SUPPORTING INFORMATION

High Numerical Aperture Hexagonal Stacked Ring-Based Bidirectional Flexible Polymer Microlens Array

Rajib Ahmed, 1,* Ali K. Yetisen, 2,3 and Haider Butt 1,*

1Microengineering and Nanotechnology Laboratory, School of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom

2Harvard Medical School and Division of Biomedical Engineering, Brigham and Women’s Hospital, 65 Lansdowne St., Cambridge, Massachusetts 02139, USA

3Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 65 Landsdowne St., Cambridge, MA, 02139, USA

*Email: h.butt@bham.ac.uk (HB), a.rajib@osamember.org (RA)
Figure S1. Laser exposrer set-up for the SMLAs.

Figure S2. Light focusing property of SMLAs through optical microscope at different distances along the z-axis.
Figure S3: Bidirectional focusing property of SMLAs. (a-c) Electric field intensity for the red, green, and blue light illumination at the front-side and (d-e) Back-side.
Figure S4: Optical characterization of SMLAs. Focused optical intensity along (a-c) lateral-axis (d-f) the back-side for the red, green and blue light illumination at the back-side. (g-h) Magnified field intensity for monochromatic light illumination at the backside.