Supporting Information for:

Laser initiation of Fe(II) complexes of 4-nitropyrazolyl substituted tetrazine ligands

_Thomas W. Myers_¹*, _Kathryn E. Brown_², _David E. Chavez_¹, _R. Jason Scharff_¹, _Jacqueline M. Veauthier_³.

Contribution from M division¹; W division²; and Chemistry division³; Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, NM 87544 (USA).
Figure S1. 1HNMR (top) and 13CNMR (bottom) spectra of H$_2$NHNTzTrz (4).
Figure S2. 1HNMR (top) and 13CNMR (bottom) spectra of H_2NTzTrz (5)
Figure S3. 1HNMR (top) and 13CNMR (bottom) spectra of $^\text{NO}_2\text{Pyr}_2\text{Tz}$ (6).
Figure S4. 1HNMR (top) and 13CNMR (bottom) spectra of H$_2$NTz$^{\text{NO}_2}$Pyr (7)
Figure S5. 1HNMR (top) and 13CNMR (bottom) spectra of H$_2$NHNTz$^{\text{NO2}}$Pyr (8).
Figure S6. 1HNMR (top) and 13CNMR (bottom) spectra of H$_2$NTriTz$^{\text{NO}_2}$Pyr (9).
Table S1. Crystallographic information for [(H$_2$NTz$^{\text{NO2}}$Pyr)$_2$Fe(MeCN)$_2$][ClO$_4$]$_2$ (10).

<table>
<thead>
<tr>
<th></th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C${14}$H${14}$ClFeN${18}$O${12}$</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.08 x 0.12 x 0.20</td>
</tr>
<tr>
<td>Formula weight, g mol$^{-1}$</td>
<td>753.18</td>
</tr>
<tr>
<td>Space group</td>
<td>P2$_1$/c</td>
</tr>
<tr>
<td>a, Å</td>
<td>8.017(3)</td>
</tr>
<tr>
<td>b, Å</td>
<td>12.597(4)</td>
</tr>
<tr>
<td>c, Å</td>
<td>13.612(4)</td>
</tr>
<tr>
<td>α, deg</td>
<td>90</td>
</tr>
<tr>
<td>β, deg</td>
<td>100.28(2)</td>
</tr>
<tr>
<td>γ, deg</td>
<td>90</td>
</tr>
<tr>
<td>V, Å3</td>
<td>1352.6(8)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>T, K</td>
<td>170</td>
</tr>
<tr>
<td>ρ, calcd, g cm$^{-3}$</td>
<td>1.849</td>
</tr>
<tr>
<td>Refl. collected/2θ$_{\text{max}}$</td>
<td>2110/50.71</td>
</tr>
<tr>
<td>Unique refl./ I>2σ(I)</td>
<td>2110/860</td>
</tr>
<tr>
<td>Parameters/restraints</td>
<td>215/0</td>
</tr>
<tr>
<td>λ, Å/μ(Kα), cm$^{-1}$</td>
<td>0.71073</td>
</tr>
<tr>
<td>R$_1$/GOF</td>
<td>0.1053/0.989</td>
</tr>
<tr>
<td>wR$_2$(I>2σ(I))</td>
<td>0.2530</td>
</tr>
<tr>
<td>Residual density, e Å$^{-3}$</td>
<td>1.284/-1.204</td>
</tr>
</tbody>
</table>

Table S2. Selected bond lengths and angles in [(H$_2$NTz$^{\text{NO2}}$Pyr)$_2$Fe(MeCN)$_2$][ClO$_4$]$_2$ (10).

<table>
<thead>
<tr>
<th></th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe-N$_{\text{Tz}}$</td>
<td>1.951(2)</td>
</tr>
<tr>
<td>Fe-N$_{\text{Pyr}}$</td>
<td>1.971(2)</td>
</tr>
<tr>
<td>Fe-N$_{\text{MeCN}}$</td>
<td>1.939(2)</td>
</tr>
<tr>
<td>N${\text{Pyr}}$-Fe-N${\text{Tz}}$</td>
<td>81.4(4)</td>
</tr>
<tr>
<td>N${\text{Pyr}}$-Fe-N${\text{MeCN}}$</td>
<td>91.8(4)</td>
</tr>
<tr>
<td>N${\text{Tz}}$-Fe-N${\text{Pyr}}$</td>
<td>98.6(4)</td>
</tr>
<tr>
<td>N${\text{Tz}}$-Fe-N${\text{Pyr}}'$</td>
<td>180.0</td>
</tr>
<tr>
<td>N${\text{Tz}}$-Fe-N${\text{MeCN}}$</td>
<td>92.9(4)</td>
</tr>
<tr>
<td>N${\text{Tz}}$-Fe-N${\text{Tz}}'$</td>
<td>180.0</td>
</tr>
</tbody>
</table>
Figure S7. DSC plot of 10 at a heating rate of 10 °C min⁻¹ (Exo up).

Figure S8. DSC plot of 10 at a heating rate of 10 °C min⁻¹ (Exo up).