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Alternative electron transfer theories 
 
Case I) In the strong diabatic limit (electronic coupling V << kBT) equation (S1) holds as 

derived by perturbation theory (Fermi’s Golden Rule) with prefactor APT depending on the 

square of the electronic coupling V: 
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Case II) In the strong adiabatic, dynamic solvent effect controlled regime (DSE) with 

diffusive dynamics (high solvent friction, overdamped), the prefactor depends on the 

longitudinal solvent relaxation time L. For a cusped shape of the ground state free energy 

surface at the TS, which is appropriate for small coupling, one finds: 
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Indeed, case I) yields for the MV compounds investigated in this work much too high rates 

for any reasonable combination of electronic coupling and reorganization energy. This is 

caused by an electronic coupling V which is too high to render the HT process diabatic. 

Likewise, case II) can be excluded as this applies to small couplings only. 

 
Calculation of the moment of inertia of nitrobenzene,1 ortho-dichlorobenzene2 and 

dichloromethane.3 

 
For the calculation of the well frequency from the moment of inertia of the solvent we 

follow eq. 2 and A.4 in ref.4 The moments of intertia for nitrobenzene are Ix = 652 x 10-47 

and Iy = 862 x 10-47 kg m2 which gives 
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I = 742 x 10-47 kg m2. For ortho-

dichlorobenzene Ix = 1011 x 10-47 and Iy = 578 x 10-47 kg m2 gives Ieff= 736 x 10-47 kg m2. 

For dirchloromethane Ix = 26.2 x 10-47 and Iy = 273.7 x 10-47 kg m2 gives Ieff= 48 x 10-47 kg 

m2. 

 
 

Relaxation constants of PhNO2, oDCB and DCM. 

 

For the calculation of the longitudinal solvent relaxation constant L and the associated 

barrier we used the relation 
D

s

L 



  . For PhNO2 the temperature dependent dielectric 

function (D,S, ∞) was taken from ref.5 The activation barrier HL and 0 was obtained from 

the linear regression of lnD = ln0+HL/RT which gives 0 = 3.55 x 10-15 s and HL = 

17.22 kJ mol-1. The Gibbs energy of activation given in ref.6 agrees with this value (G* = 

14 kJ mol-1 at rt). For oDCB it appears that no reliable temperature dependent dielectric 

data are available in literature. Ref.7 presents the dielectric data for three different 

temperatures only. The data for rt agree with those from ref.8. Linear regression as above 

gives HL = 7.3 ± 1.6 kJ mol-1 and 0 = ln(-28.8 ± 0.6) s. Although these values suggest a 

barrier that is significantly lower than that in PhNO2 their accuracy, in particular of the 
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prefactor, is much too low to be useful for our purposes. For oDCB L at 298 K was 

estimated from D = 24.8 ps8 S = 9.93 and ∞ = n2 with n= 1.549 to be 6.0 ps. The 

temperature dependence of these data appears not to be available for oDCB. However, 

according to standard theory the viscosity  should have a similar temperature 

dependence as the Debye relaxation time D which in turn has a similar temperature 

dependence as L provided that the dielectric permittivities S and ∞ have negligible 

temperature dependence in the applied temperature range. For PhNO2
9 a plot of ln() with 

1/T displays a very good linear correlation with a barrier of 14.1 kJ mol-1 which is 

somewhat smaller than the directly evaluated barrier above. For oDCB the viscosity is 

available at a number of temperatures10 and the correlation yields a barrier of 

10.6 kJ mol-1. Thus, for oDCB we reduced the rather precise HL barrier of PhNO2 

(17.22 kJ mol-1) by the same factor by which the viscosity barrier of oDCB is smaller than 

that of PhNO2 which gives HL = 12.9 kJ mol-1. In order to obtain L = 6.0 ps at 295 K the 

prefactor then must be 3.11 x 10-14 s. 

For DCM L at 298 K was estimated from D = 2.17 ps S = 8.83 and ∞ = 1.98 to be 

0.49 ps.11 For DCM we again assume that the temperature dependence of the longitudinal 

relaxation time is the same as that of the Debye relaxation with HL = 401 cm-1 and 0 = 

7.05 x 10-14 s.11  

 

Chemical Oxidation 

 

Redox titrations monitored by UV/Vis/NIR spectroscopy were performed in three different 

solvents (PhNO2, oDCB and DCM) using a Cary 5000 UV-Vis-NIR absorption 

spectrometer (Agilent technologies) and 10×10 mm quartz-cuvettes with Teflon stopper 

(Hellma or Starna). PhNO2 was distilled prior to use, oDCB (Acros) and DCM (Uvasol, 

Merck) were of spectroscopic grade and were used without further purification. SbCl5 

(Acros Organics) was used as oxidant in all cases. The bistriarylamine solution (ca. 

1.5 μM) was titrated with a solution of SbCl5 in the respective solvent (ca. 1 mM) using a 

microliter pipette (Eppendorf). The pure solvent was used as reference. 
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Figure S1. Absorption spectra of the para-compounds pX in PhNO2 (ca. 1.5 μM) while 

adding a solution of SbCl5 in PhNO2 (1 mM) dropwise. Sharp peaks in the NIR region are 

caused by residual overtone absorptions of the solvent and the oxidant. 
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Figure S2. Absorption spectra of the meta-compounds mX in PhNO2 (ca. 1.5 μM) while 

adding a solution of SbCl5 in PhNO2 (1 mM) dropwise. The smaller figures on the right side 

show the magnified region where the IVCT-band is visible. Sharp peaks in the NIR region 

are caused by residual overtone absorptions of the solvent and the oxidant. 
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Figure S3. Absorption spectra of the meta-compounds mOMe46 and mMe46 in PhNO2 

(ca. 1.5 μM) while adding a solution of SbCl5 in PhNO2 (1 mM) dropwise. Sharp peaks in 

the NIR region are caused by residual overtone absorptions of the solvent and the oxidant. 
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Figure S4. Absorption spectra of the para-compounds pX in oDCB (ca. 1.5 μM) while 

adding a solution of SbCl5 in oDCB (1 mM) dropwise. Sharp peaks in the NIR region are 

caused by residual overtone absorptions of the solvent and the oxidant. 
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Figure S5. Absorption spectra of the meta-compounds mX in oDCB (ca. 1.5 μM) while 

adding a solution of SbCl5 in oDCB (1 mM) dropwise. The smaller figures on the right side 

show the magnified region where the IVCT-band is visible. Sharp peaks in the NIR region 

are caused by residual overtone absorptions of the solvent and the oxidant. 
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Figure S6. Absorption spectra of the meta-compound mOMe46 and mMe46 in oDCB (ca. 

