# **Supporting Information for**

# Nucleophilic Substitution of Hydrogen Facilitated by Quinone Methide Moieties in Benzo[cd]azulen-3-ones

Alexandros Kiriazis,<sup>†,#</sup> Ingo B. Aumüller,<sup>†,#</sup> Ralica Arnaudova,<sup>†,‡</sup> Vanessa Brito,<sup>¶</sup> Tobias Rüffer,<sup>§</sup> Heinrich Lang,<sup>§</sup> Samuel M. Silvestre,<sup>¶,∞</sup> Päivi J. Koskinen<sup>‡</sup> and Jari Yli-Kauhaluoma<sup>†,\*</sup>

<sup>†</sup>Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P. O. Box 56 (Viikinkaari 5 E), FI-00014 University of Helsinki, Finland

<sup>‡</sup>Department of Biology, Vesilinnantie 5, FI-20014 University of Turku, Finland

<sup>¶</sup>Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6200-506 Covilhã, Portugal

<sup>∞</sup>Centre for Neuroscience and Cell Biology (CNC), 3004-504 Coimbra, Portugal

<sup>§</sup>Technische Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Chemie, D-09107 Chemnitz, Germany

\*Corresponding Author

Professor Jari Yli-Kauhaluoma, PhD

email: jari.yli-kauhaluoma@helsinki.fi

# **Table of Contents**

| 1. General information                                | S2         |
|-------------------------------------------------------|------------|
| 2. Experimental procedures and characterization data  | <b>S</b> 3 |
| 3. X-ray data for compound <b>12</b>                  | S22        |
| 4. Computational study                                | S25        |
| 5. Biological assays of benzo[ <i>cd</i> ]azulenes    | S41        |
| 6. References                                         | S43        |
| 7. <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra | S44        |
|                                                       |            |

# **1.** General information

All reactions were carried out using commercially available starting materials (Sigma-Aldrich, Schnelldorf, Germany; Fluka, Buchs, Switzerland and Alfa Aesar, Ward Hill, Massachusetts, USA) and solvents without further purification. Tetrahydrofuran (THF) and diethyl ether (Et<sub>2</sub>O) were distilled under argon with sodium/benzophenone ketyl and dichloromethane with calcium hydride. Column chromatography was performed with Merck 230-400 mesh silica gel or with an automated Biotage high performance flash chromatography Sp4-system (Uppsala, Sweden) using a 0.1-mm path length flow cell UV-detector/recorder module (fixed wavelength 254 nm). Analytical thin layer chromatography (TLC) was carried out using 0.2mm silica gel plates (silica gel 60, F<sub>254</sub>, Merck KGaA, Darmstadt, Germany). The melting points were recorded with an Electrothermal capillary tube melting point apparatus (Bibby Scientific Limited, Staffordshire, UK) and are uncorrected. Nuclear magnetic resonance spectra (<sup>1</sup>H NMR and <sup>13</sup>C NMR) were recorded on a Varian Mercury Plus 300 spectrometer (Agilent Technologies, Santa Clara, California, USA) or Bruker Ascent 400 (Bruker corporation, Billerica, Massachusett, USA). <sup>1</sup>H NMR at 300 or 400 MHz and <sup>13</sup>C NMR at 75 or 100 MHz. For CDCl<sub>3</sub>, CD<sub>2</sub>Cl<sub>2</sub>, acetone-*d*<sub>6</sub>, C<sub>6</sub>D<sub>6</sub>, and DMSO-*d*<sub>6</sub> the chemical shifts are reported in parts per million (ppm) and on the  $\delta$  scale using the residual solvent peak of the NMR solvent as an internal reference [acetone-d<sub>6</sub>: 2.05 (<sup>1</sup>H), 29.84 (<sup>13</sup>C); C<sub>6</sub>D<sub>6</sub>: 7.16 (<sup>1</sup>H), 128.1 (<sup>13</sup>C); CDCl<sub>3</sub>: 7.24 (<sup>1</sup>H), 77.16 ( $^{13}$ C); CD<sub>2</sub>Cl<sub>2</sub>: 5.32 ( $^{1}$ H), 54.00 ( $^{13}$ C); DMSO- $d_6$ : 2.50 ( $^{1}$ H), 39.50 ( $^{13}$ C)]. The coupling constants J are quoted in Hertz (Hz). Data for <sup>1</sup>H NMR spectra are reported as follows: chemical shift (multiplicity, integration, coupling constant(s)). The multiplicity was abbreviated as follows: br = broad signal, s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, sep = septet, dd = doublet of doublets, dt = doublet of triplets, dq = doublet of quartets, m = multiplet,  $m_c$  = centered multiplet. High resolution mass spectra (HRMS) were measured on a Waters Synapt G2 (Waters Corporation, Milford, Massachusetts, USA) and reported for the molecular ions  $[M+H]^+$  or  $[M-H]^-$ .

# 2. Experimental procedures and characterization data

# 2.1 Synthesis of benzo[cd]azulen-3-one

4-Hydroxy-1-methyl-8-(propan-2-yl)-4-(trifluoromethyl)-4,5-dihydro-3*H*-benzo[*cd*]azulen-3-one (6)



Guaiazulene (4.34 g, 21.9 mmol) was dissolved under argon in abs. diethyl ether (35 mL) and cooled to -16°C in a sodium chloride/acetone/ice bath. A solution of LDA in THF/heptane/ethylbenzene (2.0 M, 11.4 mL, 22.8 mmol, 1.05 equiv) was added and the reaction mixture was stirred for 25 min at -16 °C. Methyl trifluoropyruvate (2.23 mL, 21.9 mmol, 1 equiv) was added fast via syringe and the reaction mixture was stirred for 45 min at -16 °C. Diethyl ether (100 mL) was added and the organic phase was washed three times with water (70 mL). The solvent was removed at the rotary evaporator and the residue was dissolved in a mixture of THF, MeOH and water (2:1:1, 60 mL) and cooled to 0 °C in an ice bath. Sodium hydroxide (1.23 g, 30.6 mmol, 1.4 equiv) was added and the reaction mixture was stirred for 2 hours at 0 °C and for 6 hours at room temperature. Hexane (100 mL) was added and the organic phase was extracted once with water (100 mL) and twice with water (20 mL). The combined aqueous phases were washed three times with hexane (50 mL) and five times with diethyl ether (50 mL). The solvent of the combined organic phases was removed at the rotary evaporator and automated chromatography on silica gel (100% hexane) gave 496 mg (2.50 mmol) recovered starting material guaiazulene. The aqueous phase was acidified with 1 M hydrochloric acid and extracted with diethyl ether. The organic phased was washed five times with water (100 mL) until the aqueous phase remained neutral. The solvent was removed at the rotary evaporator and three times a small amount of chloroform was added to the residue and removed at the rotary evaporator. The residue was dissolved in chloroform (120 mL). p-TsOH (1.25 g, 6.57 mmol, 0.3 equiv) was added and the reaction mixture was stirred for 6 days at room temperature. Chloroform (50 mL) was added and the organic phase was washed three times with a saturated solution of sodium hydrogencarbonate in water (50 mL). The combined aqueous phases were re-extracted once with chloroform (20 mL) and the combined organic phases were washed four times with water (50 mL). The solvent was removed at the rotary evaporator and the residue was filtered with EtOAc through a small amount of silica gel (10 g). The solvent was removed at the rotary evaporator and the residue was dissolved in EtOAc (12 mL). Hexane (25 mL) was added and the product crystallized overnight in the refrigerator to yield 6 (2.66 g, 8.25 mmol, 38%) as dark violet crystals. The solvent of the mother liquor was removed at the rotary evaporator and the residue was purified by automated chromatography on silica gel, using a gradient of increasing EtOAc starting with 100% hexane to give additional 6 (1.11 g, 3.43 mmol), increasing the yield to 3.77 g (53%). Under consideration of consumed starting material, the total yield was 60%. <sup>1</sup>H NMR (300 MHz, DMSO- $d_6$ ): identical with reference.<sup>1</sup>

1-Methyl-8-(propan-2-yl)-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one (3)



4-Hydroxy-1-methyl-8-(propan-2-yl)-4-(trifluoromethyl)-4,5-dihydro-3*H*-benzo[*cd*]azulen-3-one **6** (764 mg, 2.37 mmol) was dissolved in abs. pyridine (10 mL) under argon and cooled to 0 °C. Trifluoroacetic anhydride (346  $\mu$ L, 2.49 mmol, 1.05 equiv) was added, and the reaction mixture was stirred at 0 °C for 3.5 h. Crushed ice and 15 minutes later EtOAc were added to the reaction mixture. The organic phase was washed five times with water. The solvent was removed at the rotary evaporator. Toluene was added twice to the residue and removed at the rotary evaporator. The crude product was purified by automated chromatography on silica gel, using a gradient of increasing EtOAc starting with 100% hexane to give **3** as brown needles (510 mg, 71%) and recovered starting material **6** (158 mg) increasing the yield to 89% with respect to the consumed starting material. <sup>1</sup>H NMR (300 MHz, C<sub>6</sub>D<sub>6</sub>): identical with reference.<sup>1</sup>

# 2.2.1 Conjugate addition of thiols towards protonated $\sigma^{H}$ -adducts

2-(Benzylthio)-8-isopropyl-1-methyl-4-(trifluoromethyl)-2H-benzo[cd]azulen-3-ol (7a)



8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3** (0.10 g, 0.33 mmol) was dissolved in anhydrous ethanol (4 mL) and benzyl mercaptan (85 µL, 0.66 mmol, 2 equiv) was added. The reaction mixture was stirred at room temperature under argon atmosphere until TLC analysis indicated the complete consumption of the green starting material (1.5 h) and formation of an orange product. The reaction mixture was evaporated, and the obtained crude product was purified by fast column chromatography on silica gel (eluent: EtOAc–*n*-hexane 1:8) to give **7a** as an orange solid (118 mg, 81%). M. p. 114–116 °C (dec.); <sup>1</sup>H NMR (300 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  7.28 (s, 1H), 7.03–6.88 (m, 4H), 6.84 (d, 1H, *J* = 1.5 Hz), 6.82 (m, 1H), 5.84 (s, 1H), 5.72 (d, 1H, *J* = 12.3 Hz), 5.33 (dd, 1H, *J* = 1.5 Hz, 12.3 Hz), 3.44 (s, 1H), 2.89 (d, 1H, *J* = 12.9 Hz), 2.81 (d, 1H, *J* = 12.9 Hz), 2.08 (sep, 1H, *J* = 6.9 Hz), 1.51 (d, 3H, *J* = 1.2 Hz), 0.98 (d, 6H, *J* = 6.9 Hz) ppm; <sup>13</sup>C NMR (75 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  152.1 (q, *J* = 2 Hz), 149.6, 144.6, 139.1, 137.7, 134.3, 132.3, 130.3 (m), 129.3, 129.3, 128.7, 128.7, 127.8, 127.6, 125.6, 124.1 (q, *J* = 271 Hz), 122.1, 122.0, 115.4 (q, *J* = 31 Hz), 52.9, 38.5, 32.6, 22.0, 22.0, 11.3 ppm; HRMS-APPI/APCI *m*/*z*: calc. for C<sub>25</sub>H<sub>22</sub>F<sub>3</sub>OS [M–H]<sup>-</sup>: 427.1342, found 427.1371.

#### 2-(Ethylthio)-8-isopropyl-1-methyl-4-(trifluoromethyl)-2*H*-benzo[*cd*]azulen-3-ol (7b)



8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3** (53.5 mg, 176 μmol) was dissolved in ethanol (2 mL) under argon. Ethanethiol (78.1 μL, 1.05 mmol, 6 equiv) was added, and the reaction mixture was stirred in a sealed tube for 1.5 h at room temperature. The solvent was evaporated, and the crude product was purified by automated chromatography on silica gel, using a gradient of increasing EtOAc starting with 100% hexane to give **7b** as a brown solid (51.1 mg, 80%). M. p. 73–75 °C (dec.); <sup>1</sup>H NMR (300 MHz, CD<sub>2</sub>Cl<sub>2</sub>): δ 7.58 (s, 1H), 7.04 (s, 1H), 6.00 (m, 1H), 5.99 (d, 1H, *J* = 12.3 Hz), 5.51 (dd, 1H, *J* = 1.5 Hz, *J* = 12.3 Hz), 4.32 (s, 1H), 2.28 (sep, 1H, *J* = 6.8 Hz), 2.09 (m<sub>c</sub>, 2H), 1.93 (s, 3H), 1.08 (t, 3H, *J* = 7.5 Hz), 1.07 (d, 6H, *J* = 6.8 Hz) ppm; <sup>13</sup>C NMR (75 MHz, acetone-*d*<sub>6</sub>): δ 152.9 (q, *J* = 1.7 Hz), 150.2, 144.6, 138.5, 136.5, 133.0, 130.5 (q, *J* = 5.1 Hz), 130.1, 127.5, 125.6, 125.0 (q, *J* = 270.1 Hz), 122.5, 115.6 (q, *J* = 30.4 Hz), 52.7, 38.7, 22.1, 22.0, 21.6, 14.9, 11.5 ppm; HRMS-ESI *m/z*: calc. for C<sub>20</sub>H<sub>20</sub>F<sub>3</sub>OS [M–H]<sup>-</sup>: 365.1187, found 365.1188.

**3-**[(**3-**Hydroxy-**8**-isopropyl-1-methyl-4-(trifluoromethyl)-2*H*-benzo[*cd*]azulen-2-yl)thio]propanoic acid (7c)



8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3** (0.20 g, 0.65 mmol) was dissolved in anhydrous ethanol (4 mL) followed by addition of 3-mercaptopropionic acid (68 µL, 0.80 mmol, 1.2 equiv). The reaction mixture was stirred at room temperature under argon atmosphere until TLC analysis indicated the complete consumption of the green starting material (3 h) and formation of an intensively orange product. The reaction mixture was evaporated and the obtained crude product was purified by fast column chromatography on silica gel (eluent: EtOAc–*n*-hexane–AcOH 10:90:2) followed by recrystallization from acetone–*n*-hexane to give **7c** as an orange, crystalline powder (154 mg, 58%). M. p. 118–119 °C (dec.); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.31 (br s, 1H), 7.05 (s, 1H), 5.99 (d, 1H, *J* = 12.3 Hz), 5.97 (s, 1H), 5.51 (dd, 1H, *J* = 1.8 Hz, 12.3 Hz), 4.29 (s, 1H), 2.49–2.40 (m, 2H), 2.37–2.25 (m, 2H), 2.28 (sep, 1H, *J* = 6.9 Hz, overlapping), 1.92 d, (3H, *J* = 0.9 Hz), 1.08 (d, 6H, *J* = 6.9 Hz) ppm; <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  176.6, 151.8, 149.1, 144.6, 139.0, 133.3, 132.3, 130.4 (q, *J* = 5.0 Hz), 127.3, 127.3, 125.3, 123.7 (q, *J* = 271.1 Hz), 121.6, 115.7 (q, *J* = 31.2 Hz), 52.3, 38.8, 34.0, 22.1, 21.9, 21.8, 11.3 ppm; HRMS-APPI/APCI *m*/*z*: calc. for C<sub>21</sub>H<sub>20</sub>F<sub>3</sub>O<sub>3</sub>S [M–H]<sup>-</sup>: 409.1085, found 409.1093.

# 2.2.2 Substitution of 3 with thiols via oxidative nucleophilic aromatic substitution of hydrogen (oxidative $S_N^{\rm H})$

2-(Benzylthio)-8-isopropyl-1-methyl-4-(trifluoromethyl)-3H-benzo[cd]azulen-3-one (8a)



**Reaction 1**: 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3** (40.0 mg, 0.132 mmol) was dissolved in anhydrous THF (3 mL) followed by addition of benzyl mercaptan (26  $\mu$ L, 0.20 mmol, 1.5 equiv). The reaction mixture was stirred at room temperature under argon atmosphere until TLC analysis indicated the complete consumption of the green starting material (2 h) and formation of an orange product. The reaction mixture stirred for additional 20 h. Then EtOAc (30 mL) was added and the organic phase was washed with aqueous NaOH (1.0 M,  $2 \times 10$  mL). The phases were separated and the organic phase was washed with water (10 mL) and brine (10 mL). The combined aqueous phases were washed with EtOAc (20 mL), and the combined organic phases were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and evaporated to give the crude product, which was purified by column chromatography on silica gel (eluent: EtOAc–*n*-hexane 1:4) to give **8a** as a green solid (39 mg, 68%) and recovered starting material **3** (9 mg), increasing the yield to 90% based on recovered starting material.

**Reaction 2**: 2-(Benzylthio)-8-isopropyl-1-methyl-4-(trifluoromethyl)-2*H*-benzo[*cd*]azulen-3-ol **7a** (75 mg, 0.17 mmol) was dissolved in anhydrous THF (3 mL) followed by addition of 1,4-benzoquinone (28 mg, 0.26 mmol, 1.5 equiv) and the reaction mixture was stirred for 2 d at room temperature. Then EtOAc (30 mL) was added, and the organic phase was washed with aqueous NaOH (1.0 M,  $2 \times 10$  mL). The phases were separated and the organic phase was washed with water (10 mL) and brine (10 mL). The combined aqueous phases were washed with EtOAc (20 mL) and the combined organic phases were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and evaporated to give the crude material, which was purified by column chromatography on silica gel (eluent: EtOAc–*n*-hexane 1:4) to give **8a** as a green solid (22 mg, 30%) M. p. 114–116 °C (dec.); <sup>1</sup>H NMR (300 MHz, acetone–*d*<sub>6</sub>):  $\delta$  8.53 (d, 1H, *J* = 1.8 Hz), 8.35 (q, 1H, *J* = 1.2 Hz), 8.26 (d, 1H, *J* = 10.5 Hz), 8.09 (dd, 1H, *J* = 10.5 Hz, 1.8 Hz), 7.35–7.10 (m, 5H), 4.70 (m, 2H), 3.48 (sep, 1H, *J* = 6.9 Hz), 2.57 (s, 3H), 1.46 (d, 6H, *J* = 6.9 Hz) ppm; <sup>13</sup>C NMR (75 MHz, acetone–*d*<sub>6</sub>):  $\delta$  174.1, 158.4, 150.8, 145.0, 140.9 (q, *J* = 6.0 Hz), 139.5, 137.1, 136.1, 135.5, 134.6, 134.4 (q, *J* = 27.3 Hz), 131.2, 130.8, 129.9, 129.9, 129.2, 129.2, 127.8, 124.8, 124.1 (q, *J* = 271.2 Hz), 40.6, 38.3, 24.6, 24.6, 11.1 ppm; HRMS-ESI *m/z*: calc. for C<sub>25</sub>H<sub>22</sub>F<sub>3</sub>OS [M+H]<sup>+</sup>: 427.1343, found 427.1343.

