub>)  $\delta$  178.73, 170.62, 170.52, 170.45, 75.25, 74.10, 70.69, 47.25, 45.15, 43.47, 40.97, 40.92, 37.74, 34.70, 34.61, 34.35, 32.91, 31.25, 28.88, 27.38, 26.89, 25.56, 22.79, 22.57, 21.65, 21.51, 21.42, 18.70, 12.22; IR (CH<sub>2</sub>Cl<sub>2</sub>) 3687, 1726 cm<sup>-1</sup>. (ref: Gao, H. W.; Dias, J. R. *Syn. Comm.* **1997**, 27, 757.)

To a solution of acid **13b** (1.3 g, 2.5 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (30 mL) was added oxalyl chloride (2.2 mL, 25 mmol). The resulting mixture was stirred at room temperature overnight. Then the solvent and excess oxalyl chloride were evaporated off under reduced pressure. The resulting acid chloride was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (30 mL), and treated with trifluoroacetic anhydride (2.1 mL, 15 mmol) and

pyridine (1.6 ml, 20 mmol) at 0 °C under nitrogen atmosphere. The reaction mixture was stirred at room temperature for 5 h, quenched slowly with H<sub>2</sub>O at 0 °C, and extracted with CH<sub>2</sub>Cl<sub>2</sub>. The organic layer was separated, dried over anhydrous MgSO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by flash column chromatography (20% EtOAc in n-hexane) to furnish trifluoromethyl ketone **13** (0.46 g, 0.82 mmol, 32% yield) as a white solid. M.p. 73–75 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  5.08–5.09 (m, 1H), 4.90–4.92 (m, 1H), 4.53–4.63 (m, 1H), 2.70–2.77 (m, 1H), 2.45–2.55 (m, 1H), 2.17 (s, 3H), 2.09 (s, 3H), 2.05 (s, 3H), 0.99–2.07 (m, 20H), 0.93 (s, 3H), 0.89 (d, J = 6.4 Hz, 3H), 0.78 (s, 3H); <sup>13</sup>C NMR (67.94 MHz, CDCl<sub>3</sub>)  $\delta$  191.14 (q, <sup>2</sup>J<sub>C, F</sub> = 34.3 Hz), 170.54, 170.45, 170.34, 115.46 (q, <sup>1</sup>J<sub>C, F</sub> = 293 Hz), 75.10, 74.06, 70.62, 46.88, 45.23, 43.52, 42.95, 40.94, 37.76, 37.73, 34.73, 34.64, 34.36, 31.26, 31.23, 28.88, 27.46, 26.91, 25.58, 22.80, 22.55, 21.61, 21.48, 21.42, 18.70, 12.18; IR (CH<sub>2</sub>Cl<sub>2</sub>) 1726 cm<sup>-1</sup>; CIMS m/z 572 (M<sup>+</sup>, 10), 513 (100); HRMS (EI) for C<sub>26</sub>H<sub>35</sub>O<sub>3</sub>F<sub>3</sub> (M<sup>+</sup>–2×CH<sub>3</sub>COOH), calcd 452.2538, found 452.2539.

#### Preparation of ketone 14.

The preparation of ketone **14** followed literature procedures: (a) Marchand, A. P.; Dave, P. R. *J. Org. Chem.* **1989**, *54*, 2775. (b) Baldwin, J. E.; Jesudason, C. D.; Moloney, M. G.; Morgan, D. R.; Pratt, A. J. *Tetrahedron*, **1991**, *47*, 5603. (c) Dodge, J. A.; Trujillo, J. I.; Presnell, M. *J. Org. Chem.* **1994**, *59*, 234.

To a solution of **14a** (3.00 g, 7.72 mmol) and triphenylphosphine (2.00 g, 7.70 mmol) in tetrahydrofuran (50 mL) under nitrogen atmosphere at 0 °C, diethyl azodicarboxylate (1.21 mL, 7.70 mmol) was added in a dropwise fashion at a rate such that the reaction temperature was maintained below 10 °C. Upon completion of the addition, the temperature was increase to room temperature. After stirring overnight, the reaction mixture was concentrate under reduced pressure. The residue was purified by flash column chromatography (10 % EtOAc in n-hexane) to furnish **14g** (3.6 g, 6.62 mmol, 86% yield) as a white solid. M.p. 135 °C. Analytical TLC (silica gel 60), 20% EtOAc in n-hexane,  $R_f = 0.73$ ; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.50 (dd, J = 7.8, 1.4 Hz, 1H), 7.17 (dt, J = 7.1, 1.4 Hz, 1H), 6.84 (d, J = 7.5 Hz, 1H), 6.75 (dt, J = 7.6, 1.0 Hz, 1H), 4.56 (br s, 3H), 1.96 (br d, J = 11.6 Hz, 1H), 0.90–1.90 (m, 30H), 0.90 (d, J = 6.4 Hz, 3H), 0.87 (d, J = 6.6 Hz, 1H), 0.86 (d, J = 6.6 Hz, 1H), 0.81 (s, 3H), 0.65 (s, 3H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>)  $\delta$  154.0, 133.4, 128.1, 121.4, 115.1, 113.8, 73.5, 56.4, 56.2, 54.2, 42.5, 40.0, 39.5, 39.4, 36.2, 35.8, 35.7, 35.5, 32.7, 32.6, 31.9, 28.4, 28.2, 28.0, 25.7, 24.1, 23.8, 22.8, 22.6(2C), 20.8, 18.7, 12.1, 11.5; IR (CH<sub>2</sub>Cl<sub>2</sub>) 1476 cm<sup>-1</sup>. EIMS (20 eV) m/z 542 (M<sup>+</sup>, 1), 370 (100); HRMS (EI) for C<sub>33</sub>H<sub>51</sub>BrO (M<sup>+</sup>), calcd 542.3123, found 542.3121.

