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Experiment

S1. Synthesis

Synthesis of m-Py,

Scheme S1: Synthesis of Pyrenel
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Synthesis of S1-1.

The isomeric mixture of dibromopyrenes was prepared by following a procedure detailed below.
The aqueous HBr (48%, 14.8 mL) was added to a solution of pyrene (12.0 g, 59.33 mmol) in ether
(150 mL) and methanol (150 mL) under argon atmosphere. To the resulting mixture, 30% aqueous
solution of H;0; (12.2 mL) was added dropwise over 20 min and it was allowed to stir at 22°C for 24
hrs. After 24 hrs of stirring a voluminous precipitate was formed. The precipitate was filtered and
washed with hot ethanol (2 x 30 mL). Product was dried under vacuum (8.0 g, 74%), m.p: 120-
1220C. 1H NMR (CDCl3, 400 MHz) &: 8.03-8.08 (3H, m), 8.09-8.15 (1H, d, ] = 9.26 Hz), 8.24-8.30 (2H,
dd, ] = 8.20 Hz), 8.43, 8.49 (1H, d, ] = 9.24 Hz), 8.52-8.56 (1H, s). 13C NMR (CDCl3, 400 MHz) &: 120.6,
120.89, 125.25, 125.28, 126.06, 126.28, 126.37, 127.50, 127.58, 128.74, 129.56, 129.74, 130.48,
130.67,130.76, 130.81.
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Synthesis of $1-2.

To the mixture of dibromopyrene (S1-1) (6.0 g, 16.66 mmol) in dry THF (40 mL), PdCl;(PPh3).
(80 mg) and 1-Octyne (5.50 g, 49.98 mmol) in NH(iPr), (40 mL) and Cul (120 mg) were added in an
oven dried Schlenk flask under argon atmosphere. The resulting mixture was stirred at 50°C for 12
hours. The resulting mixture was cooled to room temperature, and insoluble materials were
removed by filtration and filtrate was washed with water and extracted with dichloromethane (3 x
30 mL). The combined organic layers were dried over anhydrous magnesium sulfate, evaporated and
dried under vacuum. The resulting crude product was purified by flash column to afford mixture of
cis and trans isomers (S1-2). And these cis and trans isomers were further separated by multiple
crystallizations from Hexane to afford pure S1-3. Trans: 1H NMR (CDCl3, 400 MHz) &: 0.95 (6H, m),
1.40 (8H, m), 1.60 (4H, m), 1.74 (4H, m), 2.65 (4H, t, ] = 7.05Hz), 8.00 (2H, s), 8.06 (4H, s), 8.62 (2H,
s). Cis: 1H NMR (CDCls, 400 MHz) &: 0.95 (6H, m), 1.40 (8H, m), 1.60 (4H, m), 1.77 (4H, m), 2.65 (4H, t,
J = 7.05 Hz), 8.04-8.11 (6H, s), 8.55 (2H, d, ] = 9.29 Hz).

Synthesis of Py1.

The S1-3 (2.0 g) from above was placed into a Parr apparatus along with a stir bar and dissolved
in Ethyl acetate / Ethanol (20:5 mL). To the solution, 10% Palladium on activated Carbon catalyst
(100 mg) was added. The vessel was then put under hydrogen pressure (3 bar) for 2 hours after
which time the solution was filtered over a short pad of silica gel. The silica gel was washed with
ethyl acetate (2 x 30 mL), the solvent was evaporated and the resulting 1,8-dioctane pyrene was
dried under vacuum to afford crude product which was purified by column chromatography using
hexane as a solvent. (2.0 g, 98%), m.p: 92-93°C. 1H NMR (CDCl3, 400 MHz) &: 0.88 (6H, m), 1.22-1.42
(16H, m), 1.47 (4H, m), 1.84 (4H, m), 3.32 (4H, m), 7.84 (2H, d, ] = 7.82 Hz), 8.05 (2H, d, ] = 9.32 Hz),
8.08 (2H, d, ] = 7.82 Hz), 8.21 (2H, d, ] = 9.32 Hz).13C NMR (CDCl;, 400 MHz) 6: 14.29, 22.84, 29.49,
29.74,30.02,32.07,33.90, 122.69, 124.53,127.31,127.35, 128.99, 129.61, 137.18.