#### 2-(Ethylthio)-8-isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one (8b)



**Reaction 1**: 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3** (63.1 mg, 207  $\mu$ mol) was dissolved under argon in THF (3 mL). Ethanethiol (76.8  $\mu$ L, 1.04 mmol, 5 equiv) was added, and the reaction mixture was stirred in a sealed tube 1.5 h at room temperature. 1,4-Benzoquinone (44.7 mg, 414  $\mu$ mol, 2 equiv) was added, and the resulting mixture was stirred in a sealed tube for 8 h at room temperature. The reaction mixture was diluted with EtOAc and washed once with aqueous NaOH (0.5 M) and three times with water until the aqueous phase remained neutral. The solvent was removed with a the rotary evaporator, and the crude product was purified by automated chromatography on silica gel, using a gradient of increasing EtOAc starting with 100% hexane to give **8b** as dark greenish grey needles (43.7 mg, 58%).

**Reaction 2**: 2-(Ethylthio)-8-isopropyl-1-methyl-4-(trifluoromethyl)-2*H*-benzo[*cd*]azulen-3-ol **7b** (25.5 mg, 69.6 µmol) was dissolved under argon in THF (1 mL). 1,4-Benzoquinone (8.3 mg, 77 µmol, 1.1 equiv) was added and the resulting mixture was stirred for 5 h at room temperature. The reaction mixture was diluted with EtOAc and washed once with a 0.5 M solution of NaOH in water and three times with a mixture of water and brine (3:1) until the aqueous phase remained neutral. The solvent was removed with a the rotary evaporator, and the crude product was purified by automated chromatography on silica gel, using a gradient of increasing EtOAc starting with 100% hexane to give **8b** as dark greenish grey needles (11.7 mg, 46%). M. p. 128–129 °C; <sup>1</sup>H NMR (300 MHz, acetone–*d*<sub>6</sub>):  $\delta$  8.54 (d, 1H, *J* = 1.5 Hz), 8.32 (s, 1H), 8.23 (d, 1H, *J* = 10.5 Hz), 8.07 (dd, 1H, *J* = 10.5 Hz, 1.5 Hz), 3.46 (m, 3H), 2.65 (s, 3H), 1.48 (d, 6H, *J* = 6.9 Hz), 1.22 (t, 3H, *J* = 7.5 Hz), ppm; <sup>13</sup>C NMR (75 MHz, acetone–*d*<sub>6</sub>):  $\delta$  173.8, 158.1, 152.2, 145.1, 140.9 (q, *J* = 6.1 Hz), 136.8, 136.1, 135.1, 134.2 (q, *J* = 27.2 Hz), 133.8, 130.4, 130.2, 124.1 (q, *J* = 271.0 Hz), 124.5, 40.6, 28.5, 24.6, 15.6, 11.3 ppm; HRMS-ESI *m/z*: calc. for C<sub>20</sub>H<sub>20</sub>F<sub>3</sub>OS [M+H]<sup>+</sup>: 365.1187, found 365.1184

#### 3-[(8-Isopropyl-1-methyl-3-oxo-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-2-yl)thio]propanoic acid (8c)



8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3** (0.040 g, 0.13 mmol) was dissolved in anhydrous THF (3 mL) followed by addition of 3-mercaptopropionic acid (15 µL, 0.19 mmol, 1.5 equiv). The reaction mixture was stirred at room temperature under argon atmosphere until TLC analysis indicated the complete consumption of the green starting material (3.5 h) and formation of an orange product. Then reaction mixture was cooled to 0 °C and 1,4-benzoquinone (21 mg, 0.20 mmol, 1.5 equiv) was added and the reaction mixture stirred for additional 20 h. Then EtOAc (40 mL) was added, and the organic phase was washed several times with water (5 × 10 mL) and brine (10 mL). The combined organic phases were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and evaporated to give the crude product, which was purified by column chromatography on silica gel (eluent: EtOAc–*n*-hexane 1:2 to  $\rightarrow$  EtOAc–*n*-hexane–AcOH 10:20:1) to give **8c** as a green solid (33 mg, 62%). M. p. 143–144 °C; <sup>1</sup>H NMR (300 MHz, acetone–*d*<sub>6</sub>):  $\delta$  10.63 (br s, 1H), 8.60 (d, 1H, *J* = 1.8 Hz), 8.35 (s, 1H), 8.29 (d, 1H, *J* = 10.2 Hz), 8.12 (dd, 1H, *J* = 10.2 Hz, 1.8 Hz), 3.66 (t, 2H, *J* = 7.2 Hz), 3.47 (sep, 1H, *J* = 6.9 Hz), 2.66 (s, 3H), 2.58 (t, 2H, *J* = 7.2 Hz), 1.49 (d, 6H, *J* = 6.9 Hz) ppm; <sup>13</sup>C NMR (75 MHz, acetone–*d*<sub>6</sub>):  $\delta$  173.9, 172.8, 158.4, 150.4, 145.1, 140.9 (q, *J* = 6.1 Hz), 137.1, 136.2, 135.5, 134.6, 134.4 (q, *J* = 25.0 Hz, overlapping), 131.4, 130.9, 125.9, 124.0 (q, *J* = 271.1 Hz), 40.6, 35.4, 24.6, 24.6, 24.6, 11.2 ppm; HRMS-ESI *m*/*z*: calc. for C<sub>21</sub>H<sub>19</sub>F<sub>3</sub>OS [M+H]<sup>+</sup>: 409.1085, found 409.1085.

# 2.3 Substitution of 3 with amines via oxidative nucleophilic aromatic substitution of hydrogen (oxidative $S_{N}^{H})\,$

#### General procedure for the solvent-free amine addition with excess of amine. Method [a]

Unless otherwise noted, 8-isopropyl-1-methyl-4-(trifluoromethyl)-3H-benzo[cd]azulen-3-one **3** (1.0 equiv) is mixed with amine (12.0–14.7 equiv) and shaken for 1.5–2.5 h at room temperature. The crude product is directly purified by column chromatography on silica gel and recrystallized if applicable.

#### General procedure for the amine addition with excess of amine in alcohol. Method [b]

Unless otherwise noted, 8-isopropyl-1-methyl-4-(trifluoromethyl)-3H-benzo[cd]azulen-3-one **3** (1.0 equiv) and amine (2.0–8.0 equiv) are stirred under argon in ethanol (4–8 mL) at room temperature until TLC shows consumption of starting material. The solvent is evaporated, and the crude product is directly purified by column chromatography on silica gel.

#### General procedure for the amine addition with 1,4-benzoquinone. Method [c]

Herein, all the oxidative  $S_N^H$  procedures using 1,4-benzoquinone (BQ) are regarded as reactions of Method [c]. The actual reaction conditions employed are described in detail in the respective synthesis procedures. The following is a suggested general procedure for the Method [c]. 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3** (1.0 equiv) is dissolved in THF (approx. 1 mL / 100  $\mu$ mol) and cooled to 0 °C. The respective amine (1 equiv) and 1,4-benzoquinone (1.0 equiv) are each dissolved separately in THF (approx. 1 mL / 100  $\mu$ mol) and transferred to syringes. The amine and BQ solutions are added to the azulene solution in portions of one fifth of the total volume at a time interval of 3 min. Starting with the amine solution, the first portion of the BQ solution is added 3 min later, and the second portion of the amine solution another 3 min later. After the addition of the last portion of the BO solution, the reaction mixture is stirred for another 30 min at 0 °C. The reaction is monitored by TLC, an appropriate amount of amine (2.0–3.0 equiv) is added and stirring is continued for 30–60 min at 0 °C. The solvent is evaporated, and the crude product is purified by manual or automated chromatography on silica gel. Unless an eluent mixture is given for manual chromatography, automated chromatography was performed using a gradient of increasing EtOAc starting with 100% *n*-hexane. Before or after column chromatography, the by-product hydroquinone can be removed by partitioning the crude product between EtOAc and aqueous NaOH (0.5–1 M) followed by washing neutral with water.

#### General procedure for the amine addition with silver(I) oxide. Method [d]

The following general procedure for the oxidative  $S_N^H$  with silver(I) oxide was used throughout the work only with minor deviations. 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3** (1.0 equiv) is dissolved in THF (approx. 2–3 mL / 100 µmol) and cooled to 0 °C. Silver(I) oxide (5.0 equiv) is added to this solution, and the respective amine (1.0–1.4 equiv) is added directly to the formed suspension. The reaction mixture is stirred for approximately 30 min at 0 °C. According to TLC monitoring, an appropriate amount of amine (up to 0.7 equiv) is added, and stirring is continued for another 30–60 min. The solvent is evaporated, and the crude product is purified by manual or automated chromatography on silica gel. Unless an eluent mixture is given for manual chromatography, automated chromatography was performed using a gradient of increasing EtOAc starting with 100% *n*-hexane.

#### 2-(Ethylamino)-1-methyl-8-(propan-2-yl)-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one (9a)



**Method [b]:** A 2 M solution of ethylamine in methanol (10.0 mL, 20.0 mmol, 12 equiv) was cooled to 0 °C. 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3H-benzo[cd]azulen-3-one **3** (0.500 g, 1.64 mmol) was added to this solution, and the reaction mixture was stirred for 30 min at 0 °C and for 1 h at room temperature. The solvent was evaporated, and the crude product was purified by column chromatography on silica gel (eluent: hexane/EtOAc 5:2) to give **9a** as a brown solid (255 mg, 45%).

**Method [c]:** 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3** (26.5 mg, 87.1 µmol) was dissolved in THF (1 mL) and cooled to 0 °C. A 2 M solution of ethylamine in methanol (43.6 µL, 87.2 µmol) and 1,4-benzoquinone (BQ, 9.4 mg, 86.9 µmol) were each dissolved separately in THF (1 mL) and transferred to 1-mL syringes. The amine and BQ solutions were added to the azulene solution in portions of 200 µL at a time interval of 3 min. Starting with the amine solution, the first portion of the quinone solution was added 3 min later, and the second portion of the amine solution another 3 min later. After the addition of the last portion of the quinone solution, the reaction mixture was stirred for another 30 min at 0 °C. A 2 M solution of ethylamine in methanol (131 µL, 261 µmol, 3 equiv) was added to this mixture. After the reaction mixture was stirred for 30 min at 0 °C, a 2 M solution of ethylamine in methanol (43.6 µL, 87.2 µmol) was added. The reaction mixture was stirred for 30 min at 0 °C and diluted with EtOAc. The organic phase was washed once with a 0.5 M solution of NaOH in water and twice with an equimixture of water and brine. The solvent was evaporated, and the crude product was purified by automated chromatography on silica gel, using a gradient of increasing EtOAc starting with 100% hexane to give **9a** as a brown solid (21.0 mg, 70%).

**Method [d]:** 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3**: 20.6 mg (67.7 µmol), 2 M ethylamine in MeOH: 33.8 µL (67.7 µmol, 1.0 equiv) + 16.9 µL (33.9 µmol, 0.5 equiv) after 30 min, Ag<sub>2</sub>O: 78.4 mg (338 µmol, 5 equiv). **9a**: 21.1 mg (90%), a brown solid. M. p. 177 °C; <sup>1</sup>H NMR (300 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  9.90 (br t, 1H, *J* = 5.8 Hz), 8.14 (s, 1H), 7.66 (s, 1H), 7.63 (d, 1H, *J* = 11.2 Hz), 7.13 (d, 1H, *J* = 11.2 Hz), 3.92 (dq≈quin, 2H, *J* = 7.0 Hz), 3.10 (sep, 1H, *J* = 6.8 Hz), 2.46 (s, 3H), 1.35 (t, 3H, *J* = 7.2 Hz), 1.30 (d, 6H, *J* = 6.8 Hz) ppm; <sup>13</sup>C NMR (75 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  172.5, 163.4, 154.8, 147.1, 140.4 (q, *J* = 5.6 Hz), 136.5, 134.8, 128.2 (q, *J* = 27.1 Hz), 127.0, 124.4, 123.6 (q, *J* = 271.1 Hz), 120.8, 111.3, 109.5, 39.3, 23.8, 23.8, 23.8, 16.1, 10.9. ppm; HRMS-ESI *m/z*: calc. for C<sub>20</sub>H<sub>21</sub>F<sub>3</sub>NO [M+H]<sup>+</sup>: 348.1575, found 348.1578.

#### 2-(Butylamino)-1-methyl-8-(propan-2-yl)-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one (9b)

**Method [a]:** 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3H-benzo[cd]azulen-3-one **3** (0.600 g, 1.97 mmol) was mixed with *n*-butylamine (2.00 mL, 20.2 mmol, 14.7 equiv) and shaken for 1.5 h at room temperature. The mixture was diluted with toluene, and the solvent was evaporated. The crude product was purified by column chromatography on silica gel (eluent: PhMe/EtOAc: 9:1) and recrystallized from hot MeOH to give **9b** as brown needles (307 mg, 42%).

**Method** [c]: 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3** (24.1 mg, 79.2 µmol) was dissolved in THF (1 mL) in a round-bottomed flask and cooled to 0 °C. n-Butylamine (7.9 µL, 79 µmol) and BQ (8.6 mg, 79 µmol) were each dissolved separately in THF (1 mL) and transferred to 1-mL syringes. The amine and BQ solutions were added to the azulene solution in portions of 200 µL at a time interval of 3 min. Starting with the amine solution, the first portion of the quinone solution was added 3 min later, and the second portion of the amine solution another 3 min later. After the addition of the last portion of the quinone solution the reaction mixture was stirred for another 15 min at 0 °C. n-Butylamine (7.9 µL, 79 µmol) was added, and after another 30 min another equivalent of *n*-butylamine (7.9 µL, 79 µmol) was added. Stirring of the reaction mixture was continued for 1.5 h. The reaction mixture was diluted with EtOAc, washed once with a 1 M solution of NaOH in water and twice with a mixture of water and brine (4:1). The solvent was evaporated, and the crude product was purified by automated chromatography on silica gel, using a gradient of increasing EtOAc starting with 100% hexane to give **9b** as brown needles (22.8 mg, 77%). M. p. 112 °C; <sup>1</sup>H NMR (300 MHz, DMSO- $d_6$ ):  $\delta$  9.98 (t, 1H, J = 5.7 Hz), 8.14 (d, 1H, J = 1.5 Hz), 7.67 (s, 1H), 7.64 (d, 1H), 7.64 (d 1H, J = 11.2 Hz), 7.14 (d, 1H, J = 1.5 Hz, J = 11.2 Hz), 3.89 (dt $\approx$ q, 2H, J = 6.8 Hz), 3.11 (sep, 1H, J = 6.8Hz), 2.47 (s, 3H), 1.77 - 1.66 (m, 2H), 1.52 - 1.39 (m, 2H), 1.30 (d, 6H, J = 6.8 Hz), 0.96 (t, 3H, J = 7.3 Hz) ppm; <sup>13</sup>C NMR (75 MHz, DMSO-*d*<sub>6</sub>): δ 172.5, 163.6, 154.8, 147.1, 140.3 (q, *J* = 5.1 Hz), 136.4, 134.7, 128.1 (q, J = 27.3 Hz), 127.0, 124.3, 123.5 (q, J = 273.4 Hz), 120.7, 111.3, 109.3, 43.8, 32.3, 23.7, 23.7, 23.7, 19.3, 13.5, 10.9 ppm; HRMS-ESI *m/z*: calc. for C<sub>22</sub>H<sub>25</sub>F<sub>3</sub>NO [M+H]<sup>+</sup>: 376.1888, found 376.1887.

#### 2-(*tert*-Butylamino)-8-isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one (9c)



**Method [b]:** 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3** (74 mg, 0.24 mmol) was dissolved in ethanol (4 mL) and *tert*-butylamine (51  $\mu$ L, 0.49 mmol, 2 equiv) was added. The reaction mixture was stirred for 24 h at room temperature under argon atmosphere, after which TLC indicated the complete consumption of **3** and formation of less polar dark grey product along with side products. Solvents were evaporated, and the crude product purified by column chromatography on silica gel (eluent: EtOAc–*n*-hexane: 1:8 $\rightarrow$ 1:3) to give **9c** as a dark grey solid (7 mg, 8%).

**Method [d]:** 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3** (0.020 g, 0.066 mmol); THF (3 mL); *tert*-butylamine (10 µL, 1.4 equiv); Ag<sub>2</sub>O (77 mg, 0.33 mmol, 5 equiv); the crude product purified by column chromatography on silica gel (eluent: EtOAc–*n*-hexane: 1:8 $\rightarrow$ 1:3) to give **9c** (23 mg, 95%). M. p. 185–187 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  11.18 (br s,1H), 7.87 (d, 1H, *J* = 0.9 Hz), 7.61 (d, 1H, *J* = 1.5 Hz), 7.42 (d, 1H, *J* = 11.1 Hz), 7.07 (dd, 1H, *J* = 1.8 Hz, 11.1 Hz), 3.08 (sep, 1H, *J* = 6.9 Hz), 2.57 (s, 3H), 1.67 (s, 9H), 1.37 (d, 6H, *J* = 6.9 Hz) ppm; <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  174.0, 164.2, 155.8, 150.6, 139.6 (q, *J* = 6.2 Hz), 136.5, 135.5, 130.2 (q, *J* = 28.2 Hz), 127.2, 124.8, 123.7 (q, *J* = 270.1 Hz), 121.5, 113.8, 107.2, 53.5, 40.5, 31.7, 31.7, 31.7, 24.3, 24.3, 13.8 ppm; HRMS-ESI *m*/*z*: calc. for C<sub>22</sub>H<sub>25</sub>F<sub>3</sub>NO [M+H]<sup>+</sup>: 376.1888, found 376.1898.

