

## Supporting Information

# A Robust Sulfonate-Based Metal-Organic Framework with Permanent Porosity for Efficient CO<sub>2</sub> Capture and Conversion

Guiyang Zhang,<sup>†</sup> Guangfeng Wei,<sup>†</sup> Zhipan Liu,<sup>‡</sup> Scott R. J. Oliver,<sup>‡,\*</sup> and Honghan Fei<sup>†,\*</sup>

<sup>†</sup>Department of Chemistry, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. China

<sup>‡</sup>Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States

<sup>‡</sup>Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science (Ministry of Education), Department of Chemistry, Fudan University, Shanghai 200433, China

\*To whom correspondence should be addressed.

<sup>†</sup>E-mail: fei@tongji.edu.cn

<sup>‡</sup>E-mail: soliver@ucsc.edu

## General Methods

Starting materials and solvents were purchased and used without further purification from commercial suppliers (Sigma-Aldrich, Alfa Aesar, TCI, and others). Proton nuclear magnetic resonance spectra ( $^1\text{H}$  NMR) were recorded on a Varian FT-NMR spectrometer (400 MHz). Chemical shifts were quoted in parts per million (ppm) referenced to the appropriate solvent peak or 0 ppm for TMS. Elemental analysis (EA) for C, H, and N were operated on a FLASH EA 1112 element analyzer. Thermogravimetric analysis (TGA) were carried out in  $\text{N}_2$  stream (60 mL/min) on a NETZSCH STA 409 PC/PG differential thermal analyzer running from room temperature to 800 °C with a heating rate of 10 °C/min. Fourier-transform infrared (FT-IR) spectra were recorded using a Nicolet iS10 spectrophotometer with KBr pellets in 4000~400  $\text{cm}^{-1}$  region.  $[\text{Cu}_2(\text{bpy})(\text{bdc})_2]_n$  was prepared according to the procedure in the literature<sup>s1</sup> and the phase purity was confirmed by powder X-ray diffraction and gas adsorption (Figure S4 and S13).

## Experimental Section

*Hydrothermal Synthesis of TMOF-1.* A mixture of 0.34 g  $\text{Cu}(\text{NO}_3)_2 \cdot 3\text{H}_2\text{O}$  (1.4 mmol), 0.22 g 4,4'-bipyridine (bpy 1.4 mmol), 0.33 g disodium 1,2-ethanedisulfonate (EDS $\text{Na}_2$ , 1.4 mmol), and 10 mL deionized water were added into a 15 mL Teflon-lined autoclave reactor followed by 30 min sonication for sufficient dispersion. The autoclave was then sealed into a stainless steel vessel and heated at 175 °C for 72 h, which was then cooled down to room temperature at a rate of 6 °C/h. Dark blue cubic crystals (Figure S14) of TMOF-1 suitable for single-crystal X-ray diffraction were collected by filtration. The crystals were rinsed with distilled water (2×20 mL), acetone (2×20 mL) and dried in air, giving a yield of 75% (0.29 g) based on bpy. Elemental analysis calculated for  $\text{CuC}_{22}\text{H}_{20}\text{N}_4\text{O}_6\text{S}_2$ : C, 46.84; H, 3.57; N, 9.93, found: C, 46.17; H, 3.85; N, 9.90 (%, after activation).

*Bulk Synthesis of TMOF-1.* A mixture of 1.55 g Cu(NO<sub>3</sub>)<sub>2</sub>·3H<sub>2</sub>O (6.40 mmol), 1.00 g bpy (6.4 mmol), and 1.50 g EDSNa<sub>2</sub> (6.4 mmol) were added into 100 mL deionized water, and the mixture was refluxed for 48 hours. After completion of the reaction, the mixture was filtered and the residue was collected, rinsed with distilled water (2×20 mL), acetone (2×20 mL), and dried in air to give uniform blue powders of TMOF-1 with a yield of 62 % (1.11 g) based on bpy.

*Powder X-ray Diffraction.* ~20 mg TMOF-1 sample was dried under vacuum prior to PXRD analysis. PXRD data was collected at ambient temperature on a Bruker D8 Advance diffractometer at 40 kV, 40 mA for Cu K $\alpha$  ( $\lambda$  = 1.5418 Å), with a scan speed of 1 sec/step, a step size of 0.02° in 2 $\theta$ , and a 2 $\theta$  range of 5~40°. The experimental backgrounds were corrected using JADE 5.0 software package.

*Single Crystal X-ray Diffraction.* A single crystal of TMOF-1 suitable for X-ray analysis was chosen under an optical microscope, and mounted onto a glass fiber. The diffraction data were collected at 150(2) K using graphite-monochromated Mo-K $\alpha$  radiation ( $\lambda$  = 0.71073 Å) from a fine-focus sealed tube operated at 50 kV and 30 mA on a Bruker SMART APEX II CCD area detector X-ray diffractometer. The structure was solved by direct methods and expanded routinely. The model was refined by full-matrix least-squares analysis of  $F^2$  against all reflections. All non-hydrogen atoms were refined with anisotropic thermal displacement parameters. Thermal parameters for hydrogen atoms were tied to the isotropic thermal parameter of the atom to which they are bonded. Programs used were APEX-II v2.1.4,<sup>s2</sup> SHELXTL v6.14,<sup>s3</sup> and Diamond v3.1e.<sup>s4</sup> Further details of crystallographic data and structural refinement are summarized in Table S1. CCDC 1479446 contains the supplementary crystallographic data for TMOF-1. These data can be obtained freely from the Cambridge Crystallographic Data Centre via [www.ccdc.cam.ac.uk/data\\_request/cif](http://www.ccdc.cam.ac.uk/data_request/cif).

*Activation of TMOF-1.* Freshly prepared crystals were soaked in 20 mL methanol

(MeOH) for 3 days over which the solvent was exchanged with fresh MeOH (20 mL) every 12 h. Then, the crystals were filtrated, and dried overnight under vacuum at 105 °C.