Scheme S2: Synthesis of Py2
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To the solution of Pyrenel (0.1 g, 0.234 mmol) in anhydrous DCM (9 mL) was added methane
sulfonic acid (1 mL) in an oven dried Schlenk flask under argon atmosphere. Upon stirring color of
the solution changed from red to purple to green. To the stirring solution was added DDQ (0.03 g,

0.12 mmol) and reaction mixture was stirred for another 30 minutes. The resulting reaction mixture
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was quenched by pouring onto saturated aqueous NaHCO3 (20 mL). The organic layer was separated
and the aqueous layer was extracted with dichloromethane (3 x 20 mL). The combined organic layers
were washed with water and brine, dried over anhydrous MgS0s, filtered and evaporated under
vacuum to afford crude Pyrene2 which was purified by column chromatography using hexane as a
solvent (0.05 g, 49%), m.p: 110-1119C. 'H NMR (CDCls, 400 MHz) 6: 0.79- 0.92 (12H, m), 1.17- 1.55
(40H, m), 1.72- 1.83 (4H, m), 1.89- 1.99 (4H, m), 3.20- 3.28 (4H, m), 3.38- 3.45 (4H, m), 7.68 (2H, d, ]
=9.58 Hz), 7.86 (2H, d, ] = 7.81 Hz ), 7.99- 8.03 (4H, m), 8.14 (4H, d, ] = 8.91 Hz), 8.35 (2H, d, ] = 9.29
Hz).13C NMR (CDCl3, 400 MHz) &: 14.24, 14.29, 22.79, 22.85, 29.44, 29.54, 29.73, 29.96, 30.08, 32.01,
32.05,33.85,122.77,122.83, 124.82, 125.81, 125.87, 127.49, 128.60, 128.78, 128.86, 129.97, 130.30,
136.00, 136.53, 137.27.

Scheme S3: Synthesis of Py3
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Synthesis of $3-1.

To the solution of 1,8-dioctylpyrene (Pyrenel) (0.6 g, 1.4 mmol) in CHCI3 (40 mL) was added NBS
(0.25 g, 1.4 mmol) and NH4NO3 (0.011 g, 0.14 mmol) in oven dried Schlenk flask under argon
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atmosphere and the resulting reaction mixture was allowed to stir at room temperature for
overnight. Then the reaction mixture quenched with water (30 mL) and extracted with DCM (3 x 25
mL). The combined organic layers were dried over MgSO,, filtered and evaporated under reduced
pressure to give (S3-1) (0.6 g, 84.5%). 'H NMR (CDCl3, 400 MHz) 6: 0.87 (6H, m), 1.16-1.56 (20H, m),
1.83 (4H, m), 3.29 (4H, m), 7.83 (1H, d, ] = 7.76 Hz), 8.01-8.14 (3H, m), 8.17-8.27 (2H, m), 8.44 (1H, d,
] = 9.44 Hz).

Synthesis of $3-2.

To the solution of pyrenel (0.3 g, 0.703 mmol) in CHCl3 (40 mL) was added NBS (0.25 g, 1.4
mmol) and NH4NO3 (0.011 g, 0.14 mmol) in oven dried Schlenk flask under argon atmosphere and
the reaction mixture was allowed to stir at room temperature for overnight. Then the reaction was
quenched by addition of water (30 ml) and it was extracted with DCM (3 x 20 mL). The combined
organic layers were dried over MgSO,, filtered and evaporated under reduced pressure to give S3-2
(0.3g, 73%), m.p: 98-100°C. *H NMR (CDCl3, 400 MHz) &: 0.88 (6H, m), 1.19-1.53 (20H, m), 1.82 (4H,
m), 3.27 (4H, m), 8.12 (2H, s), 8.23 (2H, d, ] = 9.54 Hz), 8.42 (2H, d, ] = 9.54 Hz).13C NMR (CDCls, 400
MHz) &: 14.29, 22.84, 29.49, 29.74, 30.02, 32.07, 33.91, 122.70, 124.54, 127.32, 127.35, 128.99,
129.61,137.19.

Synthesis of $3-3.