To a solution of **14g** (2.72 g, 5.00 mmol) in tetrahydrofuran (50 mL) under nitrogen atmosphere at -78 °C was added slowly n-butyl lithium (1M in hexane, 6 mL, 6.00 mmol). After stirring for 30 mins, ethyl trifluoroacetate (0.90 mL, 6.00 mmol) was added to the above reaction mixture. The reaction mixture was warmed to room temperature and stirred overnight, then quenched with brine and extracted with Et<sub>2</sub>O. The residue was purified by flash column chromatography (15% EtOAc in n-hexane) to furnish ketone **14** (2.0 g, 3.60 mmol, 72% yield) as a white solid. M.p. 74–76 °C. Analytical TLC (silica gel 60), 20% EtOAc in n-hexane,  $R_f = 0.64$ ; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.62 (d, J = 6.7 Hz, 1H), 7.52 (t, J = 7.7 Hz, 1H), 6.98 (t, J = 7.3 Hz, 1H), 6.97 (d, J = 8.1 Hz, 1H), 4.67 (br s, 3H), 1.96 (br d, J = 9.5 Hz, 1H), 0.85–1.90 (m, 30H), 0.90 (d, J = 6.4 Hz, 3H), 0.87 (d, J = 6.6 Hz, 1H), 0.86 (d, J = 6.6 Hz, 1H), 0.82 (s, 3H), 0.65 (s, 3H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>)  $\delta$ 

183.6 (q, J = 36.4 Hz, C=O), 158.2, 135.3, 131.4, 122.5, 119.8, 116.2 (q, J = 291.5 Hz, CF<sub>3</sub>), 113.4, 73.9, 56.4, 56.3, 54.1, 42.6, 40.0, 39.6, 39.2, 36.2, 35.9, 35.6, 35.5, 32.5, 32.4, 31.9, 28.5, 28.3, 28.0, 25.8, 24.2, 23.9, 22.9, 22.6, 20.9, 18.7, 12.1, 11.4; IR (CH<sub>2</sub>Cl<sub>2</sub>) 2356, 1715, 1597 cm<sup>-1</sup>. EIMS (20 eV) m/z 560 (M<sup>+</sup>, 1), 370 (100); HRMS (EI) for C<sub>35</sub>H<sub>51</sub>F<sub>3</sub>O<sub>2</sub> (M<sup>+</sup>), calcd 560.3841, found 560.3827.

#### **Characterization Data of Hemiketals**

Analytical TLC (silica gel 60), 10% EtOAc in n-hexane,  $R_f = 0.22$ ; as an oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  4.29–4.32 (m, 1H), 2.73 (d, J = 2.0 Hz, 1H), 2.00–2.19 (m, 1H), 1.53–1.97 (m, 10H); <sup>13</sup>C NMR (67.94 MHz, CDCl<sub>3</sub>)  $\delta$  122.98 (q, <sup>1</sup> $J_{C, F} = 285.5$  Hz), 94.36 (q, <sup>2</sup> $J_{C, F} = 32.1$  Hz), 75.09, 37.82, 32.97, 26.85, 22.89, 21.85, 18.93; IR (CH<sub>2</sub>Cl<sub>2</sub>) 1741 cm<sup>-1</sup>; EIMS (20 eV) m/z 210 (M<sup>+</sup>, 17), 181 (100); HRMS (EI) for C<sub>9</sub>H<sub>13</sub>O<sub>2</sub>F<sub>3</sub> (M<sup>+</sup>), calcd 210.0868, found 210.0853.

Analytical TLC (silica gel 60), 30% EtOAc in n-hexane,  $R_f = 0.31$ ; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  4.71–4.76 (m, 1H), 1.46–2.62 (m, 11H); <sup>13</sup>C NMR (75.48 MHz, CDCl<sub>3</sub>)  $\delta$  173.67, 83.40, 36.97, 33.65, 30.98, 28.78, 23.62, 23.04. (ref: Pirkle, W. H.; Adams, P. E. *J. Org. Chem.* **1980**, *45*, 4111.)

