

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at <http://pubs.acs.org/page/copyright/permissions.html>

ACS Publications

MOST TRUSTED. MOST CITED. MOST READ.

Copyright © 1998 American Chemical Society

**A Highly General Catalyst for the Enantioselective Reaction of
Aldehydes with Diethylzinc.**

Wei-Sheng Huang, Qiao-Sheng Hu, Lin Pu*

Preparation and Characterization of 2,5-Dihexyloxyphenylboronic acid, 4. (a) Preparation of 1,4-dihexyloxy-2-bromobenzene, **A**. Under N₂, to a solution of 1,4-dihexyloxy-2,5-dibromobenzene (25.92 g, 59.45 mmol) in THF (150 mL) was added n-BuLi (23.8 mL, 2.5M in hexanes) at -78 °C over 30 min. After the addition, the reaction mixture was stirred at -78 °C for 1 h and was then quenched with aq. NH₄Cl at -78 °C. Usual workup gave **A** as a pale yellow liquid (97% yield). (b) Preparation of **4**. To a solution of **A** (10.71 g, 30 mmol) in THF (100 mL) was added n-BuLi (12 mL, 2.5 M in hexanes) at -78 °C over 10 min. After the addition, the reaction mixture was stirred at -78 °C for 30 min and was then cannulated into a solution of triethylborate (3 equiv., 15 mL) in THF (80 mL) at -78 °C. The mixture was stirred at -78 °C for 2 h and then at r.t. for overnight. Hydrolysis of the resulting product solution with 2N HCl at r.t. for 2 h followed by usual workup and column chromatography on silica gel (hexanes/EtOAc = 5/1) gave **4** as a pure white solid in 68% yield. m.p. 85-7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 3.4 Hz, 1H), 6.95 (dd, *J* = 8.8, 3.0 Hz, 1H), 6.82 (d, *J* = 8.8 Hz, 1H), 6.53 (s, 1H), 6.44 (s, 1H), 4.01 (t, *J* = 6.6 Hz, 2H), 3.93 (t, *J* = 6.6 Hz, 2H), 1.82 (m, 2H), 1.75 (m, 2H), 1.33-1.45 (m, 12H), 0.90 (t, *J* = 6.8 Hz, 3H), 0.89 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100.5 MHz, CDCl₃) δ 158.28, 153.32, 121.34, 119.41, 112.19, 69.07, 68.67, 31.69, 31.58, 29.45, 29.38, 25.80, 25.78, 22.71, 22.62, 14.15, 14.08. FT-IR (cm⁻¹) 3462 (m), 2936 (s), 2864 (m), 1495 (s), 1468 (s), 1422 (s), 1333 (s), 1217 (s), 1146 (m), 1044 (s), 908 (s), 735 (s). Anal. Calcd for C₁₈H₃₁BO₄: C, 67.08; H, 9.63. Found: C, 67.37; H, 9.75.