To an oven dried Schlenk flask under argon atmosphere, mixture of S1-1 (0.70 g, 1.38 mmol),
Pd(dppf)Cl; (50 mg) in 1,4-Dioxane (30 mL), potassium acetate (0.34 g 3.46 mmol) and
bis(pinacolato)diboron (0.70 g, 2.77 mmol) were added and the resulting reaction mixture was
allowed to reflux overnight. Then the reaction was quenched by addition of water (30 mL). It was
then extracted with DCM (3 x 25 mL), dried over MgSOs, filtered and evaporated under vacuum to
yield crude product. It was then subjected to column chromatography with hexane as solvent to give
pure product S3-3 (0.6 g, 78%), m.p: 78-800C. 'H NMR (CDCl3, 400 MHz) 6: 0.89 (6H, m), 1.20-1.43
(20H, m), 1.49 (12H, m), 1.84 (4H, m), 3.32 (4H, m), 7.84 (1H, d, ] = 7.74 Hz), 8.06 (2H, t,] = 10.09 Hz),
8.21 (1H, d, ] = 9.26Hz), 8.30 (1H, d, ] = 9.26 Hz), 8.35 (1H, s), 9.11 (1H, d, ] = 7.51 Hz). 13C NMR
(CDCl3, 400 MHz) 6: 14.35, 22.91, 25.26, 29.56, 29.58, 29.80, 29.81, 30.13, 30.29, 32.14, 32.31, 32.37,
34.09, 34.11, 83.45, 122.77, 123.19, 124.87, 125.48, 125.64, 127.22, 127.92, 128.64, 128.68, 129.61,
131.50, 135.04, 135.35, 136.05, 137.74.

Synthesis of $3-4.

To an oven dried Schlenk flask under argon atmosphere, mixture of S1-2 (0.50 g, 0.86 mmol),
Pd(dppf)Cl; (50 mg) in 1,4-Dioxane (30 mL), potassium acetate (0.25 g, 2.58 mmol) and
bis(pinacolato)diboron (0.48 g, 1.90 mmol) were added and the resulting reaction mixture was
allowed to reflux overnight. And the reaction was quenched by addition of water (30 mL). It was then
extracted with DCM (3 x 20 mL), dried over MgSO0,, filtered and evaporated under vacuum to yield

crude product. It was then purified by column chromatography with hexane/ethyl acetate mixture as
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a solvent to give pure product S1-4 (0.36 g, 63%), m.p: 126-128°C. 'H NMR (CDCls, 400 MHz) &: 0.88
(6H, m), 1.18-1.42 (20H, m), 1.48 (24H, m), 1.84 (4H, m), 3.32 (4H, m), 8.30 (2H, d, ] = 9.5 Hz), 8.35
(2H, s), 9.11 (2H, d, ] = 9.5 Hz). 13C NMR (CDCl3, 400 MHz) &: 14.30, 22.85, 25.18, 29.53, 29.75, 30.29,
32.08,32.49,34.17,83.91, 123.18,125.39, 129.01, 130.99, 134.87, 135.11, 136.49.

The S3-4 (0.6 g, 0.884 mmol) and S3-1 (1.0 g, 1.94 mmol) were dissolved in anhydrous 1,2-
dimethoxyethane (DME) (60 mL) in an oven dried Schlenk flask under an argon atmosphere and the
flask was evacuated and filled with argon (3x). In another oven dried Schlenk flask a solution of
anhydrous sodium carbonate (5.0 g) in water (20 mL) was prepared under an argon atmosphere and
the flask was also evacuated and filled with argon (3x). To the DME solution, Pd(PPh3)4 (50 mg) and
the salt solution were added sequentially under a strict argon atmosphere followed by evacuation
and filling the flask with argon (3x) after each addition. The flask was covered with foil and the
solution was allowed to reflux overnight. The resulting solution was cooled to room temperature,
quenched with water (50 mL) and extracted with dichloromethane (3 x 25 mL). The organic layer
was dried over anhydrous magnesium sulfate, evaporated and dried under vacuum to afford crude
product. The crude product was purified by column chromatography using a hexanes/ethyl acetate
mixture to give the pure Pyrene3 (0.45g, 40%), m.p: 146-148°C. 1H NMR (CDCl3, 400 MHz) &: 0.77-
0.92 (18H, m), 1.14-1.60 (60H, m), 1.75-2.03 (12H, m), 3.21-3.50 (12H, m), 7.70-7.80 (4H, m), 7.88
(2H, d), 8.02 (2H, s), 8.04-8.87 (4H, m), 8.13-8.19 (6H, m), 8.37 (2H, d).13C NMR (CDCls, 400 MHz) &:
14.23, 14.25, 14.30, 22.79, 22.80, 22,87, 29.47, 29.48, 29.56, 29.65, 29.69, 29.76, 29.98, 30.02, 30.11,
31.98, 32.03, 32.07, 33.87, 33.90, 34.01, 122.80, 122.87, 124.86, 125.84, 125.91, 125.93, 126.04,
127.53, 128.63, 128.65, 128.82, 128.88, 128.95, 129.99, 130.33, 130.49, 136.10, 136.24, 136.27,
136.56,136.60, 136.62, 137.31.
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Scheme S5: Synthesis of Py4
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Synthesis of S5-1.