2-(Isopropylamino)-1-methyl-8-(propan-2-yl)-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one (9d)



**Method** [c]: 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3** (45.1 mg, 148 µmol) was dissolved in THF (2 mL) in a round-bottomed flask and cooled to 0 °C. Isopropylamine (12.1  $\mu$ L, 148 μmol) and 1.4-benzoquinone (BO) (16.0 mg, 148 μmol) were each dissolved separately in THF (1 mL) and transferred to 1-mL syringes. The amine and BQ solutions were added to the azulene solution in portions of 200 µL at a time interval of 3 min. Starting with the amine solution, the first portion of the quinone solution was added 3 min later, and the second portion of the amine solution another 3 min later. After the addition of the last portion of the quinone solution, the reaction mixture was stirred for another 30 min at 0 °C. Isopropylamine (24.1 µL, 296 µmol, 2 equiv) was added to the reaction mixture, and stirring was continued for 30 min at 0 °C. The solvent was evaporated, and the crude product was purified by automated chromatography on silica gel, using a gradient of increasing EtOAc starting with 100% hexane to give 9d as a dark grey solid (45.3 mg, 85%). M. p. 141.0 °C; <sup>1</sup>H NMR (300 MHz, DMSO- $d_6$ ):  $\delta$  9.97 (d, 1H, J = 9.3Hz), 8.16 ( $q \approx d$ , 1H, J = 1.1 Hz), 7.72 (d, 1H, J = 1.5 Hz), 7.67 (d, 1H, J = 11.2 Hz), 7.17 (dd, 1H, J = 1.5 Hz, J = 11.2 Hz), 4.57 (m<sub>c</sub>, 1H), 3.13 (sep, 1H, J = 6.8 Hz), 2.49 (s, 3H), 1.41 (d, 6H, J = 6.4 Hz), 1.32 (d, = 6.9 Hz) ppm; <sup>13</sup>C NMR (75 MHz, DMSO- $d_6$ ):  $\delta$  172.5, 162.4, 155.0, 147.4, 140.3 (q, J = 5.6 Hz), 136.3, 134.9, 128.2 (q, *J* = 27.0 Hz), 127.1, 124.5, 123.4 (q, *J* = 273.0 Hz), 120.9, 111.2, 108.8, 45.8, 39.2, 23.9, 23.9, 23.7, 23.7, 10.8 ppm; HRMS-ESI *m/z*: calc. for C<sub>21</sub>H<sub>23</sub>F<sub>3</sub>NO [M+H]<sup>+</sup>: 362.1732, found 362.1733.

# 2-[(2,2-Dimethoxyethyl)amino]-1-methyl-8-(propan-2-yl)-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one (9e)



**Method [c]:** 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3** (51.0 mg, 166 µmol) was dissolved in THF (2 mL) in a round-bottomed flask and cooled to 0 °C. 2,2-Dimethoxyethylamine (18.1 µL, 166 µmol) and 1,4-benzoquinone (BQ, 17.9 mg, 166 µmol) were each dissolved separately in THF (1 mL) and transferred to 1-mL syringes. The amine and the BQ solutions were added to the azulene solution in portions of 200 µL at a time interval of 3 min. Starting with the amine solution, the first portion of the quinone solution was added 3 min later, and the second portion of the amine solution another 3 min later. After the addition of the last portion of the quinone solution, the reaction mixture was stirred for another 30 min at 0 °C. 2,2-Dimethoxyethylamine (36.2 µL, 332 µmol, 2 equiv) was added, and stirring was continued for 30 min at 0 °C. 2,2-Dimethoxyethylamine (18.1 µL, 166 µmol) was added, and stirring was continued for 1 h at 0 °C. The solvent was evaporated, and the crude product was purified by automated chromatography on silica gel, using a gradient of increasing EtOAc starting with 100% hexane. The solvents of the resulting

fractions were evaporated and the residue was dissolved in EtOAc. The resulting solution was washed with a 0.5 M solution of NaOH in water and twice with water. The solvent was evaporated to give **9e** as dark greenish grey needles (52.9 mg, 78%). M. p. 168 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  10.04 (bs, 1H), 7.85 (q≈d, 1H, *J* = 1.2 Hz), 7.61 (d, 1H, *J* = 1.3 Hz), 7.39 (d, 1H, *J* = 11.1 Hz), 7.09 (dd, 1H, *J* = 1.6 Hz, *J* = 11.1 Hz), 4.65 (t, 1H, *J* = 5.4 Hz), 3.99 (dd, 2H, *J* = 5.4 Hz, *J* = 6.6 Hz), 3.48 (s, 6H), 3.07 (sep, 1H, *J* = 6.9 Hz), 2.50 (s, 3H), 1.37 (d, 6H, *J* = 6.9 Hz) ppm; <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  174.3, 164.3, 155.1, 148.4, 140.2 (q, *J* = 5.6 Hz), 136.7, 134.8, 130.3 (q, *J* = 27.8 Hz), 127.6, 124.8, 123.5 (q, *J* = 273.2 Hz), 122.0, 112.8, 108.8, 103.2, 55.0, 47.0, 40.4, 24.3, 24.3, 11.6 ppm; HRMS-ESI *m*/*z*: calc. for C<sub>22</sub>H<sub>25</sub>F<sub>3</sub>NO<sub>3</sub> [M+H]<sup>+</sup>: 408.1787, found 408.1787.

# **2-**[(**3-**Hydroxypropyl)amino]-**8**-isopropyl-**1**-methyl-**4**-(trifluoromethyl)-**3***H*-benzo[*cd*]azulen-**3**-one (9f)



Method [c]: 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3H-benzo[cd]azulen-3-one 3 (102 mg, 0.34 mol) was dissolved in THF (5 mL) in a round-bottomed flask and cooled to 0 °C. 1,3-Aminopropanol (26 µL, 0.34 mmol) and BQ (36 mg, 0.34 mmol) were each dissolved separately in THF (1 mL) and transferred to 1-mL syringes. The amine and BQ solutions were added to the azulene solution in portions of 200  $\mu$ L at a time interval of 3 min. Starting with the amine solution, the first portion of the quinone solution was added 3 min later, and the second portion of the amine solution another 3 min later. After the addition of the last portion of the quinone solution, the reaction mixture was stirred for another 30 min at 0 °C. 1,3-aminopropanol (52 µL, 0.68 mmol, 2 equiv) was added to the mixture, and stirring was continued for 1 h at 0 °C. The solvent was evaporated, and the crude product was purified by column chromatography on silica gel gel (eluent: EtOAc-*n*-heptane: 1:1 $\rightarrow$ 3:1) to give **9f** as brown needles (96 mg, 75%). M. p. 227 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  10.14 (br s, 1H), 7.83 (s, 1H), 7.54 (d, 1H, J = 1.2 Hz), 7.35 (d, 1H, J = 11.2 Hz), 7.03 (dd, 1H, J = 1.2 Hz), = 11.2 Hz, 1.2 Hz), 4.04 (q, 2H, J = 6.4 Hz), 3.88 (t, 2H, J = 6.0 Hz), 3.08 (sep, 1H, J = 6.9 Hz), 2.49 (s, 3H), 2.05 (2Hm pentet, J = 6.4 Hz), 1.36 (d, 6H, J = 6.9 Hz) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  174.0, 164.7, 155.2, 148.7, 140.1 (q, J = 5.5 Hz), 137.0, 134.9, 129.9 (q, J = 27.6 Hz), 127.4, 124.5, 123.6 (q, J = 271.5 Hz), 121.7, 119.5, 112.7, 109.2, 59.5, 41.9, 40.4, 33.1, 24.2, 24.2, 11.4 ppm; HRMS-ESI m/z: calc. for C<sub>21</sub>H<sub>22</sub>F<sub>3</sub>NO<sub>2</sub> [M+H]<sup>+</sup>: 378.1681, found 378.1682.

#### 2-(Benzylamino)-8-isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one (9g)



**Method [b]:** 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3** (0.080 g, 0.26 mmol) was dissolved in ethanol (5 mL) and benzylamine (150  $\mu$ L, 0.65 mmol, 2.5 equiv) was added. The reaction mixture was stirred for 19 h at room temperature under argon atmosphere, after which TLC indicated the complete consumption of **3** and formation of a less polar dark grey product. Solvents were evaporated and

the resulting crude product was purified by column chromatography on silica gel (eluent: EtOAc-n-hexane 1:4) to give **9g** as a dark grey solid (38 mg, 36%).

**Method** [c]: 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3** (20.0 mg, 0.066 mmol) was dissolved in THF (1 mL) and cooled to 0 °C. Benzylamine (7.2 µL, 0.066 mmol) and benzoquinone (7.1 mg, 0.066 mmol) were each dissolved in THF (1 mL) and transferred each to a 1-mL syringe. The amine and the benzoquinone solutions were added to the azulene solution in portions of 200 µL at a time interval of 3 min. Starting with the amine solution, the first portion of the quinone solution was added 3 min later and the second portion of the amine solution another 3 min later. After the last portion of the quinone solution was added, the reaction mixture was stirred for another 30 min at 0 °C. Benzylamine (14.4 µL, 0.132 mmol) was added and stirring was continued for 2 h. The reaction mixture was diluted with EtOAc and washed aqueous NaOH (1.0 M,  $2 \times 10$  mL). The phases were separated and the organic phase was washed with water (10 mL) and brine (10 mL). The combined aqueous phases were washed with EtOAc (20 mL), and the combined organic phases were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and evaporated to give the crude product, which was purified by column chromatography on silica gel (eluent: EtOAc-*n*-hexane 1:4) to give **9g** as a dark grey solid (22 mg, 83%). M. p. 155–157 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  10.34 (br s, 1H), 7.89 (d, 1H, J = 0.9Hz), 7.62 (d, 1H, J = 1.5 Hz), 7.44 (d, 1H, J = 11.1 Hz), 7.38–7.28 (m, 5H), 7.12 (dd, 1H, J = 1.5 Hz, 11.1 Hz), 5.07 (s, 1H), 5.05 (s, 1H), 3.08 (sep, 1H, J = 6.9 Hz), 2.44 (s, 3H), 1.37 (d, 6H, J = 6.9 Hz) ppm; <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  174.5, 164.3, 155.4, 148.7, 140.3 (q, J = 6.0 Hz), 140.0, 137.5, 136.8, 135.0, 129.2, 129.2, 128.1, 127.8, 127.1, 127.1, 124.9, 123.5 (q, *J* = 272 Hz), 122.3, 112.8, 108.7, 48.8, 40.5, 24.3, 24.3, 11.3 ppm; HRMS-ESI *m/z*: calc. for C<sub>25</sub>H<sub>23</sub>F<sub>3</sub>NO [M+H]<sup>+</sup>: 410.1732, found 410.1747.

8-Isopropyl-1-methyl-2-[(pyridin-3-ylmethyl)amino]-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one (9h)



**Method [b]:** 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3** (0.080 g, 0.26 mmol) was dissolved in ethanol (5 mL) and 3-picolylamine (108  $\mu$ L, 1.08 mmol, 4 equiv) was added. The reaction mixture was stirred for 3 d at room temperature under argon atmosphere, after which TLC indicated the complete consumption of **3** and formation of polar dark grey product. Solvents were evaporated, and the crude product was purified by column chromatography on silica gel (eluent: EtOAc–*n*-hexane 3:4  $\rightarrow$  EtOAc 100%) to give **9h** as a dark grey solid (25 mg, 23%).

**Method [c]:** 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3** (0.020 g, 0.066 mmol) was dissolved in THF (1 mL) and cooled to 0 °C. 3-Picolylamine (7.0  $\mu$ L, 0.066 mmol) and 1,4-benzoquinone (7.1 mg, 0.066 mmol) were each dissolved in THF (1 mL) and transferred each to a 1-mL syringe. The amine and the benzoquinone solutions were added to the azulene solution in portions of 200  $\mu$ L at a time interval of 3 min. Starting with the amine solution, the first portion of the quinone solution was added 3 min later and the second portion of the amine solution another 3 min later. After the last portion of the quinone solution was added 4 months and the second portion of the amine solution another 30 min at 0 °C. 3-Picolylamine (14.0  $\mu$ L, 0.14 mmol) was added and stirring was continued for 2 h. The reaction mixture was diluted with EtOAc and washed with aqueous NaOH (1.0 M, 2 × 10 mL). The phases were separated and the organic phase was washed with water (10 mL) and brine (10 mL). The combined aqueous phases were washed with EtOAc (20 mL) and the combined organic phases were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and evaporated to give the crude material, which was purified by column chromatography on silica gel (eluent: EtOAc 100%) to give **9h** as a

dark grey solid (22 mg, 81%). M. p. 177–178 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  10.27 (br, s,1H), 8.65 (s, 1H), 8.58 (d, 1H, *J* = 4.5 Hz), 7.92 (s, 1H), 7.73 (d, 1H, *J* = 8.1 Hz), 7.67 (s, 1H), 7.49 (d, 1H, *J* = 11.1 Hz), 7.31 (dd, 1H, *J* = 4.8 Hz, 7.8 Hz), 7.19 (dd,1H, *J* = 1.5 Hz, 11.1Hz), 5.11 (s, 1H), 5.07 (s, 1H), 3.10 (sep, 1H, *J* = 6.9 Hz), 2.45 (s, 3H), 1.38 d, (6H, *J* = 6.9 Hz) ppm; <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  174.6, 163.8, 155.9, 149.6, 148.9, 148.7, 140.4 (q, *J* = 5.3 Hz), 136.5, 135.3, 134.8, 133.3, 130.7 (q, *J* = 28.2 Hz), 128.2, 125,3, 124.1, 123.4 (q, *J* = 272.3 Hz), 122.8, 112.9, 108.1, 46.3, 40.5, 24.3, 24.3, 11.3 ppm; HRMS-ESI *m/z*: calc. for C<sub>24</sub>H<sub>22</sub>F<sub>3</sub>N<sub>2</sub>O [M+H]<sup>+</sup>: 411.1684, found 411.1690.

# **2-**[(Furan-2-ylmethyl)amino]-8-isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one (9i)



**Method [b]:** 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3** (65 mg, 0.21 mmol) was dissolved in ethanol (4 mL) and furfurylamine (0.10  $\mu$ L, 1.1 mmol, 5.2 equiv) was added. The reaction mixture was stirred for 2 d at room temperature under argon atmosphere, after which TLC indicated the complete consumption of **3** and formation of less polar dark grey product. Solvents were evaporated, and the crude product was purified by column chromatography on silica gel (eluent: EtOAc–*n*-hexane 1:5) to give **9i** as a dark grey solid (21 mg, 25%).

**Method [d]:** 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3** (0.020 g, 0.066 mmol); THF (3 mL); furfurylamine (15  $\mu$ L, 2.5 equiv); Ag<sub>2</sub>O (77 mg, 0.33 mmol, 5 equiv); crude product was purified by column chromatography on silica gel (eluent: EtOAc–*n*-hexane 1:5 to give **9i** (17 mg, 65%). M. p. 144–146 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  10.20 (br s,1H), 7.87 (d, 1H, *J* = 0.9 Hz), 7.65 (d, 1H, *J* = 1.2 Hz), 7.42 (d, 1H, *J* = 11.1 Hz), 7.40 (m, 1H), 7.13 (dd, 1H, *J* = 1.8 Hz, 11.1 Hz), 6.35 (m, 2H), 5.02 (s,1H), 5.01 (s, 1H), 3.09 (sep, 1H, *J* = 6.9 Hz), 2.53 (s, 3H), 1.37 (d, 6H, *J* = 6.9 Hz) ppm; <sup>13</sup>C NMR (75 MHz, *CD*Cl<sub>3</sub>):  $\delta$  174.4, 163.7, 155.5, 150.0, 148.6, 143.0, 140.2 (q, *J* = 5.4 Hz), 136.7, 135.0, 130.6 (q, *J* = 28.1 Hz), 127.9, 125.0, 123.5 (q, *J* = 272.2 Hz), 122.4, 112.9, 110.8, 108.6, 108.3, 42.1, 40.5, 24.3, 24.3, 11.3 ppm; HRMS-ESI *m/z*: calc. for C<sub>23</sub>H<sub>21</sub>F<sub>3</sub>NO<sub>2</sub> [M+H]<sup>+</sup>: 400.1524, found 400.1527.

#### 2-(Dimethylamino)-1-methyl-8-(propan-2-yl)-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one (9j)



**Method [c]:** 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3** (29.0 mg, 95.3 µmol) was dissolved in THF (1 mL) and cooled to 0 °C. A 2 M solution of dimethylamine in THF (52.4 µL, 105 µmol, 1.1 equiv) was added, and the reaction mixture was stirred for 2 min at 0 °C. A solution of 1,4-benzoquinone (BQ, 11.3 mg, 105 µmol, 1.1 equiv) in THF (1 mL) was added dropwise during 2 min via syringe. The reaction mixture was stirred for 15 min at 0 °C, and again a 2 M solution of dimethylamine in

THF (52.4  $\mu$ L, 105  $\mu$ mol, 1.1 equiv) was added and after 2 min, again a solution of BQ (11.3 mg, 105  $\mu$ mol, 1.1 equiv) in THF (1 mL) was added dropwise during 2 min. After 15 min, 20 min, 35 min, 50 min, and 65 min further portions of a 2 M solution of dimethylamine in THF (each 52.4  $\mu$ L, each 105  $\mu$ mol, each 1.1 equiv) were added. The resulting mixture was stirred for 15 min at 0 °C, diluted with EtOAc and washed once with a 1 M solution of NaOH in water and twice with water. The solvent was evaporated, and the crude product was purified by automated chromatography on silica gel, using a gradient of increasing EtOAc starting with 100% hexane to give **9j** as dark grey crystals (26.2 mg, 79%).