1.5 μM) while adding a solution of SbCl5 in oDCB (1 mM) dropwise. The smaller figures on 

the right side show the magnified region where the IVCT-band is visible. Sharp peaks in 

the NIR region are caused by residual overtone absorptions of the solvent and the oxidant. 
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Figure S7. Absorption spectra of the para-compounds pX in DCM (ca. 1.5 μM) while 

adding a solution of SbCl5 in DCM (1 mM) dropwise. Sharp peaks in the NIR region are 

caused by residual overtone absorptions of the solvent and the oxidant. 

 



S13 
 

10000 20000 30000 40000
0

20000

40000

60000

80000

mMe


/ 

M
-1
 c

m
-1

nm

~ / cm
-1

2000 1000 500

 

 

5000 10000
0

1000

2000


/ 

M
-1
 c

m
-1

nm
2000 1000 500

mMe

~ / cm
-1

 

10000 20000 30000 40000
0

20000

40000

60000

80000

mCN


/ 

M
-1
 c

m
-1

nm

~ / cm
-1

2000 1000 500

 

 

5000 10000
0

1000

2000

mCN


/ 

M
-1
 c

m
-1

nm
2000 1000 500

~ / cm
-1

 

Figure S8. Absorption spectra of the meta-compounds mMe and mCN in DCM (ca. 

1.5 μM) while adding a solution of SbCl5 in DCM (1 mM) dropwise. The smaller figures on 

the right side show the magnified region where the IVCT-band is visible. Sharp peaks in 

the NIR region are caused by residual overtone absorptions of the solvent and the oxidant. 
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Figure S9. Absorption spectra of the meta-compound mOMe46 and mMe46 in DCM (ca. 

1.5 μM) while adding a solution of SbCl5 in DCM (1 mM) dropwise. The smaller figures on 

the right side show the magnified region where the IVCT-band is visible. Sharp peaks in 

the NIR region are caused by residual overtone absorptions of the solvent and the oxidant. 
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For all compounds pX, mOMe46 and mMe46 the monocation spectra were calculated 

assuming that the monocation band at ca. 14000 cm-1 possesses half the height of the 

dication band which is a good approximation if the interaction of the triarylamines is weak. 

Thus, the redox titration was performed to a point where all chromophores were oxidized 

to the dication and no further change of spectra was observed upon further addition of 

oxidant. The extinction coefficient of the dication band at 14000 cm-1 was divided by 2 to 

yield max
+ of the monocation ( ). For the construction of the “pure” monoradical 

spectrum we used a spectrum recorded at very little addition of oxidant where only 

insignificant amounts of dication are present because of the comproportionation 

equilibrium. This spectrum with extinction coefficient + at ca. 14000 cm-1 was then 

multiplied by a factor  in order to obtain the true monocation spectrum. For 

extracting the IV-CT band the reduced spectra (  ~/ ) of the monoradical cation were then 

fitted with up to four Gaussian functions as given in Figures S10-S12. 
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Figure S10. Reduced absorption spectra of pX, mOMe46 and mMe46 in PhNO2 and fit 

with Gaussian functions. The IV-CT band is given in red.  
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Figure S11. Reduced absorption spectra of the monocation of pX, mOMe46 and mMe46 

in oDCB and fit with Gaussian functions. The IV-CT band is given in red. 
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Figure S12. Reduced absorption spectra of the monocation of pX, mOMe46 and mMe46 

in DCM and fit with Gaussian functions. The IV-CT band is given in red. 
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Figure S13. Reduced absorption spectra of the monocations of pX and of mOMe46 in 

oDCB and fit with Gaussian functions magnified in the inset. 

 



S20 
 

4000 6000 8000 10000 12000 14000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

2000 4000 6000 8000 10000 12000 14000
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(
 /
 
)

 /
 M

-1

 / cm
-1

 / nm

pOMe

pMe

pCl

pCN

pNO
2

mOMe46

4000 2000 1000

 / nm

(
 /
 
)

 /
 M

-1

 / cm
-1

2500 1500 1000

 

Figure S14. Reduced absorption spectra of the monocations of pX and of mOMe46 in 

DCM and fit with Gaussian functions magnified in the inset. 
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Cyclic Voltammetry (CV), Squarewave Voltammetry (SWV) and Differential Pulse 

Voltammetry (DPV) 

 

The electrochemical measurements were performed with a Gamry Instruments Reference 

600 Potentiostat/Galvanostat/ZRA (v. 6.2.2, Warminster, PA, USA). The cyclic 

voltammograms of all compounds (2 mM) were measured under an argon atmosphere in  

DCM with tetrabutylammonium hexafluorophosphate (TBAHF, 0.2 M) as conducting salt. A 

conventional three electrode set-up consisting of a platinum disc working electrode (Ø = 

1 mm), a Ag/AgCl ‘LEAK FREE’ reference electrode (Warner Instruments, Hamden, CT, 

USA) and a platinum wire counter electrode was used. The measurement cell was dried in 

an oven and flushed with argon before use. The reference electrode was referenced 

against the ferrocene/ferrocenium (Fc/Fc+) redox couple. Chemical and electrochemical 

reversibility (referring to the absence of chemical follow up reactions and the reversability 

of the heterogenous electron transfer processes at the electrode, respectively) of the redox 

processes particularly around 300 mV were checked by multi thin layer experiments12 and 

measurements at different scan rates (from 25–1000 mV s-1), respectively. 