To the solution of pyrene2 (0.2 g, 0.24 mmol) in CHCl3 (20 mL) was added NBS (0.08 g, 0.48
mmol) and NH4NO3 (0.02 g, 0.02 mmol) under argon and the resulting reaction mixture was allowed
to stir at room temperature for overnight. Then the reaction was quenched by addition of water (30
mL) and it was extracted with DCM (3 x 20 mL). The combined organic layers were dried over MgSQ0s4,
filtered and evaporated under reduced pressure to give crude product which was further purified by
column chromatography using hexane and ethyl acetate mixture as eluent to afford pure S5-1 (0.15 g,
63%), m.p: 134-1359C. 1H NMR (CDCls, 400 MHz) 8: 0.76-0.90 (12H, m), 1.14-1.55 (40H, m), 1.70-
1.81 (4H, m), 1.87-1.98 (4H, m), 3.15-3.22 (4H, m), 3.37-3.45 (4H, m), 7.65 (2H, d, ] = 9.53 Hz), 7.96
(2H, d, ] = 9.53 Hz), 8.00 (2H, s), 8.12 (2H, s), 8.44 (2H, d, ] = 9.53 Hz), 8.52 (2H, d, ] = 9.53 Hz).13C
NMR (CDCl3, 400 MHz) &: 14.25, 14.29, 22.79, 22.85, 29.40, 29.53, 29.61, 29.71, 29.89, 30.06, 31.74,
31.99. 32.04, 32.09, 33.49, 33.92, 119.92, 122.65, 124.28, 125.29, 126.02, 127.06, 128.32, 128.44,
128.66, 128.69,130.82,131.35,136.48, 137.20, 138.13.

Synthesis of Py4.

The S5-1 (0.35 g, 0.24 mmol) and S3-3 (0.34 g, 0.61 mmol) were dissolved in anhydrous 1,2-
dimethoxyethane (DME) (60 mL) in an oven dried Schlenk flask under an argon atmosphere and the
flask was evacuated and filled with argon (3x). In another oven dried Schlenk flask a solution of
anhydrous sodium carbonate (5.0 g) in water (20 mL) was prepared under an argon atmosphere and
the flask was also evacuated and filled with argon (3x). To the DME solution, Pd(PPh3)4 (50 mg) and

the salt solution were added sequentially under a strict argon atmosphere followed by evacuation
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and filling the flask with argon (3x) after each addition. The flask was covered with foil and the
solution was allowed to reflux overnight. The resulting solution was cooled to room temperature,
quenched with water (50 mL) and extracted with dichloromethane (3 x 25 mL). The organic layer
was dried over anhydrous magnesium sulfate, evaporated and dried under vacuum. The crude
product was purified by column chromatography using a hexanes/ethyl acetate mixture to give the
pure Pyrene4 (0.2 g, 40%), m.p: 162-164°C. 1H NMR (CDCls, 400 MHz) 8: 0.77-0.94 (24H, m), 1.16-
1.61 (80H, m), 1.74-2.06 (16H, m), 3.23-3.51 (16H, m), 7.70-7.92 (8H, m), 8.01-8.10 (8H, m), 8.14-
8.21 (8H, m), 8.37 (2H, d).13C NMR (CDCl3, 400 MHz) 6: 14.25, 14.30, 22.80, 22,87, 29.49, 29.56,
29.67, 29.76, 29.99, 30.04, 30.11, 32.00, 32.03, 32.07, 33.93, 34.01, 122.82, 124.87, 125.84, 125.91,
125.95, 126.05, 127.54, 128.65, 128.82, 128.89, 128.97, 128.98, 130.00, 130.34, 130.51, 136.10,
136.27,136.30,136.33, 136.35, 136.40, 136.58, 136.61, 136.65, 137.33.

Scheme S6: Synthesis of Py5
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Synthesis of S6-1.