*Gas Sorption.* ~150 mg of activated TMOF-1 was transferred to a pre-weighed sample tube and degassed at 105 °C on a Micromeritics ASAP 2020 adsorption analyzer for a minimum of 12 h or until the outgas rate was less than 5 mm Hg. The sample tube was re-weighed to obtain a consistent mass for the degassed sample. Brunauer-Emmett-Teller (BET) surface area data were collected volumetrically at 87 K by Ar and 77K by N<sub>2</sub>. The exact surface area was averaged by the analyses of three independent samples. H<sub>2</sub> sorption experiments were performed at 77K and 87K by liquid N<sub>2</sub> bath and liquid Ar bath, respectively. CO<sub>2</sub> sorption experiments were performed at 200K, 273K, 298K, and 308K by dry ice-ethanol bath, ice-water bath and heating jacket, respectively. Isosteric heat of adsorption (Q<sub>st</sub>) for H<sub>2</sub> or CO<sub>2</sub> were calculated by applying the Clausius-Clapeyron equation to two sets of adsorption data collected at two variable temperatures.

*TMOF-1 Thermal and Chemical Stability Studies.* ~100 mg of as-synthesized TMOF-1 were fully activated at 110 °C under vacuum, followed by incubation under the specified condition (*e.g.* boiling organic solvents, boiling water, acid/base condition or heating in air) for 24 hours. Then, the TMOF-1 were isolated by filtration, air-dried, and re-activated at 110 °C under vacuum before performing PXRD and mass balance measurements.

*Catalysis for CO<sub>2</sub> Conversion.* In each individual reaction, 20 mmol epoxide substrate along with 0.11 g TMOF-1 catalyst (1 mol% based on Cu(II)) and 0.65 g tetra-*n*-*tert*-butylammonium bromide co-catalyst (TBAB, 10 mol%) were added into a Schlenk tube. The tube was purged with CO<sub>2</sub> at 1 atm under solvent free environment at room temperature and fixed onto a mechanical shaker with a constant shaking rate of 200 c.p.m. for 48 h to complete the catalytic reaction. The mixture

was then filtrated, and the filtrate was characterized by  $^1\text{H-NMR}$  spectra to quantitatively verify the product (Figure S15). Chemical shifts were quoted in parts per million (ppm) referenced to the appropriate solvent peak or 0 ppm for tetramethylsilane (TMS).

## Calculation Details

All DFT calculations were performed using VASP package<sup>s5</sup> with projected augmented wave (PAW) pseudo-potentials<sup>s6, s7</sup>. The exchange–correlation energy was treated based on the generalized gradient approximation (GGA) by using Perdew–Burke–Ernzerhof (PBE) functional<sup>s8</sup>. The plane-wave cutoff energy was set to 400 eV, and the Monkhorst-Pack k-point mesh was utilized for first Brillouin zone integrations. In this work, a  $(2\times 2\times 2)$  k-point were applied for the  $\text{CO}_2$  adsorption calculations in TMOF-1 (the unit cell size:  $15.8\text{\AA}\times 15.8\text{\AA}\times 11.3\text{\AA}$ ). The DFT-D3(BJ) method of Grimme<sup>s9, s10</sup> were employed to describe long-range vdW interactions between  $\text{CO}_2$  and the TMOF-1 skeleton. All atoms were fully relaxed until the total energy difference between two ionic steps is less than  $10^{-3}$  eV.

We are able to obtain the adsorption free energy of  $\text{CO}_2$  ( $\Delta G_{\text{ad}}$ ) through the following equations (Eq. S1-3).

$$G_{\text{ad}} = E_{\text{ad}} - T \cdot S + ZPE \quad (\text{S1})$$

$$G_{\text{CO}_2} = E_{\text{CO}_2} - T \cdot S^0_{\text{CO}_2} + \Delta H_{(0\text{-}298\text{K})} \quad (\text{S2})$$

$$\Delta G_{\text{ad}} = G_{\text{ad}} - G_{\text{CO}_2} - E_{\text{TMOF-1}} \quad (\text{S3})$$

By adding  $\text{CO}_2$  to various places inside the TMOF-1 skeleton, the energy of the adsorption states ( $E_{\text{ad}}$ ) are directly available from DFT calculations. The Eq. S1 shows that the free energy of the adsorption states ( $G_{\text{ad}}$ ) can be obtained after the correction of vibrational entropy ( $S$ ) and the zero-point energy (ZPE). The free energy of gaseous  $\text{CO}_2$  ( $G_{\text{CO}_2}$ ) is -0.56 eV refer to the free energy of  $\text{CO}_2(E, 0\text{ K})^{s11}$ , which

can be found in the standard thermodynamic data<sup>s12</sup> (Eq. S2).  $\Delta G_{ad}$  can then be calculated by using Eq. S3.

For the first principle molecular dynamics simulation, the Nosé algorithm was used with a timestep of 1 fs within the canonical ensemble. A 15 ps NVT simulation is reported which was first equilibrated for 3 ps with a Nosé-Hoover thermostat at 300 K. A single unit cell of TMOF-1 was used for all DFT calculations with  $\Gamma$ -point sampling of the Brillouin zone.

## Supporting Figures and Tables

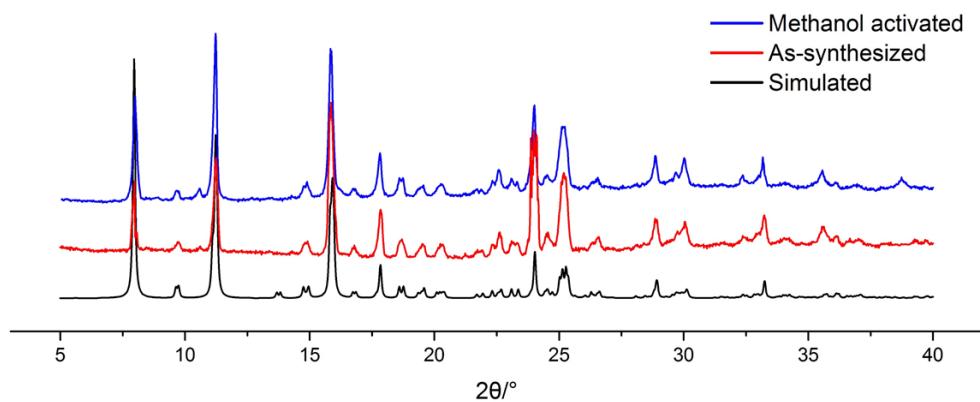



Figure S1. PXRD patterns of TMOF-1: simulated, as-synthesized, and methanol activated.

