Supporting Information

The role of nitrogen donors in zinc catalysts for lactide ring opening polymerization

Tannaz Ebrahimi, a,b‡ Emiliya Mamleeva, a‡ Insun Yu, a‡ Savvas G. Hatzikiriakos, b and Parisa Mehrkhodavandi a *

a Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia. b Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia, Canada.
Fax: 604-822-2847
Email: mehr@chem.ubc.ca
http://www.chem.ubc.ca/personnel/faculty/mehr/index.shtml

Contents
A. Characterization of compounds 1-7 in solution by 1H NMR and 13C{1H} NMR 2
B. Characterization of compounds 2-7 in the solid state ... 9
C. Characterization of compounds 1-6 in solution by PFGSE NMR 13
D. Variable temperature 1H NMR spectra of complex 4 ... 15
E. 2D NOESY spectra of complexes 4 and 5 ... 17
F. Ring opening polymerization of rac-lactide catalyzed by complexes 1-3 22
G. MALDI-TOF mass and 1H NMR spectra of PLA produced by complexes 4-6 24
H. Homonuclear decoupled 1H NMR spectra ... 29
I. 1H NMR spectra of PLLA formed by complexes 4-6 ... 32
J. References ... 33
A. Characterization of compounds 1-7 in solution by 1H NMR and 13C(1H) NMR

Figure S1. 1H NMR spectrum (600 MHz, 25 °C, C$_6$D$_6$) of complex 1 (±)-(NN$_{i}$O$_{ii}$)Zn(CH$_2$CH$_3$).

Figure S2. 13C(1H) NMR spectrum (600 MHz, 25 °C, C$_6$D$_6$) of complex 1 (±)-(NN$_{i}$O$_{ii}$)Zn(CH$_2$CH$_3$).
Figure S3. 1H NMR spectrum (600 MHz, 25 °C, C$_6$D$_6$) of complex 2 (±)-(NNO$_{t}$Bu$^-$)Zn(CH$_2$CH$_3$).

Figure S4. 13C(1H) NMR spectrum (600 MHz, 25 °C, C$_6$D$_6$) of complex 2 (±)-(NNO$_{t}$Bu$^-$)Zn(CH$_2$CH$_3$).
Figure S5. 1H NMR spectrum (600 MHz, 25 °C, C_6D_6) of complex $3\,(\pm)-(NNO_{cm})Zn(CH_2CH_3)$.

Figure S6. 13C {1H} NMR spectrum (600 MHz, 25 °C, C_6D_6) of complex $3\,(\pm)-(NNO_{cm})Zn(CH_2CH_3)$.
Figure S7. 1H NMR spectrum (600 MHz, 25 °C, C$_6$D$_6$) of complex 4 (±)-[(NN$_{t}$O$_{Bu}$)Zn(OCH$_2$Ph)]$_2$.

Figure S8. 13C(1H) NMR spectrum (600 MHz, 25 °C, C$_6$D$_6$) of complex 4 (±)-[(NN$_{t}$O$_{Bu}$)Zn(OCH$_2$Ph)]$_2$.
Figure S9. 1H NMR spectrum (600 MHz, 25 °C, C$_6$D$_6$) of complex 5 (\pm)-[(NNO$_{t}$-Bu)Zn(OCH$_2$Ph)$_2$].

Figure S10. 13C(1H) NMR spectrum (600 MHz, 25 °C, C$_6$D$_6$) of complex 5 (\pm)-[(NNO$_{t}$-Bu)Zn(OCH$_2$Ph)$_2$].
Figure S11. 1H NMR spectrum (600 MHz, 25 °C, C_6D_6) of complex 6 (±)-[(NNO$_{cm}$)Zn(OCH$_2$Ph)]$_2$.

Figure S12. 13C(1H) NMR spectrum (600 MHz, 25 °C, C_6D_6) of complex 6 (±)-[(NNO$_{cm}$)Zn(OCH$_2$Ph)]$_2$.
Figure S13. 1H NMR spectrum (600 MHz, 25 °C, CDCl$_3$) of complex 7 (+)-(NN$_{Me}$O$_{Bu}$)Zn(OCH$_2$Ph).