In all cased the CV signals at ca. 300 mV cover two redox processes associated with the 

first oxidation of each triarylamine group (see Fig. 4). The electrostatic interaction is so 

weak that these two processes do not appear as separated waves in the CV.13 The signals 

at ca. 1000 mV also cover two redox processes and refer to the second oxidation of each 

triarylamine. In case of the methoxy substituted derivatives in this potential region there 

are also redox processes associated with the bridge as can be seen by the SWV and DPV 

in Fig. S16. 
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Figure S15. A: Cyclic voltammograms of the para-compounds pX. B: Cyclic 

voltammograms of the meta-compounds mX. The voltammogams of all compounds were 
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recorded in DCM/0.2 M TBAHF at a scan rate of 1000 mV s-1. The NO2 compounds were 

recorded at a scan rate of 100 mV s-1. 
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Figure S16. A: Squarewave voltammogram of p/mOMe and mOMe46 in DCM at a scan 

rate of 50 mV s-1. B: Differential pulse voltammetry of pNO2 and mNO2 in DCM at a scan 

rate of 2 mV s‒1. 

 

Table S1. Redox potentials of the bistriarylamines in DCM/0.2 M TBAHF.d 

 

 E1/2(Red2) 

/ mV 

E1/2(Red1) 

/ mV 

E1/2(Ox1) 

/ mV 

E1/2(Ox2)a 

/ mV 

E1/2(Ox3)a 

/ mV 

E1/2(Ox4)a 

/ mV 

E1/2(Ox5)a 

/ mV 

pOMe - - 280 884b 1004b 1120b 1404b 

pMe - - 292 982 - - - 

pCl - - 321 1004 - - - 

pCN - -1787a 343 1000 - - - 

pNO2 -1249c -1103c 345 957c - - - 

        

mOMe - - 287 976b - - - 

mMe - - 280 979 - - - 

mCl - - 313 998 - - - 

mCN  -1799a 348 1011 - - - 

mNO2 -1287c -1186c 349 966c - - - 

        

mOMe46 - - 256 804 964b 1183b 1379b 

mMe46 - - 275 969 - - - 

aIrreversible process. bValue determined by SWV. cValue determined by DPV. d±5 mV 
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S17a. ln(k/T1/2) vs 1/T plots for all compounds in PhNO2, oDCB and DCM. 
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S17b. ln(k/T1/2) vs 1/T plots for all compounds in PhNO2, oDCB and DCM. 
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S17c. ln(k/T1/2) vs 1/T plots for all compounds in PhNO2, oDCB and DCM. 
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Schnittpunkt 
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21.60311 0.14697

Steigung -1466.466 34.44302
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T
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T 
-1
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Summe der 
Quadrate
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Pearson R -0.99921

Kor. R-Quad 0.99816

Wert Standardfehl

?$OP:A=1

Schnittpunkt 
mit der Y-Ac
hse

21.47279 0.10215

Steigung -1515.647 24.60744

 

S17d. ln(k/T1/2) vs 1/T plots for all compounds in PhNO2, oDCB and DCM. 
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mOMe46 in DCM:     mMe46 in DCM: 

0,0034 0,0036 0,0038 0,0040 0,0042

17,0

17,5

18,0

18,5

mOMe46 in DCM

mMe46 in DCMmMe46 in DCM
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E

S
R
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T
-1

/2
/K
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/2
)}

T 
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Kor. R-Quadr 0,99348
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Schnittpunkt 
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Steigung -1451,6109 58,76072
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Gewichtung Keine Gewichtung
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Quadrate

0.00145

Pearson R -0.99911

Kor. R-Quadr 0.99785

Wert Standardfehle

?$OP:A=1

Schnittpunkt 

mit der Y-Ach

se

21.62571 0.12632

Steigung -1747.8540 33.07836

 

 

S17e. ln(k/T1/2) vs 1/T plots for all compounds in PhNO2, oDCB and DCM. 
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Synthesis 

 

Commercially available compounds including solvents were purchased from Fluka, Sigma-

Aldrich, Merck, Acros or Chempur and used without further purification. 

All reactions specified as being performed under nitrogen atmosphere were performed in 

air-free conditions (nitrogen, dried with Sicapent® from Merck, oxygen was removed by 

copper oxide catalyst R3-11 from BASF) using solvents freshly dried and deoxygenated by 

standard procedures. 

Flash column chromatography was performed on standard silica gel, 60 Å, 40–63 μm 

(Merck). Preparative size exclusion gel permeation chromatography was performed with 

two sequential columns 10 µm, 50 Å and 500 Å (PSS) in a recycling set-up. 

Proton and carbon nuclear magnetic resonance spectra were measured on an Avance III 

HD 400 FT-Spectrometer (1H: 400.13 MHz, 13C: 100.61 MHz) and an Avance III HD 600 

FT-Spectrometer (1H: 600.13 MHz, 13C: 150.90 MHz). The residual signal of the respective 

solvent was used as the internal reference and the chemical shifts are given in ppm (δ-

scale). The proton signals are abbreviated as follows: s = singlet, d = doublet, t = triplet, 

m = multiplet, dd = doublet of doublet. The carbon signals are abbreviated as follows: CH3 

= primary, CH2 = secondary, CH = tertiary, Cq = quaternary. Multiplet signals or 

overlapping signals in proton NMR spectra that could not be assigned to first order 

couplings are given as (-). 

Mass spectrometry was performed on a Finnigan MAT 90 (EI) or with a Bruker Daltonic 

microTOF focus (ESI). All mass spectrometry peaks are reported as m/z. For calculation of 

the respective mass values of the isotopic distribution, the software module “Bruker 

Daltonics IsotopePattern” from the software Compass 1.1 from Bruker Daltonics GmbH 

was used.  

 

 

Synthesis of the bridging units 

 

1,4-Diiodo-2,5-dimethoxybenzene,14 2,5-dibromo-para-xylene,15 1,4-dibromo-2,5-

dinitrobenzene,16 2,6-dibromo-para-xylene,17 1,3-dibromo-2,5-dichlorobenzene,18 2,4-

dibromo-3,6-dimethoxyaniline,19 2,5-dibromoterephthalic acid,20 2,6-dibromo-4-
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nitroaniline21 and 1,3-diiodo-4,6-dimethoxybenzene22 were synthesized following reported 

procedures. 

 

 

Scheme S1. Synthesis of 1,3-diiodo-2,5-dimethoxybenzene. 

 

 

 

 

Scheme S2. Synthesis of 2,5- and 2,6-dibromoterephthonitrile (6, 7) and 1,3-dibromo-2,5-

dinitrobenzene (8). 
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1,3-Dibromo-2,5-methoxybenzene (1) 

 

 

 

CA: [74076-59-8]. 