To the solution of pyrene3 (0.25 g, 0.2 mmol) in CHCI3 (30 mL) was added NBS (0.07 g, 0.4 mmol)
and NH4NO3 (0.02 g, 0.02 mmol) under argon and the resulting reaction mixture was allowed to stir
at room temperature for overnight. Then the reaction was quenched by addition of water (30 mL)
and it was extracted with DCM (3 x 20 mL). The combined organic layers were dried over MgSQ0s4,

filtered and evaporated under reduced pressure to give crude product which was further purified by
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column chromatography using hexane and ethyl acetate mixture as eluent to afford pure S5-1 (0.35 g,
77%). 'H NMR (CDCls, 400 MHz) 6: 0.72-0.94 (18H, m), 1.10-1.60 (60H, m), 1.70-2.03 (12H, m), 3.14-
3.51 (12H, m), 7.73 (4H, d), 7.95-8.17 (10H, m), 8.43-8.57 (4H, m). 13C NMR (CDCls, 400 MHz) &:
14.25, 14.31, 22.80, 22.87, 29.43, 29.48, 29.55, 29.65, 29.75, 29.93, 30.03, 30.09, 31.78, 31.99, 32.02,
32.07, 32.15, 33.56, 33.90, 33.98, 119.90, 122.62, 122.65, 123.00, 124.37, 125.38, 125.89, 126.00,
126.03, 126.13, 126.14, 126.16, 127.18, 128.40, 128.55, 128.67, 128.70, 128.81, 128.93, 130.47,
130.95,131.39, 136.01, 136.73, 136.92, 137.25, 137.30, 138.13, 138.14.

Synthesis of Py5

The S6-1 (0.3 g, 0.3 mmol) and S3-3 (0.41 g, 0.74 mmol) were dissolved in anhydrous 1,2-
dimethoxyethane (DME) (60 mL) in an oven dried Schlenk flask under an argon atmosphere and the
flask was evacuated and filled with argon (3x). In another oven dried Schlenk flask a solution of
anhydrous sodium carbonate (5.0 g) in water (20 mL) was prepared under an argon atmosphere and
the flask was also evacuated and filled with argon (3x). To the DME solution, Pd(PPhs)4 (50 mg) and
the salt solution were added sequentially under a strict argon atmosphere followed by evacuation
and filling the flask with argon (3x) after each addition. The flask was covered with foil and the
solution was allowed to reflux overnight. The resulting solution was cooled to room temperature,
quenched with water (50 mL) and extracted with dichloromethane (3 x 25 mL). The organic layer
was dried over anhydrous magnesium sulfate, evaporated and dried under vacuum. The crude
product was purified by column chromatography using a hexanes/ethyl acetate mixture to give the
pure Pyrene5 (0.09 g, 30%), m.p: 198-200°C. H NMR (CDCls, 400 MHz) &: 0.73-0.94 (30H, m), 1.09-
1.61 (100H, m), 1.70-2.07 (20H, m), 3.19-3.53 (20H, m), 7.68-7.78 (4H, m), 7.84-7.91 (4H, m), 7.99-
8.20 (20H, m), 8.33-8.41 (4H, m). 13C NMR (CDCls;, 400 MHz) &: 14.25, 14.30, 22.81, 22.87, 29.51,
29.56, 29.69, 29.76, 30.00, 30.06, 30.12, 32.01, 32.07, 33.96, 122.83, 122.85, 122.89, 122.90, 122.92,
122.94, 124.88,125.85,125.91, 125.97,125.98, 126.02, 126.07, 127.55, 128.66, 128.83, 128.90,
128.97, 129.01, 130.01, 130.36, 130.52, 136.11, 136.36 (broad), 136.60, 136.63, 136.63, 136.67,
136.69, 136.70, 137.35.
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NMR Spectroscopy

1H NMR spectrum of S1-1(anti) and S1-1(syn) in CDCl3
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1H NMR spectrum of S1-1(syn) in CDCl3
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1H NMR spectrum of S1-2 (syn) in CDCl3
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1H NMR spectrum of Py1 in CDCl3
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1H NMR spectrum of Py2 in CDCl3
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1H NMR spectrum of S3-1 in CDCl3
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1H NMR spectrum of S3-2 in CDCl3
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1H NMR spectrum of S3-3 in CDCI3
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1H NMR spectrum of S3-4 in CDCl3
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1H NMR spectrum of Py3 in CDCl3
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1H NMR spectrum of S4-1 in CDCI3
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1H NMR spectrum of Py4 in CDCl3
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1H NMR spectrum of S5-1 in CDCI3
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1H NMR spectrum of Py5 in CDCl3
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Figure S1. MALDI spectra of m-Py,
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X-ray crystallography

Figure S2. The ORTEP diagrams (50% probability) of Py;

Table S1. Crystal data and structure refinement for raj27q.