As a white solid. M.p. 113–114 °C. Analytical TLC (silica gel 60), 30% EtOAc in n-hexane,  $R_f = 0.4$ ; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  4.36 (t, J = 7.5 Hz, 1H), 3.81 (s, 3H), 3.58 (s, 1H), 1.50–2.17 (m, 11H); <sup>13</sup>C NMR (75.48 MHz, CDCl<sub>3</sub>)  $\delta$  171.60, 94.75, 74.48, 53.00, 38.18, 33.05, 27.39, 25.73, 23.00, 19.73; IR (KBr) 3539, 1740 cm<sup>-1</sup>; EIMS (20 eV) m/z 182 (M<sup>+</sup>–H<sub>2</sub>O, 100), 153 (100), 125 (78); HRMS (EI) for C<sub>10</sub>H<sub>16</sub>O<sub>4</sub> (M<sup>+</sup>–H<sub>2</sub>O), calcd 182.0943, found 182.0950.

#### Preparation of 4b.

Ester **4b** was synthesized from **4a** according to a literature procedure (Norbeck, D. W.; Kramer, J.B.; Lartey, P. A. *J. Org. Chem.* **1987**, *52*, 2174).

To a solution of **4a** (80 mg, 0.40 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (4 mL) were added triethylamine (0.3 mL) and methanesulfonyl chloride (0.13 mL) at room temperature. After 4 h the reaction was poured into 10% aqueous NaHCO<sub>3</sub>, and the aqueous phase was extracted with CH<sub>2</sub>Cl<sub>2</sub>. The combined organic phases were dried over anhydrous MgSO<sub>4</sub> and concentrated under reduced pressure. The residue was purified by flash column chromatography (10% EtOAc in hexane) to give **4b** as a colourless oil (60 mg, 0.33 mmol, 82% yield). Analytical TLC (silica gel 60), 30% EtOAc in n-hexane,  $R_f$  = 0.5; <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>)  $\delta$  6.05 (dd, J = 6.3, 3.3 Hz, 1H), 4.22 (br s, 1H), 3.79 (s, 3H), 1.68–2.49 (m, 9H); <sup>13</sup>C NMR (75.48 MHz, CDCl<sub>3</sub>)  $\delta$  163.65, 142.65, 109.50, 79.34, 52.06, 36.48, 32.11, 28.60, 22.61, 21.36; IR (CH<sub>2</sub>Cl<sub>2</sub>) 1728, 1652 cm<sup>-1</sup>; EIMS (20 eV) m/z 182 (M<sup>+</sup>, 86), 151 (18), 123 (35); HRMS (EI) for C<sub>10</sub>H<sub>14</sub>O<sub>3</sub> (M<sup>+</sup>), calcd 182.0943, found 182.0939.

As an oil. Analytical TLC (silica gel 60), 20% EtOAc in n-hexane,  $R_f = 0.58$ ;  $[\alpha]^{20}_D$  +8.50° (c 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  6.03 (t, J = 4.3 Hz, 1H), 3.77 (s, 3H), 2.13–2.19 (m, 2H), 1.51–1.67 (m, 6H), 1.30–1.38 (m, 2H), 1.25 (s, 3H), 1.14–1.20 (m, 1H), 0.86 (d, J = 6.6 Hz, 6H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  164.11, 142.79, 109.67, 77.30, 52.10, 39.41, 39.07, 30.15, 27.92,

23.58, 22.68, 21.53, 18.80; IR ( $CH_2Cl_2$ ) 1726, 1604 cm<sup>-1</sup>; EIMS (20 eV) m/z 240 ( $M^+$ , 6), 181 (17), 171 (83); HRMS (EI) for  $C_{14}H_{24}O_3$  ( $M^+$ ), calcd 240.1725, found 240.1733.

As an oil. Analytical TLC (silica gel 60), 20% EtOAc in n-hexane,  $R_f = 0.33$ ;  $[\alpha]^{20}_D$  –2.38 (c 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  2.57–2.64 (m, 2H), 1.95–2.11 (m, 2H), 1.17–1.66 (m, 9H), 1.38 (s, 3H), 0.87 (d, J = 6.6 Hz, 6H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  177.00, 87.09, 41.32, 39.20, 33.11, 29.31, 27.98, 25.74, 22.68, 21.76; IR (CH<sub>2</sub>Cl<sub>2</sub>) 1730 cm<sup>-1</sup>; EIMS (20 eV) m/z 199 (M<sup>+</sup>+1, 52), 169 (57), 136 (95); HRMS (EI) for C<sub>12</sub>H<sub>22</sub>O<sub>2</sub> (M<sup>+</sup>), calcd 198.1619, found 198.1612.