**Method [d]**: 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3**: 21.9 mg (72.0 µmol), 2 M dimethylamine in THF: 50.5 µL (101 µmol, 1.4 equiv) + 25.2 µL (50.5 µmol, 0.7 equiv) after 30 min, Ag<sub>2</sub>O: 83.4 mg (360 µmol, 5 equiv). Yield of **9j**: 18.1 mg (72%), dark grey crystals. M. p. 188 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.84 (q≈d, 1H, *J* = 1.1 Hz), 7.68 (d, 1H, *J* = 1.6 Hz), 7.39 (d, 1H, *J* = 11.1 Hz), 7.14 (d, 1H, *J* = 1.7 Hz, *J* = 11.1 Hz), 3.48 (s, 6H), 3.08 (sep, 1H, *J* = 6.9 Hz), 2.49 (s, 3H), 1.37 (d, 6H, *J* = 6.9 Hz) ppm; <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  172.2, 166.2, 154.0, 146.1, 140.1 (q, *J* = 5.7 Hz), 139.0, 134.4, 132.1 (q, *J* = 27.1 Hz), 128.2, 125.3, 123.6 (q, *J* = 273.2 Hz), 123.4, 115.0, 114.5, 45.3, 45.3, 40.0, 24.3, 24.3, 12.7 ppm; HRMS-ESI *m*/*z*: calc. for C<sub>20</sub>H<sub>21</sub>F<sub>3</sub>NO [M+H]<sup>+</sup>: 348.1575, found 348.1575.

#### 1-Methyl-2-(morpholin-4-yl)-8-(propan-2-yl)-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one (9k)



**Method [a]:** 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3** (75.0 mg, 246  $\mu$ mol) was mixed with morpholine (0.300 mL, 3.47 mmol, 14 equiv) and shaken for 2.5 h at room temperature. The crude product was directly purified by column chromatography on silica gel (eluent: hexane/EtOAc: 5:2) to give **9k** as dark grey needles (11.0 mg, 11%).

Method [c]: 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3H-benzo[cd]azulen-3-one 3 (24.0 mg, 78.9 µmol) was dissolved in THF (1 mL) and cooled to 0 °C. Morpholine (6.9 µL, 78.9 µmol) and 1,4-benzoquinone (BQ, 8.5 mg, 78.9 µmol) were each dissolved in THF (1 mL) and transferred to 1-mL syringes. The amine and BQ solutions were added to the azulene solution in portions of 200  $\mu$ L at a time interval of 3 min. Starting with the amine solution, the first portion of the quinone solution was added 3 min later, and the second portion of the amine solution another 3 min later. After the addition of the last portion of the quinone solution the reaction mixture was stirred for another 30 min at 0 °C. Morpholine (13.8 µL, 158 µmol, 2 equiv) was added and stirring was continued for 30 min at 0 °C. Morpholine (6.9 µL, 78.9 µmol) was added three times of 30 min. The reaction mixture was stirred for 30 min at 0 °C. The solvent was evaporated, the crude product was purified by automated chromatography on silica gel, using a gradient of increasing EtOAc starting with 100% hexane and recrystallized from a mixture of MeOH and water (10+1) to give 9k as dark grey needles (21.7 mg, 71%). M. p. 158 °C; <sup>1</sup>H NMR (300 MHz, DMSO- $d_6$ ):  $\delta$  8.18 (s, 1H), 7.85 (d, 1H, J = 1.6 Hz), 7.75 (d, 1H, J = 11.1 Hz), 7.34 (dd, 1H, J = 1.6 Hz, J = 11.1 Hz), 3.91–3.85 (m, 4H), 3.83–3.77 (m, 4H), 3.17 (sep, 1H, J = 6.8 Hz), 2.45 (s, 3H), 1.32 (d, 6H, J = 6.8 Hz) ppm; <sup>13</sup>C NMR (75 MHz, DMSO- $d_6$ ):  $\delta$  170.7, 163.4, 154.5, 145.5, 140.3 (q, J = 5.7 Hz), 138.0, 134.8, 130.2 (q, J = 26.3 Hz), 128.5, 125.9, 123.4 (q, J = 273.2 Hz), 123.3, 114.3, 114.0, 67.1, 67.1, 52.3, 52.3, 38.9, 23.8, 23.8, 12.0 ppm. HRMS-ESI m/z: calc. for C<sub>22</sub>H<sub>23</sub>F<sub>3</sub>NO<sub>2</sub> [M+H]<sup>+</sup>: 390.1681, found 390.1681.

1-Methyl-2-(piperidin-1-yl)-8-(propan-2-yl)-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one (9l)



**Method [c]:** 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3** (25.3 mg, 83.1 µmol) was dissolved in THF (1 mL) in a round-bottomed flask and cooled to 0 °C. Piperidine (9.0 µL, 91.5 µmol, 1.1 equiv) was dissolved in THF (550 µL), and BQ (9.0 mg, 83 µmol) was dissolved in THF (500 µL). Both solutions were transferred separately to 1-mL syringes. The amine and BQ solutions were added to the azulene solution in portions of 50 µL at a time interval of 2 min. Starting with the amine solution, the first portion of the quinone solution was added 2 min later, and the second portion of the amine solution another 2 min later. After the addition of the last portion of the quinone solution, the reaction mixture was stirred for another 45 min at 0 °C. The solvent was evaporated, and the crude product was purified by automated chromatography on silica gel, using a gradient of increasing EtOAc starting with 100% hexane to give **91** as a dark grey resin (23.5 mg, 73%).

**Method [d]**: Deviating from the general procedure for method [d], amine was added only once in the beginning. 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3**: 37.8 mg (124 µmol), piperidine: 16.0 µL (161 µmol, 1.3 equiv), Ag<sub>2</sub>O: 144 mg (620 µmol, 5 equiv). Yield of **9**: 39.0 mg (81%), dark grey resin. <sup>1</sup>H NMR (300 MHz, acetone-*d*<sub>6</sub>):  $\delta$  8.03 (q≈d, 1H, *J* = 1.0 Hz), 7.86 (d, 1H, *J* = 1.7 Hz), 7.67 (d, 1H, *J* = 11.1 Hz), 7.31 (dd, 1H, *J* = 1.7 Hz, *J* = 11.1 Hz), 3.80 (m<sub>c</sub>, 4H), 3.18 (sep, 1H, *J* = 6.9 Hz), 2.51 (s, 3H), 1.95 – 1.85 (m, 4H), 1.85 – 1.74 (m, 2H), 1.38 (d, 6H, *J* = 6.9 Hz) ppm; <sup>13</sup>C NMR (75 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  170.6, 164.1, 154.0, 145.2, 140.1 (q, *J* = 5.6 Hz), 138.3, 134.5, 130.0 (q, *J* = 26.2 Hz), 127.9, 125.2, 123.5 (q, *J* = 273.3 Hz), 122.6, 114.6, 114.0, 53.3, 53.3, 38.8, 26.8, 26.8, 23.8, 23.8, 23.2, 12.0 ppm; HRMS-ESI *m/z*: calc. for C<sub>23</sub>H<sub>26</sub>F<sub>3</sub>NO [M+H]<sup>+</sup>: 388.1888, found 388.1888.

#### 1-Methyl-8-(propan-2-yl)-2-(pyrrolidin-1-yl)-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one (9m)



**Method [c]:** 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3** (24.5 mg, 80.5  $\mu$ mol) was dissolved in THF (1 mL) in a round-bottomed flask and cooled to 0 °C. Pyrrolidine (6.7  $\mu$ L, 80.5  $\mu$ mol) and 1,4-benzoquinone (BQ, 8.7 mg, 80.5  $\mu$ mol) were each dissolved separately in THF (1 mL) and transferred to 1-mL syringes. The amine and the BQ solutions were added to the azulene solution in portions of 200  $\mu$ L at a time interval of 3 min. Starting with the amine solution, the first portion of the quinone solution was added 3 min later, and the second portion of the amine solution another 3 min later. After the addition of the last portion of the quinone solution, the reaction mixture was stirred at 0 °C. After 30 and 60 min pyrrolidine (6.7  $\mu$ L, 81  $\mu$ mol) batches were added and stirring was continued for another 30 min at 0 °C.

solvent was evaporated, and the residue was purified by automated chromatography on silica gel, using a gradient of increasing EtOAc starting with 100% hexane to give **9m** as a dark greenish grey resin (26.3 mg, 87%).

**Method [d]:** 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3**: 20.8 mg (68.4 µmol), pyrrolidine: 6.8 µL (82.0 µmol, 1.2 equiv) + 3.4 µL (41.0 µmol, 0.6 equiv) after 25 min, Ag<sub>2</sub>O: 63.4 mg (274 µmol, 4 equiv). Yield of **9m**: 17.4 mg (68%), dark greenish grey resin. <sup>1</sup>H NMR (300 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  8.09 (q≈d, 1H, *J* = 1.0 Hz), 7.63 (d, 1H, *J* = 1.6 Hz), 7.55 (d, 1H, *J* = 11.3 Hz), 7.08 (dd, 1H, *J* = 1.6 Hz, *J* = 11.2 Hz), 4.00 (m<sub>c</sub>, 4H), 3.09 (sep, 1H, *J* = 6.9 Hz), 2.58 (s, 3H), 2.01 (m<sub>c</sub>, 4H), 1.30 (d, 6H, *J* = 6.9 Hz) ppm; <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  172.2, 162.9, 152.9, 145.1, 139.9 (q, *J* = 5.7 Hz), 139.4, 134.0, 131.3 (q, *J* = 27.2 Hz), 127.2, 124.1, 123.8 (q, *J* = 273.0 Hz), 122.0, 114.6, 114.0, 54.2, 54.2, 40.0, 25.9, 25.9, 24.2, 24.2, 13.2 ppm; HRMS-ESI *m*/*z*: calc. for C<sub>22</sub>H<sub>23</sub>F<sub>3</sub>NO [M+H]<sup>+</sup>: 374.1732, found 374.1734.

#### 8-Isopropyl-1-methyl-2-(phenylamino)-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one (9n)



**Method [d]:** Deviating from the general procedure for the method [d], aniline was added only once in the beginning, and the reaction time was 8 h at room temperature. 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3**: 50.0 mg (164 µmol), aniline: 45.0 µL (493 µmol, 3 equiv), Ag<sub>2</sub>O: 190 mg (820 µmol, 5 equiv), THF: 2 mL, reaction time 8 h room temperature; yield of **9n**: 53.8 mg (83%), dark grey solid. M. p. 168 °C; <sup>1</sup>H NMR (300 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  11.02 (s, 1H), 8.31 (q≈d, 1H, *J* = 1.1 Hz), 7.88 (d, 1H, *J* = 11.0 Hz), 7.87 (d, 1H, *J* = 1.7 Hz), 7.53 – 7.29 (m, 6H), 3.20 (sep, 1H, *J* = 6.8 Hz), 1.90 (s, 3H), 1.33 (d, 6H, *J* = 6.8 Hz) ppm; <sup>13</sup>C NMR (75 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  173.1, 159.0, 156.0, 147.7, 141.0 (q, *J* = 5.6 Hz), 137.8, 135.6, 135.5, 129.2 (q, *J* = 27.1 Hz), 129.0, 129.0, 128.9, 126.7, 126.5, 124.9, 123.3 (q, *J* = 273.3 Hz), 123.0, 112.5, 109.1, 39.3, 23.8, 11.4 ppm; HRMS-ESI *m*/*z*: calc. for C<sub>24</sub>H<sub>21</sub>F<sub>3</sub>NO [M+H]<sup>+</sup>: 396.1575, found 396.1580.

#### 2-Amino-8-isopropyl-1-methyl-4-(trifluoromethyl)-3H-benzo[cd]azulen-3-one (90)



**Method [d]**: 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3**: (20.0 mg, 65.7  $\mu$ mol), silver(I) oxide (45.7 mg, 197  $\mu$ mol, 3 equiv) and ammonium chloride (10.5 mg, 197  $\mu$ mol) were dissolved in THF (1 mL) and cooled to 0 °C. Triethylamine (45.8  $\mu$ L, 329  $\mu$ mol, 5 equiv) was added, and the reaction mixture was stirred for 9 h at 0 °C. The solvent was evaporated and the crude product was purified by automated chromatography on silica gel, using a gradient of increasing EtOAc starting with 100% hexane to

give **90** as a dark brown solid (7.4 mg, 35%). Starting material **3** (5.6 mg) was recovered, increasing the yield to 49% based on recovered starting material. M. p. 237 °C; <sup>1</sup>H NMR (300 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  9.03 (br s,1H), 8.77 (br s,1H), 8.13 (s, 1H), 7.63 (s, 1H), 7.61 (dd, 1H, *J* = 1.5 Hz, 11.7 Hz), 7.16 (dd, 1H, *J* = 1.5 Hz, 11.7 Hz), 3.10 (sep, 1H, *J* = 6.9 Hz), 2.25 (s, 3H), 1.30 (d, 6H, *J* = 6.9 Hz) ppm; <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  174.9, 163.9, 155.1, 146.5, 141.0 (q, *J* = 5.2 Hz), 137.3, 134.4, 130.9 (q, *J* = 28.2 Hz), 128.5, 125.7, 123.4, 123.3 (q, *J* = 272.1 Hz), 112.3, 109.1, 40.3, 24.4, 24.4, 7.8 ppm; HRMS-ESI *m/z*: calc. for C<sub>18</sub>H<sub>17</sub>F<sub>3</sub>NO [M+H]<sup>+</sup>: 320.1262, found 320.1262.

# 2.4 Reversible Michael reaction of benzo[*cd*]azulen-3-ones bearing a nucleofugal leaving group (NLG).

8-Isopropyl-1-methyl-2-(pyrrolidin-1-yl)-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one (9m)



**Reaction 1**: 3-[(8-Isopropyl-1-methyl-3-oxo-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-2-yl)thio]propanoic acid **8c** (8.5 mg, 21 µmol) was dissolved in THF (500 µL) and cooled to 0 °C. A solution of pyrrolidine (3.9 µL, 46 µmol, 2.2 equiv) in THF (100 µL) was added, and the reaction mixture was stirred for 10 min at 0 °C. The solvent was evaporated, and the crude product was purified by automated chromatography on silica gel, using a gradient of increasing EtOAc starting with 100% hexane to give **9m** as dark greenish grey needles (5.0 mg, 64%).

**Reaction 2**: 2-(Ethylthio)-8-isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **8b** (21.0 mg, 57.6 µmol) was dissolved in THF (1 mL) and cooled to 0 °C. Pyrrolidine (9.6 µL, 115 µmol, 2 equiv) was added, and the reaction mixture was stirred for 6 min at 0 °C. The solvent was evaporated, and the crude product was purified by automated chromatography on silica gel, using a gradient of increasing EtOAc starting with 100% hexane to give **9m** as a dark greenish grey resin (17.5 mg, 81%).

#### 8-Isopropyl-1-methyl-2-(morpholin-1-yl)-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one (9k)



2-(Ethylthio)-8-isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **8b** (19.9 mg, 54.6  $\mu$ mol) was dissolved in THF (1 mL) and cooled to 0 °C. Morpholine (9.5  $\mu$ L, 0.11 mmol, 2 equiv) was added, and the reaction mixture was stirred for 15 min at 0 °C. The solvent was evaporated, and the crude product was purified by automated chromatography on silica gel, using a gradient of increasing EtOAc starting with 100% hexane to give **9k** as dark grey needles (14.9 mg, 70%).

8-Isopropyl-1-methyl-2-(prop-2-yn-1-ylamino)-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one (9p)



8-Isopropyl-1-methyl-2-(pyrrolidin-1-yl)-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **9m** (20.0 mg, 53.6 μmol) was dissolved in THF (1 mL) and cooled to 0 °C. Propargylamine (17.2 μL, 268 μmol, 5 equiv) was added, and the reaction mixture was stirred for 1.5 h at 0 °C. The reaction mixture was diluted with EtOAc and washed twice with water. The solvent was evaporated, and the crude product was purified by automated chromatography on silica gel, using a gradient of increasing EtOAc starting with 100% hexane to give **9p** as a dark grey resin (14.9 mg, 78%). <sup>1</sup>H NMR (300 MHz, DMSO-*d*<sub>6</sub>): δ 10.00 (br t≈s, 1H), 7.89 (q≈d, 1H, *J* = 0.9 Hz), 7.71 (d, 1H, *J* = 1.6 Hz), 7.48 (d, 1H, *J* = 11.1 Hz), 7.20 (dd, 1H, *J* = 1.6 Hz, *J* = 11.1 Hz), 4.57 (m<sub>c</sub>, 2H), 3.12 (sep, 1H, <sup>3</sup>*J* = 6.9 Hz), 2.58 (s, 3H), 2.42 (dd≈t, 1H, *J* = 2.5 Hz), 1.39 (d, 6H, *J* = 6.9 Hz) ppm; <sup>13</sup>C NMR (75 MHz, DMSO-*d*<sub>6</sub>): δ 174.5, 163.1, 155.8, 148.7, 140.4 (q, *J* = 5.6 Hz), 136.4, 135.1, 130.8 (q, *J* = 27.9 Hz), 128.3, 125.5, 123.4 (q, *J* = 273.1 Hz), 122.9, 113.0, 108.3, 79.2, 73.9, 40.5, 34.5, 24.4, 24.4, 10.9 ppm; HRMS-ESI *m/z*: calc. for C<sub>21</sub>H<sub>19</sub>F<sub>3</sub>NO [M+H]<sup>+</sup>: 358.1419, found 358.1428.

#### 2-(Butylamino)-8-isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one (9b)



**Reaction 1**: 8-Isopropyl-1-methyl-2-(pyrrolidin-1-yl)-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **9m** (30.9 mg, 82.7 µmol) was dissolved in THF (1 mL) and cooled to 0 °C. *n*-Butylamine (41.1 µL, 414 µmol, 5 equiv) was added, and the reaction mixture was stirred for 1 h at 0 °C. The reaction mixture was diluted with EtOAc and washed three times with water. The solvent was evaporated, and the crude product was purified by automated chromatography on silica gel, using a gradient of increasing EtOAc starting with 100% hexane to give **9b** as brown needles (28.3 mg, 91%).

