Supporting Information

A General Strategy for Ligand Exchange on Upconversion Nanoparticles

Wei Kong, Tianying Sun, Bing Chen, Xian Chen, Fujin Ai, Xiaoyue Zhu, Mingyu Li, Wenjun Zhang, Guangyu Zhu, and Feng Wang

†Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.
‡Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.
§Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
‡State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
§City Universities of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.

*Corresponding Author: fwang24@cityu.edu.hk
Figure S1. XRD pattern of the as-synthesized NaYF$_4$: Yb/Er (38/2 mol%)@NaYF$_4$ nanoparticles.
Figure S2. A comparison of FTIR spectra for PAA-modified upconversion nanoparticles prepared with and without adjusting pH of the ligand solution. Without pH adjustment, the absorption peak of C=O vibration appears, which indicated the existence of –COOH groups. By adjusting the pH to 8, the absorption peak due to C=O vibration disappeared, indicating that the –COOH groups were transformed into –COO⁻ and coordinated with the nanoparticles.
Figure S3. TG curves for the upconversion nanoparticles modified with different types of ligands.
Figure S4. A comparison of upconversion emission spectra for the ligand-free upconversion nanoparticles and the different ligand-coated counterparts. The spectra were obtained from aqueous dispersion of the nanoparticles (12.5 mM) under 980 nm diode laser excitation at 1 W.
Figure S5. 1H NMR spectra of different kinds of biomolecules after solvothermal processing. The signals inside dashed blue squares for cysteine were due to impurities from the raw molecules.
Figure S6. A comparison of upconversion emission spectra for biotinylated upconversion nanoparticles and ligand-free nanoparticles after incubation with 60 µL of streptavidin-Cy3 (1 mg mL⁻¹). The spectrum of biotinylated nanoparticles alone is also shown for reference.
Table S1. The effect of experimental procedure on dispersibility of the PAA-modified nanoparticles.

<table>
<thead>
<tr>
<th>#</th>
<th>Experimental Procedure</th>
</tr>
</thead>
</table>
| 1 | ① Adjust pH of ligand solution
 ② Add uncoated nanoparticles to ligand solution
 ③ Solvothermal treatment |
| 2 | ① Adjust pH of ligand solution
 ② Add uncoated nanoparticles to ligand solution
 ⊙ Solvothermal treatment |
| 3 | ⊙ Adjust pH of ligand solution
 ① Add uncoated nanoparticles to ligand solution
 ⊙ Solvothermal treatment |
| 4 | ① Add uncoated nanoparticles to ligand solution
 ② Adjust pH of mixture
 ③ Solvothermal treatment |

Ligand-free nanoparticles at pH=8
Table S2. Experimental variables for coating different ligands and quantitative characterizations of the resulting nanoparticles.

<table>
<thead>
<tr>
<th>#</th>
<th>Ligand</th>
<th>Parameters for Ligands</th>
<th>Characterizations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Amount of Ligand</td>
<td>pH of Solution</td>
</tr>
<tr>
<td>1</td>
<td>PAA</td>
<td>50 mg</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>PEI</td>
<td>50 mg</td>
<td>11.8</td>
</tr>
<tr>
<td>3</td>
<td>PVP</td>
<td>50 mg</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Cysteine</td>
<td>100 mg</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Glycine</td>
<td>100 mg</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>Citric Acid</td>
<td>100 mg</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>Biotin</td>
<td>50 mg</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>AEP</td>
<td>100 mg</td>
<td>8</td>
</tr>
</tbody>
</table>

\(^{a}\) The zeta potential of ligand-free upconversion nanoparticles is 33.6 mV.