Identification code raj27q
Empirical formula Cs,Hyy
Formula weight 426.66
Temperature/K 100.00(10)
Crystal system monoclinic
Space group P2,/n
alA 7.75029(12)
b/A 34.4156(5)
c/A 9.25694(17)
a/° 90.00
Bl 94.6142(15)
y/° 90.00
Volume/A® 2461.11(7)
z 4
Peateg/cm’ 1.151
w/mm’’ 0.472
F(000) 936.0
Crystal size/mm” 0.7503 x 0.1022 x 0.0544
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Radiation CuKo (A=1.54184)

20 range for data collection/° 9.92 to 148.32
Index ranges 9<h<9,-42<k<42,-11<1<10
Reflections collected 23509

Independent reflections 4912 [Ryy = 0.0337, Rgjgma = 0.0216]

Data/restraints/parameters 4912/0/292

Goodness-of-fit on F? 1.071

Final R indexes [[>=2c (I)] R;=0.0403, wR, =0.1106
Final R indexes [all data] R; =0.0504, wR, = 0.1201

Largest diff. peak/hole / e A 0.28/-0.20

Figure S3. The ORTEP diagrams (50% probability) of m-Py,.

Table S2. Crystal data and structure refinement for raj27p.

Identification code raj27p
Empirical formula CesHgo
Formula weight 851.30
Temperature/K 99.9(2)
Crystal system monoclinic
Space group 12/a

a/A 16.3409(6)
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b/A 9.0662(3)
c/A 35.1804(13)
a/° 90.00

B/ 101.985(4)
y/° 90.00
Volume/A® 5098.3(3)

z 4

Peateg/cm’ 1.109
w/mm’’ 0.456
F(000) 1864.0

Crystal size/mm’

0.1 x 0.05 % 0.03

Radiation

CuKa (A= 1.54184)

20 range for data collection/°

10.08 to 148.38

Index ranges

-20<h<20,-11<k<11,-38<1<43

Reflections collected

23202

Independent reflections

5118 [Rijp; = 0.0379, Ryigma = 0.0267]

Data/restraints/parameters

5118/0/291

Goodness-of-fit on F>

1.023

Final R indexes [[>=2c (I)]

R; =0.0542, wR, =0.1530

Final R indexes [all data]

R; =0.0832, wR, =0.1822

Largest diff. peak/hole / ¢ A™

0.26/-0.19
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Synthesis of tert-butylated para-pyrenes

Scheme: Synthesis of 7,7'-di-tert-butyl-2,2'-bipyrene

2,7-di-tert-butylpyrene

dtbpy
Iry(COD);(OMe), Pd(PPh3),

tert-butyl chloride
o oy o e YO
o D UaVaw,
DCM 20°C
DME, reflux
Hexane, 80 °C MeOH, 80 °C

2-(tert-butyl)pyrene 7,7'-di-tert-butyl-2,2'-bipyrene

Synthesis of 2-(tert-butyl)pyrene and 2,7-di-tert-butylpyrene:

Both of compounds were prepared according to the published procedure: 1 A mixture of pyrene
(5 g 24.2 mmol) and 2-chloro-2-methylpropane (2.62 g, 3.23 mL, 29 mmol) was added in 40 mL of
CHzCl;at 0 °C and stirred for 15 min. Powdered anhydrous AICl;(3.62 g, 27.2 mmol)
was slowly added to a stirred solution. The reaction mixture was continuously stirred for 3 h at room
temperature, and then poured into a large excess of ice/water. The reaction mixture was extracted
with dichloromethane (2 x 50 mL). The combined organic extracts were washed by water and brine,
dried with anhydrous MgS04 and evaporated. The residue was crystallized from Methanol to give
pure 2,7-di-tert-butylpyrene as white color solid (1.02 g, 3.24 mmol, 11.2 % yield). M.p. 208-210
9C.1H NMR (400 MHz, CDCl3) 6 ppm 1.59 (s, 18H), 8.03 (s, 4H), 8.19 (s, 4H); 13C NMR (75 MHz, CDCl3)
S ppm 32.12,35.35,122.13,122.98, 127.55, 130.89, 148.68.