# 2.5 Reaction of 3 with hydrides

8-Isopropyl-1-methyl-4-(trifluoromethyl)-6*H*-benzo[*cd*]azulen-3-ol (12)



**Reaction 1**: 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3** (0.20 g, 0.66 mmol) was dissolved in anhydrous ethanol (8 mL) and cooled to -15 °C under argon atmosphere. Sodium borohydride (0.010 g, 0.26 mmol) was added, and the resulting mixture was stirred at -15 to -0 °C for 2 h, after which TLC indicated the complete consumption of **3** and formation of a reaction product. During this period, the color of the reaction mixture changed from bright green to orange-yellow. EtOAc (20 mL) and a saturated aqueous solution of ammonium chloride (10 mL) were added, and the phases were separated. The aqueous phase was extracted with EtOAc (2 × 10 mL), and the combined organic phases were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, and evaporated to dryness. The obtained crude product was purified by column chromatography on silica gel (eluent: EtOAc–*n*-hexane 1:8 $\rightarrow$ 1:4) to give **12** as a bright orange solid (97 mg, 48%). A sample of **12** for single crystal X–ray analysis was recrystallized from *n*–hexane.

**Reaction 2**: 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3** (0.20 g, 0.66 mmol) was dissolved in anhydrous diethyl ether (8 mL) and cooled to -65 °C under argon atmosphere. K-Selectride (1.0 M in THF; 720 µL, 0.72 mmol, 1.2 equiv) was added, and the color of the reaction mixture changed from green to bright orange-red immediately. The resulting mixture was let to warm up to -15 °C over a period of 2 h, after which TLC indicated the complete consumption of **3** and formation a single reaction product. The reaction mixture was quenched with a saturated aqueous solution of ammonium chloride (10 mL) followed by addition of EtOAc (20 mL) and the phases were separated. The aqueous phase was extracted with EtOAc (2 × 10 mL) and the combined organic phases were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, and evaporated to dryness. The obtained crude product was purified by column chromatography on silica gel (eluent: EtOAc/*n*-hexane 1:4) to give phenol **12** as a bright orange crystalline solid (140 mg, 70%). M. p. 71–72 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.02 (s, 1H,), 6.71(s, 1H), 6.62 (d, 1H, *J* = 1.5 Hz), 5.58 (t, 1H, *J* = 6.6 Hz), 5.23 (br s, 1H), 3.31 (d, 2H, *J* = 6.6 Hz) 2.52 (sep, 1H, *J* = 6.9 Hz), 2.22 (d, 3H, *J* = 1.5 Hz), 1.10 (d, 6H, *J* = 6.9 Hz) ppm; <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  144.4, 139.2, 139.1, 130.9, 128.4, 124.9 (q, *J* = 271.1 Hz), 123.3, 123.3, 123.1, 123.1, 122.8, 120.6, 117.9 (q, *J* = 29.0 Hz), 36.3, 32.1, 22.8, 22.8, 12.7 ppm; HRMS-APPI/APCI *m/z*: calc. for C<sub>18</sub>H<sub>16</sub>F<sub>3</sub>O [M–H]<sup>-</sup>: 305.1153, found: 305.1153.

#### 8-Isopropyl-3-methoxy-1-methyl-4-(trifluoromethyl)-6*H*-benzo[*cd*]azulene (13)



**Reaction 1**: 8-Isopropyl-1-methyl-4-(trifluoromethyl)-6*H*-benzo[*cd*]azulen-3-ol **12** (0.020 g, 0.070 mmol) in THF (2 mL) was added to a suspension of sodium hydride (60% dispersion in mineral oil, 9.0 mg, 0.38 mmol, 5.4 equiv) in anhydrous THF (3 mL), at room temperature under argon atmosphere. After 10–15 min

dimethyl sulfate (67  $\mu$ L, 0.70 mmol, 10 equiv) was added, and the reaction mixture was stirred at room temperature for 18 h, after which TLC indicated the complete consumption of **12**. EtOAc (10 mL) and a saturated aqueous solution of ammonium chloride (10 mL) were added, and the phases were separated. The aqueous phase was extracted with EtOAc (2 × 10 mL), and the combined organic phases were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and evaporated to dryness. The obtained crude product was purified by column chromatography on silica gel (eluent: EtOAc–*n*-hexane 1:15) to give **13** (15 mg, 67%) as a yellow waxy solid.

**Reaction 2**: 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one **3** (120 mg, 0.40 mmol) was dissolved in anhydrous diethyl ether (5 mL) and cooled to -65 °C under argon atmosphere. K-Selectride (1.0 M in THF; 0.43 mmol, 430 µL, 1.1 equiv) was added and the color of the reaction mixture changed from green to bright red immediately. The resulting mixture was let to warm up to -15 °C over a period of 1.5 h, after which time TLC indicated complete consumption of **3** and formation of intermediate **12**. Then, dimethyl sulfate (188 µL, 1.97 mmol, 5 equiv) was added, and the reaction mixture was let to warm up to room temperature over period of for 18 h, after which TLC indicated the complete consumption of **12**. EtOAc (10 mL) and water (10 mL) were added, and the phases were separated. The aqueous phase was extracted with EtOAc ( $2 \times 10$  mL), and the combined organic phases were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and evaporated to dryness. The obtained crude product was purified by column chromatography on silica gel (eluent: EtOAc-*n*-hexane 1:20) to give **13** as a yellow oil which solidified under prolonged time *in vacuo* (89 mg, 70%). M. p. 54–55 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.09 (s, 1H), 6.71 (s, 1H), 6.68 (d, 1H, J = 1.5 Hz), 5.58 (t, 1H, J = 6.6 Hz), 5.23 (br s, 1H), 3.97 (s, 3H), 3.31 (d, 2H, J = 6.6 Hz) 2.53 (sep, 1H, J = 6.9Hz), 2.23 (d, 3H, J = 1.5 Hz), 1.11 (d, 6H, J = 6.9 Hz) ppm; <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  149.4 (q, J = 2.0Hz), 144.5, 143.8, 139.9, 139.8, 131.7, 130.4, 125.3, 124.3, 124.2 (q, *J* = 271.2 Hz), 123.9, (q, *J* = 30.1 Hz), 123.5 (q, J = 5.0 Hz), 120.3, 62.4, 36.2, 32.3, 22.8, 22.8, 12.7 ppm; HRMS-APPI/APCI m/z: calc. for C<sub>19</sub>H<sub>18</sub>F<sub>3</sub>O [M–H]<sup>-</sup>: 319.1310, found: 319.1310.

#### 8-Isopropyl-1-methyl-4-(trifluoromethyl)-3*H*-benzo[*cd*]azulen-3-one (3)<sup>[1]</sup>



8-Isopropyl-1-methyl-4-(trifluoromethyl)-6*H*-benzo[*cd*]azulen-3-ol **12** (11 mg, 0.036 mmol) and 1,4benzoquinone (8.0 mg, 0.072 mmol, 2.0 equiv) were dissolved in anhydrous THF (2 mL), and the resulting mixture was stirred at room temperature for 5 d, after which TLC indicated the complete consumption of **12**. During this period, the color of the reaction mixture changed from orange-yellow to bright green. The reaction mixture was diluted with EtOAc (15 mL) and washed with aqueous NaOH (1.0 M,  $2 \times 10$  mL) and water. The aqueous phase was extracted with EtOAc ( $2 \times 10$  mL), and the combined organic phases were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, and evaporated to dryness. The obtained crude product was purified by column chromatography on silica gel (eluent: EtOAc–*n*-hexane 1:4) to give **3**<sup>[1]</sup> as a green solid (10 mg, 91%). <sup>1</sup>H NMR (300 MHz, C<sub>6</sub>D<sub>6</sub>): identical spectra with the reference.<sup>[1]</sup>

# 3. X-ray data for compound 12

Crystals of **12**, suitable for a single crystal X-ray diffraction study, were grown by recrystallization from hot n-hexane. All data were collected on an Oxford Gemini S diffractometer. For data collection, cell refinement and data reduction the software CrysAlisPro was used.<sup>2</sup> The structure was solved by direct methods using SHELXS-2013 and refined by full-matrix least-squares procedures on F<sup>2</sup> using SHELXL-2013.<sup>3</sup> The atoms C36–C38 of an *i*-Pr group were refined disordered with split occupancies of 0.4/0.6. Table S1 summarizes on selected crystal and structural refinement data of **12**. For further values as well as for bond lengths and bond and torsion angles *cf.* CCDC 1424751.

 Table S1. Crystal data and structure refinement for compound 12.

| Empirical formula<br>Formula weight<br>Temperature<br>Wavelength<br>Crystal system, space group                                                                                                                                                                                                                                                        | C <sub>18</sub> H <sub>17</sub> F <sub>3</sub> O<br>306.32<br>110 K<br>0.71073 A<br>Monoclinic, P 21/c                                                                                                                                                                                                            |                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Unit cell dimensions                                                                                                                                                                                                                                                                                                                                   | a = 18.8665(4) A<br>b = 17.8365(4) A<br>c = 18.9721(4) A                                                                                                                                                                                                                                                          | alpha = 90 deg.<br>beta = 107.034(2) deg.<br>gamma = 90 deg. |
| Volume<br>Z, Calculated density<br>Absorption coefficient<br>F(000)<br>Crystal size<br>Theta range for data collection<br>Limiting indices<br>Reflections collected / unique<br>Completeness to theta = 25.000<br>Absorption correction<br>Max. and min. transmission<br>Refinement method<br>Data / restraints / parameters<br>Goodness-of-fit on F^2 | 6104.3(2) A <sup>3</sup><br>16, 1.333 Mg/m <sup>3</sup><br>0.106 mm <sup>-1</sup><br>2560<br>$0.4 \times 0.3 \times 0.3$ mm<br>3.018 to 24.999 deg.<br>-22<=h<=22, -21<=k<br>32039 / 10712 [R(int<br>99.7 %<br>Semi-empirical from<br>1.00000 and 0.79968<br>Full-matrix least-squa<br>10712 / 768 / 845<br>1.056 | ) = 0.0274]<br>equivalents                                   |
| Final R indices [I>2sigma(I)]                                                                                                                                                                                                                                                                                                                          | R1 = 0.0435, wR2 =                                                                                                                                                                                                                                                                                                | 0.1063                                                       |
| R indices (all data)<br>Largest diff. peak and hole                                                                                                                                                                                                                                                                                                    | R1 = 0.0584, wR2 = 0.781 and -0.559 e.A                                                                                                                                                                                                                                                                           |                                                              |

The asymmetric unit of **12** comprises four crystallographically independent, but otherwise identical molecules. One of them is displayed below in Figure S1.



Figure S1. ORTEP diagram (50 % ellipsoid probability) of the molecular structure of one crystallographically independent molecule of 12.

In the solid state, the four crystallographically independent molecules of **9** form a tetramer due to formation of intermolecular hydrogen bonds. A graphical illustration of a tetramer is given in Figure S2, Table S2 summarizes selected geometrical features of the hydrogen bonds.

**Table S2**. Selected geometrical details (bond lengths in Å, bond angles in °) of the intermolecular hydrogen bonds of **9** in the solid state.

| D–H <sup>…</sup> A     | D <sup></sup> A | D–H <sup>…</sup> A |
|------------------------|-----------------|--------------------|
| 01–H10 <sup>…</sup> O3 | 2.791(2)        | 159(3)             |
| O2-H2O <sup></sup> O1  | 2.796(2)        | 148(3)             |
| O3–H3O <sup>…</sup> O4 | 2.857(2)        | 151(2)             |
| O4–H4O <sup>…</sup> O2 | 2.705(2)        | 156(3)             |



Figure S2. Graphical illustration of the interaction of the four crystallographically independent molecules of 12 in the solid state by means of formation of intermolecular hydrogen bonds.

# 4. Computational study

**Thermochemical calculations**. All models were drawn in ChemDraw Pro (v 12.0) and saved as PDB file. Density functional theoretical calculations are carried out using the Gaussian 09 package software.<sup>4</sup> Optimizations of the stationary point geometries (reactants (R), transition states (TS), intermediates (IM) and products) are conducted at the DFT/B3LYP/6-311++G(d,p) level of theory.<sup>5</sup> Energies are summarized in Table S3.



Scheme S1. Structures of the considered transition-states, intermediates and products of the competing nucleophilic addition reactions studied by *ab initio* computational studies at the B3LYP/6-311++G(d,p) level.



**Figure S3**. Relative free energy profile for nucleophilic addition of **thiols** ( $H_2S$ ) giving the possible products **P1** and **P3**, computed at the DFT/B3LYP/6-311++G(d,p) level of theory.



**Figure S4.** Relative free energy profile for **hydride** addition giving the possible products **P2** and **P4**, computed at the DFT/B3LYP/6-311++G(d,p) level of theory.

| Compound | E(UB3LYP)    | ZPE         | $\Delta \mathbf{G}$ | $\mathbf{E}_{\mathbf{R}}(\Delta \mathbf{G})$ |
|----------|--------------|-------------|---------------------|----------------------------------------------|
| R (+SH)  | -912.6775359 | 0.172334937 | -912.545699         | 0.000                                        |
| R (+H)   | -1331.394902 | 0.172292727 | -1311.557579        | 0.000                                        |
| TS1      | -1310.792069 | 0.169347015 | -1310.665620        | 0.891959                                     |
| TS2      | -912.5783126 | 0.169838009 | -912.449121         | 0.096578                                     |
| TS3      | -1310.799477 | 0.169545405 | -1310.673170        | 0.884409                                     |
| TS4      | -912.5783124 | 0.169835491 | -912.449120         | 0.096579                                     |
| IM1      | -1311.384423 | 0.179097455 | -1311.250274        | 0.307305                                     |
| IM1.1    | -1311.473244 | 0.181377762 | -1311.336031        | 0.221548                                     |
| IM2      | -913.1778444 | 0.179861817 | -913.039751         | -0.494052                                    |
| IM2.1    | -913.2639823 | 0.181853840 | -913.123571         | -0.577872                                    |
| IM3      | -1311.402752 | 0.181376217 | -1311.325603        | 0.231976                                     |
| IM3.1    | -1311.462394 | 0.181380822 | -1311.325582        | 0.231997                                     |
| IM3.2    | -1311.462394 | 0.181376217 | -1311.325603        | 0.231976                                     |
| IM4      | -913.4623943 | 0.181376217 | -913.325603         | -0.779904                                    |
| IM4.1    | -913.2497058 | 0.182114827 | -913.109569         | -0.563870                                    |
| IM4.2    | -913.2497058 | 0.182114842 | -913.109570         | -0.563871                                    |
| P1       | -1309.79207  | 0.166162951 | -1311.656469        | -0.0988896                                   |
| P2       | -911.5783459 | 0.166814916 | -913.5984486        | -1.05274963                                  |
| P3       | -1309.799479 | 0.166288050 | -1311.544164        | 0.01341469                                   |
| P4       | -911.5783184 | 0.166655426 | -913.5605423        | -1.01484331                                  |

**Table S3**. Total Energies, Zero-point Energies, Gibbs Free Energies and Relative Gibbs Free Energies at 298 K (in Hartree).

**Table S4**. Cartesian coordinates of geometries optimized at the DFT/B3LYP/6-311++G(d,p) level.

|        |   | omic Ato |           | ordinates (A | 0         |
|--------|---|----------|-----------|--------------|-----------|
| INUIII |   | umber Ty | vpe X     | Y            | Z         |
| 1      | 6 | 0        | 0.709604  | 4.050652     | -0.088507 |
| 2      | 6 | 0        | -0.351910 | 3.234741     | -0.126460 |
| 3      | 6 | 0        | -0.440194 | 1.779515     | -0.046950 |
| 4      | 6 | 0        | 0.635039  | 0.971308     | 0.013884  |
| 5      | 6 | 0        | 2.055780  | 1.284885     | 0.048423  |
| 6      | 6 | 0        | 2.715081  | 2.558048     | 0.108928  |
| 7      | 6 | 0        | 2.113740  | 3.753038     | 0.058919  |
| 8      | 6 | 0        | -1.760621 | 1.117924     | -0.050635 |
| 9      | 6 | 0        | -1.963104 | -0.215858    | -0.008508 |
| 10     | 6 | 0        | -0.807866 | -1.142455    | 0.031874  |
| 11     | 6 | 0        | 0.500565  | -0.472529    | 0.040536  |
| 12     | 6 | 0        | 1.733037  | -1.000122    | 0.066781  |
| 13     | 6 | 0        | 2.696662  | 0.093481     | 0.076396  |
| 14     | 8 | 0        | -0.922200 | -2.359228    | 0.056846  |
| 15     | 6 | 0        | -3.287647 | -0.881988    | 0.006584  |

## Standard orientation of R(+SH)

| 16 | 9  | 0 | -3.492188 | -1.619546 | 1.126503  |
|----|----|---|-----------|-----------|-----------|
| 17 | 9  | 0 | -3.484115 | -1.690334 | -1.064471 |
| 18 | 9  | 0 | -4.302161 | 0.029504  | -0.026152 |
| 19 | 1  | 0 | 0.507406  | 5.119514  | -0.175829 |
| 20 | 1  | 0 | -1.316975 | 3.729532  | -0.245747 |
| 21 | 1  | 0 | 3.797661  | 2.536122  | 0.220246  |
| 22 | 1  | 0 | 2.751010  | 4.634953  | 0.128458  |
| 23 | 1  | 0 | -2.625450 | 1.780400  | -0.080490 |
| 24 | 1  | 0 | 3.764058  | -0.063347 | 0.124173  |
| 25 | 1  | 0 | 1.983481  | -2.049601 | 0.089053  |
| 26 | 16 | 0 | 4.229177  | -3.364711 | -0.134258 |
| 27 | 1  | 0 | 5.066770  | -4.238834 | 0.522997  |
|    |    |   |           |           |           |

