General Procedures

Unless otherwise noted, all manipulations were carried out under an inert atmosphere in a Vacuum Atmosphere 553-2 drybox or by using standard Schlenk or vacuum line techniques. NMR spectra were obtained on a 270MHz JEOL NMR. IR spectra were obtained on a Bruker IFS-48 spectrometer.

Unless otherwise specified, all reagents were purchased from commercial suppliers and used without further purification. Liquids were freeze-pump-thawed three times to degas before use. Diethyl ether was distilled from sodium benzophenone. Pentane, methylene chloride and chlorobenzene were distilled from CaH₂. Deuterated solvents were dried as their protonated analogues, but were vacuum-transferred from the drying agent. UHP grade carbon monoxide was obtained from Matheson. Imines were prepared by reaction of p-tolualdehyde and amine in diethyl ether at room temperature for 1 day in the presence of 4Å molecular sieves. (bipy)NiMe₂ was prepared via literature procedure.¹ Iminium salts were prepared by addition of 1.1 equiv. anhydrous HCl in diethyl ether to the appropriate imine, followed by anion exchange with the appropriate salt (i.e. AgOTf, AgPF₆, AgSbF₆, or NaBARF²). Due to their ability to hold trace solvents, complexes 2a, 2c-h, 4a, and 4c-g have been characterized by spectroscopic methods in analogy to complex 2b and 4b. ¹H NMR spectra of complexes 2 and 4 are provided.

\[((\text{bipy})\text{Ni(}\text{CH}_3\text{)}_2(\text{PhN=C(H)Tol})]^+\text{PF}_6^- \] (2a)

A typical procedure for the synthesis of complexes 2a-h is as follows. (bipy)Ni(CH₃)₂ (75 mg, 0.307 mmol) was suspended in THF (10 ml) and cooled to -40°C to give an intense dark green solution. In a separate vessel [Ph(H)N=C(H)Tol]^+PF₆^- (104 mg, 0.307 mmol) was dissolved in THF (10ml) and cooled to -40°C. The iminium salt was then added to the rapidly stirring solution of (bipy)Ni(CH₃)₂ over 3 minutes via pipette. Near the end of the addition the dark green solution changes to a deep red colour. The solution is cooled to -40°C for 30 minutes then filtered through celite, and recrystallized from diethyl ether (50mL) at -40°C. After twelve
hours the clear solvent mixture was decanted, the solid residue washed with pentane (3 x 5ml), and then dried under vacuum to produce a orange powder (112 mg, 64 % yield).

\(^1H\) NMR (270 MHz, CD\(_2\)Cl\(_2\)): \(\delta\) 9.81 (d, 2H), \(\delta\) 8.59 (s, 1H), \(\delta\) 8.39 (d, 1H), \(\delta\) 8.24-7.89 (m, 8H), \(\delta\) 7.81 (m, 7H), \(\delta\) 2.43 (s, 3H, C\(_6\)H\(_4\)CH\(_3\)), \(\delta\) 0.03 (s, 3H, NiCH\(_3\))

\(^{13}C\) NMR (75 MHz, CD\(_2\)Cl\(_2\)): \(\delta\) 169.1 (N=C(H)), \(\delta\) 157.2, \(\delta\) 156.4, \(\delta\) 153.1, \(\delta\) 149.8, \(\delta\) 147.1, \(\delta\) 146.1, \(\delta\) 140.6, \(\delta\) 140.4, \(\delta\) 132.1, \(\delta\) 130.4, \(\delta\) 130.0, \(\delta\) 129.8, \(\delta\) 129.3, \(\delta\) 127.7, \(\delta\) 127.2, \(\delta\) 123.4 \(\delta\), 122.5, \(\delta\) 122.3, \(\delta\) 21.8 (C\(_6\)H\(_4\)CH\(_3\)), \(\delta\) - 1.50 (Ni-CH\(_3\))

IR (KBr): \(\nu_{CN} = 1606.0\) cm\(^{-1}\)

\([(\text{bipy})\text{Ni}(\text{CH}_2)(\text{PhCH}_2\text{N}=\text{C}(\text{H})\text{Tol})]\text{PF}_6^-(2b)

Yield: 84%

\(^1H\) NMR (270 MHz, CD\(_2\)Cl\(_2\)): \(\delta\) 9.43 (d, 2H), \(\delta\) 8.25 (s, 1H, N=C(H)), \(\delta\) 8.15 (d, 2H), \(\delta\) 8.04 (m,4H), \(\delta\) 7.17 (m, 10H), \(\delta\) 5.10 (dd, 2H, NCH\(_2\)Ph), \(\delta\) 2.19 (s, 3H, C\(_6\)H\(_4\)CH\(_3\)), \(\delta\) 0.03 (s, 3H, NiCH\(_3\))

