The Structure of Compound 3b.
X-Ray Analysis for Compound 3c

The data were collected on a Bruker AXS smart X-ray diffractometer equipped with a CCD area detector and a graphite-monochromated Mo Kα radiation ($\lambda = 0.71073$ Å). A total of 18438 reflections, of which 4005 unique ($R_{int} = 0.0402$) were collected in a θ range of 1.39 to 26.41°. The data were corrected by empirical absorption. The structure was solved by direct method and refined anisotropically for all non-hydrogen atoms by full-matrix least squares. All calculations were performed using SHLEXTL (version 5.1) proprietary software package. Crystal data for 3c: $C_{23}H_{17}BrCl_2$ ($M = 444.18$), crystal size 0.41 x 0.22 x 0.15 mm, monoclinic, space group P2₁/c, $a = 11.0373(12)$ Å, $b = 6.0040(6)$ Å, $c = 29.402(3)$ Å, $\beta = 94.695(2)^\circ$, $V = 1948.5(4)$ Å3, $Z = 4$, $Dx = 1.514$ mg/m3, $\mu = 2.388$ mm$^{-1}$, $T = 295$ K, $R1 = 0.334$ (wR2 = 0.0846), GOF = 1.119, max/min $\Delta\rho = 0.557/-0.657$ e Å$^{-3}$.
Table 1. Crystal data and structure refinement for 3c.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>3c</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C_{23}H_{17}BrCl_{2}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>444.18</td>
</tr>
<tr>
<td>Temperature</td>
<td>295(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2_1/c</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
</tr>
<tr>
<td>a = 11.0373(12) Å</td>
<td>alpha = 90°</td>
</tr>
<tr>
<td>b = 6.0040(6) Å</td>
<td>beta = 94.695(2)°</td>
</tr>
<tr>
<td>c = 29.502(3) Å</td>
<td>gamma = 90°</td>
</tr>
<tr>
<td>Volume, Z</td>
<td>1948.5(4) Å³, 4</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.514 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>2.388 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>896</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.41 x 0.22 x 0.15 mm</td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>1.39 to 26.41°</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-13 ≤ h ≤ 13, -7 ≤ k ≤ 7, -36 ≤ l ≤ 36</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>18438</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>4005 (R_{int} = 0.0402)</td>
</tr>
<tr>
<td>Completeness to θ = 26.41°</td>
<td>99.9 %</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>4005 / 0 / 303</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.119</td>
</tr>
<tr>
<td>Final R indices [I>2σ(I)]</td>
<td>R1 = 0.0334, wR2 = 0.0846</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0576, wR2 = 0.1063</td>
</tr>
</tbody>
</table>
| Largest diff. peak and hole | 0.557 and -0.657 eÅ⁻³
Table 2. Atomic coordinates [x 10^4] and equivalent isotropic displacement parameters [Å^2 x 10^3] for 3c. U(eq) is defined as one third of the trace of the orthogonalized U_ij tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br(1)</td>
<td>2608(1)</td>
<td>12007(1)</td>
<td>10059(1)</td>
<td>56(1)</td>
</tr>
<tr>
<td>Cl(2)</td>
<td>6030(1)</td>
<td>2105(1)</td>
<td>8965(1)</td>
<td>45(1)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>3470(1)</td>
<td>6625(1)</td>
<td>7171(1)</td>
<td>54(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>3094(2)</td>
<td>10151(5)</td>
<td>9583(1)</td>
<td>37(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>3895(2)</td>
<td>7514(4)</td>
<td>8893(1)</td>
<td>31(1)</td>
</tr>
<tr>
<td>C(17)</td>
<td>3432(3)</td>
<td>5787(5)</td>
<td>7743(1)</td>
<td>35(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>4194(3)</td>
<td>6798(5)</td>
<td>8049(1)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>6598(2)</td>
<td>4725(4)</td>
<td>8827(1)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>7915(2)</td>
<td>5085(5)</td>
<td>8959(1)</td>