Preparation and Characterization of (*R*)-3,3'-Bis(2",4"-dihexyloxyphenyl)-1,1'-binaphthol, (*R*)-2. (a) Preparation of (*R*)-2,2'-bis(methoxymethoxy)-3,3'-bis(2",4"-dihexyloxyphenyl)-1,1'-binaphthyl, (*R*)-**B**. Under N₂, to a solution of (*R*)-**3** (2.63 g, 4.21 mmol) and **4** (4.07 g, 12.63 mmol) in THF (50 mL) were added Pd[(PPh₃)₄] (250 mg) and K₂CO₃ (aq. 2 M, 20 mL, degassed with N₂) sequentially. The reaction mixture was heated at reflux for 22 h and then quenched with brine at r.t. Usual workup followed by column chromatography on silica gel (hexanes/EtOAc = 10/1) gave (*R*)-**B** as a colorless oil in 88% yield. ¹H NMR (270 MHz, CDCl₃) δ 7.88 (s, 2H), 7.83 (d, *J* = 8.0 Hz, 2H), 7.33-7.41 (m, 4H), 7.24-7.29 (m, 2H), 7.03 (d, *J* = 2.7 Hz, 2H), 6.88 (s, 2H), 6.86 (d, *J* = 2.7 Hz, 2H), 4.46 (d, *J* = 5.6 Hz, 2H), 4.41 (d, *J* = 5.6 Hz, 2H), 3.94 (t, *J* = 6.5 Hz, 4H), 3.89 (t, *J* = 6.9 Hz, 4H), 2.35 (s, 6H), 1.77 (m, 4H), 1.64 (m, 4H), 1.45 (m, 4H), 1.16-1.35 (m, 20H), 0.89 (t, *J* = 6.9 Hz, 6H), 0.77 (t, *J* = 6.9 Hz, 6H). (b) Preparation of (*R*)-**2**. To a solution of (*R*)-**B** (3.0 g) in a mixed solvent (10 mL CH₂Cl₂ and 30 mL EtOH) was added conc. HCl (5 mL). The reaction mixture was heated at reflux under N₂ for 16 h. The volatile component was removed under reduced pressure and the residue was purified by column chromatography on silica gel (hexanes/EtOAc = 10/1) to give (*R*)-**2** as a colorless oil in 85% yield. [α]_D = 95.0 (c = 0.962, THF). ¹H NMR (270 MHz, CDCl₃) δ 7.96 (s, 2H), 7.91 (d, *J* = 8.0 Hz, 2H), 7.25-7.38 (m, 6H), 7.12 (d, *J* = 2.5 Hz, 2H), 6.96 (s, 2H), 6.94 (d, *J* = 2.7 Hz, 2H), 6.32 (s, 2H), 3.99 (t, *J* = 6.5 Hz, 4H), 3.92 (t, *J* = 6.7 Hz, 4H), 1.81 (m, 4H), 1.63 (m, 4H), 1.49 (m, 4H), 1.33-1.40 (m, 8H), 1.21-1.28 (m, 4H), 1.11-1.26 (m, 8H), 0.93 (t, *J* = 6.9 Hz, 6H), 0.76 (t, *J* = 6.9 Hz, 6H). ¹³C NMR (100.5 MHz, CDCl₃) δ 154.10, 150.36, 149.95, 133.75, 131.02, 129.27, 129.17, 129.11, 128.26, 126.55, 124.97, 123.72, 118.52, 116.67, 115.16, 114.94, 70.75, 68.76, 31.72, 31.52, 29.47, 29.34, 25.86, 25.56, 22.74, 22.51, 14.18, 14.05. FT-IR (cm⁻¹) 3530 (m), 2930 (s), 2870 (s), 1499 (s), 1470 (s), 1445 (s), 1387 (m), 1265 (s), 1211 (s), 1119 (m), 1038 (m), 909 (s), 787 (m), 735 (s). MS (DIP) *m/z* (relative intensity) 839 (M+H⁺, 9), 755 (M+H⁺-C₆H₁₂, 2), 652 (M-OC₆H₁₃-C₆H₁₃, 2), 585 (M+H⁺-2C₆H₁₃-C₆H₁₂, 0.4), 568

(M+H⁺-OC₆H₁₃-2C₆H₁₃, 2), 484 (M+H⁺-OC₆H₁₃-2C₆H₁₃-C₆H₁₂, 7). Anal. Calcd for C₅₆H₇₀O₆: C, 80.19; H, 8.35. Found: C, 79.89; H, 8.80.

Conditions for the Analysis of Chiral Secondary Alcohols

Chiral Capillary GC: Supelco β - Dex 120TM column 30 m x 0.25 mm (i.d.), 0.25 μ m film. Carrier gas: He (1.05 mL/min). Detector: FID, 280 °C. Injector: 220 °C.

Chiral HPLC: Chiracel OD or Chiracel AD column, hexane/isopropanol 9/1, 1.0 mL/min, 254 nm UV detector.

The racemic alcohol products were obtained by either addition of Et₂Zn to aldehydes in the presence of 2-pyridylcarbinol catalyst or addition of EtMgBr to aldehydes. The retention time of the racemic alcohol products under the given conditions is listed below.

1-Phenylpropanol: t_R = 7.45 min, t_S = 8.80 min (HPLC OD column).

1-(*p*-Methylphenyl)propanol: t_R = 32.18 min, t_S = 34.11 min (GC. 100 °C to 150 °C, 1 °C/min).