\(^{13}C\) NMR (75 MHz, CD\(_2\)Cl\(_2\)): \(\delta\) 169.1 (N=C(H)), \(\delta\) 157.2, \(\delta\) 152.9, \(\delta\) 149.2, \(\delta\) 148.1, \(\delta\) 145.1, \(\delta\) 140.6, \(\delta\) 139.8, \(\delta\) 135.6, \(\delta\) 130.8, \(\delta\) 130.3, \(\delta\) 128.9, \(\delta\) 128.3, \(\delta\) 126.9, \(\delta\) 122.9, \(\delta\) 128.0, \(\delta\) 68.2 (NCH\(_2\)Ph), \(\delta\) 21.4 (C\(_6\)H\(_4\)CH\(_3\)), \(\delta\) - 2.00 (Ni-CH\(_3\))

IR (KBr): \(\nu_{CN} = 1608.0\) cm\(^{-1}\)

Analysis. Calculated for C\(_{26}\)H\(_{25}\)F\(_6\)N\(_3\)NiP (C 53.46%, H 4.49%, N 7.19%) Found (C 53.07%, H 4.52%, N 7.06%).

\([(\text{bipy})\text{Ni}(\text{CH}_2)(\text{CH}_2\text{N}=\text{C}(\text{H})\text{Tol})]\text{PF}_6^-(2c)

Yield: 92%.
1H NMR (270 MHz, CD2Cl2): δ 9.39 (d, 2H), δ 8.41 (d, 2H), δ 8.39 (s, 1H, N=C(H)), δ 8.15 (m, 4H), δ 7.67 (d, 2H), δ 7.59 (t, 2H), δ 7.49 (t, 2H), δ 7.39 (d, 2H), δ 3.9 (s, 3H, NCH3), δ 2.39 (s, 3H, C6H4CH3), δ 0.98 (s, 3H, NiCH3)

13C NMR (75 MHz, CD2Cl2): δ 171.1 (N=C(H)), δ 156.2, δ 152.9, δ 149.2, δ 147.1, δ 144.1, δ 140.6, δ 139.8, δ 131.6, δ 130.1, δ 129.3, δ 127.9, δ 126.9, δ 122.9, δ 122.1, δ 50.2 (NCH2Ph), δ 21.4 (C6H4CH3), δ - 2.00 (Ni-CH3)

IR (KBr): νCN = 1608 cm⁻¹

[(bipy)Ni(CH2)(MeN=C(H)Tol)]⁺SbF6⁻ (2d)

Yield: 86%

1H NMR (270 MHz, CD2Cl2): δ 9.39 (d, 2H), δ 8.41 (d, 2H), δ 8.39 (s, 1H, N=C(H)), δ 8.15 (m, 4H), δ 7.67 (d, 2H), δ 7.59 (t, 2H), δ 7.49 (t, 2H), δ 7.39 (d, 2H), δ 3.9 (s, 3, NCH3), δ 2.39 (s, 3H, C6H4CH3), δ 0.98 (s, 3H, NiCH3)

13C NMR (75 MHz, CD2Cl2): δ 171.1 (N=C(H)), δ 156.2, δ 152.9, δ 149.2, δ 147.1, δ 144.1, δ 140.6, δ 139.8, δ 131.6, δ 130.1, δ 129.3, δ 127.9, δ 126.9, δ 122.9, δ 122.1, δ 50.6 (NCH2Ph), δ 21.4 (C6H4CH3), δ - 1.80 (Ni-CH3)

IR (KBr): νCN = 1608 cm⁻¹

[(bipy)Ni(CH2)(MeN=C(H)Tol)]⁺BARf (2e)

Yield: 85%

1H NMR (270 MHz, CD2Cl2): δ 9.39 (d, 2H), δ 8.41 (d, 2H), δ 8.39 (s, 1H, N=C(H)), δ 8.15 (m, 4H), δ 7.67 (d, 2H), δ 7.59 (t, 2H), δ 7.49 (t, 2H), δ 7.39 (d, 2H), δ 3.9 (s, 3, NCH3), δ 2.39 (s, 3H, C6H4CH3), δ 0.98 (s, 3H, NiCH3)
13C NMR (75 MHz, CD$_2$Cl$_2$): δ 171.1 (N=C(H)), δ 156.2, δ 152.9, δ 149.2, δ 147.1, δ 144.1, δ 140.6, δ 139.8, δ 131.6, δ 130.1, δ 129.3, δ 127.9, δ 126.9, δ 122.9, δ 122.1, δ 50.4 (NCH$_2$Ph), δ 21.4 (C$_6$H$_4$CH$_3$), δ - 1.93 (Ni-CH$_3$)