Figure S14. 13C(1H) NMR spectrum (600 MHz, 25 °C, CDCl$_3$) of complex 7 (+)-(NN$_{Me}$O$_{Bu}$)Zn(OCH$_2$Ph).
B. Characterization of compounds 2-7 in the solid state

<table>
<thead>
<tr>
<th></th>
<th>C${25}$H${42}$N$_{2}$OZn</th>
<th>C${35}$H${46}$N$_{2}$OZn</th>
<th>C${60}$H${88}$N${4}$O${4}$Zn$_{2}$</th>
<th>C${60}$H${88}$N${4}$O${4}$Zn$_{2}$</th>
<th>C${62}$H${106}$N${4}$O${4}$Zn</th>
<th>C${62}$H${106}$N${4}$O${4}$Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>empirical formula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fw</td>
<td>451.97</td>
<td>576.11</td>
<td>1064.11</td>
<td>1060.08</td>
<td>1308.34</td>
<td>1092.16</td>
</tr>
<tr>
<td>T (K)</td>
<td>90</td>
<td>90</td>
<td>100</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.8221(13)</td>
<td>8.698(3)</td>
<td>9.2510(16)</td>
<td>10.1201(10)</td>
<td>14.685(4)</td>
<td>11.8172(5)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>8.2063(10)</td>
<td>13.248(4)</td>
<td>17.559(3)</td>
<td>12.8555(11)</td>
<td>15.209(4)</td>
<td>15.9905(9)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>27.479(3)</td>
<td>14.936(5)</td>
<td>17.356(3)</td>
<td>13.2607(13)</td>
<td>18.275(5)</td>
<td>16.8567(9)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90</td>
<td>67.192(6)</td>
<td>90</td>
<td>117.778(4)</td>
<td>90</td>
<td>109.488(6)</td>
</tr>
<tr>
<td>β (deg)</td>
<td>91.900(2)</td>
<td>81.571(7)</td>
<td>98.095(4)</td>
<td>94.590(5)</td>
<td>94.590(5)</td>
<td>89.930(10)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90</td>
<td>74.512(6)</td>
<td>90</td>
<td>104.696(4)</td>
<td>103.098(6)</td>
<td>72.8900(10)</td>
</tr>
<tr>
<td>volume (Å3)</td>
<td>2439.1(5)</td>
<td>1527.1(8)</td>
<td>2791.2(8)</td>
<td>1432.9(2)</td>
<td>3454.6(16)</td>
<td>3014.7(3)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>cryst syst</td>
<td>monoclinic</td>
<td>triclinic</td>
<td>monoclinic</td>
<td>triclinic</td>
<td>triclinic</td>
<td>triclinic</td>
</tr>
<tr>
<td>space group</td>
<td>P 2/c</td>
<td>P-1</td>
<td>P 2/c</td>
<td>P-1</td>
<td>P-1</td>
<td>P-1</td>
</tr>
<tr>
<td>d_{calc} (g/cm3)</td>
<td>1.231</td>
<td>1.253</td>
<td>1.266</td>
<td>1.228</td>
<td>1.258</td>
<td>1.203</td>
</tr>
<tr>
<td>μ (Mo Kα) (cm$^{-1}$)</td>
<td>10.24</td>
<td>8.33</td>
<td>9.08</td>
<td>8.84</td>
<td>7.47</td>
<td>8.43</td>
</tr>
<tr>
<td>$2θ_{max}$ (deg)</td>
<td>60.3</td>
<td>57.6</td>
<td>60.3</td>
<td>55.2</td>
<td>60.6</td>
<td>60.128</td>
</tr>
<tr>
<td>total no. of reflns</td>
<td>65 879</td>
<td>37 176</td>
<td>41 100</td>
<td>29 647</td>
<td>91 116</td>
<td>10665</td>
</tr>
<tr>
<td>no. of indep reflns (R_{int})</td>
<td>7 202 (0.0300)</td>
<td>7 914 (0.0401)</td>
<td>8 209 (0.0237)</td>
<td>6 620 (0.036)</td>
<td>20 430 (0.040)</td>
<td>10637</td>
</tr>
<tr>
<td>residuals (refined on F_o^2): R_1; wR$_2$</td>
<td>0.0320, 0.0706</td>
<td>0.0460, 0.0846</td>
<td>0.0282, 0.0654</td>
<td>0.0722, 0.1398</td>
<td>0.0557, 0.0971</td>
<td>0.0396, 0.0826</td>
</tr>
<tr>
<td>GOF</td>
<td>1.112</td>
<td>1.022</td>
<td>1.033</td>
<td>1.06</td>
<td>1.02</td>
<td>0.916</td>
</tr>
<tr>
<td>no. obsrvns [$I > 2σ(I)$]</td>
<td>9379</td>
<td>9412</td>
<td>9092</td>
<td>9932</td>
<td>9636</td>
<td>9561</td>
</tr>
<tr>
<td>residuals (refined on F_o^2): R_1; wR$_2$</td>
<td>0.0278, 0.0688</td>
<td>0.0362, 0.0801</td>
<td>0.0244, 0.0629</td>
<td>0.0542, 0.1287</td>
<td>0.0381, 0.0886</td>
<td>0.0612, 0.0878</td>
</tr>
</tbody>
</table>