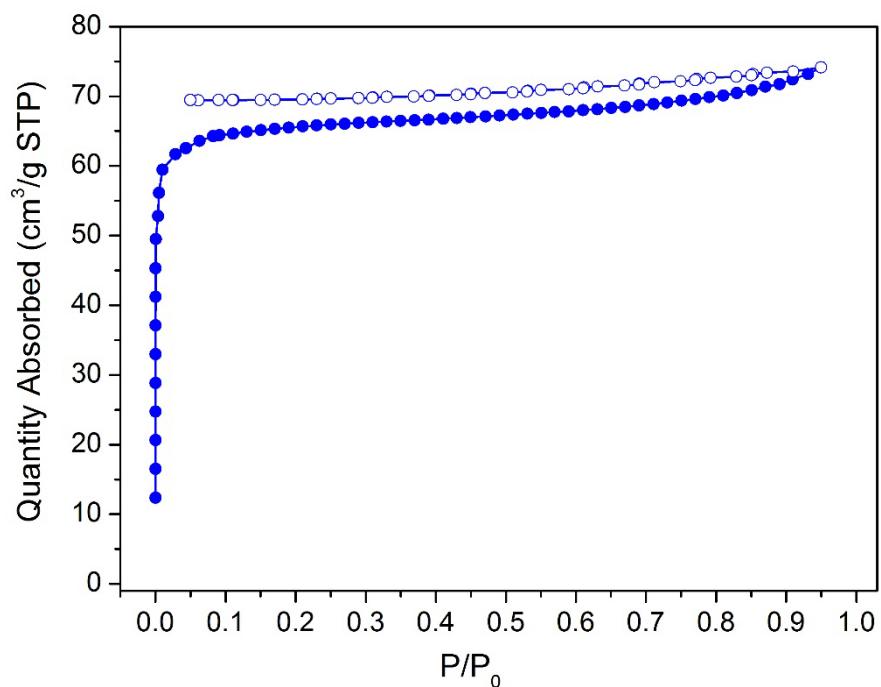



Figure S2.  $N_2$  sorption isotherm of TMOF-1 at 77K.

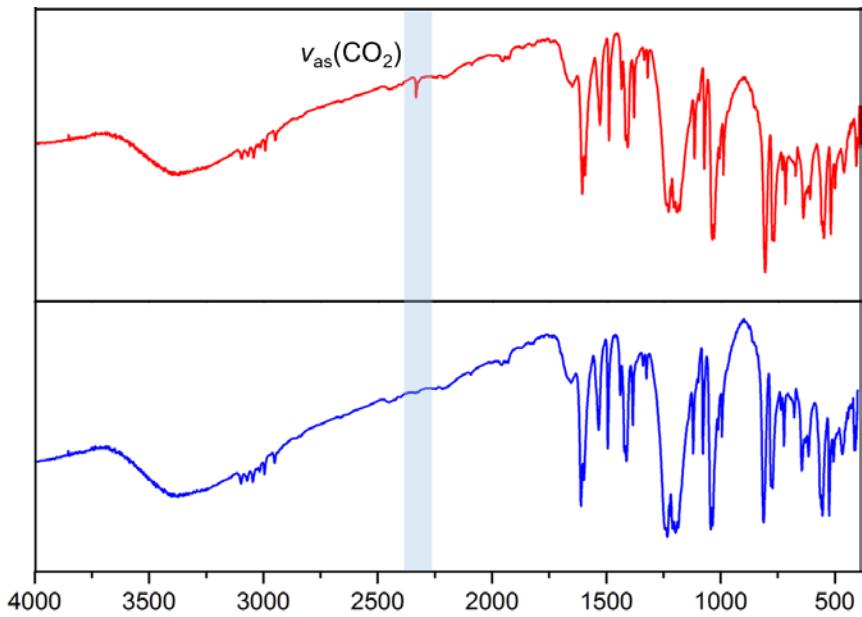



Figure S3. FT-IR spectra of TMOF-1: before (blue) and after (red)  $\text{CO}_2$  adsorption at room temperature.

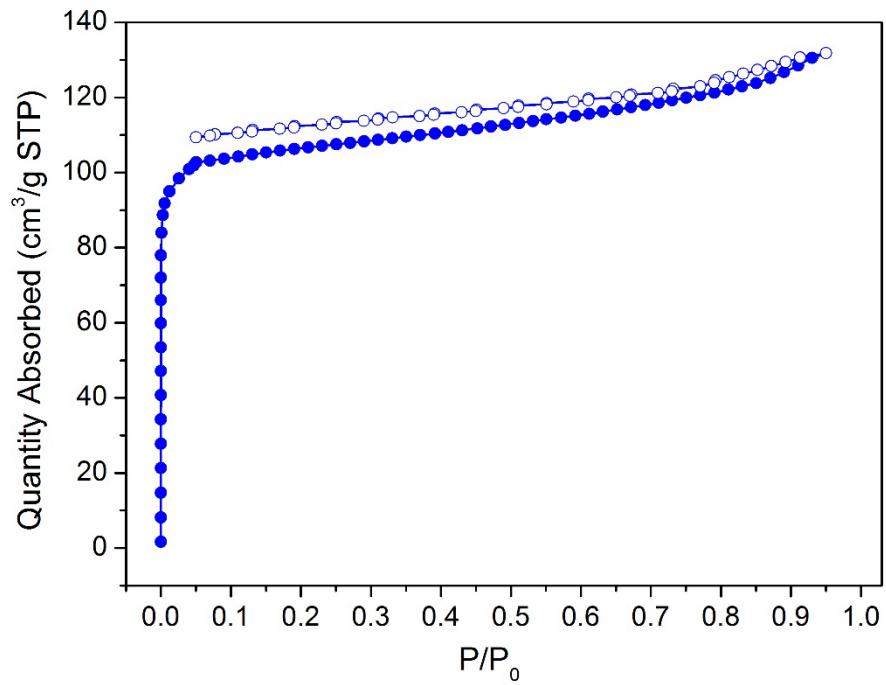



Figure S4. Ar sorption isotherm of  $[\text{Cu}_2(\text{bpy})(\text{bdc})_2]_n$  at 87K.