IR (KBr): $\nu_{CN} = 1606$ cm$^{-1}$

([(Bipy)Ni(Me)(MeN=C(H)Tol)]'OTf$^-$ (2f))

Yield: 89%.

1H NMR (270 MHz, CD$_2$Cl$_2$): δ 9.37 (d, 2H), δ 8.37 (d, 1H), δ 8.34 (s, 1H, N=C(H)), δ 8.26 (t, 2H), δ 8.14 (t, 2H), δ 7.68 (d, 1H), δ 7.55 (t, 1H), δ 7.45 (t, 1H), δ 7.35 (d, 2H), δ 3.94 (s, 3H, CH$_3$N), δ 2.38 (s, 3H,C$_6$H$_4$CH$_3$), δ 0.04 (s, 3H, NiCH$_3$)

13C NMR (75 MHz, CD$_2$Cl$_2$): δ 171.6 (N=C(H)), δ 156.6, δ 153.6, δ 149.4, δ 148.0, δ 144.9, δ 140.7, δ 140.4, δ 130.6, δ 129.9, δ 127.7, δ 127.1, δ 124.1, δ 123.4, δ 52.9 (NCH$_3$), δ 21.4 (C$_6$H$_4$CH$_3$), δ 1.16 (NiCH$_3$)

IR (KBr): $\nu_{CN} = 1606.0$ cm$^{-1}$

([(Bipy)Ni(Me)(PrN=C(H)Tol)]'PF$_6$ (2g))

Yield: 68%.

1H NMR (270 MHz, CD$_2$Cl$_2$): δ 9.50 (d, 2H), δ 8.41 (s, 1H, N=C(H)), δ 8.36 (d, 1H), δ 8.15 (m,3H), δ 7.67 (m, 2H), δ 7.59 (m, 2H), δ 4.38 (m, 1H), δ 2.39 (s, 3H,C$_6$H$_4$CH$_3$), δ 1.84 (d, 3H), δ 1.65 (d, 3H), δ 0.78 (s, 3H, NiCH$_3$)

13C NMR (75 MHz, CD$_2$Cl$_2$): δ 168.1 (N=C(H)), δ 153.2, δ 149.9, δ 147.2, δ 145.1, δ 140.6, δ 139.8, δ 131.6, δ 130.3, δ 127.9, δ 127.3, δ 122.3, δ 122.1, δ 63.2 (NCH(CH$_3$)$_2$), δ 24.9 δ 24.0 δ 21.6 (C$_6$H$_4$CH$_3$), δ - 3.50 (Ni-CH$_3$)

IR (KBr): $\nu_{CN} = 1605$ cm$^{-1}$
[(Bipy)Ni(CH\(_3\))\(\{\text{BuN=C(H)Tol}\}\)]\(PF_6^-\) (2h)

Yield: 78%.

\(^1H\) NMR (270 MHz, CD\(_2\)Cl\(_2\)): \(\delta\) 9.69 (d, 2H), \(\delta\) 8.39 (s, 1H, N=C(H)), \(\delta\) 8.38 (d, 1H), \(\delta\) 8.15 (m, 4H), \(\delta\) 7.67 (d, 1H), \(\delta\) 7.59 (t, 1H) \(\delta\) 7.39 (m, 2H), \(\delta\) 2.39 (s, 3H, C\(_6\)H\(_4\)CH\(_3\)), \(\delta\) 1.9 (s, 9H, NC(CH\(_3\))\(_3\)), \(\delta\) 0.18 (s, 3H, NiCH\(_3\))

\(^{13}C\) NMR (75 MHz, CD\(_2\)Cl\(_2\)): \(\delta\) 168.1 (N=C(H)), \(\delta\) 149.2, \(\delta\) 147.9, \(\delta\) 144.2, \(\delta\) 148.1, \(\delta\) 140.8, \(\delta\) 140.2, \(\delta\) 131.8, \(\delta\) 131.6, \(\delta\) 131.0, \(\delta\) 130.3, \(\delta\) 130.0, \(\delta\) 127.4, \(\delta\) 127.2, \(\delta\) 122.4, \(\delta\) 122.3, \(\delta\) 65.4 (NC(CH\(_3\))\(_3\)), \(\delta\) 31.9, \(\delta\) 21.4 (C\(_6\)H\(_4\)CH\(_3\)), \(\delta\) -4.87 (Ni-CH\(_3\))