\[R_1 = \frac{\sum |F_o| - |F_c|}{\sum |F_o|} \]

\[wR_2 = \left[\frac{\sum w(F_o^2 - F_c^2)^2}{\sum w(F_o^2)^2} \right]^{1/2} \]

F_o and F_c are observed and calculated structure factors, respectively.
Figure S15. Molecular structure of complex 2 (depicted with thermal ellipsoids at 50% probability and most H atoms omitted for clarity). Selected distances (Å) and angles (deg): N1-Zn1 2.0423(10), N2-Zn1 2.2916(10), O1-Zn1 1.9750(9), C24-Zn1 1.9909(13), N1-Zn1-N2 76.87(4), N1-Zn1-O1 89.54(4), N1-Zn1-C24 139.76(5), N2-Zn1-O1 121.52(4), N2-Zn1-C24 106.31(5), O1-Zn1-C24 118.88(5).

Figure S16. Molecular structure of complex 3 (depicted with thermal ellipsoids at 50% probability and most H atoms omitted for clarity). Selected distances (Å) and angles (deg): N1-Zn1 2.0002(16), N2-Zn1 2.2854(16), O1-Zn1 1.9674(12), C35-Zn1 1.9888(17), N1-Zn1-N2 77.84(6), N1-Zn1-O1 90.25(6), N1-Zn1-C35 135.06(7), N2-Zn1-O1 118.89(6), N2-Zn1-C35 112.25(7), O1-Zn1-C35 117.41(6).

Figure S17. Molecular structure of complex 4 (depicted with thermal ellipsoids at 50% probability and most H atoms omitted for clarity). Selected distances (Å) and angles (deg): N1-Zn1 2.2091(9), N2-Zn1 2.1845(9), O1-Zn1 1.9478(7), O2-Zn1 1.9852(8), O2'-Zn1 2.0852(7), N1-Zn1-N2 79.67(3), N1-Zn1-O1 89.86(3), N1-Zn1-O2 96.47(3), N1-Zn1-O2' 173.45(3), N2-Zn1-O1 120.30(3), N2-Zn1-O2' 96.29(3), N2-Zn1-O2 115.19(3), O1-Zn1-O2 124.38(3), O1-Zn1-O2' 96.65(3), O2-Zn1-O2 80.50(3), Zn1-O2-Zn1' 99.50(3).
Figure S18. Molecular structure of complex 5 (depicted with thermal ellipsoids at 50% probability and most H atoms omitted for clarity). Selected distances (Å) and angles (deg): N1-Zn1 1.973(3), O1-Zn1 1.9213(19), O2-Zn1 1.962(2), O2i-Zn1 1.9691(19), N1-Zn1-O1 96.68(9), N1-Zn1-O2 131.31(9), N1-Zn1-O2i 126.76(9), O1-Zn1-O2 107.01(8), O1-Zn1-O2i 112.48(8), O2-Zn1-O2i 82.29(8), Zn1-O2-Zn1i 97.71(8).