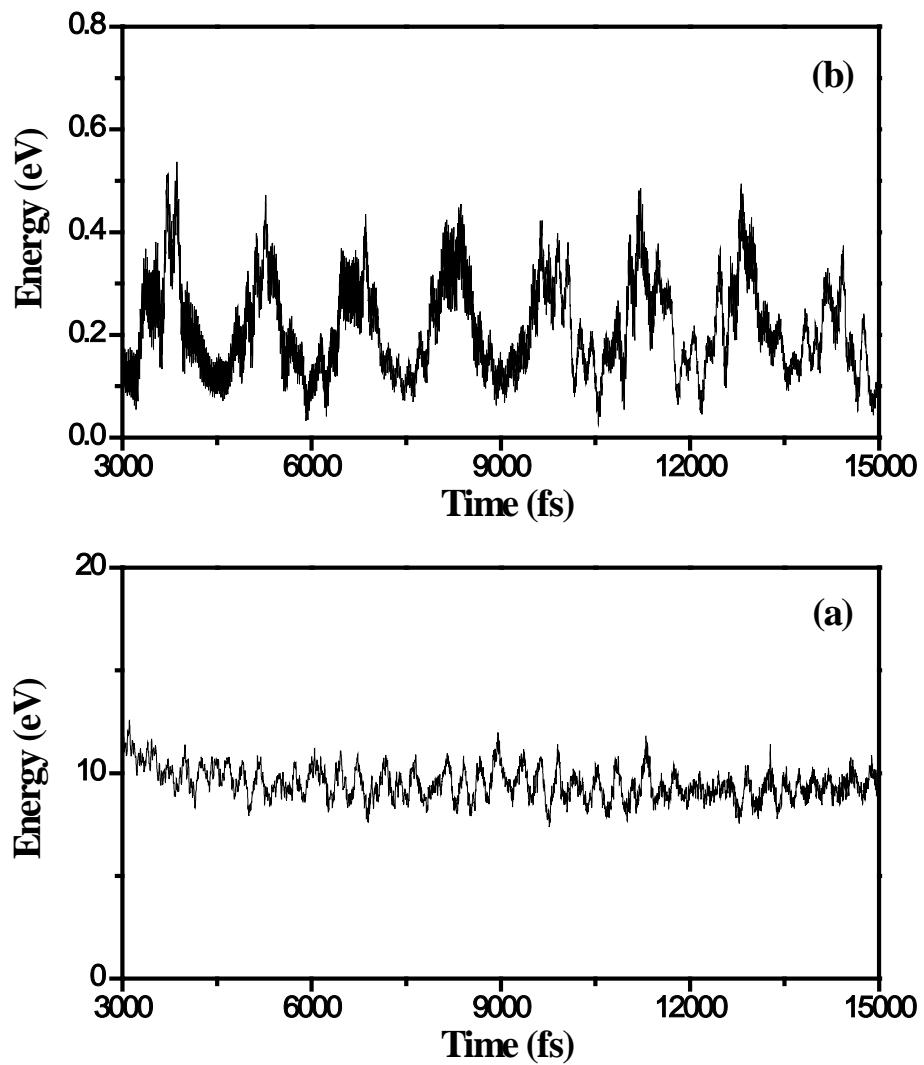



Figure S5. The molecular dynamics (MD) simulation of  $\text{CO}_2$  adsorbed TMOF-1 (two  $\text{CO}_2$  adsorbed per unit cell) at 300K. In the 15 ps, the  $\text{CO}_2$  and the TMOF-1 skeleton always stay around the most stable adsorption sites (see Figure 5). (a) The MD simulation with the TMOF-1 skeleton being fixed; (b) the MD simulation with all atoms being fully relaxed.