 

Synthesis according to literature.15 

 

A suspension of 2,4-dibromo-3,6-dimethoxyaniline (1.84 g, 5.92 mmol) in EtOH (14 ml) 

and benzene (2.5 ml) was heated and conc. H2SO4 (4 ml) and then sodium nitrite (857 mg, 

12.4 mmol) were added. When the foaming stopped, the reaction was heated under reflux 

for 3 h until the gas formation stopped. After cooling to rt the solution was acidified with 

aqueous HCl solution and extracted with DCM (3 x 30 ml). The combined organic phase 

was washed with H2O (2 x 30 ml) and dried over MgSO4. The crude product was purified 

by flash chromatography on silica gel (DCM:PE, 1:1). 

 

Yield:   1.49 g (5.03 mmol, 85 %), colorless oil. 

 

Formula:  C8H8Br2O2 [295.96]. 

 

1H-NMR (400.1 MHz, CDCl3): 

δ [ppm] = 7.05 (s, 2 H), 3.83 (s, 3 H), 3.75 (s, 3 H). 

 

13C-NMR (100.6 MHz, CDCl3): 

δ [ppm] = 156.5 (Cq), 148.2 (Cq), 118.3 (CH), 60.9 (CH3), 56.1 (CH3), 53.6 (Cq). 

 

EI-MS:  295.9 m/z. 
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1,3-Diiodo-2,5-dimethoxybenzene (2) 

 

 

 

CA: [744216-14-6]. 

 

Synthesis according to literature.23 

 

Under a nitrogen atmosphere CuI (38.6 mg, 203 μmol) and NaI (6.08 g, 40.6 mmol) were 

added to 1,4-dioxane (8 ml) and the mixture was degassed for 10 min. Trans-N,N-dimethy-

1,2-cyclohexandiamine (57.7 mg, 405 μmol) and 1,3-dibromo-2,5-dimethoxybenzene (1, 

300 mg, 1.01 mmol) were added and the mixture was heated at 110 °C for 3 d. After 

cooling to rt the solvent was removed in vacuo. Ammonium hydroxide (30 %, 20 ml) and 

water (40 ml) were added to the residue. The aqueous phase was extracted with DCM. 

The organic phase was dried with MgSO4 and the solvent was removed in vacuo. The 

crude product was purified by chromatography on silica gel (PE:DCM, 1:1). 

 

Yield:   294 mg (754 μmol, 73 %), colorless solid. 

 

Formula:  C8H8I2O2 [389.96]. 

 

1H-NMR (400.1 MHz, CDCl3): 

δ [ppm] = 7.30 (s, 2 H), 3.80 (s, 3 H), 3.73 (s, 3 H). 

 

13C-NMR (100.6 MHz, CDCl3): 

δ [ppm] = 156.9 (Cq), 153.1 (Cq), 125.2 (CH), 89.8 (Cq), 61.0 (CH3), 56.1 (CH3). 

 

EI-MS:  389.7 m/z 
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2,6-Dibromoterephthalic acid (3) 

 

 

 

CA: [22191-58-8]. 

 

Synthesis according to literature.20 

 

2,6-Dibromo-p-xylene (2.64 g, 10.0 mmol) and KMnO4 (7.90 g, 50.0 mmol) were added to 

a mixture of pyridine (20 ml) and water (10 ml) and the mixture was heated to reflux. Then 

KMnO4 (3.00 g, 19.0 mmol) dissolved in water (10 ml) was added in 4 steps in 30 min 

intervals. After refluxing overnight, the mixture was filtered through celite. The mixture was 

concentrated by vacuum distillation and an aqueous HCl solution (10 %, 10 ml) was added 

to the filtrate. The resulting precipitate was extracted by EA (3 x 10 ml), dried over MgSO4, 

filtered and the solvent was evaporated in vacuo. 

 

Yield:   1.90 g (5.86 mmol, 59 %), colorless solid. 

 

Formular:  C8H4Br2O4 [323.92]. 

 

1H-NMR (400.1 MHz, (CD3)2SO): 

δ [ppm] = 8.10 (s, 2 H).  The signal of the protons of the carboxyl group is 

missing. This is probably due to exchange of the protons with the 

deuterated solvent. 

 

13C-NMR (100.6 MHz, (CD3)2SO): 

δ [ppm] = 166.6 (Cq), 164.5 (Cq), 142.2 (Cq), 134.0 (Cq). 132.1 (CH), 118.7 (Cq). 

 

EI-MS:  323.9 m/z 
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2,5-Dibromoterephthalamide (4) 

 

 

 

CA: [50880-39-2]. 

 

Synthesis according to literature.24 

 

The mixture of 2,5-dibromoterephthalic acid (4.00 g, 12.3 mmol), thionyl chloride (55 ml) 

and five drops of DMF was refluxed for 3 h. The solvent was removed in vacuo, and the 

crude product was dissolved in 1,4-dioxane (60 ml). Ammonium hydroxide (50 ml, conc.) 

was added dropwise to the mixture and stirred overnight at room temperature. The 

precipitate was filtered off and washed with 1,4-dioxane. 

 

Yield:   3.60 g (11.2 mmol, 91 %), colorless solid. 

 

Formular:  C8H6Br2N2O2 [321.95]. 

 

1H-NMR (400.1 MHz, (CD3)SO): 

δ [ppm] = 7.98 (s, 2 H), 7.67 (s, 2 H), 7.63 (s, 2 H). The four protons of the 

carboxamides give two signals. 

 

13C-NMR (100.6 MHz, (CD3)SO): 

δ [ppm] = 167.2 (Cq), 140.9 (Cq), 132.3 (CH), 117.7 (Cq). 

 

EI-MS:  321.9 m/z 
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2,6-Dibromoterephthalamide (5) 

 

 

 

Synthesis according to literature.24 

 

The mixture of 2,6-dibromoterephthalic acid (3, 750 mg, 2.32 mmol), thionyl chloride 

(14 ml) and a drop of DMF was refluxed for 3 h. The solvent was removed in vacuo, and 

the crude product was dissolved in 1,4-dioxane (15 ml). Ammonium hydroxide (15 ml, 

conc.) was added dropwise to the mixture and stirred overnight at rt. The precipitate was 

filtered off and washed with 1,4-dioxane. 