Figure S19. Molecular structure of complex 6 (depicted with thermal ellipsoids at 50% probability and most H atoms omitted for clarity). Selected distances (Å) and angles (deg): N1-Zn1 2.0745(14), N2-Zn1 2.1932(15), O1-Zn1 1.9539(12), O3-Zn1 2.0511(12), O4-Zn1 2.0097(12), N3-Zn2 1.9818(16), O2-Zn2 1.9418(12), O3-Zn2 1.9443(12), O4-Zn2 1.9469(12), N1-Zn1-N2 80.01(6), N1-Zn1-O1 89.71(5), N1-Zn1-O4 99.86(5), N1-Zn1-O3 171.13(5), O1-Zn1-O3 98.52(4), O1-Zn1-O4 119.57(5), N2-Zn1-O1 128.31(5), N2-Zn1-O4 112.10(5), N2-Zn1-O3 92.22(5), O3-Zn1-O4 79.00(5), Zn1-O3-Zn2 98.22(5), Zn1-O4-Zn2 99.55(5), N3-Zn2-O2 96.64(5), N3-Zn2-O3 126.29(6), N3-Zn2-O4 122.39(6), O2-Zn2-O3 116.95(5), O2-Zn2-O4 112.80(5), O3-Zn2-O4 83.19(5).
Figure S20. Molecular structure of complex rac-7 (depicted with thermal ellipsoids at 50% probability and most H atoms as well as solvent molecules omitted for clarity). Selected distances (Å) and angles (deg): Zn1 O2 1.8757(17) Zn1 O1 1.9211(19), Zn1 N2 2.125(2), Zn1 N1 2.080(2), O2 Zn1 O1 124.44(8), O2 Zn1 N2 114.27(8), O2 Zn1 N1 111.34(9), O1 Zn1 N2 112.01(9), O1 Zn1 N1 100.75(8), N1 Zn1 N2 86.02(9), Zn1 O2 C23 116.84(4), O2 C23 C24 112.19(8).
C. Characterization of compounds 1-6 in solution by PGSE NMR

![Figure S21](image_url)

Figure S21. Plot of $\ln(I/I_0)$ vs $Y^2\delta^2G^2[\Delta-(\delta/3)] \times 10^{10}$ (m$^{-2}$ s) from PGSE experiments (400 MHz, CD$_2$Cl$_2$, 25 °C, Δ = 80 ms, δ = 1.1 ms). The hydrodynamic radius (r_H) of each compound was calculated by using the slopes (D_t) of the linear fits. I = intensity of the observed spin-echo, I_0 = intensity of the spin-echo in the absence of gradients, G = varied gradient strength, Υ = gyromagnetic ratio (2.675×10^8 rad s$^{-1}$ T$^{-1}$), δ = length of the gradient pulse, Δ = delay between the midpoints of the gradients.

Self-diffusion translational coefficients (D_t) were calculated graphically from the slopes of the linear best-fit lines.3 The $c^sa r_H^sa$ value of each diffusing sample was estimated by the equation 1 which was derived from the advanced Stokes-Einstein equation 2. r_H^sa was taken from the trend line of a plot, $c^sa r_H^sa$ vs. r_H^sa, based on the equation 4 reported by Chen and coworkers.4

$$c^sa I_H^sa = \frac{D_t^st c^st f_s^st r_H^st}{D_t^sa f_s^sa} \quad (1)$$

D_t^st = translational diffusion coefficient of internal standard (TMSS, $D_t^st = 14.2 \times 10^{-10}$ m2 s$^{-1}$, CD$_2$Cl$_2$, 25 °C)
c^st = internal standard size correction factor (TMSS, $c^st = 5.1$)
f_s^st = internal standard size and shape correction factor (TMSS, $f_s^st = 1$)
r_H^st = internal standard hydrodynamic radius (TMSS, 4.51 Å)
D_t^sa = translational diffusion coefficient of sample (CD$_2$Cl$_2$, 25 °C)
c^sa = sample size correction factor
f_s^sa = sample size and shape correction factor calculated from eq (3)
r_H^sa = sample hydrodynamic radius
\[D_t = \frac{kT}{c_f \pi \eta r_{H}} \] \hspace{1cm} (2)

\[f_s = \frac{\sqrt{1 - \left(\frac{b}{a}\right)^2}}{(\frac{b}{a})^3 \ln \left(\frac{b}{a}\right)} \] \hspace{1cm} (3)

\[cr_H = \frac{6r_H}{1 + 0.695 \left(\frac{r_{solv}}{r_H}\right)^{2.234}} \] \hspace{1cm} (4)

\(k = \) Boltzmann constant \((k = 1.38 \times 10^{-23} \text{ m}^2 \text{ kg} \text{ s}^{-1} \text{ K}^{-1})\)

\(T = \) absolute temperature (K)