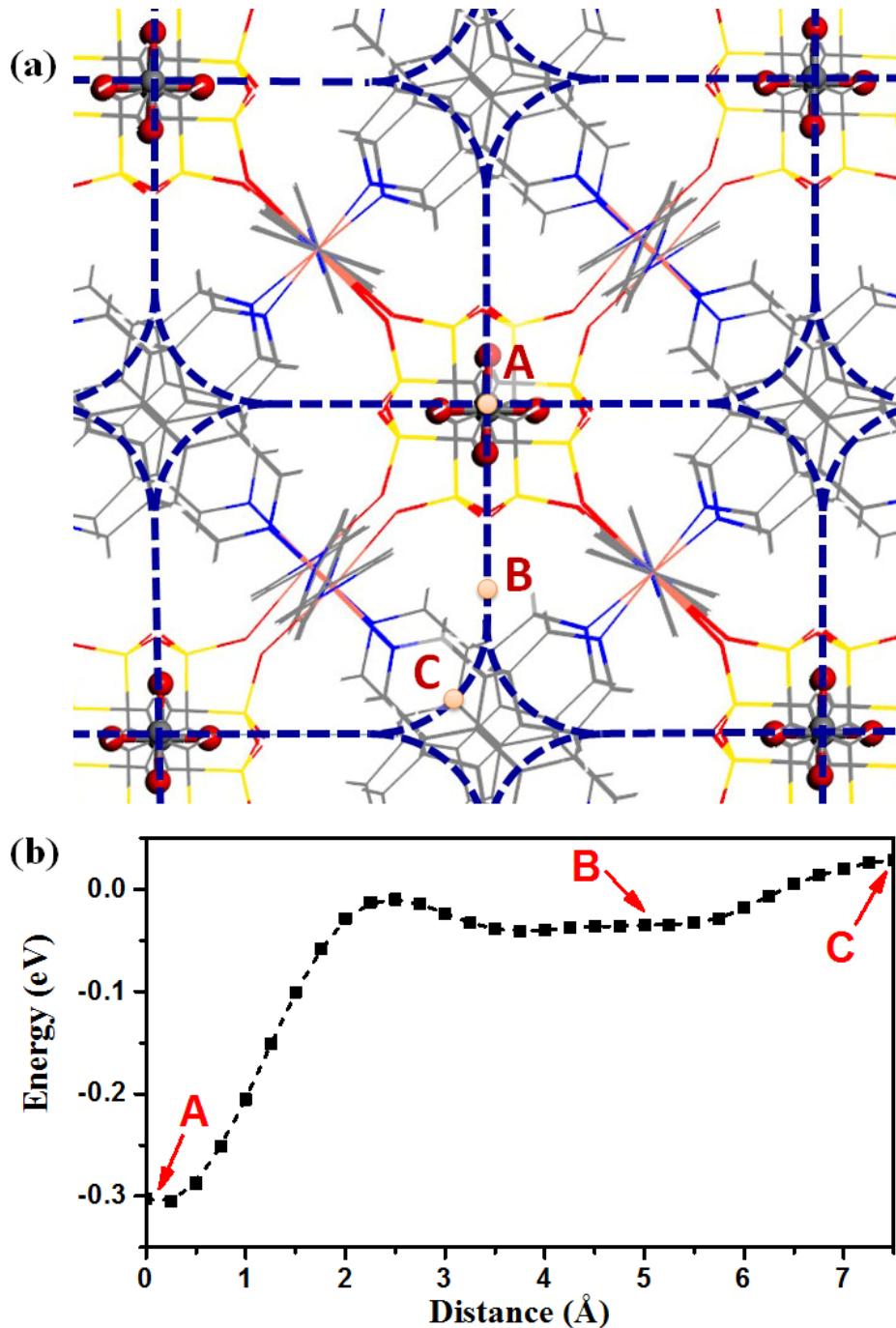



Figure S6. (a) The proposed  $\text{CO}_2$  diffusion channels (blue dashed lines) along the 3D interconnected porosity of TMOF-1. We highlighted three different positions on the  $\text{CO}_2$  diffusion channel. Position A is the most stable  $\text{CO}_2$  adsorption site, position B is the second stable  $\text{CO}_2$  adsorption site and position C is the middle place of the diffusion channel. (b) The energy difference ( $\Delta E$ , refer to the energy of gas phase  $\text{CO}_2$  and activated TMOF-1) of the system during a  $\text{CO}_2$  molecule moving from position A to positon C. The barrier for  $\text{CO}_2$  diffusion within TMOF-1 is  $\sim 0.33$  eV.

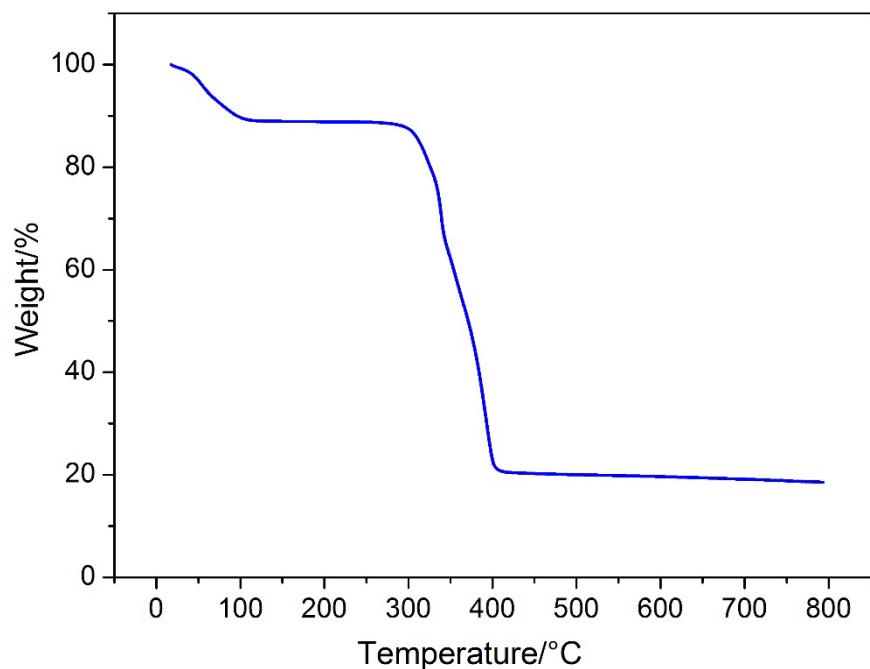



Figure S7. Thermogravimetric analysis curve of TMOF-1 in  $\text{N}_2$  flow.

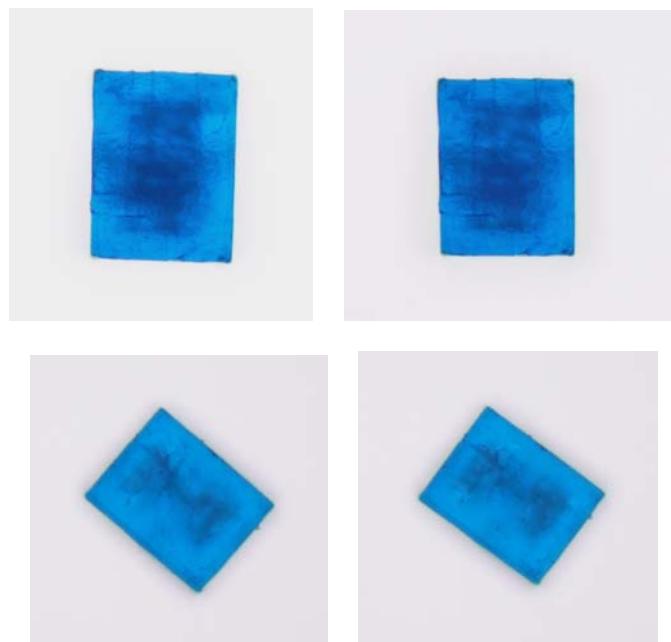



Figure S8. Top: *In-situ* optical microscope image of TMOF-1 ( $\sim 100 \times 80 \times 80 \mu\text{m}$  size crystal) before (left) and after (right) incubation in  $\text{pH}=3$  solution ( $\text{HCl}/\text{H}_2\text{O}$ ) for 24 h. Bottom: *In-situ* optical microscope image of TMOF-1 ( $\sim 100 \times 80 \times 80 \mu\text{m}$  size crystal) before (left) and after (right) incubation in  $\text{pH}=10$  solution ( $\text{NaOH}/\text{H}_2\text{O}$ ) for 24 h.