 

Yield:   613 mg (1.96 mmol, 85 %), colorless solid. 

 

Formular:  C8H6Br2N2O2 [321.95]. 

 

1H-NMR (400.1 MHz(CD3)2SO): 

δ [ppm] = 8.19 (s, 1 H), 8.09 (s, 2 H), 8.08 (s, 1H), 7.81 (s, 1 H), 7.65 (s, 1 H). 

 

13C-NMR (100.6 MHz, (CD3)2SO): 

δ [ppm] = 167.0 (Cq), 164.6 (Cq), 142.9 (Cq), 136.5 (Cq), 130.6 (CH), 119.5 (Cq). 

 

EI-MS:  321.8 m/z 
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2,5-Dibromoterephthalonitrile (6) 

 

 

 

CA: [18870-11-6]. 

 

Synthesis according to literature.24-25 

 

2,5-Dibromoterephthalamide (4, 250 mg, 777 µmol) was dissolved in phosphorus 

oxychloride (12 ml) and heated at 125 °C for 12 h. The cooled mixture was slowly poured 

into ice water (50 ml) and stirred for 15 min. The resulting precipitate was filtered off, 

washed with water and dried in vacuo. 

 

Yield:   182 mg (637 µmol, 82 %), colorless solid. 

 

Formular:  C8H2Br2N2 [285.92]. 

 

1H-NMR (400.1 MHz, CDCl3): 

δ [ppm] = 7.96 (s, 2 H). 

 

13C-NMR (100.6 MHz, CDCl3): 

δ [ppm] = 138.0 (Cq), 124.4 (Cq), 121.3 (CH), 114.7 (Cq). 

 

EI-MS:  285.9 m/z 
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2,6-Dibromoterephthalonitrile (7) 

 

 

 

Synthesis according to literature.24-25 

 

2,6-Dibromoterephthalamide (5, 300 mg, 932 µmol) was dissolved in phosphorus 

oxychloride (12 ml) and heated at 125 °C for 12 h. The cooled mixture was slowly poured 

into ice water (50 ml) and stirred for 15 min. The resulting precipitate was filtered, washed 

with water and dried in vacuo. 

 

Yield:   223 mg (780 µmol, 84 %), colorless solid. 

 

Formular:  C8H2Br2N2 [285.92]. 

 

1H-NMR (400.1 MHz, CDCl3): 

δ [ppm] = 7.93 (s, 2 H). 

 

13C-NMR (100.6 MHz, CDCl3): 

δ [ppm] = 134.7 (CH), 127.7 (Cq), 123.3 (Cq), 118.2 (Cq), 114.84 (Cq), 114.76 

(Cq). 

 

EI-MS:  285.8 m/z 
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1,3-Dibromo-2,5-dinitrobenzene (8) 

 

 

 

Synthesis according to literature.26 

 

A solution of 2,6-dibromo-4-nitroaniline (500 mg, 1.69 mmol) in (20 ml) trifluoroacetic acid 

(20 ml) was heated under reflux. H2O2 (6 ml, 30 %) was added over a period of 15 min. 

The mixture was heated under reflux for additional 15 min, cooled to rt and poured on 

crushed ice and water (20 ml). The resulting precipitate was collected by filtration. 

 

Yield:   467 mg (1.43 mmol, 85 %), colorless solid. 

 

Formula:  C6H2Br2N2O4 [325.90]. 

 

1H-NMR (400.1 MHz, CDCl3): 

δ [ppm] = 8.51 (s, 2 H). 

 

13C-NMR (100.6 MHz, CDCl3): 

δ [ppm] = 154.9 (Cq), 147.9 (Cq), 128.2 (CH), 115.1 (Cq). 

 

EI-MS:  325.8 m/z 
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Synthesis of the bistriarylamines 
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Scheme S3. Synthesis of the bistriarylamines via Sonogashira-Hagihara coupling. 

The triarylamine N,N-bis(4-methoxyphenyl)-N-(4-(ethynyl)phenylamine (TAA),27 1,4-bis{4-

[N,N-di(4-methoxyphenyl)amino]phenylethynyl}(2,5-dimethoxy)benzene (pOMe)28 and 1,4-

bis{4-[N,N-di(4-methoxyphenyl)amino]phenylethynyl}(2,5-dimethyl)benzene (pMe)29 were 

synthesized following reported procedures. 

 

The following Sonogashira-Hagihara coupling reactions were performed according to 

literature.28-30 

 

 

mOMe 1,3-Bis{4-[N,N-di(4-methoxyphenyl)amino]phenylethynyl}(2,5-

dimethoxy)benzene 

 

 

 

Under a nitrogen atmosphere 1,3-diiodo-2,5-dimethoxybenzene (2, 110 mg, 282 μmol), 

Pd(PPh3)2Cl2 (7.92 mg, 11.3 μmol) and CuI (1.07 mg, 5.64 μmol) were dissolved in NEt3 

(4 ml). TAA (204 mg, 619 μmol) in THF (4 ml) was added to the solution and the mixture 

was degassed. The reaction mixture was stirred in the dark for 3 d. The solvent was 

removed in vacuo. The residue was dissolved in DCM and was washed with water. The 

organic phase was dried with MgSO4 and the solvent removed in vacuo. The crude 

product was purified by flash column chromatography on silica gel (DCM). 

 

Yield:   200 mg (252 μmol, 89 %), yellow solid. 

 

Formula:  C52H44N2O6 [792.92]. 
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1H-NMR (600.1 MHz, CD2Cl2): 

δ [ppm] = 7.32 (AA´, 4 H), 7.08 (AA´, 8 H), 6.94 (s, 2 H), 6.87 (BB´, 8 H), 6.82 

(BB´, 4 H), 4.00 (s, 3 H), 3.79 (s, 12 H), 3.78 (s, 3 H). 

 

13C-NMR (150.9 MHz, CD2Cl2): 

δ [ppm] = 157.0 (Cq), 155.8 (Cq), 155.4 (Cq), 149.6 (Cq), 140.3 (Cq), 132.7 (CH), 

127.7 (CH), 119.01 (Cq), 119.00 (CH), 118.0 (CH), 115.2 (CH), 113.6 

(Cq), 94.6 (Cq), 84.2 (Cq), 61.6 (CH3), 56.1 (CH3), 55.8 (CH3). 