\(\eta = \) fluid viscosity \((\text{CH}_2\text{Cl}_2, \eta = 0.0004 \text{ kg} \text{ s}^{-1} \text{ m}^{-1})\)

\(a = \) major semiaxes of a prolate ellipsoid estimated from X-ray crystal structure

\(b = \) minor semiaxes of a prolate ellipsoid estimated from X-ray crystal structure

\(r_{solv} = \) hydrodynamic radius of the solvent \((\text{CH}_2\text{Cl}_2 = 2.49 \text{ Å})\)
D. Variable temperature 1H NMR spectra of complex 4

Figure S22. Variable temperature 1H NMR spectra (400 MHz, CD$_2$Cl$_2$) of complex 4 (±)-[(NNiO$_{b0}$Zn(OCH$_2$Ph))]$_2$. (● - residual toluene, ● - (-CH$_2$-), ● - (-CH$_3$)$_2$).
Figure S23. Variable temperature 1H NMR spectra (400 MHz, C$_6$D$_6$) of complex 4 (±)-[\((\text{NNH}_2\text{Bu})\text{Zn}(\text{OCH}_2\text{Ph})\)]$_2$. (● - (-CH$_3$_)$_2$).
E. 2D NOESY spectra of complexes 4 and 5

Figure S24. 2D NOESY full spectrum (400 MHz, CD$_2$Cl$_2$, -35°C, mixing time = 0.8 s) of complex 4 (±)-[(NN$_1$(O$_{3h}$)Zn(OCH$_2$Ph)]$_2$.
Figure S25. Selected region of the 2D NOESY spectrum (400 MHz, CD$_2$Cl$_2$, −35 °C, mixing time = 0.8 s) of complex 4 (±)-[(NN$_{t}$O$_{t}$Bu)Zn(OCH$_2$Ph)].
Figure S26. 2D NOESY full spectrum (400 MHz, C₆D₆, 65 °C, mixing time = 1.0 s) of complex 4 (±)-[(NN₆(O₆Bu)Zn(OCH₂Ph)]₂.
Figure S27. Selected region of the 2D NOESY spectrum (400 MHz, C₆D₆, 65 °C, mixing time = 1.0 s) of complex 4 (±)-{(NN₁H₂O₅-Bu)Zn(OCH₂Ph)}₂.
Figure S28. 2D NOESY full spectrum (400 MHz, CD₂Cl₂, 25 °C, mixing time = 0.25 s) of complex 5 (±) - [(NNO₃Bu)Zn(OCH₂Ph)].
Figure S29. Selected region of the 2D NOESY spectrum (400 MHz, CD$_2$Cl$_2$, 25 ºC, mixing time = 0.25 s) of complex 5 (±)-[(NNO$_{tBu}$)Zn(OCH$_2$Ph)$_2$].

F. Ring opening polymerization of rac-lactide catalyzed by complexes 1-3

Table S2. Ring opening polymerization of rac-lactide catalyzed by complexes 1-3.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Cat</th>
<th>[M]$_o$/[I]</th>
<th>Conv.</th>
<th>M$_n$,theo</th>
<th>M$_n$,exp</th>
<th>M$_w$,exp</th>
<th>D_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1d</td>
<td>1</td>
<td>200</td>
<td>72</td>
<td>20780</td>
<td>2.089×107</td>
<td>2.838×107</td>
<td>1.36</td>
</tr>
<tr>
<td>2d</td>
<td>1</td>
<td>1000</td>
<td>82</td>
<td>118210</td>
<td>1.211×106</td>
<td>1.302×106</td>
<td>1.08</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>200</td>
<td>46</td>
<td>13290</td>
<td>6.316×105</td>
<td>6.589×105</td>
<td>1.04</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1000</td>
<td>79</td>
<td>113890</td>
<td>1.523×105</td>
<td>1.622×105</td>
<td>1.06</td>
</tr>
<tr>
<td>5d</td>
<td>3</td>
<td>200</td>
<td>38</td>
<td>10984</td>
<td>8.392×104</td>
<td>9.885×104</td>
<td>1.18</td>
</tr>
<tr>
<td>6d</td>
<td>3</td>
<td>1000</td>
<td>78</td>
<td>112450</td>
<td>2.999×105</td>
<td>3.726×105</td>
<td>1.24</td>
</tr>
</tbody>
</table>