<td>35(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>3718(3)</td>
<td>8222(6)</td>
<td>9694(1)</td>
<td>48(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>5839(3)</td>
<td>6225(5)</td>
<td>8643(1)</td>
<td>35(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>3237(3)</td>
<td>9433(5)</td>
<td>8792(1)</td>
<td>37(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>8504(3)</td>
<td>6969(6)</td>
<td>8814(1)</td>
<td>49(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>4471(2)</td>
<td>6081(5)</td>
<td>8539(1)</td>
<td>33(1)</td>
</tr>
<tr>
<td>C(18)</td>
<td>2508(2)</td>
<td>4078(5)</td>
<td>7811(1)</td>
<td>35(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>4113(3)</td>
<td>6917(6)</td>
<td>9349(1)</td>
<td>44(1)</td>
</tr>
<tr>
<td>C(22)</td>
<td>763(3)</td>
<td>2858(6)</td>
<td>8186(1)</td>
<td>50(1)</td>
</tr>
<tr>
<td>C(23)</td>
<td>1685(3)</td>
<td>4383(6)</td>
<td>8130(1)</td>
<td>41(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>2825(3)</td>
<td>10750(5)</td>
<td>9134(1)</td>
<td>40(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>9706(3)</td>
<td>7604(7)</td>
<td>8966(1)</td>
<td>60(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>8581(3)</td>
<td>3625(7)</td>
<td>9250(1)</td>
<td>50(1)</td>
</tr>
<tr>
<td>C(19)</td>
<td>2388(3)</td>
<td>2163(6)</td>
<td>7537(1)</td>
<td>47(1)</td>
</tr>
<tr>
<td>C(21)</td>
<td>655(3)</td>
<td>999(7)</td>
<td>7910(1)</td>
<td>55(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>9785(3)</td>
<td>4084(8)</td>
<td>9395(1)</td>
<td>63(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>10336(3)</td>
<td>5955(8)</td>
<td>9259(1)</td>
<td>63(1)</td>
</tr>
<tr>
<td>C(20)</td>
<td>1471(3)</td>
<td>658(6)</td>
<td>7591(1)</td>
<td>55(1)</td>
</tr>
</tbody>
</table>
Table 3. Bond lengths [Å] and angles [°] for Jc.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length/Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br(1)-C(1)</td>
<td>1.904(3)</td>
</tr>
<tr>
<td>Cl(1)-C(17)</td>
<td>1.766(3)</td>
</tr>
<tr>
<td>C(1)-C(6)</td>
<td>1.380(4)</td>
</tr>
<tr>
<td>C(4)-C(3)</td>
<td>1.394(4)</td>
</tr>
<tr>
<td>C(17)-C(8)</td>
<td>1.328(4)</td>
</tr>
<tr>
<td>C(8)-C(7)</td>
<td>1.515(4)</td>
</tr>
<tr>
<td>C(10)-C(11)</td>
<td>1.489(4)</td>
</tr>
<tr>
<td>C(11)-C(12)</td>
<td>1.394(4)</td>
</tr>
<tr>
<td>C(9)-C(7)</td>
<td>1.518(4)</td>
</tr>
<tr>
<td>C(16)-C(15)</td>
<td>1.390(5)</td>
</tr>
<tr>
<td>C(18)-C(19)</td>
<td>1.406(4)</td>
</tr>
<tr>
<td>C(22)-C(23)</td>
<td>1.385(5)</td>
</tr>
<tr>
<td>C(12)-C(13)</td>
<td>1.389(3)</td>
</tr>
<tr>
<td>C(21)-C(20)</td>
<td>1.372(5)</td>
</tr>
<tr>
<td>C(2)-C(1)-C(6)</td>
<td>120.8(3)</td>
</tr>
<tr>
<td>C(6)-C(1)-Br(1)</td>
<td>120.2(2)</td>
</tr>
<tr>
<td>C(5)-C(4)-C(7)</td>
<td>124.0(2)</td>
</tr>
<tr>
<td>C(8)-C(17)-C(18)</td>
<td>129.3(3)</td>
</tr>
<tr>
<td>C(18)-C(17)-C(1)</td>
<td>113.5(19)</td>
</tr>
<tr>
<td>C(9)-C(10)-C(11)</td>
<td>125.7(3)</td>
</tr>
<tr>
<td>C(11)-C(10)-C(2)</td>
<td>115.4(2)</td>
</tr>
<tr>
<td>C(16)-C(11)-C(10)</td>
<td>120.6(3)</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)</td>
<td>119.1(3)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(6)</td>
<td>120.9(3)</td>
</tr>
<tr>
<td>C(8)-C(7)-C(9)</td>
<td>107.3(2)</td>
</tr>
<tr>
<td>C(9)-C(7)-C(4)</td>
<td>106.9(2)</td>
</tr>
<tr>
<td>C(23)-C(18)-C(17)</td>
<td>120.1(3)</td>
</tr>
<tr>
<td>C(22)-C(23)-C(18)</td>
<td>120.8(3)</td>
</tr>
<tr>
<td>C(14)-C(15)-C(16)</td>
<td>120.3(4)</td>
</tr>
<tr>
<td>C(20)-C(19)-C(18)</td>
<td>120.4(3)</td>
</tr>
<tr>
<td>C(14)-C(13)-C(12)</td>
<td>121.0(4)</td>
</tr>
<tr>
<td>C(21)-C(20)-C(19)</td>
<td>120.8(3)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
Table 4. Anisotropic displacement parameters \([\text{Å}^2 \times 10^3]\) for 3c.

