Supplementary Information

Highly Stretchable Microsupercapacitor Arrays with Honeycomb Structures for Integrated Wearable Electronic Systems

Juan Pu,†,‡ Xiaohong Wang,*,† Renxiao Xu,† and Kyriakos Komvopoulos*,‡

†Tsinghua National Laboratory for Information Science and Technology, Institute of Microelectronics, Tsinghua University, Beijing 100084, People’s Republic of China
‡Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States

*Corresponding authors:
Prof. X. Wang, Tel.: +86-01062798432, Fax: +86-1062771130, E-mail: wxh-ime@tsinghua.edu.cn
Prof. K. Komvopoulos, Tel.: (510) 642-2563, Fax: (510) 642-5539, E-mail: kyriakos@me.berkeley.edu
Supplementary Table S1. Performance comparison of MSCs developed in this work and previous studies.

<table>
<thead>
<tr>
<th>Electrode material</th>
<th>Electrode thickness (μm)</th>
<th>Electrolyte</th>
<th>Volumetric capacitance</th>
<th>Capacitance retention</th>
<th>Time constant τ₀ (ms)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWCNT</td>
<td>0.28</td>
<td>PVA-H₃PO₄</td>
<td>1 F cm⁻³ @ 100 V s⁻¹</td>
<td>54% @ 0.05–100 V s⁻¹</td>
<td>6.3</td>
<td>This work</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>63% @ 1–100 V s⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>72% @ 1–50 V s⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RGO-CNT (9:1)</td>
<td>6</td>
<td>3 M KCl</td>
<td>3 F cm⁻³ @ 50 V s⁻¹</td>
<td>60% @ 1–50 V s⁻¹</td>
<td>4.8</td>
<td>[1]</td>
</tr>
<tr>
<td>Onion-like carbon</td>
<td>7</td>
<td>1 M Et₄NBF₄/anhydrous C₄H₆O₃</td>
<td>~0.7[ᵇ] F cm⁻³ @ 100 V s⁻¹</td>
<td>~53% @ 1–100 V s⁻¹</td>
<td>26</td>
<td>[2]</td>
</tr>
<tr>
<td>SWCNT</td>
<td>~3.5</td>
<td>3.6 M H₂SO₄</td>
<td>1.04 F cm⁻³</td>
<td></td>
<td>7</td>
<td>[3]</td>
</tr>
<tr>
<td>Direct laser-write porous carbon</td>
<td>33[ᵃ]</td>
<td>PVA-H₃PO₄</td>
<td>0.24 F cm⁻³ @ 0.01 V s⁻¹</td>
<td>~3%[ᵇ] @ 0.01–100 V s⁻¹</td>
<td></td>
<td>[4]</td>
</tr>
<tr>
<td>Nanoporous carbon</td>
<td>1–40</td>
<td>0.2 M K₂SO₄</td>
<td>2.0[ᶜ] F cm⁻³ @ 1 V s⁻¹</td>
<td>15% @ 0.01–1 V s⁻¹</td>
<td></td>
<td>[5]</td>
</tr>
<tr>
<td>RGO</td>
<td>0.025</td>
<td>PVA-H₃PO₄</td>
<td>359 F cm⁻³ @ 0.005 V s⁻¹</td>
<td>~42%[ᵇ] @ 0.005–1 V s⁻¹</td>
<td></td>
<td>[6]</td>
</tr>
<tr>
<td>Graphene microribbon</td>
<td>0.1–0.44</td>
<td>PVA-H₂SO₄</td>
<td>(13–20)[ᶜ] F cm⁻³ @ 0.5 V s⁻¹</td>
<td>~40%[ᵇ] @ 0.05–1 V s⁻¹</td>
<td></td>
<td>[7]</td>
</tr>
<tr>
<td>ERGO</td>
<td>20</td>
<td>25% KOH</td>
<td>0.24 F cm⁻³ @ 40 μA cm⁻²</td>
<td>~93% @ 40–800 μA cm⁻²</td>
<td>1.35</td>
<td>[8]</td>
</tr>
<tr>
<td>va-MWCNT</td>
<td>15</td>
<td>LiPF₆</td>
<td>~0.11[ᵈ] F cm⁻³ @ 100 V s⁻¹</td>
<td>~41%[ᵈ] @ 1–100 V s⁻¹</td>
<td>2.23</td>
<td>[9]</td>
</tr>
</tbody>
</table>

RGO = reduced graphene oxide; ERGO = electrochemically reduced graphene oxide; va-MWCNT = vertically aligned multi-walled carbon nanotubes