 

ESI-MS (M
+•
, high resolution): 

calc.: 792.31939 m/z 

exp.: 792.31953 m/z = 0.18 ppm 
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mMe 1,3-Bis{4-[N,N-di(4-methoxyphenyl)amino]phenylethynyl}(2,5-

dimethyl)benzene 

 

 

 

Under a nitrogen atmosphere 2,6-dibromo-para-xylene (55.0 mg, 208 μmol), TAA 

(151 mg, 458 μmol), Pd(C6H5CN)2Cl2 (17.6 mg, 25.1 μmol), CuI (3.17 mg, 16.6 μmol), 

PtBu3 (167 μl of a 1.00 M solution in n-hexane, 167 μmol) and HNiPr2 (76.0 mg, 751 μmol) 

were dissolved in 1,4-dioxane (4 ml) and degassed. The reaction mixture was stirred in the 

dark for 3 d. The solvent was removed in vacuo, the residue was dissolved in DCM and 

washed with water. The organic phase was dried with MgSO4 and the solvent was 

removed in vacuo. The crude product was purified by flash column chromatography on 

silica gel (DCM:PE, 3:1). 

 

Yield:   103 mg (135 µmol, 66 %), pale green solid. 

 

Formula:  C52H44N2O4 [760.92]. 

 

1H-NMR (600.1 MHz, CD2Cl2): 

δ [ppm] = 7.31 (AA´, 4 H), 7.24 (dd, 4JHH = 0.6 Hz, 5JHH = 0.4 Hz, 2 H), 7.08 (AA´, 

8 H), 6.86 (BB´, 8 H), 6.82 (BB´, 4 H), 3.79 (s, 12 H), 2.61 (d, 5JHH = 

0.4 Hz, 3 H), 2.29 (d, 4JHH = 0.6 Hz, 3 H). 

 

13C-NMR (150.9 MHz, CD2Cl2): 
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δ [ppm] = 156.9 (Cq), 149.4 (Cq), 140.4 (Cq), 138.7 (Cq), 135.5 (Cq), 132.6 (CH), 

132.2 (CH), 127.6 (CH), 124.1 (Cq), 119.2 (CH), 115.1 (CH), 114.1 

(Cq), 94.1 (Cq), 87.2 (Cq), 55.8 (CH3), 20.7 (CH3), 18.9 (CH3). 

 

ESI-MS (M
+•
, high resolution): 

calc.: 760.32956 m/z 

exp.: 760.32931 m/z = 0.33 ppm 

 

 

pCl 1,4-Bis{4-[N,N-di(4-methoxyphenyl)amino]phenylethynyl}(2,5-

dichloro)benzene 

 

 

 

Under a nitrogen atmosphere 1,4-dibromo-2,5-dichlorobenzene (60.0 mg, 197 μmol), TAA 

(130 mg, 395 μmol), Pd(C6H5CN)2Cl2 (9.82 mg, 26.0 μmol), CuI (3.64 mg, 19.1 μmol), 

PtBu3 (57.0 μl of a 1.00 M solution in n-hexane, 57.0 μmol) and HNiPr2 (88.0 mg, 

866 μmol) were dissolved in 1,4-dioxane (8 ml) and degassed. The reaction mixture was 

stirred for 3 d in the dark. The solvent was removed in vacuo, the residue was dissolved in 

DCM and washed with water. The organic phase was dried with MgSO4 and the solvent 

was removed in vacuo. The crude product was purified by flash column chromatography 

on silica gel (PE:DCM, 1:1). 

 

Yield:   50.0 mg (62.4 μmol, 32 %), yellow solid. 

 

Formula:  C50H38Cl2N2O4 [801.75]. 

 

1H-NMR (600.1 MHz, (CD3)2CO): 
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δ [ppm] = 7.69 (s, 2 H), 7.38 (AA´, 4 H), 7.14 (AA´, 8 H), 6.96 (BB´, 8 H), 6.79 

(BB´, 4 H), 3.81 (s, 12 H). 

 

13C-NMR (150.9 MHz, (CD3)2CO): 

δ [ppm] = 158.0 (Cq), 150.1 (Cq), 140.4 (Cq), 134.0 (Cq), 133.6 (CH), 133.4 (CH), 

128.7 (CH), 124.9 (Cq), 118.6 (CH), 115.9 (CH), 112.7 (Cq), 99.4 (Cq), 

84.6 (Cq), 55.8 (CH3). 

 

ESI-MS (M
+•
, high resolution): 

calc.: 800.22032 m/z 

exp.: 800.22052 m/z = 0.25 ppm 

 

 

mCl  1,3-Bis{4-[N,N-di(4-methoxyphenyl)amino]phenylethynyl}(2,5-

dichloro)benzene 

 

 

 

Under a nitrogen atmosphere 1,3-dibromo-2,5-dichlorobenzene (70.0 mg, 230 μmol), TAA 

(152 mg, 461 μmol), Pd(C6H5CN)2Cl2 (11.5 mg, 30.0 μmol), CuI (4.24 mg, 22.2 μmol), 

PtBu3 (67.0 μl of a 1.00 M solution in n-hexane, 67.0 μmol) and HNiPr2 (102 mg, 

1.01 mmol) were dissolved in 1,4-dioxane (9 ml) and degassed. The reaction mixture was 

stirred in the dark for 3 d. The solvent was removed in vacuo, the residue was dissolved in 

DCM and washed with water. The organic phase was dried with MgSO4 and the solvent 

was removed in vacuo. The crude product was purified by flash column chromatography 

on silica gel (PE:DCM, 1:2). 
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Yield:   64.0 mg (79.8 μmol, 35 %), yellow solid. 

 

Formula:  C50H38Cl2N2O4 [801.75]. 

 

1H-NMR (600.1 MHz, (CD3)2CO): 

δ [ppm] = 7.54 (s, 2 H), 7.38 (AA´, 4 H), 7.13 (AA´, 8 H), 6.95 (BB´, 8 H), 6.79 

(BB´, 4 H), 3.81 (s, 12 H). 