The anisotropic displacement factor exponent takes the form:

\[-2\pi^2 \left(\text{ha}^2 \text{U}_{11} + \ldots + 2\text{hka}^* \text{b}^* \text{U}_{12} \right)\]

<table>
<thead>
<tr>
<th></th>
<th>U11</th>
<th>U22</th>
<th>U33</th>
<th>U23</th>
<th>U13</th>
<th>U12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br(1)</td>
<td>59(1)</td>
<td>68(1)</td>
<td>40(1)</td>
<td>-11(1)</td>
<td>3(1)</td>
<td>20(1)</td>
</tr>
<tr>
<td>Cl(2)</td>
<td>48(1)</td>
<td>35(1)</td>
<td>50(1)</td>
<td>6(1)</td>
<td>0(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>77(1)</td>
<td>58(1)</td>
<td>28(1)</td>
<td>6(1)</td>
<td>8(1)</td>
<td>7(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>30(2)</td>
<td>47(2)</td>
<td>35(1)</td>
<td>-6(1)</td>
<td>1(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>27(1)</td>
<td>35(2)</td>
<td>32(1)</td>
<td>0(1)</td>
<td>-1(1)</td>
<td>-4(1)</td>
</tr>
<tr>
<td>C(17)</td>
<td>41(2)</td>
<td>39(2)</td>
<td>25(1)</td>
<td>2(1)</td>
<td>4(1)</td>
<td>8(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>37(2)</td>
<td>38(2)</td>
<td>32(1)</td>
<td>3(1)</td>
<td>8(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>35(2)</td>
<td>31(2)</td>
<td>29(1)</td>
<td>-4(1)</td>
<td>3(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>33(2)</td>
<td>40(2)</td>
<td>30(1)</td>
<td>-8(1)</td>
<td>4(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>53(2)</td>
<td>61(2)</td>
<td>29(2)</td>
<td>7(1)</td>
<td>0(1)</td>
<td>15(2)</td>
</tr>
<tr>
<td>C(9)</td>
<td>37(2)</td>
<td>31(2)</td>
<td>36(1)</td>
<td>-2(1)</td>
<td>4(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>37(2)</td>
<td>44(2)</td>
<td>30(1)</td>
<td>3(1)</td>
<td>-3(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>39(2)</td>
<td>53(2)</td>
<td>56(2)</td>
<td>3(2)</td>
<td>3(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(7)</td>
<td>33(2)</td>
<td>31(2)</td>
<td>33(1)</td>
<td>-1(1)</td>
<td>-1(1)</td>
<td>-4(1)</td>
</tr>
<tr>
<td>C(18)</td>
<td>36(2)</td>
<td>38(2)</td>
<td>30(1)</td>
<td>1(1)</td>
<td>-7(1)</td>
<td>5(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>49(2)</td>
<td>47(2)</td>
<td>36(2)</td>
<td>6(1)</td>
<td>3(1)</td>
<td>15(2)</td>
</tr>
<tr>
<td>C(22)</td>
<td>43(2)</td>
<td>63(2)</td>
<td>45(2)</td>
<td>1(2)</td>
<td>2(2)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(23)</td>
<td>44(2)</td>
<td>43(2)</td>
<td>35(2)</td>
<td>-5(1)</td>
<td>0(1)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(6)</td>
<td>40(2)</td>
<td>41(2)</td>
<td>38(2)</td>
<td>3(1)</td>
<td>-2(1)</td>
<td>10(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>40(2)</td>