As a white solid. M.p. 77–79 °C. Analytical TLC (silica gel 60), 10% EtOAc in n-hexane,  $R_f$  = 0.31 and 0.30 (γ-substituted 4 : 1); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 3.80 (s, 4/5×3H), 3.79 (s, 1/5×3H), 3.67 (d, J = 2 Hz, 4/5×1H), 3.64 (d, J = 2 Hz, 1/5×1H), 1.96–2.07 (m, 2H), 0.88–1.08 (m, 18H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 172.14, 94.98, 78.80, 53.05, 47.48, 37.48, 31.46, 29.93, 26.51, 24.14, 21.96, 20.18, 17.62, 12.75; IR (CH<sub>2</sub>Cl<sub>2</sub>) 3600, 1738 cm<sup>-1</sup>; EIMS m/z 256 (M<sup>+</sup>), 328 (51), 200 (10); HRMS (EI) for  $C_{14}H_{24}O_4$  (M<sup>+</sup>), calcd 256.1674, found 256.1667.

As a yellow oil. Analytical TLC (silica gel 60), 10% EtOAc in n-hexane,  $R_f = 0.42$ ; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  6.02 (t, J = 4 Hz, 1H), 3.77 (s, 3H), 2.31 (dt, J = 19.0, 5.0 Hz, 1H), 0.90–1.89 (m, 13H), 0.92 (t, J = 6.5 Hz, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  164.19, 142.02, 110.41, 78.86, 52.09, 41.36, 34.17, 28.00, 26.16, 23.84, 22.72, 21.59, 21.47,14.26, 12.51; IR (CH<sub>2</sub>Cl<sub>2</sub>) 1728 cm<sup>-1</sup>; EIMS m/z 238 (M<sup>+</sup>, 24), 123 (10); HRMS (EI) for C<sub>14</sub>H<sub>22</sub>O<sub>3</sub> (M<sup>+</sup>), calcd 238.1568, found 238.1518.

Analytical TLC (silica gel 60), 20% EtOAc in n-hexane,  $R_f = 0.18$ ; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  1.22–2.50 (m, 20H), 0.76–1.08 (m, 2H), 1.04 (s, 3H), 0.89 (s, 3H); <sup>13</sup>C NMR (75.48 MHz, CDCl<sub>3</sub>)  $\delta$  220.87, 211.53, 53.85, 51.20, 47.69, 46.57, 44.54, 38.40, 38.03, 35.77, 34.92, 31.45, 30.50, 28.58, 21.74, 20.67, 13.76, 11.42; EIMS (20 eV) m/z 288 (M<sup>+</sup>, 100); HRMS (EI) for C<sub>19</sub>H<sub>28</sub>O<sub>2</sub> (M<sup>+</sup>), calcd 288.2089, found 288.2084. (ref: Reich, H. J.; Jautelat, M.; Messe, M. T.; Weigert, F. J.; Roberts, J. D. *J. Am. Chem. Soc.* **1969**, *91*, 7445.)

As a white solid. Analytical TLC (silica gel 60), 30% EtOAc in n-hexane,  $R_f = 0.25$ ; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.03 (t, J = 7.5 Hz 2H), 0.78–2.72 (m, 26H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  221.26, 171.37, 83.09, 52.52, 46.11, 45.91, 44.28, 39.15, 38.18, 37.78, 37.44, 35.64, 30.27, 28.48, 28.32, 22.18, 20.11, 19.81,11.32 (ref: Hanson, J. R.; Hunter, A. C. *Phytochemistry* **1998**, 49, 2349).

As a white solid. M.p. 170 °C. Analytical TLC (silica gel 60), 30% EtOAc in n-hexane,  $R_f = 0.44$ ; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.08 (br s, 1H), 4.07–4.14 (m, 1H), 3.63 (dd, J = 9.6, 1.8 Hz, 1H), 0.77–2.49 (m, 37H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  221.25, 170.51, 94.69, 72.23, 67.17, 54.37, 51.41, 47.75, 40.03, 35.78, 34.97, 32.83, 32.43, 31.49, 30.72, 29.93, 27.93, 26.86, 25.75, 22.59, 21.77, 21.68, 20.04, 18.48, 13.77, 11.32; IR (CH<sub>2</sub>Cl<sub>2</sub>) 1735cm<sup>-1</sup>; EIMS (20 eV) m/z 414 (M<sup>+</sup>–H<sub>2</sub>O, 6), 272 (66); HRMS (EI) for  $C_{26}H_{38}O_4$  (M<sup>+</sup>–H<sub>2</sub>O), calcd 414.2770, found 414.2764.