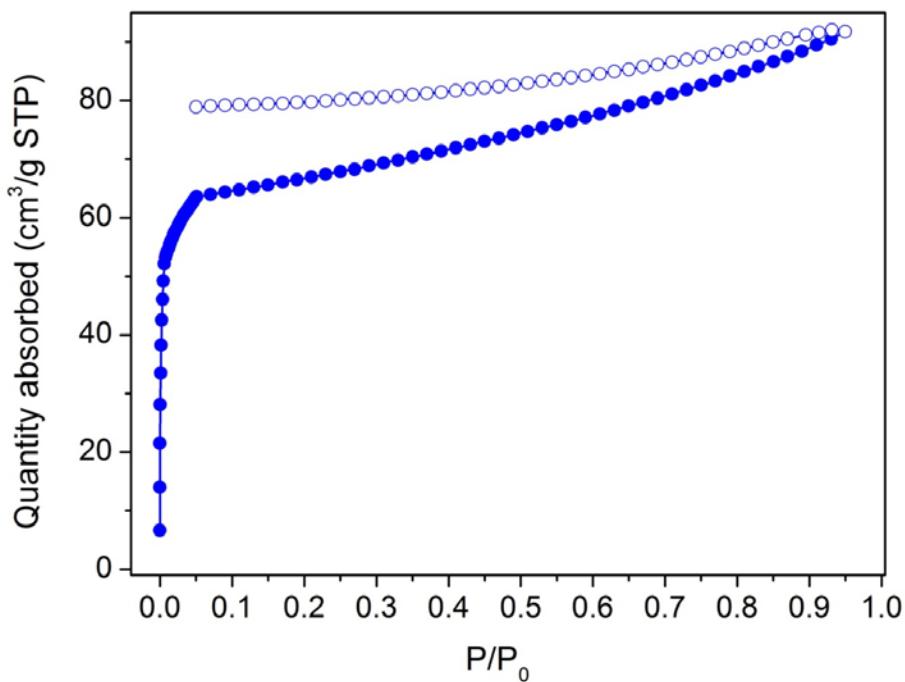



Figure S9. Ar sorption isotherm (at 87K) of TMOF-1 after refluxing in water for 24 h.

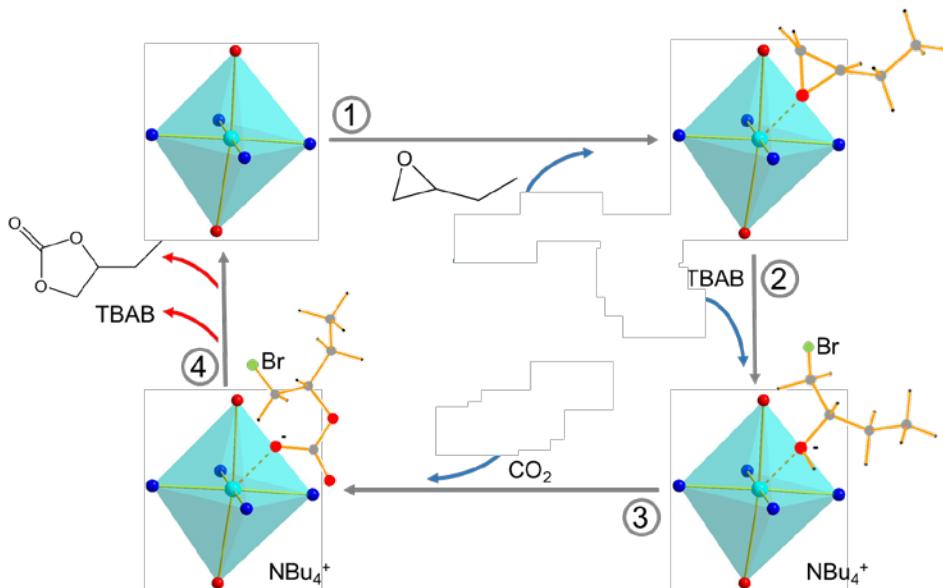



Figure S10. Presumable mechanism of the  $\text{CO}_2$  cycloaddition reaction catalyzed by TMOF-1 along with TBAB.

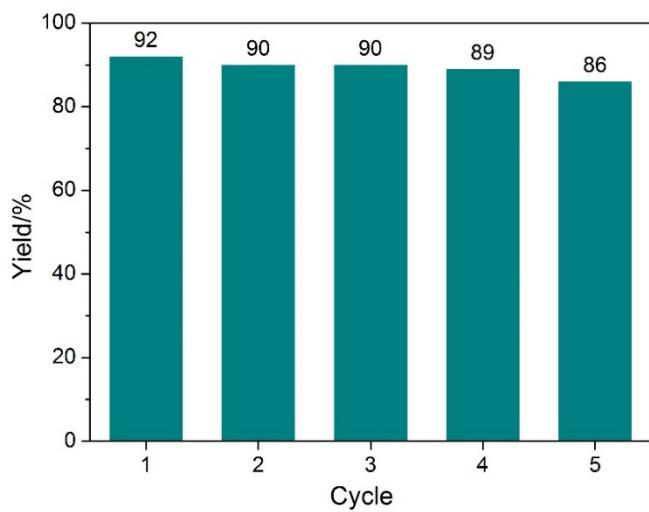



Figure S11. Recyclability of TMOF-1 in five successive runs of the catalytic reaction using 2-(chloromethyl)oxirane as substrate.