<td>64(3)</td>
<td>77(3)</td>
<td>-7(2)</td>
<td>7(2)</td>
<td>-11(2)</td>
</tr>
<tr>
<td>C(12)</td>
<td>43(2)</td>
<td>58(2)</td>
<td>50(2)</td>
<td>5(2)</td>
<td>2(2)</td>
<td>8(2)</td>
</tr>
<tr>
<td>C(19)</td>
<td>50(2)</td>
<td>49(2)</td>
<td>41(2)</td>
<td>-10(1)</td>
<td>-6(1)</td>
<td>4(2)</td>
</tr>
<tr>
<td>C(21)</td>
<td>44(2)</td>
<td>52(2)</td>
<td>66(2)</td>
<td>4(2)</td>
<td>-12(2)</td>
<td>-7(2)</td>
</tr>
<tr>
<td>C(13)</td>
<td>38(2)</td>
<td>86(3)</td>
<td>61(2)</td>
<td>7(2)</td>
<td>-9(2)</td>
<td>14(2)</td>
</tr>
<tr>
<td>C(14)</td>
<td>32(2)</td>
<td>93(3)</td>
<td>64(2)</td>
<td>-16(2)</td>
<td>-1(2)</td>
<td>0(2)</td>
</tr>
<tr>
<td>C(20)</td>
<td>57(2)</td>
<td>45(2)</td>
<td>60(2)</td>
<td>-13(2)</td>
<td>-14(2)</td>
<td>-1(2)</td>
</tr>
</tbody>
</table>
Table 5. Hydrogen coordinates ($x \times 10^4$) and isotropic displacement parameters ($\AA^2 \times 10^3$) for 3c.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(7)</td>
<td>4220(20)</td>
<td>4550(50)</td>
<td>8570(9)</td>
<td>33(7)</td>
</tr>
<tr>
<td>H(5)</td>
<td>3090(20)</td>
<td>9810(50)</td>
<td>8478(10)</td>
<td>35(7)</td>
</tr>
<tr>
<td>H(8)</td>
<td>4660(30)</td>
<td>7880(50)</td>
<td>7950(11)</td>
<td>39(9)</td>
</tr>
<tr>
<td>H(19)</td>
<td>3000(30)</td>
<td>1870(50)</td>
<td>7281(11)</td>
<td>46(9)</td>
</tr>
<tr>
<td>H(9)</td>
<td>6170(30)</td>
<td>7650(50)</td>
<td>8579(11)</td>
<td>42(9)</td>
</tr>
<tr>
<td>H(23)</td>
<td>1700(30)</td>
<td>5600(50)</td>
<td>8296(10)</td>
<td>39(8)</td>
</tr>
<tr>
<td>H(22)</td>
<td>300(30)</td>
<td>3050(60)</td>
<td>8372(13)</td>
<td>56(11)</td>
</tr>
<tr>
<td>H(21)</td>
<td>40(40)</td>
<td>-40(70)</td>
<td>7943(12)</td>
<td>72(12)</td>
</tr>
<tr>
<td>H(20)</td>
<td>1420(30)</td>
<td>-580(60)</td>
<td>7417(12)</td>
<td>58(10)</td>
</tr>
<tr>
<td>H(16)</td>
<td>8050(40)</td>
<td>7990(60)</td>
<td>8616(13)</td>
<td>66(12)</td>
</tr>
<tr>
<td>H(6)</td>
<td>2450(30)</td>
<td>11950(60)</td>
<td>9056(12)</td>
<td>55(11)</td>
</tr>
<tr>
<td>H(14)</td>
<td>11210(30)</td>
<td>6090(60)</td>
<td>9360(11)</td>
<td>58(10)</td>
</tr>
<tr>
<td>H(2)</td>
<td>3880(30)</td>
<td>7820(50)</td>
<td>9981(13)</td>
<td>55(10)</td>
</tr>
<tr>
<td>H(12)</td>
<td>8220(30)</td>
<td>2420(60)</td>
<td>9348(13)</td>
<td>54(11)</td>
</tr>
<tr>
<td>H(13)</td>
<td>10110(40)</td>
<td>3060(70)</td>
<td>9572(15)</td>
<td>74(13)</td>
</tr>
<tr>
<td>H(3)</td>
<td>4460(30)</td>
<td>5600(60)</td>
<td>9425(11)</td>
<td>58(11)</td>
</tr>
<tr>
<td>H(15)</td>
<td>10070(40)</td>
<td>8560(70)</td>
<td>8858(13)</td>
<td>70(13)</td>
</tr>
</tbody>
</table>