As a white solid. M.p. 105-108 °C. Analytical TLC (silica gel 60), 50% EtOAc in n-hexane,  $R_f$  = 0.54;  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  4.89–1.96 (m, 2H), 4.55–4.61 (m, 1H), 4.31–4.35 (m, 1H), 3.37–4.21 (m, 1H), 3.23 (s, OH), 2.13 (s, 3H), 2.07 (s, 3H), 2.04 (s, 3H), 0.90–2.21 (m, 20H), 0.94 (s, 3H), 0.89 (d, J = 6.9 Hz, 3H), 0.88 (s, 3H);  $^{13}$ C NMR (125.75 MHz, CDCl<sub>3</sub>)  $\delta$  170.58, 170.35, 170.25, 123.35 (q,  $^{1}J_{C,F}$  = 286 Hz), 95.51 (q,  $^{2}J_{C,F}$  = 31.3 Hz), 74.69, 71.42, 70.75, 50.74, 44.57, 40.94, 40.27, 37.32, 36.03, 34.78, 34.69, 74.06, 34.48, 31.75, 31.28, 29.17, 26.90, 25.45, 23.95, 22.54, 21.49, 21.44, 21.31, 20.83, 14.81; IR (CH<sub>2</sub>Cl<sub>2</sub>) 3555, 1725 cm<sup>-1</sup>; CIMS m/z 589 (M<sup>+</sup>+1, 2), 469 (89), 409 (100); HRMS (EI) for C<sub>26</sub>H<sub>35</sub>O<sub>4</sub>F<sub>3</sub> (M<sup>+</sup>–2×CH<sub>3</sub>COOH), calcd 468.2487, found 468.2480.

Analytical TLC (silica gel 60), as a white solid, 20% EtOAc in n-hexane,  $R_f = 0.5$ ; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  4.29 (t, J = 12.4 Hz, 1H), 4.14 (ddd, J = 11.4, 5.4, 1.9 Hz, 1H), 2.86 (dd, J = 14.2, 11.3 Hz, 1H), 2.10 (d, J = 14.3 Hz, 1H), 1.98 (dt, J = 12.5, 3.2 Hz, 1H), 0.93–1.94 (m, 25H), 0.92 (s, 3H), 0.90 (d, J = 6.6 Hz, 3H), 0.87 (d, J = 6.5 Hz, 1H), 0.86 (d, J = 6.5 Hz, 1H), 0.75 (tt, J = 11.0, 3.8 Hz, 1H), 0.65 (s, 3H); <sup>13</sup>C NMR (125.8 MHz, CDCl<sub>3</sub>)  $\delta$  176.0, 64.7, 56.2 (2C), 53.8, 43.4, 42.3, 41.7, 39.8, 39.5, 37.9, 37.6, 36.1, 35.8, 34.6, 31.9, 30.6, 28.2, 28.0, 24.1, 23.8, 22.8, 22.6 (2C), 21.3, 18.6, 12.1, 12.0; IR (CH<sub>2</sub>Cl<sub>2</sub>) 1729 cm<sup>-1</sup>; EIMS (20 eV) m/z 402 (M<sup>+</sup>, 100); HRMS (EI) for C<sub>27</sub>H<sub>46</sub>O<sub>2</sub> (M<sup>+</sup>+1), calcd 403.3532, found 403.3531 (ref: Dave, V.; Stother, J. B.; Warnhoff, E. W. *Can. J. Chem.* 1984, 62, 1965).

As a white solid. Analytical TLC (silica gel 60), 20% EtOAc in n-hexane,  $R_f = 0.5$ ; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  4.28 (dd, J = 13.0, 8.8 Hz, 1H), 3.68 (d, J = 13.0 Hz, 1H), 2.69 (t, J = 13.3 Hz, 1H), 2.50 (dd, J = 13.4, 6.8 Hz, 1H), 1.98 (dt, J = 12.5, 3.2 Hz, 1H), 0.93–1.94 (m, 25H), 0.92 (s, 3H), 0.90 (d, J = 6.6 Hz, 3H), 0.87 (d, J = 6.5 Hz, 1H), 0.86 (d, J = 6.5 Hz, 1H), 0.75 (tt, J = 11.0, 3.8 Hz, 1H), 0.65 (s, 3H); <sup>13</sup>C NMR (125.8 MHz, CDCl<sub>3</sub>)  $\delta$  176.3, 70.1, 56.2 (2C), 53.6, 48.6, 42.3, 39.8, 39.5, 37.6, 36.2, 35.8, 35.5, 34.9, 31.6, 29.8, 28.2, 28.0, 26.3, 24.1, 23.8, 22.8, 22.6 (2C), 21.1, 18.6, 12.3, 12.0; IR (CH<sub>2</sub>Cl<sub>2</sub>) 1729 cm<sup>-1</sup>; EIMS (20 eV) m/z 402 (M<sup>+</sup>, 100); HRMS (EI) for

C<sub>27</sub>H<sub>46</sub>O<sub>2</sub> (M<sup>+</sup>+1), calcd 403.3532, found 403.3531 (ref: Dave, V.; Stother, J. B.; Warnhoff, E. W. *Can. J. Chem.* **1980**, *58*, 2666).