All reactions were carried out in CH$_2$Cl$_2$ at 25 ºC in 20 h with rac-lactide and [Zn] = 0.7 mM. aMonomer conversion is determined by 1H NMR spectroscopy. bCalculated from [M]$_o$/[I] x monomer conversion × M$_{LA}$ + M$_{CH_2}$ (M$_{LA}$ = 144.13 g/mol, M$_{CH_2}$ = 30.07 g/mol). cDetermined by GPC-LALLS (gel permeation chromatography-low angle laser light scattering) (dn/dc =0.044 for PLA). dReactions were carried out in CH$_2$Cl$_2$ at 25 ºC in 44 h with rac-lactide and [Zn] = 0.7 mM.
Figure S30. Gel formation during the polymerization reactions of *rac*-lactide catalyzed by complexes 1-3.
G. MALDI-TOF mass and 1H NMR spectra of PLA produced by complexes 4-6

Figure S31. 1H NMR spectrum of PLA generated by 4 (400 MHz, CDCl$_3$, 25 °C).

Figure S32. MALDI-TOF mass spectrum of PLA produced by complex 4 from ROP of rac-lactide stopped after 5 minutes (2,5-dihydroxybenzoic acid with NaTFA).
Figure S33. MALDI-TOF mass spectrum of PLA produced by complex 4 from ROP of rac-lactide stopped after 30 minutes (2,5-dihydroxybenzoic acid with NaTFA).

Figure S34. 1H NMR spectrum of PLA generated by 5 (400 MHz, CDCl$_3$, 25 °C).
Figure S35. MALDI-TOF mass spectrum of PLA produced by complex 5 from ROP of rac-lactide (2,5-dihydroxybenzoic acid with NaTFA).

Figure S36. 1H NMR spectrum of PLA generated by 6 (400 MHz, CDCl$_3$, 25 °C).
Figure S37. MALDI-TOF mass spectrum of PLA produced by complex 6 from ROP of rac-lactide (2,5-dihydroxybenzoic acid with NaCl).

Figure S38. 1H NMR spectrum of PLA generated by 4 and precipitated in ethanol (400 MHz, CDCl$_3$, 25 °C).
Figure S39. 1H NMR spectrum of PLA generated by 5 and precipitated in ethanol (400 MHz, CDCl$_3$, 25 °C).

Figure S40. 1H NMR spectrum of PLA generated by 6 and precipitated in ethanol (400 MHz, CDCl$_3$, 25 °C).
H. Homonuclear decoupled 1H NMR spectra

The P_r and P_m values were calculated from the following formulas which are based on tetrad probabilities in the polymerization of rac-lactide as calculated from Bernoullian statistics. The assignment for each tetrad’s chemical shift is based on the generally accepted values.

Equations used:

\[
[m\text{mm}]= (P_m)^2 + P_r P_m/2
\]

\[
[m\text{mr}]= P_r P_m/2
\]

\[
[r\text{mm}]*= P_r P_m/2
\]

\[
[r\text{mr}]*= (P_r)^2/2
\]

\[
[m\text{rm}]= ((P_r)^2 + P_r P_m)/2
\]

*Effectively only these two equations are used in the calculations as the other peaks cannot be accurately integrated.

Figure S41. Homonuclear decoupled 1H NMR spectrum of methine region of PLA prepared by complex 4 ($P_r = 0.6$).
Figure S42. Homonuclear decoupled 1H NMR spectrum of methine region of PLA prepared by complex 5 ($P_r = 0.80$).

Figure S43. Homonuclear decoupled 1H NMR spectrum of methine region of PLA prepared by complex 5 at lower temperatures ($P_r = 0.85$).
Figure S44. Homonuclear decoupled 1H NMR spectrum of methine region of PLA prepared by complex 6 ($P_r = 0.7$).
I. 1H NMR spectra of PLLA formed by complexes 4-6

Figure S45. 1H NMR spectrum of PLLA formed by complex 4 (300 MHz, 25 °C, CDCl$_3$).

Figure S46. 1H NMR spectrum of PLLA formed by complex 5 (300 MHz, 25 °C, CDCl$_3$).
Figure S47. 1H NMR spectrum of PLLA formed by complex 6 (300 MHz, 25 °C, CDCl$_3$).

J. References