# Standard orientation of R(+H)

| Center Atomic Atomic Coordinates (Angstroms) |        |   |           |           |           |
|----------------------------------------------|--------|---|-----------|-----------|-----------|
| Number                                       | Number |   |           | Ŷ         | Ź         |
| 1                                            | 6      | 0 | -3.084594 | -2.284772 | -0.057567 |
| 2                                            | 6      | 0 | -1.747395 | -2.217072 | -0.093326 |
| 3                                            | 6      | 0 | -0.848299 | -1.068065 | -0.036686 |
| 4                                            | 6      | 0 | -1.274251 | 0.208885  | -0.005215 |
| 5                                            | 6      | 0 | -2.621720 | 0.758435  | 0.013470  |
| 6                                            | 6      | 0 | -3.887716 | 0.086591  | 0.085327  |
| 7                                            | 6      | 0 | -4.071514 | -1.239260 | 0.064078  |
| 8                                            | 6      | 0 | 0.614222  | -1.273616 | -0.031788 |
| 9                                            | 6      | 0 | 1.538417  | -0.290211 | -0.008813 |
| 10                                           | 6      | 0 | 1.113932  | 1.129133  | -0.000939 |
| 11                                           | 6      | 0 | -0.343466 | 1.321123  | -0.000546 |
| 12                                           | 6      | 0 | -1.058133 | 2.455707  | -0.001327 |
| 13                                           | 6      | 0 | -2.472439 | 2.103303  | 0.012162  |
| 14                                           | 8      | 0 | 1.899160  | 2.065940  | 0.005521  |
| 15                                           | 6      | 0 | 3.006852  | -0.493951 | 0.014843  |
| 16                                           | 9      | 0 | 3.591069  | 0.021498  | 1.125271  |
| 17                                           | 9      | 0 | 3.630693  | 0.035954  | -1.066455 |
| 18                                           | 9      | 0 | 3.324084  | -1.820784 | 0.012278  |
| 19                                           | 1      | 0 | -3.525128 | -3.281003 | -0.124128 |
| 20                                           | 1      | 0 | -1.233907 | -3.174866 | -0.190071 |
| 21                                           | 1      | 0 | -4.766511 | 0.721861  | 0.180213  |
| 22                                           | 1      | 0 | -5.097151 | -1.601489 | 0.138797  |
| 23                                           | 1      | 0 | 0.949714  | -2.310488 | -0.037824 |
| 24                                           | 1      | 0 | -3.261929 | 2.839547  | 0.041509  |
| 25                                           | 1      | 0 | -0.668136 |           |           |
| 26                                           | 1      | 0 | -1.686219 | 7.509574  | -0.414360 |

| Center | Atomic | Atom | nic Coor  | Coordinates (Angstroms) |           |  |
|--------|--------|------|-----------|-------------------------|-----------|--|
| Number | Number | Туре | e X       | Y                       | Ζ         |  |
| 1      | 6      | 0    | -2.585471 | -2.875782               | -0.182098 |  |
| 2      | 6      | 0    | -1.251240 | -2.705930               | -0.271587 |  |
| 3      | 6      | 0    | -0.553074 | -1.575175               | -0.050607 |  |
| 4      | 6      | 0    | -1.141318 | -0.374356               | 0.031367  |  |
| 5      | 6      | 0    | -2.445461 | -0.056800               | 0.001770  |  |
| 6      | 6      | 0    | -3.490753 | -0.899876               | 0.045051  |  |
| 7      | 6      | 0    | -3.528072 | -2.178372               | 0.505877  |  |
| 8      | 6      | 0    | 0.793202  | -1.571736               | -0.059031 |  |
| 9      | 6      | 0    | 1.544189  | -0.454572               | 0.018127  |  |
| 10     | 6      | 0    | 0.927007  | 0.765320                | 0.063619  |  |
| 11     | 6      | 0    | -0.430661 | 0.762274                | 0.042157  |  |
| 12     | 6      | 0    | -1.291570 | 1.791828                | -0.016359 |  |
| 13     | 6      | 0    | -2.530481 | 1.281171                | -0.080418 |  |
| 14     | 8      | 0    | 1.594332  | 1.777159                | 0.102847  |  |
| 15     | 16     | 0    | -0.974934 | 3.576245                | -0.058601 |  |
| 16     | 6      | 0    | 3.068361  | -0.547820               | 0.020339  |  |
| 17     | 9      | 0    | 3.569377  | -0.010950               | 1.123139  |  |
| 18     | 9      | 0    | 3.581390  | 0.089728                | -1.021703 |  |
| 19     | 9      | 0    | 3.513443  | -1.793575               | -0.035621 |  |
| 20     | 1      | 0    | -2.992807 | -3.807091               | -0.622325 |  |
| 21     | 1      | 0    | -0.686788 | -3.583869               | -0.638624 |  |
| 22     | 1      | 0    | -4.487468 | -0.491420               | -0.205926 |  |
| 23     | 1      | 0    | -2.750145 | -1.913322               | 1.249973  |  |
| 24     | 1      | 0    | 1.310844  | -2.541974               | -0.140574 |  |
| 25     | 1      | 0    | -3.459305 | 1.864808                | -0.140042 |  |
| 26     | 1      | 0    | -2.125483 | 4.231476                | -0.296368 |  |
| 27     | 1      | 0    | -0.450411 | 2.076338                | -0.092842 |  |
|        |        |      |           |                         |           |  |

## Standard orientation of TS1

#### **Standard orientation of TS2**

|    | Atomic A | Atomic | Coordi    | nates (Angs | trome)    |
|----|----------|--------|-----------|-------------|-----------|
|    | Number   |        | X         | Y           | Z         |
| 1  | 6        | 0      | -3.020582 | -2.027216   | -0.156394 |
| 2  | 6        | 0      | -1.675071 | -2.051757   | -0.239368 |
| 3  | 6        | 0      | -0.826619 | -1.025569   | -0.036045 |
| 4  | 6        | 0      | -1.251172 | 0.242993    | 0.020021  |
| 5  | 6        | 0      | -2.492733 | 0.751415    | -0.020279 |
| 6  | 6        | 0      | -3.645595 | 0.063629    | 0.031045  |
| 7  | 6        | 0      | -3.859142 | -1.190553   | 0.511356  |
| 8  | 6        | 0      | 0.509708  | -1.197998   | -0.038903 |
| 9  | 6        | 0      | 1.403430  | -0.188311   | 0.017485  |
| 10 | 6        | 0      | 0.952421  | 1.102271    | 0.035849  |
| 11 | 6        | 0      | -0.391696 | 1.267677    | 0.012169  |

| 12 | 6 | 0 | -1.076922 | 2.416776  | -0.067811 |
|----|---|---|-----------|-----------|-----------|
| 13 | 6 | 0 | -2.376799 | 2.086909  | -0.127573 |
| 14 | 8 | 0 | 1.718598  | 2.042480  | 0.053293  |
| 15 | 6 | 0 | 2.901539  | -0.475958 | 0.025033  |
| 16 | 9 | 0 | 3.465962  | 0.018166  | 1.117009  |
| 17 | 9 | 0 | 3.490229  | 0.071607  | -1.027930 |
| 18 | 9 | 0 | 3.184711  | -1.769032 | -0.003936 |
| 19 | 1 | 0 | -3.553733 | -2.899371 | -0.583131 |
| 20 | 1 | 0 | -1.236776 | -3.006217 | -0.586988 |
| 21 | 1 | 0 | -4.574487 | 0.603095  | -0.231751 |
| 22 | 1 | 0 | -3.056664 | -1.023774 | 1.257683  |
| 23 | 1 | 0 | 0.894707  | -2.229516 | -0.100007 |
| 24 | 1 | 0 | -0.668724 | 3.434579  | -0.109188 |
| 25 | 1 | 0 | -3.205015 | 2.804328  | -0.203172 |
| 26 | 1 | 0 | -0.520803 | 2.444531  | -0.435583 |
|    |   |   |           |           |           |

#### **Standard orientation of TS3**

| Center | Atomic A | tomic | Coo       | rdinates (An | igstroms) |
|--------|----------|-------|-----------|--------------|-----------|
| Number | Number   | Туре  | Х         | Y            | Z         |
| 1      | 6        | 0     | -3.137607 | 1.089656     | 0.491547  |
| 2      | 6        | 0     | -1.860602 | 1.271873     | 0.052777  |
| 3      | 6        | 0     | -0.809338 | 0.417815     | 0.014588  |
| 4      | 6        | 0     | -0.956682 | -0.915991    | 0.050212  |
| 5      | 6        | 0     | -2.056729 | -1.682289    | -0.037922 |
| 6      | 6        | 0     | -3.306318 | -1.250974    | -0.248061 |
| 7      | 6        | 0     | -3.691990 | 0.033341     | -0.158861 |
| 8      | 6        | 0     | 0.474505  | 0.832668     | -0.043249 |
| 9      | 6        | 0     | 1.555210  | 0.025271     | -0.002627 |
| 10     | 6        | 0     | 1.374936  | -1.326180    | 0.068984  |
| 11     | 6        | 0     | 0.090021  | -1.751548    | 0.068535  |
| 12     | 6        | 0     | -0.336425 | -3.021802    | 0.052222  |
| 13     | 6        | 0     | -1.672918 | -2.970709    | -0.038454 |
| 14     | 8        | 0     | 2.313437  | -2.093985    | 0.103989  |
| 15     | 16       | 0     | -1.629919 | 3.086991     | -0.114611 |
| 16     | 6        | 0     | 2.968152  | 0.603100     | -0.035271 |
| 17     | 9        | 0     | 3.634601  | 0.147044     | -1.085668 |
| 18     | 9        | 0     | 3.636259  | 0.261718     | 1.056652  |
| 19     | 9        | 0     | 2.996546  | 1.924899     | -0.106013 |
| 20     | 1        | 0     | -2.750776 | 0.388081     | 1.254218  |
| 21     | 1        | 0     | -4.049728 | -1.990122    | -0.597290 |
| 22     | 1        | 0     | -4.685225 | 0.273903     | -0.585197 |
| 23     | 1        | 0     | 0.689101  | 1.909837     | -0.088917 |
| 24     | 1        | 0     | 0.274794  | -3.933172    | 0.046287  |
| 25     | 1        | 0     | -2.330856 | -3.844654    | -0.138234 |
| 26     | 1        | 0     | -2.560784 | 3.753886     | 0.595070  |
| 27     | 1        | 0     | -1.227256 | 1.673925     | 0.324676  |
|        |          |       |           |              |           |

| Center | Atomic | Atom | ic Coor   | dinates (An | gstroms)  |
|--------|--------|------|-----------|-------------|-----------|
| Number | Number | Туре | Х         | Y           | Z         |
| 1      | 6      | 0    | 3.112438  | -2.127595   | -0.177194 |
| 2      | 6      | 0    | 1.741807  | -2.142757   | -0.247304 |
| 3      | 6      | 0    | 0.824123  | -1.035796   | -0.016653 |
| 4      | 6      | 0    | 1.282738  | 0.282410    | 0.035300  |
| 5      | 6      | 0    | 2.624732  | 0.840418    | -0.054938 |
| 6      | 6      | 0    | 3.792857  | 0.178457    | 0.022556  |
| 7      | 6      | 0    | 3.841101  | -1.150480   | 0.558814  |
| 8      | 6      | 0    | -0.587746 | -1.223331   | -0.008807 |
| 9      | 6      | 0    | -1.463782 | -0.189650   | 0.024463  |
| 10     | 6      | 0    | -1.044511 | 1.201016    | 0.029543  |
| 11     | 6      | 0    | 0.372499  | 1.373630    | 0.011926  |
| 12     | 6      | 0    | 1.106969  | 2.591298    | -0.098644 |
| 13     | 6      | 0    | 2.473848  | 2.267091    | -0.153695 |
| 14     | 8      | 0    | -1.839053 | 2.167393    | 0.032593  |
| 15     | 1      | 0    | 1.277403  | -3.170205   | -0.620245 |
| 16     | 6      | 0    | -2.939772 | -0.466811   | 0.025142  |
| 17     | 9      | 0    | -3.535589 | 0.046994    | 1.141638  |
| 18     | 9      | 0    | -3.226785 | -1.803740   | 0.004933  |
| 19     | 9      | 0    | -3.547968 | 0.080059    | -1.069360 |
| 20     | 1      | 0    | 3.648951  | -2.972971   | -0.588949 |
| 21     | 1      | 0    | 4.709884  | 0.699545    | -0.225490 |
| 22     | 1      | 0    | 3.179551  | -1.029842   | 1.490383  |
| 23     | 1      | 0    | -0.959877 | -2.255094   | -0.068356 |
| 24     | 1      | 0    | 0.661909  | 3.565085    | -0.139745 |
| 25     | 1      | 0    | 3.292468  | 2.942692    | -0.233030 |
| 26     | 1      | 0    | 0.871398  | -2.415569   | -0.273259 |

#### Standard orientation of TS4

### Standard orientation of IM1

| Atomic A | dinates (An                                                             | gstroms)                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                   |
|----------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number   | Туре                                                                    | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Z                                                                                                                                                                                                                                                                                 |
| <br>6    | 0                                                                       | 2,703057                                                                                                                                                                                                                                                                                                                                                                                                                                              | -2.618578                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.459754                                                                                                                                                                                                                                                                          |
| 6        | 0                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.570661                                                                                                                                                                                                                                                                          |
| 6        | 0                                                                       | 0.644446                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.403417                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.082896                                                                                                                                                                                                                                                                          |
| 6        | 0                                                                       | 1.241520                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.284063                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.346447                                                                                                                                                                                                                                                                         |
| 6        | 0                                                                       | 2.531913                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.077340                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.339425                                                                                                                                                                                                                                                                         |
| 6        | 0                                                                       | 3.580812                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.752947                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.214161                                                                                                                                                                                                                                                                         |
| 6        | 0                                                                       | 3.613678                                                                                                                                                                                                                                                                                                                                                                                                                                              | -2.098507                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.405948                                                                                                                                                                                                                                                                         |
| 6        | 0                                                                       | -0.703723                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1.401168                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.179731                                                                                                                                                                                                                                                                          |
| 6        | 0                                                                       | -1.571916                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.408494                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.120164                                                                                                                                                                                                                                                                         |
| 6        | 0                                                                       | -1.115836                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.787609                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.587523                                                                                                                                                                                                                                                                         |
| 6        | 0                                                                       | 0.405826                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.929965                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.779405                                                                                                                                                                                                                                                                         |
| 6        | 0                                                                       | 1.247611                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.133709                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.524780                                                                                                                                                                                                                                                                         |
|          | Number<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6 | Number         Type           6         0           6         0           6         0           6         0           6         0           6         0           6         0           6         0           6         0           6         0           6         0           6         0           6         0           6         0           6         0           6         0           6         0           6         0           6         0 | Number         Type         X           6         0         2.703057           6         0         1.372144           6         0         0.644446           6         0         1.241520           6         0         2.531913           6         0         3.580812           6         0         3.613678           6         0         -0.703723           6         0         -1.571916           6         0         -1.115836           6         0         0.405826 | Number TypeXY60 $2.703057$ $-2.618578$ 60 $1.372144$ $-2.429092$ 60 $0.644446$ $-1.403417$ 60 $1.241520$ $-0.284063$ 60 $2.531913$ $0.077340$ 60 $3.580812$ $-0.752947$ 60 $3.613678$ $-2.098507$ 60 $-0.703723$ $-1.401168$ 60 $-1.571916$ $-0.408494$ 60 $-0.405826$ $0.929965$ |

| 13 | 6  | 0 | 2.581678  | 1.422456  | -0.392182 |
|----|----|---|-----------|-----------|-----------|
| 14 | 8  | 0 | -1.831002 | 1.718013  | -0.889318 |
| 15 | 1  | 0 | 1.232933  | 2.829927  | -1.391309 |
| 16 | 16 | 0 | 0.835083  | 2.904322  | 1.068220  |
| 17 | 6  | 0 | -3.069410 | -0.599457 | 0.061295  |
| 18 | 9  | 0 | -3.719403 | -0.460755 | -1.085379 |
| 19 | 9  | 0 | -3.574556 | 0.276689  | 0.918024  |
| 20 | 9  | 0 | -3.394813 | -1.796797 | 0.524504  |
| 21 | 1  | 0 | 3.139841  | -3.407586 | 1.103147  |
| 22 | 1  | 0 | 0.843752  | -3.181780 | 1.185963  |
| 23 | 1  | 0 | 4.566623  | -0.302352 | 0.003898  |
| 24 | 1  | 0 | 2.808748  | -2.001558 | -1.163840 |
| 25 | 1  | 0 | -1.156941 | -2.326810 | 0.574878  |
| 26 | 1  | 0 | 3.519825  | 1.997198  | -0.356894 |
| 27 | 1  | 0 | 1.760067  | 3.875338  | 0.987037  |
|    |    |   |           |           |           |