IR (KBr): \(v_{CN} = 1604\) cm\(^{-1}\)

\([\text{BipyNi}[n^2-C(Tol)HN(Ph)COCH}_{3}\)]\(PF_6^-\) (4a)

A typical procedure for the synthesis of complexes 4a-g is as follows. Complex 2a (67.2 mg, 0.118 mmol) was dissolved in CH\(_2\)Cl\(_2\) (15ml) in a 100ml reaction bomb. The solution was placed under 1 atm of CO and stirred for 5 minutes. Upon stirring, the solution changed from orange to deep red, and the bomb was then heated to 70°C for 20 minutes. The solution was filtered through celite, added to 10 ml of pentane and cooled to -40°C overnight. The clear solvent mixture was decanted and the solid residue wash with pentane (3x5ml) and then dried under vacuum to yield a orange powder (68.4mg, 97% yield).

\(^1H\) NMR (270 MHz, CD\(_2\)Cl\(_2\)): \(\delta\) 8.59 (d, 1H), \(\delta\) 8.12 (t, 2H), \(\delta\) 7.92 (m, 5H), \(\delta\) 7.67 (t, 2H), \(\delta\) 7.51 (d, 2H), \(\delta\) 7.3 (m, 2H), \(\delta\) 7.07 (d, 2H), \(\delta\) 6.95 (d, 2H), \(\delta\) 4.62 (s, 1H), NCPPh, \(\delta\) 2.22 (s, 3H, C\(_6\)H\(_4\)CH\(_3\)), \(\delta\) 1.98 (s, 3H).

\(^{13}C\) NMR (75 MHz, CD\(_2\)Cl\(_2\)): \(\delta\) 179.9, \(\delta\) 157.2, \(\delta\) 152.9, \(\delta\) 150.8, \(\delta\) 148.1, \(\delta\) 140.1, \(\delta\) 139.8, \(\delta\) 138.6, \(\delta\) 136.6, \(\delta\) 129.8, \(\delta\) 129.3, \(\delta\) 128.9, \(\delta\) 128.1, \(\delta\) 126.9, \(\delta\) 126.6, \(\delta\) 126.1, \(\delta\) 121.9, \(\delta\) 121.2, \(\delta\) 65.2, \(\delta\) 21.4 (C\(_6\)H\(_4\)CH\(_3\)), \(\delta\) 18 (Ni-CH\(_3\)).

IR (KBr): \(v_{CN} = 1611.0\) cm\(^{-1}\)
[(Bipy)Ni[n^2-C(Tol)HN(CH₂Ph)COCH₃]⁺PF₆⁻ (4b)]

Yield: 95%.

¹H NMR (270 MHz, CD₂Cl₂): δ 8.58 (d, 1H), δ 8.15 (t, 1H), δ 7.96 (m, 4H), δ 7.61 (m, 2H), δ 7.42 (m, 2H), 7.30 (m, 2H), 7.42 (m, 5H), 4.40, 4.01 (dd, 2H, NCH₂Ph), 4.31 (s, 1H), δ 2.23 (s, 3H, C₆H₅CH₃), δ 2.21 (COCH₃).

¹³C NMR (75 MHz, CD₂Cl₂): δ 180.1 (C=O), δ 155.1, δ 152.2, δ 150.9, δ 148.2, δ 140.8, δ 140.1, δ 138.6, δ 137.8, δ 134.6, δ 130.8, δ 129.3, δ 128.9, δ 128.3, δ 127.9, δ 127.1, δ 122.0, δ 121.4, δ 59.2 δ 51.1 (NCH₂Ph), δ 21.4 (C₆H₅CH₃), δ 19.00.

IR (KBr): ν CN = 1605.0 cm⁻¹

Analysis. Calculated for C₂₇H₂₆F₆N₃NiOP (C 52.97%, H 4.428%, N 6.86%) Found (C 52.65%, H 4.28%, N 7.16%).

[(Bipy)Ni[n^2-C(Tol)HN(CH₃)COCH₃]⁺PF₆⁻ (4c)]

Yield: 98%.