As a white solid. Analytical TLC (silica gel 60), 20% EtOAc in n-hexane,  $R_f = 0.35$ ; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  4.07 (s, 1H), 3.21 (br s, 2H, OH), 1.99 (dt, J = 10.9, 2.9 Hz, 1H), 0.95–1.95 (m, 29H), 0.94 (s, 3H), 0.90 (d, J = 6.5 Hz, 3H), 0.87 (d, J = 6.7 Hz, 1H), 0.86 (d, J = 6.5 Hz, 2H), 0.66 (s, 3H); <sup>13</sup>C NMR (125.8 MHz, CDCl<sub>3</sub>)  $\delta$  75.2, 67.7, 56.3, 56.2, 45.8, 42.7, 40.0, 39.6, 39.5, 39.4, 36.2, 35.8, 34.8, 34.1, 29.2, 28.3, 28.0, 26.5, 25.5, 24.1, 23.9, 22.8, 22.6 (2C), 21.0, 18.7, 15.8, 12.2; IR (CH<sub>2</sub>Cl<sub>2</sub>) 3686, 3488 cm<sup>-1</sup> (ref: Mihailovic, M. L.; Lorenc, L.; Pavlovic, V. *Helv. Chim. Acta.* **1981**, *64*, 1032).

As a white solid. Analytical TLC (silica gel 60), 20% EtOAc in n-hexane,  $R_f = 0.42$ ; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  2.67 (d, J = 15.1 Hz, 1H), 2.41–2.35 (m, 2H), 2.11 (dd, J = 15.3, 1.2 Hz, 1H), 2.01 (d, J = 12.2 Hz, 1H), 0.94–1.98 (m, 25H), 1.17 (s, 3H), 0.91 (d, J = 6.5 Hz, 3H), 0.87 (d, J = 6.6 Hz, 1H), 0.86 (d, J = 6.6 Hz, 1H), 0.68 (s, 3H); <sup>13</sup>C NMR (125.8 MHz, CDCl<sub>3</sub>)  $\delta$  210.9, 77.6, 56.3, 56.0, 51.9, 46.0, 42.7, 40.0, 39.5, 39.2, 37.9, 36.2, 35.8, 34.9, 34.5, 32.7, 28.3, 28.0, 26.3, 24.2, 23.9, 22.8, 22.6 (2C), 21.5, 18.7, 15.8, 12.1; IR (CH<sub>2</sub>Cl<sub>2</sub>) 1712 cm<sup>-1</sup> (ref: Collins, D. J.; Horn, C. M.; Welker, V. J. *Aust. J. Chem.* **1976**, *29*, 2077).

Table 1. 2D NOESY studies of cyclohemiketals 3a-4a, and 13a. a,b

#### Cis-product

$$3: R = COOMe$$

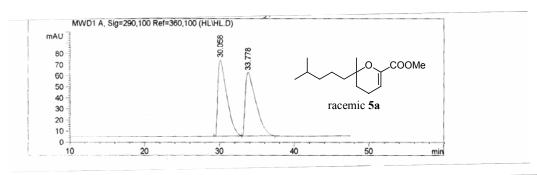
**4**:  $R = CF_3$ 

**3a**: R = COOMe **4a**: R = CF<sub>3</sub>

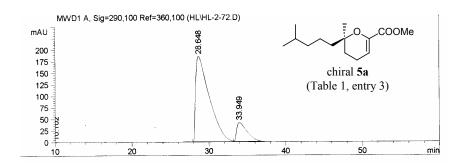
NOE signal between  $H_4$  and  $H_5$ 

NOE signal between  $H_{16}$  and  $H_{17}$  Only ring D and E was shown

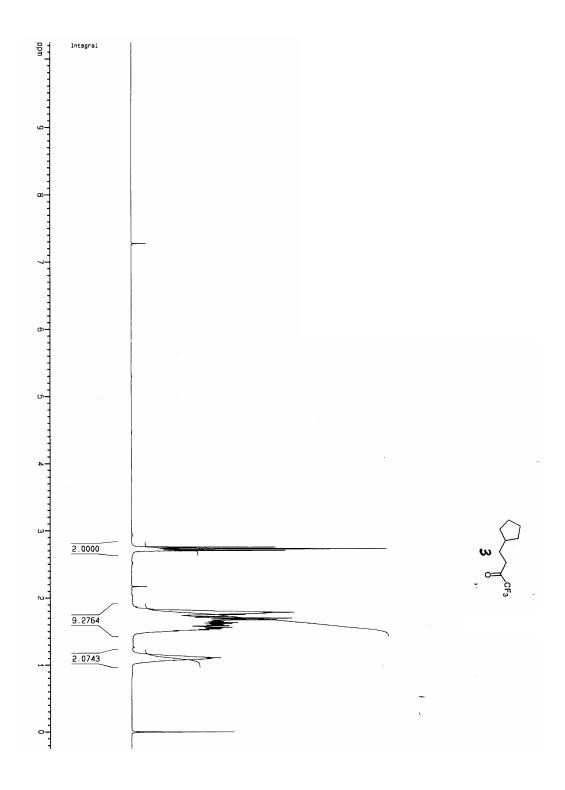
<sup>a</sup> At the anomeric center C<sub>1</sub> the hydroxyl group prefers to be axial while the ester and trifluoromethyl groups prefer to be equatorial. For references regarding experimental and theoretical calculations of anomeric effect of tetrahydropyrans, see: (a) Booth, H.; Dixon, J. M.; Khedhair, K. A. *Tetrahedron* 1992, 48, 6161. (b) Salzner, U.; Schleyer, P. von R. *J. Org. Chem.* 1994, 59, 2138. (c) Cortes, F.; Tenorio, J.; Collera, O.; Cuevas, G. *J. Org. Chem.* 2001, 66, 2918. <sup>b</sup> Only major product was shown.