 

13C-NMR (150.9 MHz, (CD3)2CO): 

δ [ppm] = 158.0 (Cq), 150.9 (Cq), 140.4 (Cq), 135.2 (Cq), 133.6 (CH), 132.7 (Cq), 

131.9 (CH), 128.6 (CH), 126.7 (Cq), 118.7 (CH), 115.8 (CH), 112.6 

(Cq), 98.3 (Cq), 84.4 (Cq), 55.8 (CH3). 

 

ESI-MS (M
+•
, high resolution): 

calc.: 800.22032 m/z 

exp.: 800.22070 m/z = 0.47 ppm 

 

 

pCN 1,4-Bis{4-[N,N-di(4-methoxyphenyl)amino]phenylethynyl}(2,5-

dicyano)benzene 

 

 

 

Under a nitrogen atmosphere TAA (127 mg, 385 μmol), Pd(PPh3)2Cl2 (11.3 mg, 

16.1 μmol) and CuI (1.54 mg, 8.08 μmol) were dissolved in NEt3 (7 ml). 2,5-

Dibromoterephthalonitrile (7, 55.0 mg, 192 μmol) in THF (2 ml) was added to the solution 

and the mixture was degassed. The reaction mixture was stirred in the dark for 3 d. The 

solvent was removed in vacuo, the residue was dissolved in DCM and washed with water. 
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The organic phase was dried with MgSO4 and the solvent was removed in vacuo. The 

crude product was purified by flash column chromatography on silica gel (PE:DCM, 1:2). 

 

Yield:   134 mg (171 μmol, 89 %), red solid. 

 

Formula:  C52H38N4O4 [782.88]. 

 

1H-NMR (600.1 MHz, (CD3)2CO): 

δ [ppm] = 8.12 (s, 2 H), 7.42 (AA´, 4 H), 7.17 (AA´, 8 H), 6.97 (BB´, 8 H), 6.80 

(BB´, 4 H), 3.81 (s, 12 H). 

 

13C-NMR (150.9 MHz, (CD3)2CO): 

δ [ppm] = 158.2 (Cq), 151.5 (Cq), 140.1 (Cq), 136.5 (CH), 133.9 (CH), 128.8 

(CH), 127.0 (Cq), 118.9 (Cq), 118.3 (CH), 116.7 (Cq), 115.9 (CH), 

111.4 (Cq), 101.6 (Cq), 84.6 (Cq), 55.8 (CH3). 

 

ESI-MS (M
+•
, high resolution): 

calc.: 782.28876 m/z 

exp.: 782.28841 m/z = 0.45 ppm 

 

 

mCN 1,3-Bis{4-[N,N-di(4-methoxyphenyl)amino]phenylethynyl}(2,5-

dicyano)benzene 
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Under a nitrogen atmosphere TAA (177 mg, 537 μmol), Pd(PPh3)2Cl2 (14.4 mg, 

20.5 μmol) and CuI (1.96 mg, 10.3 μmol) were dissolved in NEt3 (10 ml). 2,6-

Dibromotetrephthalonitrile (6, 70.0 mg, 245 μmol) in THF (3 ml) was added to the solution 

and the mixture was degassed. The reaction mixture was stirred in the dark for 3 d. The 

solvent was removed in vacuo, the residue was dissolved in DCM and washed with water. 

The organic phase was dried with MgSO4 and the solvent was removed in vacuo. The 

crude product was purified by flash column chromatography on silica gel (PE:DCM, 1:2). 

 

Yield:   180 mg (230 μmol, 94 %), red solid. 

 

Formula:  C52H38N4O4 [782.88]. 

 

1H-NMR (600.1 MHz, (CD3)2CO): 

δ [ppm] = 7.99 (s, 2 H), 7.43 (AA´, 4 H), 7.17 (AA´, 8 H), 6.97 (BB´, 8 H), 6.80 

(BB´, 4 H), 3.81 (s, 12 H). 

 

13C-NMR (150.9 MHz, (CD3)2CO): 

δ [ppm] = 158.2 (Cq), 151.6 (Cq), 140.1 (Cq), 134.0 (CH), 133.8 (CH), 130.1 (Cq), 

128.8 (CH), 120.1 (Cq), 118.3 (CH), 117.5 (Cq), 117.1 (Cq), 116.3 (Cq), 

115.9 (CH), 111.3 (Cq), 100.5 (Cq), 84.2 (Cq), 55.8 (CH3). 

 

ESI-MS (M
+•
, high resolution): 

calc.: 782.28876 m/z 

exp.: 782.28926 m/z = 0.64 ppm 
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pNO2 1,4-Bis{4-[N,N-di(4-methoxyphenyl)amino]phenylethynyl}(2,5-

dinitro)benzene 

 

 

 

Under a nitrogen atmosphere 1,4-dibromo-2,5-dinitrobenzene (70.0 mg, 215 μmol), TAA 

(156 mg, 474 μmol Pd(C6H5CN)2Cl2 (9.91 mg, 26.8 μmol), CuI (9.00 mg, 47.3 μmol) and 

NEt3 (2 ml) were dissolved in toluene (8 ml) and degassed. The reaction mixture was 

stirred in the dark for 3 d. The solvent was removed in vacuo, the residue was dissolved in 

DCM and washed with water. The organic phase was dried with MgSO4 and the solvent 

was removed in vacuo. The crude product was purified by flash column chromatography 

on silica gel (PE:DCM, 1:2). 

 

Yield:   85.0 mg (103 μmol, 48 %), red solid. 

 

Formula:  C50H38N4O8 [822.86]. 

 

1H-NMR (600.1 MHz, CD2Cl2): 

δ [ppm] = 8.28 (s, 2 H), 7.36 (AA´, 4 H), 7.11 (AA´, 8 H), 6.88 (BB´, 8 H), 6.81 

(BB´, 4 H), 3.80 (s, 12 H). 

 

13C-NMR (150.9 MHz, CD2Cl2): 

δ [ppm] = 157.4 (Cq), 150.9 (Cq), 150.5 (Cq), 139.7 (Cq), 133.7 (CH), 130.6 (CH), 

128.1 (CH), 118.5 (Cq), 118.2 (CH), 115.3 (CH), 111.3 (Cq), 103.3 

(Cq), 83.6 (Cq), 55.8 (CH3). 