¹H NMR (270 MHz, CD₂Cl₂): δ 8.49 (d, 1H), δ 7.89-8.10 (m, 5H), δ 7.57 (m, 3H), δ 7.39 (t, 1H), δ 7.17 (d, 2H), δ 4.27 (s, 1H), δ 2.78 (s, 3H), δ 2.19 (s, 3H), δ 2.14 (s, 3H)

¹³C NMR (75 MHz, CD₂Cl₂): δ 179.7 (C=O), δ 155.7, δ 152.9, δ 150.2, δ 148.1, δ 140.5, δ 139.6, δ 138.6, δ 137.1, δ 130.1, δ 127.7, δ 127.0, δ 126.9, δ 121.9, δ 121.1, δ 62.4 (NCH₃), δ 34.8, δ 21.4 (C₆H₅CH₃), δ 18.1 (CO-CH₃).

IR (KBr): ν CO = 1610.0 cm⁻¹

[(Bipy)Ni[n^2-C(Tol)HN(CH₂CH₃)COCH₃]⁺SbF₆⁻ (4d)]

Yield: 88%.

¹H NMR (270 MHz, CD₂Cl₂): δ 8.49 (d, 1H), δ 7.89-8.10 (m, 5H), δ 7.57 (m, 3H), δ 7.39 (t, 1H), δ 7.17 (d, 2H), δ 4.27 (s, 1H), δ 2.78 (s, 3H), δ 2.19 (s, 3H), δ 2.14 (s, 3H)
13C NMR (75 MHz, CD$_2$Cl$_2$): δ 179.7 (C=O), δ 155.7, δ 152.9, δ 150.2, δ 148.1, δ 140.5, δ 139.6, δ 138.6, δ 137.1, δ 130.1, δ 127.7, δ 127.0, δ 126.9, δ 121.9, δ 121.1, δ 62.4 (NCH$_3$), δ 34.8, δ 21.4 (C$_6$H$_4$CH$_3$), δ 18.1 (CO-CH$_3$).

IR (KBr): $\nu_{CO} = 1610.0$ cm$^{-1}$

([(Bipy)Ni[η2-C(Tol)]HN(CH$_2$)COCH$_3$]$^+$BARf$^-$ (4e))

Yield: 91%.

1H NMR (270 MHz, CD$_2$Cl$_2$): δ 8.49 (d, 1H), 87.89-8.10 (m, 5H), δ 7.57 (m, 3H), δ 7.39 (t, 1H), δ 7.17 (d, 2H), δ 4.27 (s, 1H) δ 2.78 (s, 3H), δ 2.19 (s, 3H), δ 2.14 (s, 3H)

13C NMR (75 MHz, CD$_3$CN): δ 179.6 (C=O), δ 163.8 δ 162.2 δ 161.2 δ 160.5 δ 151.2, δ 148.2, δ 140.6, δ 139.8, δ 138.6, δ 136.4, δ 134.3, δ 129.4, δ 129.1 δ 128.9(q), δ 127.7, δ 127.1, δ 126.7 δ 122.5, δ 121.2, δ 120.9, δ 117.7, δ 63.2, δ 35.4, δ 21.4 (C$_6$H$_4$CH$_3$), δ 18.3.

IR (KBr): $\nu_{CO} = 1611.0$ cm$^{-1}$

([(Bipy)Ni[η2-C(Tol)]HN(CH$_2$)COCH$_3$]$^+$OTf$^-$ (4f))

Yield: 36%.

1H NMR (270 MHz, CD$_2$Cl$_2$): δ 8.49 (d, 1H), 88.19-7.90 (m, 5H), δ 7.62 (m, 3H), δ 7.39 (t, 1H), δ 7.17 (d, 2H), δ 4.32 (s, 1H) δ 2.81 (s, 3H), δ 2.21 (s, 3H), δ 2.17 (s, 3H).

13C NMR (75 MHz, CD$_2$Cl$_2$): δ 179.7 (C=O), δ 155.7, δ 152.9, δ 151.2, δ 148.1, δ 140.5, δ 139.6, δ 138.6, δ 137.1, δ 130.1, δ 127.7, δ 127.0, δ 126.9, δ 121.9, δ 121.1, δ 62.4 (NCH$_3$), δ 34.8, δ 21.4 (C$_6$H$_4$CH$_3$), δ 18.1 (CO-CH$_3$).