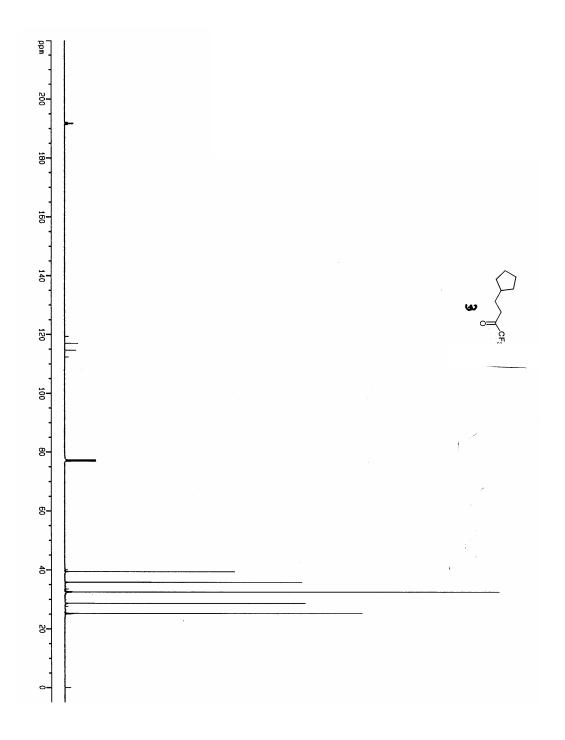

### HPLC Analysis of compound 5a

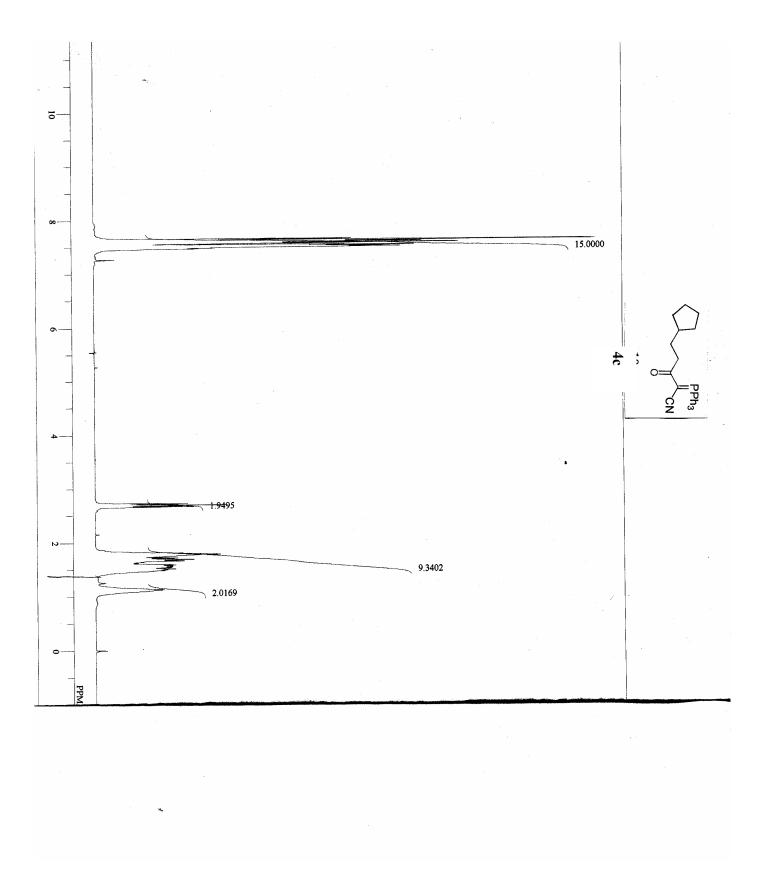
**HPLC Conditions** 

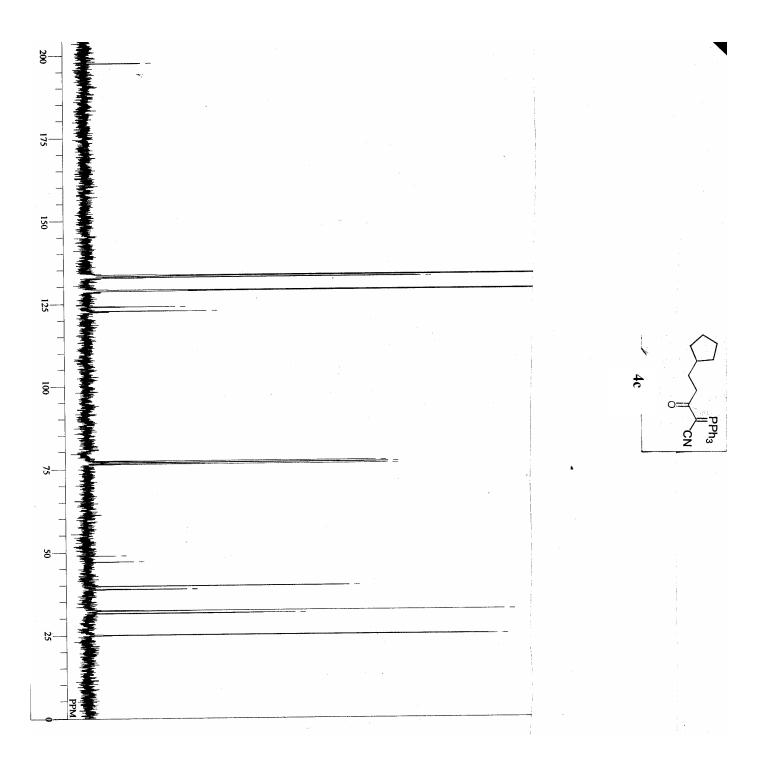

Column: Chiral OD (Column No. OD00CE-AH045)

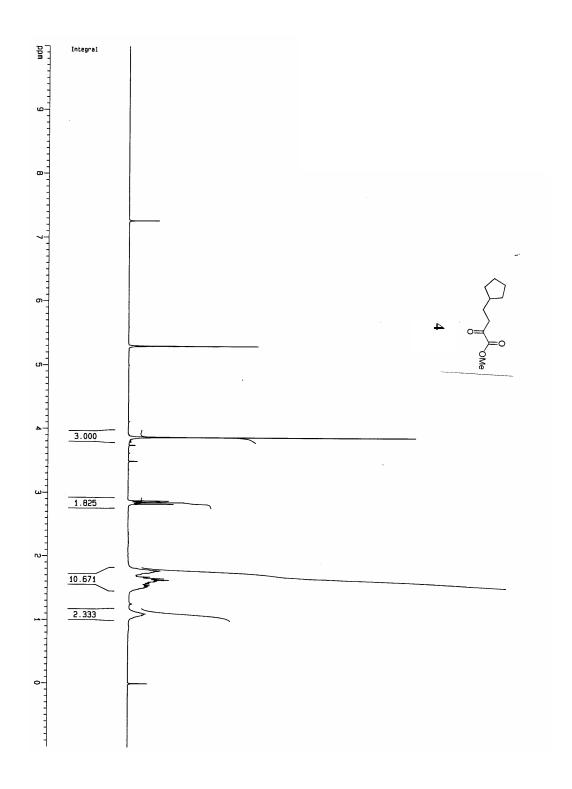
Solvents: n-Hexane/IPA (95.5/0.5)


Flowrate: 1.0 mL/min Detection: UV 289 nm





|   | RetTime [min] |    |        | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% |             |
|---|---------------|----|--------|-----------------|-----------------|-----------|-------------|
|   |               |    |        |                 |                 |           |             |
| 1 | 30.058        | BV | 1.1526 | 5736.79004      | 68.95953        | 50.2260   | <b>—</b>    |
| 2 | 33.778        | VB | 1.1793 | 5685.16553      | 57.41090        | 49.7740   | <del></del> |





| Peak<br>#    | RetTime [min] | Туре | Width [min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>%                    |  |
|--------------|---------------|------|-------------|-----------------|-----------------|------------------------------|--|
| <del>-</del> | 1             |      |             |                 |                 |                              |  |
| 1            | 4.656         | BV   | 0.1273      | 4.98914         | 5.52626e-1      | 0.0185                       |  |
| 2            | 4.901         | VV   | 0.1199      | 4.72600         | 6.13144e-1      | 0.0175                       |  |
| 3            | 5.095         | VV   | 0.1126      | 6.02060         | 8.30407e-1      | 0.0223                       |  |
| 4            | 5.354         | VB   | 0.2077      | 10.04083        | 7.33441e-1      | 0.0373                       |  |
| 5            | 5.848         | BV   | 0.1839      | 9.93431         | 8.65482e-1      | 0.0369                       |  |
| 6            | 6.102         | VP   | 0.1422      | 27.06237        | 2.81512         | 0.1004                       |  |
| 7            | 7.131         | ВВ   | 0.2455      | 8.81350         | 5.00453e-1      | 0.0327                       |  |
| 8            | 10.102        | PB   | 0.2040      | 4.39596         | 2.84960e-1      | 0.0163                       |  |
| 9            | 28.648        | BV   | 1.6333      | 2.30052e4       | 184.93938       | <b>85.</b> 3721 <del>◀</del> |  |
| 10           | 33.949        | VB   | 1.2877      | 3865.78223      | 41.38974        | 14.3459                      |  |