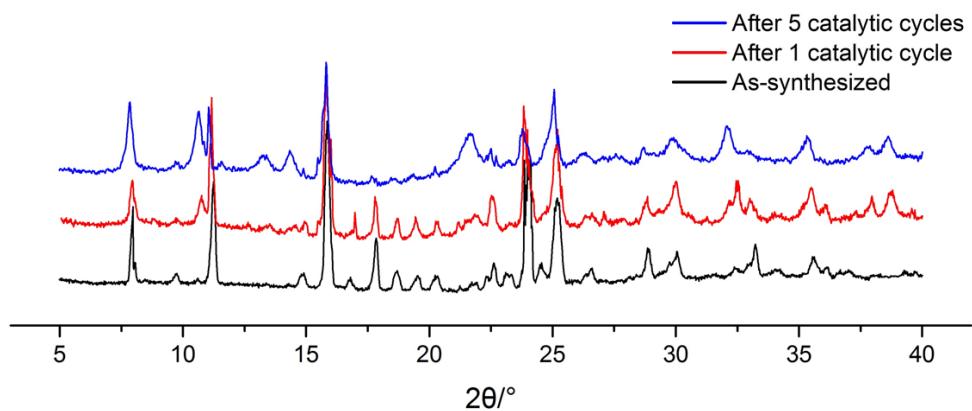



Figure S12. PXRD patterns of TMOF-1: as-synthesized, after 1 catalytic cycle, and after 5 catalytic cycles.

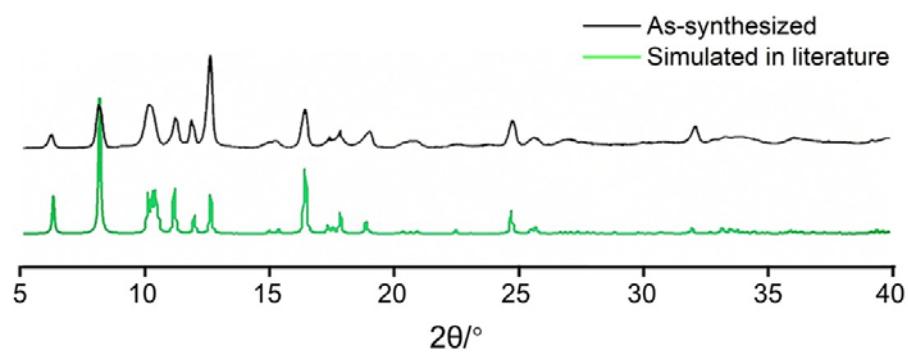



Figure S13. PXRD patterns of  $[\text{Cu}_2(\text{bpy})(\text{bdc})_2]_n$ : as-synthesized and simulated in the literature.




Figure S14. Optical microscope image of a TMOF-1 single crystal.

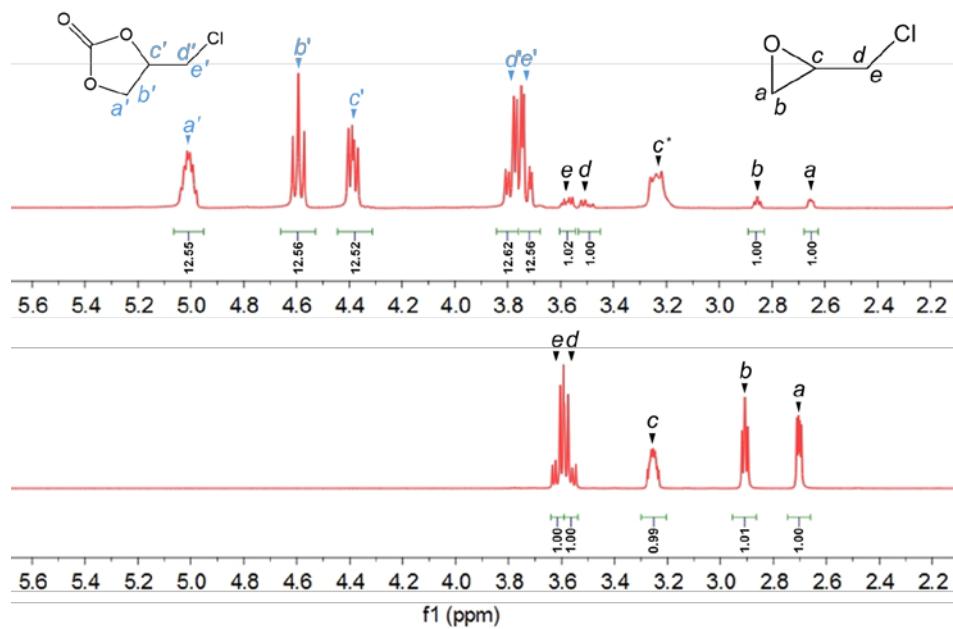



Figure S15.  $^1\text{H}$ -NMR spectra of an epoxide substrate before (down) and after (up) a 48-hour  $\text{CO}_2$  cycloaddition reaction;  $c^*$  : partly overlapped with a peak of TBAB.