IR (KBr): $\nu_{CO} = 1609.0$ cm$^{-1}$

([(Bipy)Ni[η2-C(Tol)]HN(Pr)COCH$_3$]$^+$PF$_6^-$ (4g))
Yield: 25%.

1H NMR (270 MHz, CD$_2$Cl$_2$): δ 8.55 (d, 1H), δ 8.31 (d, 1H), δ 8.12 (t, 1H), δ 8.07 (m, 2H), δ 7.97 (d, 1H), δ 7.61 (t, 1H), δ 7.11 (d, 2H), δ 4.57 (s, 1), δ 2.26 (s, 3H, C$_6$H$_4$CH$_3$), δ 2.19 (s, 3H, (CO)CH$_3$), δ 1.38 (d, 3H), δ 0.81 (d, 3H)

13C NMR (75 MHz, CD$_2$Cl$_2$): δ 179.7 (C=O), δ 155.8, δ 153.1, δ 151.4, δ 148.7, δ 140.9, δ 140.6, δ 140.1, δ 136.1, δ 130.1, δ 127.8, δ 127.1, δ 126.1, δ 121.8, δ 121.3 δ 57.7 (C-N), δ 21.6, δ 21.2 δ 20.6, δ 19.1 (C$_6$H$_4$CH$_3$).

IR (KBr): $\nu_{CO} = 1607.0$ cm$^{-1}$

Cleavage of Amide from 4

A typical procedure for the cleavage of the amide ligand from 4c is as follows. Complex 4c (16 mg, 0.03 mmol) was dissolved in 1 ml d$_4$-methanol. To this solution was added 4 mg KCN. The reaction solution immediately turned colorless. An 1H NMR spectra of the reaction mixture reveals the formation of TolCH$_2$(Me)NCOMe (6c) in 95% yield (vs. Me$_3$SiPh internal standard). 6c can be isolated by removal of the solvent in vacuo, dissolution of the resultant oil in 5 ml CH$_2$Cl$_2$, and washing with 10% HCl (25 ml). Evaporation of the CH$_2$Cl$_2$ solvent provides 6c (4 mg, 80% yield). 1H NMR (CD$_2$Cl$_2$): δ 7.0-7.2 (m, 4H), 4.45 (s, 2H), 2.90 (s, 3H), 2.38 (s, 3H).
2h
4d

X : parts per Million : 1H
Plot of the 1H NMR rate data for the formation of complex 4a in CD$_2$Cl$_2$ at 45°C

\[y = m1^*(m3 - \exp(-m2^*m0)) \]

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>0.27670961661</td>
<td>0.0432497</td>
</tr>
<tr>
<td>m2</td>
<td>0.0016992278553</td>
<td>0.000321364</td>
</tr>
<tr>
<td>m3</td>
<td>1.1270475599</td>
<td>0.183596</td>
</tr>
<tr>
<td>Chisq</td>
<td>0.00056261521072</td>
<td>NA</td>
</tr>
<tr>
<td>R</td>
<td>0.98871082719</td>
<td>NA</td>
</tr>
</tbody>
</table>

T (sec)
Plot of the 1H NMR rate data for the formation of complex $4b$ in CD_2Cl_2 at 45°C.

$y = m_1 \times (m_3 - \exp(-m_2 \times m_0))$

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_1</td>
<td>0.73637925828</td>
<td>0.0056966</td>
</tr>
<tr>
<td>m_2</td>
<td>0.00027649912417</td>
<td>6.32014e-06</td>
</tr>
<tr>
<td>m_3</td>
<td>1.1372673498</td>
<td>0.00843127</td>
</tr>
<tr>
<td>Chisq</td>
<td>0.00063557783715</td>
<td>NA</td>
</tr>
<tr>
<td>R</td>
<td>0.9996124366</td>
<td>NA</td>
</tr>
</tbody>
</table>
Plot of the 1H NMR rate data for the formation of complex 4c in CD$_2$Cl$_2$ at 45°C

\[y = m1 \times (m3 - \exp(-m2 \times m0)) \]

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>0.41367044667</td>
<td>0.0105086</td>
</tr>
<tr>
<td>m2</td>
<td>0.00088060472645</td>
<td>4.03676 e-05</td>
</tr>
<tr>
<td>m3</td>
<td>0.95038595335</td>
<td>0.0258672</td>
</tr>
<tr>
<td>Chisq</td>
<td>0.00037688643696</td>
<td>NA</td>
</tr>
<tr>
<td>R</td>
<td>0.99857220347</td>
<td>NA</td>
</tr>
</tbody>
</table>
References