1-(*p*-Methoxyphenyl)propanol: t_R = 8.70 min, t_S = 9.48 min (HPLC AD column).

1-(*p*-Chlorophenyl)propanol: t_R = 6.25 min, t_S = 7.20 min (HPLC OD column).

1-(*m*-Chlorophenyl)propanol: The *ee* was measured by analyzing its acetate with GC: t_R = 17.46 min, t_S = 16.79 min (135 °C to 160 °C, 1 °C/min).

1-(*m*-Methoxyphenyl)propanol: t_R = 10.00 min, t_S = 10.73 min (HPLC OD column).

1-(*o*-Fluorophenyl)propanol: t_R = 26.74 min, t_S = 28.02 min (GC. 100 °C to 140 °C, 1 °C/min).

1-(*o*-Methoxyphenyl)propanol: t_R = 45.73 min, t_S = 44.05 min (GC. 100 °C to 150 °C, 1 °C/min).

1-(α -Naphthyl)propanol: t_R = 16.08 min, t_S = 8.83 min (HPLC OD column).

1-(β -Naphthyl)propanol: t_R = 11.87 min, t_S = 10.40 min (HPLC OD column).

1-(2'-Furyl)propanol: The *ee* was measured by analyzing its acetate with GC. $t_R = 22.23$ min, $t_S = 21.31$ min (80 $^{\circ}\text{C}$ to 120 $^{\circ}\text{C}$, 1 $^{\circ}\text{C}/\text{min}$).

3-Octanol: The *ee* was measured by analyzing its acetate with GC. $t_R = 32.03$ min, $t_S = 30.75$ min (60 $^{\circ}\text{C}$ to 100 $^{\circ}\text{C}$, 1 $^{\circ}\text{C}/\text{min}$).

3-Nonanol: The *ee* was measured by analyzing its acetate with GC. $t_R = 33.54$ min, $t_S = 32.43$ min (70 $^{\circ}\text{C}$ to 110 $^{\circ}\text{C}$, 1 $^{\circ}\text{C}/\text{min}$).

3-Undecanol: The *ee* was measured by analyzing its acetate with GC. $t_R = 28.82$ min, $t_S = 28.07$ min (100 $^{\circ}\text{C}$ to 140 $^{\circ}\text{C}$, 1 $^{\circ}\text{C}/\text{min}$).

1-Cyclohexylpropanol: The *ee* was measured by analyzing its acetate with GC. $t_R = 21.00$ min, $t_S = 20.34$ min (100 $^{\circ}\text{C}$ to 130 $^{\circ}\text{C}$, 1 $^{\circ}\text{C}/\text{min}$).

5-Methyl-3-hexanol: The *ee* was measured by analyzing its benzoate with GC. $t_R = 48.87$ min, $t_S = 47.71$ min (110 $^{\circ}\text{C}$ to 135 $^{\circ}\text{C}$, 0.4 $^{\circ}\text{C}/\text{min}$).

(E)-1-Phenyl-pent-1-en-3-ol: $t_R = 9.08$ min, $t_S = 13.40$ min (HPLC OD column).

(E)-1-Phenyl-2-methyl-pent-1-en-3-ol: The *ee* was measured by analyzing its acetate with GC. $t_R = 33.17$ min, $t_S = 32.26$ min (140 $^{\circ}\text{C}$).

(E)-Hex-4-en-3-ol: $t_R = 20.42$ min, $t_S = 22.09$ min (60 $^{\circ}\text{C}$).

5-Methyl-hex-4-en-3-ol: $t_R = 11.06$ min, $t_S = 13.88$ min (GC. 85 $^{\circ}\text{C}$).

(E)-4-Methyl-hex-4-en-3-ol: $t_R = 22.46$ min, $t_S = 26.64$ min (GC. 75 $^{\circ}\text{C}$).

2-(n-Butyl)-pent-1-en-3-ol: The *ee* was measured by analyzing its acetate with GC. $t_R = 23.04$ min, $t_S = 22.13$ min (90 $^{\circ}\text{C}$).

1-Phenyl-pent-1-yn-3-ol: $t_R = 7.27$ min, $t_S = 15.40$ min (HPLC OD column).