#### **Standard orientation of IM1.1**

| Center | Atomic | Atomi | ic Coord  | linates (Ang | stroms)   |
|--------|--------|-------|-----------|--------------|-----------|
|        | Numbe  |       |           | Y            | Ź         |
| 1      | 6      | 0     | -2.630704 | -2.818993    | -0.275079 |
| 2      | 6      | 0     | -1.304910 | -2.616938    | -0.299302 |
| 3      | 6      | 0     | -0.600974 | -1.486930    | -0.101556 |
| 4      | 6      | 0     | -1.135472 | -0.283330    | 0.162974  |
| 5      | 6      | 0     | -2.416096 | 0.094719     | 0.313076  |
| 6      | 6      | 0     | -3.531846 | -0.640599    | 0.228252  |
| 7      | 6      | 0     | -3.622069 | -1.949278    | -0.040097 |
| 8      | 6      | 0     | 0.747233  | -1.550058    | -0.164740 |
| 9      | 6      | 0     | 1.546214  | -0.485381    | 0.034943  |
| 10     | 6      | 0     | 0.991992  | 0.703750     | 0.296306  |
| 11     | 6      | 0     | -0.343283 | 0.788833     | 0.341713  |
| 12     | 6      | 0     | -1.095336 | 2.061352     | 0.610870  |
| 13     | 6      | 0     | -2.449534 | 1.409634     | 0.594740  |
| 14     | 8      | 0     | 1.785788  | 1.774468     | 0.504070  |
| 15     | 1      | 0     | -0.857900 | 2.503540     | 1.602429  |
| 16     | 16     | 0     | -1.028970 | 3.221246     | -0.785935 |
| 17     | 6      | 0     | 3.050705  | -0.548710    | -0.019059 |
| 18     | 9      | 0     | 3.461601  | -1.773857    | -0.291786 |
| 19     | 9      | 0     | 3.636827  | -0.239294    | 1.130371  |
| 20     | 9      | 0     | 3.582708  | 0.209892     | -0.968947 |
| 21     | 1      | 0     | -2.958785 | -3.859197    | -0.472274 |
| 22     | 1      | 0     | -0.727324 | -3.537592    | -0.513767 |
| 23     | 1      | 0     | -4.492554 | -0.117169    | 0.393653  |
| 24     | 1      | 0     | -4.648213 | -2.365115    | -0.069166 |
| 25     | 1      | 0     | 1.234185  | -2.516061    | -0.378626 |
| 26     | 1      | 0     | -3.364836 | 1.990352     | 0.784787  |
| 27     | 1      | 0     | -1.373117 | 2.326476     | -1.729621 |

| <br>Center | Atomic | Atomi | c Coordi  | nates (Angs | troms)    |
|------------|--------|-------|-----------|-------------|-----------|
|            | Number |       | X         | Y           | Z         |
| 1          | 1      | 0     | -0.864147 | 3.242677    | -0.858218 |
| 2          | 1      | 0     | -0.956418 | 3.196603    | 0.927148  |
| 3          | 8      | 0     | 1.876751  | 2.086824    | 0.089969  |
| 4          | 6      | 0     | -2.559582 | 2.158612    | -0.078753 |
| 5          | 6      | 0     | -1.119085 | 2.625237    | 0.008390  |
| 6          | 6      | 0     | -0.343849 | 1.353929    | 0.015533  |
| 7          | 6      | 0     | 1.094722  | 1.150936    | 0.037564  |
| 8          | 6      | 0     | 1.509173  | -0.271683   | -0.013733 |
| 9          | 6      | 0     | 0.577796  | -1.248123   | -0.082181 |
| 10         | 6      | 0     | -3.865292 | -1.071116   | 0.573421  |
| 11         | 6      | 0     | -3.860165 | 0.026290    | -0.213585 |
| 12         | 6      | 0     | -2.647240 | 0.815725    | -0.109973 |
| 13         | 6      | 0     | -1.289224 | 0.266775    | -0.064186 |
| 14         | 6      | 0     | -0.879812 | -1.024391   | -0.099570 |
| 15         | 6      | 0     | -1.804262 | -2.173691   | -0.217484 |
| 16         | 6      | 0     | -3.120794 | -2.223199   | 0.073692  |
| 17         | 6      | 0     | 2.976132  | -0.487270   | 0.014309  |
| 18         | 9      | 0     | 3.284383  | -1.815328   | -0.032096 |
| 19         | 9      | 0     | 3.555809  | -0.013625   | 1.145371  |
| 20         | 9      | 0     | 3.610855  | 0.075450    | -1.044097 |
| 21         | 1      | 0     | -3.399746 | 2.838491    | -0.110642 |
| 22         | 1      | 0     | 0.901604  | -2.287543   | -0.120450 |
| 23         | 1      | 0     | -3.647602 | -0.936383   | 1.637903  |
| 24         | 1      | 0     | -4.096388 | -0.108550   | -1.273485 |
| 25         | 1      | 0     | -1.343387 | -3.097725   | -0.566411 |
| 26         | 1      | 0     | -3.678452 | -3.148819   | -0.038862 |

#### Standard orientation of IM2

#### Standard orientation of IM2.1

| <br>Center | Atomic A | Atomic | Coor      | linates (Ang | estroms)  |
|------------|----------|--------|-----------|--------------|-----------|
|            | Number   |        | X         | Y            | Z         |
| 1          | 6        | 0      | -2.993287 | -2.151186    | -0.000103 |
| 2          | 6        | 0      | -1.653417 | -2.089600    | 0.000243  |
| 3          | 6        | 0      | -0.839318 | -1.017691    | 0.000411  |
| 4          | 6        | 0      | -1.249771 | 0.260717     | 0.000143  |
| 5          | 6        | 0      | -2.486997 | 0.785893     | -0.000168 |
| 6          | 6        | 0      | -3.671809 | 0.161975     | -0.000569 |
| 7          | 6        | 0      | -3.892866 | -1.158586    | -0.000475 |
| 8          | 6        | 0      | 0.495983  | -1.222314    | 0.000623  |
| 9          | 6        | 0      | 1.403659  | -0.227099    | 0.001365  |
| 10         | 6        | 0      | 0.972766  | 1.042447     | 0.000570  |
| 11         | 6        | 0      | -0.349730 | 1.259944     | 0.000299  |
| 12         | 6        | 0      | -0.975546 | 2.627215     | -0.000126 |

| 13 | 6 | 0      | -2.389893 | 2.127434  | -0.000261 |
|----|---|--------|-----------|-----------|-----------|
| 13 | 8 | 0<br>0 | 1.854422  | 2.067891  | 0.000817  |
| 14 | 1 | 0      | -0.741433 | 3.202250  | 0.923385  |
| 13 | 1 | 0      |           |           | 0.925565  |
| 16 | 1 | 0      | -0.741239 | 3.201688  | -0.924002 |
| 17 | 6 | 0      | 2.891708  | -0.483238 | -0.000477 |
| 18 | 9 | 0      | 3.511258  | 0.009013  | -1.065339 |
| 19 | 9 | 0      | 3.157744  | -1.779725 | -0.015240 |
| 20 | 9 | 0      | 3.505078  | -0.016437 | 1.079105  |
| 21 | 1 | 0      | -3.424369 | -3.172355 | -0.000056 |
| 22 | 1 | 0      | -1.171185 | -3.086901 | 0.000546  |
| 23 | 1 | 0      | -4.575947 | 0.799870  | -0.001055 |
| 24 | 1 | 0      | -4.956173 | -1.468805 | -0.000927 |
| 25 | 1 | 0      | 0.878553  | -2.256565 | 0.000489  |
| 26 | 1 | 0      | -3.239192 | 2.826563  | -0.000505 |
|    |   |        |           |           |           |

### Standard orientation of IM3

| <br>Center | Atomic | Atomic | coor      | dinates (An | gstroms)  |
|------------|--------|--------|-----------|-------------|-----------|
|            | Number |        | X         | Y           | Z         |
|            |        |        |           |             |           |
| 1          | 6      | 0      | -3.174211 | -1.153915   | -0.285467 |
| 2          | 6      | 0      | -1.765029 | -1.719822   | -0.372707 |
| 3          | 6      | 0      | -0.775615 | -0.643541   | -0.695571 |
| 4          | 6      | 0      | -1.097317 | 0.797898    | -0.275201 |
| 5          | 6      | 0      | -2.278622 | 1.419957    | -0.157085 |
| 6          | 6      | 0      | -3.482727 | 0.931431    | -0.503237 |
| 7          | 6      | 0      | -3.724391 | -0.247556   | -1.130759 |
| 8          | 6      | 0      | 0.736927  | -0.926962   | -0.709637 |
| 9          | 6      | 0      | 1.608036  | -0.017020   | -0.237203 |
| 10         | 6      | 0      | 1.190721  | 1.205180    | 0.224995  |
| 11         | 6      | 0      | -0.117209 | 1.567279    | 0.194420  |
| 12         | 6      | 0      | -0.681470 | 2.708859    | 0.617953  |
| 13         | 6      | 0      | -2.007324 | 2.603646    | 0.420477  |
| 14         | 8      | 0      | 2.011519  | 1.984113    | 0.659722  |
| 15         | 16     | 0      | -1.305855 | -2.441142   | 1.242085  |
| 16         | 1      | 0      | -1.744044 | -2.509541   | -1.159689 |
| 17         | 6      | 0      | 3.088963  | -0.368002   | -0.220679 |
| 18         | 9      | 0      | 3.372038  | -1.570689   | -0.698856 |
| 19         | 9      | 0      | 3.579045  | -0.333508   | 1.010428  |
| 20         | 9      | 0      | 3.787437  | 0.491511    | -0.949020 |
| 21         | 1      | 0      | -3.826239 | -1.518447   | 0.529705  |
| 22         | 1      | 0      | -4.375720 | 1.498922    | -0.185188 |
| 23         | 1      | 0      | -2.837678 | -0.253427   | -1.804853 |
| 24         | 1      | 0      | 1.070407  | -1.905031   | -1.087865 |
| 25         | 1      | 0      | -0.172965 | 3.570363    | 1.070062  |
| 26         | 1      | 0      | -2.745562 | 3.372494    | 0.685892  |
| 27         | 1      | 0      | -2.337748 | -3.300372   | 1.316048  |
|            |        |        |           |             |           |

| Center Atomic Atomic Coordinates (Angstroms) |        |      |           |           |           |
|----------------------------------------------|--------|------|-----------|-----------|-----------|
| Number                                       | Number | Туре | X         | Y         | Ζ         |
| 1                                            | 6      | 0    | -3.136327 | -1.150325 | -0.955293 |
| 2                                            | 6      | 0    | -1.825697 | -1.563865 | -0.356678 |
| 3                                            | 6      | 0    | -0.696174 | -0.582747 | -0.147042 |
| 4                                            | 6      | 0    | -0.844357 | 0.750159  | -0.028117 |
| 5                                            | 6      | 0    | -1.938641 | 1.521598  | -0.185386 |
| 6                                            | 6      | 0    | -3.182421 | 1.233957  | -0.594493 |
| 7                                            | 6      | 0    | -3.698629 | 0.063079  | -0.986607 |
| 8                                            | 6      | 0    | 0.528324  | -1.124336 | 0.010149  |
| 9                                            | 6      | 0    | 1.773000  | -0.248092 | 0.247301  |
| 10                                           | 6      | 0    | 1.431855  | 1.227317  | 0.552010  |
| 11                                           | 6      | 0    | 0.150593  | 1.593649  | 0.313940  |
| 12                                           | 6      | 0    | -0.301755 | 2.849587  | 0.406739  |
| 13                                           | 6      | 0    | -1.600077 | 2.795290  | 0.093637  |
| 14                                           | 8      | 0    | 2.315594  | 1.964662  | 0.932552  |
| 15                                           | 16     | 0    | -2.239930 | -2.241069 | 1.287685  |
| 16                                           | 1      | 0    | -1.443039 | -2.377603 | -1.021940 |
| 17                                           | 6      | 0    | 3.091029  | -0.648379 | -0.337220 |
| 18                                           | 9      | 0    | 4.042999  | -0.651214 | 0.582357  |
| 19                                           | 9      | 0    | 3.445995  | 0.189444  | -1.298587 |
| 20                                           | 9      | 0    | 3.058021  | -1.859771 | -0.869693 |
| 21                                           | 1      | 0    | -3.758600 | -1.988080 | -1.326697 |
| 22                                           | 1      | 0    | -3.876832 | 2.091621  | -0.688231 |
| 23                                           | 1      | 0    | -4.729823 | 0.099271  | -1.389111 |
| 24                                           | 1      | 0    | 0.663352  | -2.217435 | -0.020277 |
| 25                                           | 1      | 0    | 0.263038  | 3.752966  | 0.669769  |
| 26                                           | 1      | 0    | -2.258699 | 3.674450  | 0.055127  |
| 27                                           | 1      | 0    | -0.972742 | -2.302874 | 1.733653  |

## **Standard orientation of IM3.1**

#### **Standard orientation of IM3.2**

| Center Atomic Atomic Coordinates (Angstroms) |        |      |           |           |           |
|----------------------------------------------|--------|------|-----------|-----------|-----------|
| Number                                       | Number | Туре | Х         | Y         | Ζ         |
| 1                                            | 6      | 0    | -3.241620 | -1.124725 | -0.772340 |
| 2                                            | 6      | 0    | -1.819021 | -1.526318 | -0.504434 |
| 3                                            | 6      | 0    | -0.730436 | -0.500430 | -0.310595 |
| 4                                            | 6      | 0    | -0.934043 | 0.802565  | -0.066243 |
| 5                                            | 6      | 0    | -2.048890 | 1.548221  | 0.005347  |
| 6                                            | 6      | 0    | -3.331251 | 1.228915  | -0.210600 |
| 7                                            | 6      | 0    | -3.849860 | 0.054708  | -0.591889 |
| 8                                            | 6      | 0    | 0.554038  | -0.914598 | -0.341890 |
| 9                                            | 6      | 0    | 1.604757  | -0.099174 | -0.133218 |
| 10                                           | 6      | 0    | 1.384323  | 1.194645  | 0.130658  |
| 11                                           | 6      | 0    | 0.113343  | 1.613824  | 0.159197  |

| 12 | 6  | 0 | -0.334149 | 2.852015  | 0.400959  |
|----|----|---|-----------|-----------|-----------|
| 13 | 6  | 0 | -1.668946 | 2.803976  | 0.308356  |
| 14 | 8  | 0 | 2.435311  | 2.013840  | 0.349456  |
| 15 | 16 | 0 | -1.898780 | -2.523563 | 1.027544  |
| 16 | 1  | 0 | -1.517575 | -2.169493 | -1.368195 |
| 17 | 6  | 0 | 3.036683  | -0.565996 | -0.161424 |
| 18 | 9  | 0 | 3.101036  | -1.862145 | -0.406706 |
| 19 | 9  | 0 | 3.678017  | -0.402945 | 0.988587  |
| 20 | 9  | 0 | 3.759168  | 0.000098  | -1.119542 |
| 21 | 1  | 0 | -3.892307 | -1.958873 | -1.102092 |
| 22 | 1  | 0 | -4.061873 | 2.055815  | -0.119815 |
| 23 | 1  | 0 | -4.938989 | 0.059289  | -0.794838 |
| 24 | 1  | 0 | 0.746477  | -1.981706 | -0.538918 |
| 25 | 1  | 0 | 0.268042  | 3.743118  | 0.619432  |
| 26 | 1  | 0 | -2.329009 | 3.673302  | 0.436618  |
| 27 | 1  | 0 | -0.630317 | -2.976020 | 0.999084  |
|    |    |   |           |           |           |

## Standard orientation of IM4

| Center | Center Atomic Atomic Coordinates (Angstroms) |      |           |           |           |
|--------|----------------------------------------------|------|-----------|-----------|-----------|
| Number | Number                                       | Туре | Х         | Y         | Z         |
| 1      | 6                                            | 0    | -3.241620 | -1.124725 | -0.772340 |
| 2      | 6                                            | 0    | -1.819021 | -1.526318 | -0.504434 |
| 3      | 6                                            | 0    | -0.730436 | -0.500430 | -0.310595 |
| 4      | 6                                            | 0    | -0.934043 | 0.802565  | -0.066243 |
| 5      | 6                                            | 0    | -2.048890 | 1.548221  | 0.005347  |
| 6      | 6                                            | 0    | -3.331251 | 1.228915  | -0.210600 |
| 7      | 6                                            | 0    | -3.849860 | 0.054708  | -0.591889 |
| 8      | 6                                            | 0    | 0.554038  | -0.914598 | -0.341890 |
| 9      | 6                                            | 0    | 1.604757  | -0.099174 | -0.133218 |
| 10     | 6                                            | 0    | 1.384323  | 1.194645  | 0.130658  |
| 11     | 6                                            | 0    | 0.113343  | 1.613824  | 0.159197  |
| 12     | 6                                            | 0    | -0.334149 | 2.852015  | 0.400959  |
| 13     | 6                                            | 0    | -1.668946 | 2.803976  | 0.308356  |
| 14     | 8                                            | 0    | 2.435311  | 2.013840  | 0.349456  |
| 15     | 16                                           | 0    | -1.898780 | -2.523563 | 1.027544  |
| 16     | 1                                            | 0    | -1.517575 | -2.169493 | -1.368195 |
| 17     | 6                                            | 0    | 3.036683  | -0.565996 | -0.161424 |
| 18     | 9                                            | 0    | 3.101036  | -1.862145 | -0.406706 |
| 19     | 9                                            | 0    | 3.678017  | -0.402945 | 0.988587  |
| 20     | 9                                            | 0    | 3.759168  | 0.000098  | -1.119542 |
| 21     | 1                                            | 0    | -3.892307 | -1.958873 | -1.102092 |
| 22     | 1                                            | 0    | -4.061873 | 2.055815  | -0.119815 |
| 23     | 1                                            | 0    | -4.938989 | 0.059289  | -0.794838 |
| 24     | 1                                            | 0    | 0.746477  | -1.981706 | -0.538918 |
| 25     | 1                                            | 0    | 0.268042  | 3.743118  | 0.619432  |
| 26     | 1                                            | 0    | -2.329009 | 3.673302  | 0.436618  |
| 27     | 1                                            | 0    | -0.630317 | -2.976020 | 0.999084  |
|        |                                              |      |           |           |           |
| Center | Atomic | Atomi | c Coor    | dinates (An | gstroms)  |
|--------|--------|-------|-----------|-------------|-----------|
|        | Number |       |           | Ŷ           | Z         |
| 1      | 6      | 0     | -3.230194 | -2.054371   | -0.001230 |
| 2      | 6      | 0     | -1.751957 | -2.162757   | -0.213163 |
| 3      | 6      | 0     | -0.821999 | -0.973228   | -0.199459 |
| 4      | 6      | 0     | -1.188724 | 0.315609    | -0.072323 |
| 5      | 6      | 0     | -2.409423 | 0.862721    | 0.094229  |
| 6      | 6      | 0     | -3.628483 | 0.316494    | 0.202493  |
| 7      | 6      | 0     | -3.993875 | -0.970041   | 0.168291  |
| 8      | 6      | 0     | 0.483752  | -1.275342   | -0.344670 |
| 9      | 6      | 0     | 1.576673  | -0.189540   | -0.314999 |
| 10     | 6      | 0     | 1.013457  | 1.247953    | -0.267950 |
| 11     | 6      | 0     | -0.327061 | 1.352828    | -0.109012 |
| 12     | 6      | 0     | -0.975708 | 2.515508    | 0.025789  |
| 13     | 6      | 0     | -2.268119 | 2.201011    | 0.154804  |
| 14     | 8      | 0     | 1.783060  | 2.180940    | -0.349909 |
| 15     | 1      | 0     | -1.390929 | -2.867566   | 0.576323  |
| 16     | 1      | 0     | -1.621122 | -2.671201   | -1.199978 |
| 17     | 6      | 0     | 2.966365  | -0.520988   | 0.128644  |
| 18     | 9      | 0     | 3.228142  | 0.043267    | 1.297172  |
| 19     | 9      | 0     | 3.863387  | -0.095481   | -0.746741 |
| 20     | 9      | 0     | 3.154199  | -1.822838   | 0.275730  |
| 21     | 1      | 0     | -3.756418 | -3.029162   | -0.002670 |
| 22     | 1      | 0     | -4.469754 | 1.022568    | 0.346294  |
| 23     | 1      | 0     | -5.076698 | -1.167776   | 0.292563  |
| 24     | 1      | 0     | 0.792969  | -2.324676   | -0.477319 |
| 25     | 1      | 0     | -0.553268 | 3.528255    | 0.033493  |
| 26     | 1      | 0     | -3.069037 | 2.942373    | 0.286463  |