[a] Estimated from volumetric and areal capacitance data from the literature.
[b] Estimated from specific capacitance vs scan rate data from the literature.
[c] Estimated from areal capacitance and electrode thickness data from the literature.
[d] Estimated from the CV curves and electrode thickness.
Supplementary Figure S1. Distribution of maximum (first principal) strain ε_{max} in a four-cell honeycomb PDMS substrate stretched by 100%.
Supplementary Figure S2. (a) Schematic diagram showing the location of MSCs in a 4×4 MSC array and (b) corresponding circuit diagram.
Supplementary Figure S3. Fabrication process of stretchable 4×4 MSC arrays: (a) spin coating of the bottom PI layer on a Si wafer; (b) evaporation and micropatterning of the Cr/Au bilayer; (c) spin coating and micropatterning of the top PI layer; (d) spray deposition and micropatterning of the interdigital SWCNT electrodes; (e) selective etching of the bottom PI layer; (f) transfer of the device onto a honeycomb PDMS substrate; (g) coating of the interdigital SWCNT electrodes with gel electrolyte; and (h) application of the top honeycomb PDMS superstrate to encapsulate the MSC array.
Supplementary Figure S4. Digital photographs of a stretchable 4 × 4 MSC array at characteristic fabrication stages: (a) patterned Cr/Au bilayer on a PI-coated Si substrate; (b) patterned interdigital SWCNT electrodes on top of the interdigital Cr/Au bilayer pattern; (c) peeled off device attached to a water dissolvable tape; and (d) device transferred onto the honeycomb bottom PDMS substrate.
Supplementary Figure S5. Digital photograph of an undeformed 3 × 3 MSC array.
Supplementary Figure S6. (a) Raman and (b) FTIR spectra of SWCNTs. For the Raman spectrum shown in (a), $I_D/I_G = 0.078$. The peaks at 1112, 1635, and 3448 cm$^{-1}$ in the FTIR spectrum shown in (b) are assigned to $–$CH bending,10,11 CNT back bone,12 and carboxylate $–$OH stretching,11 respectively.
Supplementary Figure S7. CV curves of Au and Au + SWCNT single MSCs for a scan rate of (a) 10, (b) 50, and (c) 100 V s\(^{-1}\) and (d) volumetric capacitance \(C_v\) versus scan rate of SWCNT and Au + SWCNT single MSCs.
Supplementary Figure S8. CV curves of a 3 × 3 MSC array for a scan rate of 10, 50, and 100 V s⁻¹.
Supplementary Figure S9. CV curves of a 3 × 3 MSC array obtained soon after fabrication (day 0) and 5 days later.
Supplementary Figure S10. Schematic illustration of regions referred to as the islands and the beams of a 4 × 4 MSC array.
Supplementary Figure S11. Distribution of maximum (first principal) strain ε_{max} in the (a) bottom PDMS, (b) bottom PI, (c) Au, and (d) top PI layers of a 4 × 4 MSC array stretched by 150%.
Supplementary Figure S12. Optical images of a 3×3 MSC array at different deformation stages (left column) and corresponding FEA results of maximum (first principal) strain ε_{max} in the Au layer (right column).
Supplementary Figure S13. Distribution of maximum (first principal) strain ε_{max} in the (a) bottom PDMS, (b) bottom PI, (c) Au, and (d) top PI layers of a 3 × 3 MSC array stretched by 100%.
Supplementary Figure S14. Capacitance retention versus elongation of a 3 × 3 MSC array (the inset figure shows CV curves for −50% compression and 0–100% elongation).
Supplementary Figure S15. FEA simulations of a three-cycle stress-strain response of the (a) PI layer, (b) Au capacitor, and (c) Au interconnect of a 4 × 4 MSC array stretched up to 100%.
Supplementary Figure S16. A 3×3 MSC array integrated with a power management chip on a honeycomb substrate.
Supplementary Figure S17. Digital photographs showing tensile test setups of (a) a single honeycomb cell of the device, (b) flat PDMS membrane, and (c) cloth strip cut from a Nike wrist band.
Supplementary Figure S18. Distribution of maximum (first principal) strain ε_{max} in the PDMS layer of a 4×4 MSC array (a) bent by 180° and (b) twisted by 60°.
Supplementary Figure S19. Maximum (first principal) strain ε_{max} in the Au layer of a 4×4 MSC array as a function of (a) bending and (b) twisting angle. The inset figures in (a) show side-view schematics of the deformed device for 0°, 90°, and 180° bending angle, whereas the inset figures in (b) show schematics of the deformed device for 0°, 30°, and 60° twisting angle.
Supplementary References