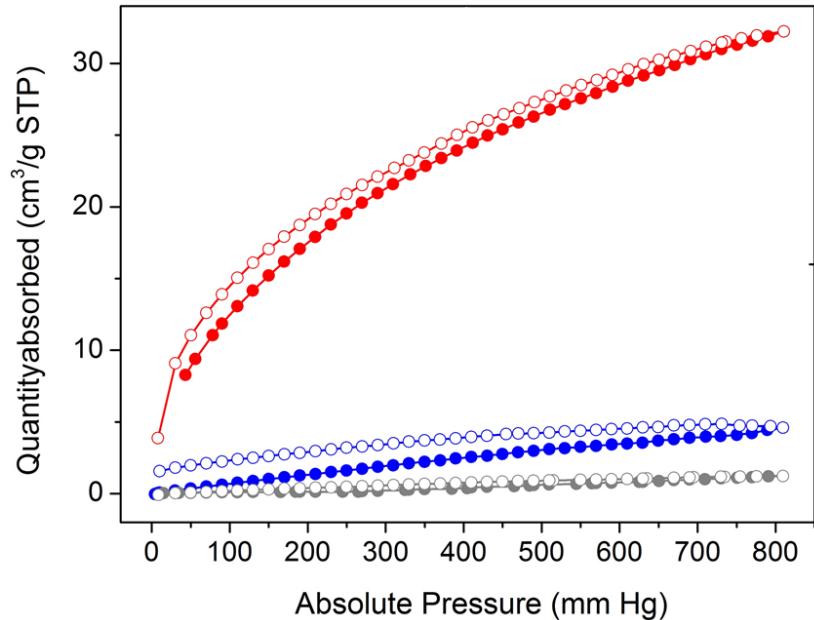



Figure S16. CO<sub>2</sub> (red), N<sub>2</sub> (grey), and O<sub>2</sub> (red) sorption isotherm of TMOF-1 at 298K. Overall, CO<sub>2</sub> is the most strongly adsorbed molecule due to its large quadrupolar moment. Importantly, a relatively steep increase was observed at low pressure (e.g. 13 cm<sup>3</sup>/g at 100 mmHg), indicating its strong interaction with sulfonate functional groups. However, no apparent adsorption (< 5 cm<sup>3</sup>/g at 1 bar) of N<sub>2</sub> or O<sub>2</sub> was observed under the same condition. Based on these results, we conclude that the material can selectively absorb CO<sub>2</sub> in presence of N<sub>2</sub> and O<sub>2</sub> at room temperature.

Table S1. Mass balance of TMOF-1 before and after thermal and chemical treatment.

| Condition                          | Initial mass (mg) | Final mass (mg) | Wt. Loss (%) |
|------------------------------------|-------------------|-----------------|--------------|
| <b>Boiling water</b>               | 101.2             | 92.6            | 8.5          |
| <b>Boiling methanol</b>            | 100.5             | 96.9            | 3.6          |
| <b>Boiling hexane</b>              | 102.2             | 97.5            | 4.5          |
| <b>pH=10 (NaOH/H<sub>2</sub>O)</b> | 102.1             | 97.1            | 4.9          |
| <b>pH=3 (HCl/H<sub>2</sub>O)</b>   | 100.9             | 96.3            | 4.6          |
| <b>In air at 260 °C</b>            | 101.1             | 95.1            | 5.9          |

Table S1. Crystal data and structure refinement for TMOF-1.

| Identification code                    | TMOF-1                                                   |                           |
|----------------------------------------|----------------------------------------------------------|---------------------------|
| Empirical formula                      | $C_{22}H_{20}CuN_4O_6S_2$                                |                           |
| Formula weight                         | 564.09                                                   |                           |
| Temperature                            | 150(2) K                                                 |                           |
| Wavelength                             | 0.71073 Å                                                |                           |
| Crystal system                         | Monoclinic                                               |                           |
| Space group                            | C2                                                       |                           |
| Unit cell dimensions                   | $a = 22.28(2)$ Å                                         | $\alpha = 90^\circ$       |
|                                        | $b = 22.20(2)$ Å                                         | $\beta = 90.931(8)^\circ$ |
|                                        | $c = 11.198(10)$ Å                                       | $\gamma = 90^\circ$       |
| Volume                                 | $5539(9)$ Å <sup>3</sup>                                 |                           |
| Z                                      | 6                                                        |                           |
| Density (calculated)                   | 1.353 g/cm <sup>3</sup>                                  |                           |
| $F(000)$                               | 2312                                                     |                           |
| Crystal size                           | $0.08 \times 0.07 \times 0.05$ mm <sup>3</sup>           |                           |
| $\theta$ range for data collection     | 2.22 ~ 27.48°                                            |                           |
| Limiting indices                       | $-28 \leq h \leq 28, 0 \leq k \leq 28, 0 \leq l \leq 14$ |                           |
| Reflections collected                  | 6496                                                     |                           |
| Independent reflections                | 5653                                                     |                           |
| Completeness to $\theta = 27.48^\circ$ | 99.5 %                                                   |                           |
| Absorption correction                  | Empirical                                                |                           |
| Max. and min. transmissions            | 0.7456 and 0.6761                                        |                           |
| Data / restraints / parameters         | 6496 / 1 / 636                                           |                           |
| Goodness-of-fit on $F^2$               | 1.052                                                    |                           |
| Final R indices [I > 2σ (I)]           | $R_1 = 0.0371, wR_2 = 0.0916$                            |                           |
| R indices (all data)                   | $R_1 = 0.0444, wR_2 = 0.0951$                            |                           |
| Largest diff. peak and hole            | 0.546 and -0.374e.Å <sup>-3</sup>                        |                           |

## References

S1. Sumida, K.; Moitra, N.; Reboul, J.; Fukumoto, S.; Nakanishi, K.; Kanamori, K.; Furukawa, S.; Kitagawa, S., *Chem. Sci.* **2015**, 6, 5938-5946.

S2. *APEX-II, 2.1.4*, Bruker-AXS: Madison, WI, 2007.

S3. *SHELXTL, Crystal Structure Determination Package*, Bruker Analytical X-ray Systems Inc.: Madison, WI, 1995~99.

S4. Brandenburg, K.; Putz, H., Diamond, *Crystal Impact*, Bonn, Germany, 2007.

S5. Kresse, G.; Furthmuller, J., *Comput. Mater. Sci.* 1996, 6, 15-50.

S6. Blochl, P. E., *Phys. Rev. B* 1994, 50, 17953-17979.

S7. Kresse, G.; Joubert, D., *Phys. Rev. B* 1999, 59, 1758-1775.

S8. Perdew, J. P.; Burke, K.; Ernzerhof, M., *Phys. Rev. Lett.* 1996, 77, 3865-3868.

S9. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., *J. Chem. Phys.* 2010, 132, 154104.

S10. Grimme, S.; Ehrlich, S.; Goerigk, L., *J. Comput. Chem.* 2011, 32, 1456-1465.

S11. Liu, Z. P.; Jenkins, S. J.; King, D. A., *J. Am. Chem. Soc.* 2004, 126, 10746-10756.

S12. *CRC Handbook of Chemistry and Physics*; 84 ed.; R.LIDE, D., Ed.; CRC press, 2003-2004.