 

ESI-MS (M
+•
, high resolution): 
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calc.: 822.26842 m/z 

exp.: 822.26806 m/z = 0.44 ppm. 

 

mNO2  1,3-Bis{4-[N,N-di(4-methoxyphenyl)amino]phenylethynyl}(2,5-

dinitro)benzene 

 

 

 

Under a nitrogen atmosphere 1,3-dibromo-2,5-dinitrobenzene (8, 100 mg, 307 μmol), TAA 

(222 mg, 675 μmol), CuI (9.00 mg, 47.0 μmol), Pd(PPh3)2Cl2 (9.91 mg, 14.0 μmol) and 

NEt3 (2 ml) were dissolved in toluene (8 ml) and degassed. The reaction mixture was 

stirred in the dark for 3 d. The solvent was removed in vacuo, the residue was dissolved in 

DCM and washed with water. The organic phase was dried with MgSO4 and the solvent 

was removed in vacuo. The crude product was purified by flash column chromatography 

on silica gel (PE:DCM, 1:2). 

 

Yield:   108 mg (131 μmol, 43 %), red solid. 

 

Formula:  C50H38N4O8 [822.86]. 

 

1H-NMR (600.1 MHz, CD2Cl2): 

δ [ppm] = 8.27 (s, 2 H), 7.30 (AA´, 4 H), 7.10 (AA´, 8 H), 6.87 (BB´, 8 H), 6.79 

(BB´, 4 H), 3.79 (s, 12 H) 

 

13C-NMR (150.9 MHz, CD2Cl2): 
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δ [ppm] = 157.4 (Cq), 155.4 (Cq), 150.9 (Cq), 148.2 (Cq), 139.7 (Cq), 133.5 (CH), 

128.1 (CH), 126.0 (CH), 119.8 (Cq), 118.2 (CH), 115.3 (CH), 110.6 

(Cq), 100.9 (Cq), 80.3 (Cq), 55.8 (CH3). 

 

ESI-MS (M
+•
, high resolution): 

calc.: 822.26842 m/z 

exp.: 822.26836 m/z = 0.07 ppm 

 

 

mOMe46  1,3-Bis{4-[N,N-di(4-methoxyphenyl)amino]phenylethynyl}(4,6-

dimethoxy)benzene 

 

 

 

Under a nitrogen atmosphere 1,3-diiodo-4,6-dimethoxybenzene (134 mg, 344 μmol), 

Pd(PPh3)2Cl2 (9.65 mg, 13.7 μmol) and CuI (1.31 mg, 6.87 μmol) were dissolved in NEt3 

(5 ml). TAA (249 mg, 756 μmol) in THF (6 ml) was added to the solution and the mixture 

was degassed. The reaction mixture was stirred in the dark for 3 d. The solvent was 

removed in vacuo. The residue was dissolved in DCM and was washed with water. The 

organic phase was dried with MgSO4 and the solvent removed in vacuo. The crude 

product was purified by flash column chromatography on silica gel (PE:DCM, 1:4  DCM). 

 

Yield:   240 mg (303 μmol, 88 %), green solid. 

 

Formula:  C52H44N2O6 [792.92]. 
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1H-NMR (600.1 MHz, CD2Cl2): 

δ [ppm] = 7.42 (s, 1 H), 7.26 (AA´, 4 H), 7.08 (AA´, 8 H), 6.94 (BB´, 8 H), 6.72 (s, 

1 H), 6.68 (BB´, 4 H), 3.91 (s, 6 H), 3.75 (s, 12 H). 

 

13C-NMR (150.9 MHz, CD2Cl2): 

δ [ppm] = 160.8 (Cq), 156.3 (Cq), 148.5 (Cq), 139.2 (Cq), 136.2 (CH), 132.1 (CH), 

127.5 (CH), 117.7 (CH), 115.1 (CH), 113.0 (Cq), 104.2 (Cq), 96.2 (CH), 

92.5 (Cq), 83.7 (Cq), 56.61 (CH3), 56.3 (CH3). 

 

ESI-MS (M
+•
, high resolution): 

calc.: 792.31939 m/z 

exp.: 792.32006 m/z = 0.85 ppm 

 

 

mMe46 1,3-Bis{4-[N,N-di(4-methoxyphenyl)amino]phenylethynyl}(4,6-

dimethyl)benzene 

 

 

 

Under a nitrogen atmosphere 4,6-dibromo-meta-xylene (60.0 mg, 227 μmol), TAA 

(165 mg, 500 μmol), Pd(C6H5CN)2Cl2 (10.5 mg, 27.3 μmol), CuI (3.46 mg, 18.2 μmol), 

PtBu3 (182 μl of a 1.00 M solution in n-hexane, 182 μmol) and HNiPr2 (83.0 mg, 818 μmol) 

were dissolved in 1,4-dioxane (4.5 ml) and degassed. The reaction mixture was stirred in 

the dark for 3 d. The solvent was removed in vacuo, the residue was dissolved in DCM 

and washed with water. The organic phase was dried with MgSO4 and the solvent was 

removed in vacuo. The crude product was purified by flash column chromatography on 

silica gel (PE: DCM, 1:3). 
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Yield:   79.0 mg (104 μmol, 60 %), yellow solid. 

 

Formula:  C52H44N2O4 [760.92]. 

 

1H-NMR (600.1 MHz, CD2Cl2): 

δ [ppm] = 7.53 (s, 1 H), 7.29 (AA´, 4 H), 7.10 (s, 1 H), 7.07 (AA´, 8 H), 6.86 (BB´, 

8 H), 6.83 (BB´, 4 H), 3.79 (s, 12 H), 2.44 (s, 6 H). 

 

13C-NMR (150.9 MHz, CD2Cl2): 

δ [ppm] = 156.9 (Cq), 149.3 (Cq), 140.4 (Cq), 140.0 (Cq), 134.5 (CH), 132.5 (CH), 

131.1 (CH), 127.6 (CH), 121.4 (CH), 119.2 (Cq), 115.1 (Cq), 114.2 

(CH), 94.0 (Cq), 86.6 (Cq), 55.8 (CH3), 20.8 (CH3). 

 

ESI-MS (M
+•
, high resolution): 

calc.: 760.3296 m/z 

exp.: 760.3291 m/z = 0.66 ppm 
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