## **Standard orientation of IM4.1**

# Standard orientation of IM4.2

| Center | Atomic A | Atomic | Coord     | Coordinates (Angstroms) |           |  |  |
|--------|----------|--------|-----------|-------------------------|-----------|--|--|
| Number | Number   | Туре   | Х         | Y                       | Z         |  |  |
|        | <br>6    | 0      | 3.234534  | -2.027030               | -0.000274 |  |  |
| 2      | 6        | 0      | 1.740128  | -2.158483               | 0.000616  |  |  |
| 3      | 6        | 0      | 0.827448  | -0.959693               | 0.000529  |  |  |
| 4      | 6        | 0      | 1.220565  | 0.321596                | 0.000238  |  |  |
| 5      | 6        | 0      | 2.433745  | 0.897327                | -0.000188 |  |  |
| 6      | 6        | 0      | 3.659069  | 0.357614                | -0.000600 |  |  |
| 7      | 6        | 0      | 4.009254  | -0.934854               | -0.000755 |  |  |
| 8      | 6        | 0      | -0.503061 | -1.182725               | 0.000661  |  |  |
| 9      | 6        | 0      | -1.428198 | -0.203596               | 0.001078  |  |  |
| 10     | 6        | 0      | -1.020000 | 1.074459                | 0.000468  |  |  |
| 11     | 6        | 0      | 0.300347  | 1.300701                | 0.000342  |  |  |
| 12     | 6        | 0      | 0.925218  | 2.484824                | 0.000044  |  |  |

| 13 | 6 | 0 | 2.239565  | 2.229648  | -0.000135 |
|----|---|---|-----------|-----------|-----------|
| -  | 0 |   |           |           |           |
| 14 | 8 | 0 | -1.921032 | 2.083429  | 0.000595  |
| 15 | 1 | 0 | 1.481263  | -2.768035 | -0.899457 |
| 16 | 1 | 0 | 1.482185  | -2.766984 | 0.901719  |
| 17 | 6 | 0 | -2.910099 | -0.490466 | -0.000490 |
| 18 | 9 | 0 | -3.539134 | -0.015173 | -1.067337 |
| 19 | 9 | 0 | -3.534297 | -0.034023 | 1.077353  |
| 20 | 9 | 0 | -3.146148 | -1.792776 | -0.011534 |
| 21 | 1 | 0 | 3.764196  | -3.000118 | -0.000374 |
| 22 | 1 | 0 | 4.505475  | 1.071365  | -0.001010 |
| 23 | 1 | 0 | 5.099465  | -1.131822 | -0.001275 |
| 24 | 1 | 0 | -0.839590 | -2.232462 | 0.000568  |
| 25 | 1 | 0 | 0.460466  | 3.479020  | -0.000004 |
| 26 | 1 | 0 | 3.019927  | 3.003431  | -0.000477 |
|    |   |   |           |           |           |

# Standard orientation of P1

| Center | Atomic   | Atomi | c Coord   | dinates (Ang | stroms)   |
|--------|----------|-------|-----------|--------------|-----------|
| Numbe  | r Number | туре  | Х         | Y            | Z         |
| 1      | 6        | 0     | -2.597924 | -2.852798    | -0.181757 |
| 2      | 6        | 0     | -1.263143 | -2.687323    | -0.271241 |
| 3      | 6        | 0     | -0.561315 | -1.558756    | -0.050671 |
| 4      | 6        | 0     | -1.145656 | -0.355998    | 0.030794  |
| 5      | 6        | 0     | -2.448757 | -0.034215    | 0.000999  |
| 6      | 6        | 0     | -3.496788 | -0.873869    | 0.044558  |
| 7      | 6        | 0     | -3.538289 | -2.152054    | 0.505890  |
| 8      | 6        | 0     | 0.784965  | -1.559698    | -0.059023 |
| 9      | 6        | 0     | 1.539577  | -0.444952    | 0.017732  |
| 10     | 6        | 0     | 0.926363  | 0.776959     | 0.062706  |
| 11     | 6        | 0     | -0.431306 | 0.778319     | 0.041171  |
| 12     | 6        | 0     | -1.288860 | 1.810644     | -0.017801 |
| 13     | 6        | 0     | -2.529421 | 1.303993     | -0.081725 |
| 14     | 8        | 0     | 1.596973  | 1.786637     | 0.101568  |
| 15     | 16       | 0     | -0.966419 | 3.594005     | -0.060734 |
| 16     | 6        | 0     | 3.063438  | -0.543156    | 0.020064  |
| 17     | 9        | 0     | 3.566138  | -0.007480    | 1.122678  |
| 18     | 9        | 0     | 3.578593  | 0.092307     | -1.022203 |
| 19     | 9        | 0     | 3.504469  | -1.790374    | -0.035377 |
| 20     | 1        | 0     | -3.008264 | -3.782953    | -0.621636 |
| 21     | 1        | 0     | -0.701530 | -3.567238    | -0.637898 |
| 22     | 1        | 0     | -4.492155 | -0.462274    | -0.206635 |
| 23     | 1        | 0     | -2.759544 | -1.889239    | 1.249923  |
| 24     | 1        | 0     | 1.299454  | -2.531647    | -0.140152 |
| 25     | 1        | 0     | -3.456339 | 1.890625     | -0.141631 |
| 26     | 1        | 0     | -2.114819 | 4.252880     | -0.298825 |

| Center | Atomic | Atomi | c Coordi  | nates (Angs | troms)    |
|--------|--------|-------|-----------|-------------|-----------|
| Number | Number | Туре  | Х         | Y           | Z         |
| 1      | 6      | 0     | -3.029525 | -2.001188   | -0.151659 |
| 2      | 6      | 0     | -1.684053 | -2.029365   | -0.234108 |
| 3      | 6      | 0     | -0.833177 | -1.004322   | -0.035188 |
| 4      | 6      | 0     | -1.254671 | 0.265507    | 0.014988  |
| 5      | 6      | 0     | -2.494984 | 0.776746    | -0.028000 |
| 6      | 6      | 0     | -3.649524 | 0.091994    | 0.026093  |
| 7      | 6      | 0     | -3.866252 | -1.159473   | 0.512029  |
| 8      | 6      | 0     | 0.502729  | -1.179998   | -0.036853 |
| 9      | 6      | 0     | 1.398879  | -0.172234   | 0.015224  |
| 10     | 6      | 0     | 0.950994  | 1.119508    | 0.027589  |
| 11     | 6      | 0     | -0.392711 | 1.288059    | 0.002746  |
| 12     | 6      | 0     | -1.075127 | 2.438439    | -0.082660 |
| 13     | 6      | 0     | -2.375782 | 2.111454    | -0.141321 |
| 14     | 8      | 0     | 1.719442  | 2.057927    | 0.040999  |
| 15     | 6      | 0     | 2.896284  | -0.463471   | 0.024536  |
| 16     | 9      | 0     | 3.461581  | 0.034239    | 1.114430  |
| 17     | 9      | 0     | 3.486610  | 0.077879    | -1.030723 |
| 18     | 9      | 0     | 3.176330  | -1.757345   | 0.001525  |
| 19     | 1      | 0     | -3.564662 | -2.873978   | -0.574594 |
| 20     | 1      | 0     | -1.247970 | -2.986452   | -0.577257 |
| 21     | 1      | 0     | -4.577029 | 0.632510    | -0.239434 |
| 22     | 1      | 0     | -3.063592 | -0.991250   | 1.257836  |
| 23     | 1      | 0     | 0.885246  | -2.212713   | -0.093155 |
| 24     | 1      | 0     | -0.664451 | 3.455053    | -0.128533 |
| 25     | 1      | 0     | -3.202234 | 2.830526    | -0.220431 |

# Standard orientation of P2

### **Standard orientation of P3**

| Center . | Atomic A | Atomic | Coordi    | nates (Angs | troms)    |
|----------|----------|--------|-----------|-------------|-----------|
| Number   | Number   | Type   | Х         | Y           | Z         |
|          |          |        |           |             |           |
| 1        | 6        | 0      | -3.139547 | 1.119092    | 0.496801  |
| 2        | 6        | 0      | -1.861724 | 1.294433    | 0.057609  |
| 3        | 6        | 0      | -0.815462 | 0.434328    | 0.017824  |
| 4        | 6        | 0      | -0.970537 | -0.898642   | 0.051862  |
| 5        | 6        | 0      | -2.075063 | -1.658423   | -0.036668 |
| 6        | 6        | 0      | -3.322229 | -1.219593   | -0.245636 |
| 7        | 6        | 0      | -3.700386 | 0.066830    | -0.154642 |
| 8        | 6        | 0      | 0.470742  | 0.841785    | -0.040147 |
| 9        | 6        | 0      | 1.546756  | 0.028071    | -0.001079 |
| 10       | 6        | 0      | 1.358666  | -1.322398   | 0.068941  |
| 11       | 6        | 0      | 0.071300  | -1.740290   | 0.068614  |
| 12       | 6        | 0      | -0.362529 | -3.008023   | 0.050935  |
| 13       | 6        | 0      | -1.698748 | -2.949051   | -0.038999 |
|          |          |        |           |             |           |

| 14 | 8  | 0 | 2.292707  | -2.095687 | 0.102513  |
|----|----|---|-----------|-----------|-----------|
| 15 | 16 | 0 | -1.620580 | 3.108387  | -0.107635 |
| 16 | 6  | 0 | 2.963016  | 0.597719  | -0.033720 |
| 17 | 9  | 0 | 3.626278  | 0.139109  | -1.085022 |
| 18 | 9  | 0 | 3.629674  | 0.251098  | 1.057438  |
| 19 | 9  | 0 | 2.999057  | 1.919418  | -0.102830 |
| 20 | 1  | 0 | -2.756420 | 0.414330  | 1.258401  |
| 21 | 1  | 0 | -4.070097 | -1.953971 | -0.595408 |
| 22 | 1  | 0 | -4.692419 | 0.313692  | -0.580174 |
| 23 | 1  | 0 | 0.691573  | 1.917745  | -0.084583 |
| 24 | 1  | 0 | 0.243380  | -3.922922 | 0.043555  |
| 25 | 1  | 0 | -2.361804 | -3.819032 | -0.139534 |
| 26 | 1  | 0 | -2.547197 | 3.779794  | 0.603348  |
|    |    |   |           |           |           |

### **Standard orientation of P4**

|        |        | Atomic | · Coord   | linates (Ang | (stroms   |
|--------|--------|--------|-----------|--------------|-----------|
| Number | Number |        |           | Y            | Z         |
|        |        |        |           |              |           |
| 1      | 6      | 0      | 3.029696  | -2.001146    | -0.151594 |
| 2      | 6      | 0      | 1.684190  | -2.029367    | -0.233752 |
| 3      | 6      | 0      | 0.833188  | -1.004443    | -0.034786 |
| 4      | 6      | 0      | 1.254814  | 0.265471     | 0.015302  |
| 5      | 6      | 0      | 2.494926  | 0.776800     | -0.028035 |
| 6      | 6      | 0      | 3.649700  | 0.092215     | 0.025551  |
| 7      | 6      | 0      | 3.866693  | -1.159159    | 0.511594  |
| 8      | 6      | 0      | -0.502634 | -1.180087    | -0.036418 |
| 9      | 6      | 0      | -1.398884 | -0.172463    | 0.015535  |
| 10     | 6      | 0      | -0.950994 | 1.119239     | 0.027875  |
| 11     | 6      | 0      | 0.392702  | 1.287906     | 0.002931  |
| 12     | 6      | 0      | 1.074975  | 2.438351     | -0.082515 |
| 13     | 6      | 0      | 2.375530  | 2.111569     | -0.141452 |
| 14     | 8      | 0      | -1.719495 | 2.057666     | 0.041103  |
| 15     | 1      | 0      | 1.248249  | -2.986594    | -0.576716 |
| 16     | 6      | 0      | -2.896441 | -0.463430    | 0.024415  |
| 17     | 9      | 0      | -3.461823 | 0.033615     | 1.114502  |
| 18     | 9      | 0      | -3.176621 | -1.757245    | 0.000357  |
| 19     | 9      | 0      | -3.486456 | 0.078733     | -1.030527 |
| 20     | 1      | 0      | 3.564761  | -2.874103    | -0.574423 |
| 21     | 1      | 0      | 4.577005  | 0.632705     | -0.240268 |
| 22     | 1      | 0      | 3.064333  | -0.990843    | 1.257692  |
| 23     | 1      | 0      | -0.885236 | -2.212864    | -0.092804 |
| 24     | 1      | 0      | 0.664162  | 3.454937     | -0.128340 |
| 25     | 1      | 0      | 3.202014  | 2.830778     | -0.220862 |

# 5. Biological assays of benzo[cd]azulenes

#### Kinase activity assays

To evaluate the Pim-inhibitory properties of the compounds, *in vitro* kinase assays were performed as previously described.<sup>6</sup> Prior to the kinase reactions with radioactive  $[\gamma^{-32}P]$ -ATP, the compounds were dissolved in DMSO at 10 µM concentration and pre-incubated for 10 min with 1 µg aliquots of bacterially produced GST-fused human Pim-1 (hPim-1) or murine Pim-3 (mPim-3) proteins. Phosphorylated samples were resolved by SDS-PAGE and autoradiography images of them were analyzed by the Bio-Rad ChemiDoc<sup>TM</sup> MP System with Image Lab<sup>TM</sup> Software (Bio-Rad, USA). Residual kinase activities were calculated as the percentage of kinase activity in the presence of the test compound as compared to the DMSO-treated control samples.

### Cell viability assays

The murine myeloid FDCP1 cell lines expressing only neomycin (FD/Neo) or also human Pim-1 (FD/Pim44)<sup>7</sup> were cultured in the RPMI-1640 medium supplemented with 10% fetal bovine serum, 2 mM L-glutamine and antibiotics. WEHI-conditioned medium was used as the source of IL-3 during cell maintenance. To evaluate the effects of the compounds on cell viability, cells were plated on 96-well plates at the concentration of  $4 \times 10^4$  cells/well. Cells were treated with 0.1% DMSO (control samples) or with DMSO-dissolved compounds at 5  $\mu$ M concentration (test samples). Three parallel samples were used for each treatment. After 24-h incubation in medium lacking IL-3, the viability of the cells was determined by the MTT assay, as previously described.<sup>8</sup>

### Statistical analysis

Microsoft Excel was used for calculation of the residual kinase activities and cell viability percentages. For determination of EC<sub>50</sub> values in FDCP-1 cell lines, non-linear regression fitting of Log[dose] vs. response values were measured by GraphPad Prism6.

| Compound and                                                         | Residual         | Residual         | Cell viability  | Cell viability |
|----------------------------------------------------------------------|------------------|------------------|-----------------|----------------|
| structure                                                            | hPim-1           | mPim-3           | FD/Neo          | FD/Pim44       |
|                                                                      | activity10 µM    | activity 10 µM   | 5 µM            | 5 µM           |
|                                                                      | 51% <sup>4</sup> | 24% <sup>4</sup> | 6% <sup>4</sup> | 3%4            |
| CF <sub>3</sub> 7a                                                   | 40%              | -                | 74%             | 75%            |
| $\begin{array}{c} - \\ + \\ + \\ + \\ + \\ - \\ CF_3 9a \end{array}$ | 98%              | 112%             | 102%            | 95%            |

Table **S5**. *In vitro* and cell-based assays for the Pim-inhibitory effects of benzo[*cd*]azulene derivatives

| $ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 72% | 88% | 118% | 116% |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------|------|
| $ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78% | 62% | 106% | 108% |
| $ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $ | 49% | -   | 194% | 159% |
| (+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 98% | 95% | 52%  | 50%  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 53% | -   | 81%  | 62%  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28% | -   | 49%  | 33%  |
| H <sup>W</sup> H OMe<br>CF <sub>3</sub> 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35% | -   | 67%  | 77%  |

# 6. References

- (1) I. B. Aumüller, J. Yli-Kauhaluoma, Org. Lett. 2011, 13, 1670–1673.
- (2) CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.44 (release 25-10-2010 CrysAlis171 .NET) (compiled Oct 25 2010,18:11:34)
- (3) G. M. Sheldrick, Acta Crystallogr., Sect. A: Fundam. Crystallogr., 2008, 64, 112.
- (4) Gaussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
- (5) Y.-Z. Tang, H. Sun, Y.-R. Pan, X.-M. Pan, R.-S. Wang, Int. J. Quantum Chem. 2007, 107, 1907-1914.
- (6) A. Kiriazis, R. L. Vahakoski, N. M. Santio, R. Arnaudova, S. K. Eerola, E-M. Rainio, I. B. Aumüller, J. Yli-Kauhaluoma & P. J. Koskinen, *PLoS One* 8(2): e55409, p. 13. doi:10.1371/journal.pone.0055409
- (7) M. Lilly, J. Sandholm, J. J. Cooper, P. J. Koskinen, A. Kraft, Oncogene 1999, 18, 4022-4031.
- (8) N. M. Santio, R. L. Vahakoski, E. M. Rainio, J. A. Sandholm, S. S. Virtanen, M. Prudhomme, F. Anizon, P. Moreau, P. J. Koskinen, *Mol. Cancer* **2010**, *9*, 279–291.

# 7. <sup>1</sup>H NMR and <sup>13</sup>C NMR Spectra

















S52





S54























S65




















