The mother liquor was concentrated under reduced pressure and dissolved in a minimal amount
of boiling hexanes (20 mL). The mixture was left to recrystallize overnight in the freezer. Filtration
offered the 2-tert-butylpyrene as a white solid (3.37 g, 13.1 mmol, 45.2 % yield). M.p. 111-113°C. 'H
NMR (400 MHz, CDCl3) 8 ppm 1.60 (s, 9H), 7.97 (t, ] = 8.0 Hz, 1H), 8.06 (s, 4H), 8.16 (d, ] = 8.0 Hz, 2H),
8.23 (s, 2H); 13C NMR (75 MHz, CDCl3) 6§ ppm 32.10, 35.38, 122.13, 122.35, 123.02, 124.74, 124.86,
125.63,127.38,127.70,131.09, 149.13

Synthesis of 2-(7-(tert-butyl)pyren-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (S-1):

Compound S-1 was prepared according to the published procedure: 1 2-tert-butyl-pyrene (3.0 g,
11.6 mmol, 1 equiv.), Bzpinz (1.55 g, 5.8 mmol, 0.5 equiv.), 4,4-di-tert-butyl-2,2-bipyridine (dtbpy)
(62 mg, 0.23 mmol, 2 mol %) and dry hexane (30 mL) were added to a dry round bottom flask under
Argon atmosphere. The catalyst Ir,(COD)2(0OMe)z] (78 mg, 0.11 mmol, 1 mol %) was then added and
the reaction set to 80 °C for 6 h. The reaction mixture was concentrated under reduced pressure and
purified by flash column chromatography (100 % hexanes to 75 % dichloromethane/hexanes) to
afford pure S-1 product as a white color solid (3.2 g, 8.35 mmol, 72 % yield). M.p. 218-219 °C. 'H
NMR (400 MHz, CDCls) 8 ppm 1.46 (s, 12H), 1.58 (s, 9H), 8.03 (d, J = 9.0 Hz, 2H), 8.07 (d,/ = 9.0 Hz,
2H), 8.20 (s, 2H), 8.60 (s, 2H); 13C NMR (75 MHz, CDCls) § ppm 25.15, 32.07, 35.42, 84.24, 122.24,
122.96,126.46,127.57,127.77,130.37,131.28, 131.60, 149.70.
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Synthesis of 2-Bromo-7-(tert-butyl)pyrene (S-2):

Compound S-2 was prepared according to the published procedure: 1 2-(7-(tert-butyl)pyrene-2-
yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (S-1) (1.62 g, 4.21 mmol, 1 equiv.) and dry methanol (48
mL) were added to a dry round bottom flask. The reaction mixture was heated to 80 °C to fully
dissolve S-1 and then CuBr; (2.83 g, 12.6 mmol, 3 equiv.) was added. The reaction was left to stir for
24 h at 80 °C. Then, the reaction mixture was concentrated under reduced pressure and purified by
flash column chromatography (100 % hexanes) to afford the desired product as white solid S-2 (1.04
g, 3.08 mmol, 73.2 %). M.p. 141-143 °C. 1H NMR (400 MHz, CDCl3) 8 ppm 1.59 (s, 9H), 7.94 (d, ] = 9.0
Hz, 2H), 8.07 (d, J = 9.0 Hz, 2H), 8.24 (s, 4H); 13C NMR (75 MHz, CDCl3) 8 ppm 32.05, 35.44, 119.65,
122.14,122.64,123.13,126.26,126.98, 128.94, 130.78, 132.64, 149.59.

Synthesis of 7,7'-di-tert-butyl-2,2'-bipyrene:

2-(7-(tert-butyl)pyren-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (S-1) (384 mg, 1.0 mmol), 2-
Bromo-7-(tert-butyl)pyrene (S-2) (337 mg, 1.0 mmol) and 20 mL of 1,2-dimethoxyethane were
placed in a 100 mL Schlenk flask under an argon atmosphere. The degassed Na,CO3 (1.06g in 10 mL
of H20) solution was added to the mixture, then catalyst Pd(PPhs3)s (35 mg) was also added to the
flask. The mixture was degassed three times and refluxed for 12 hour. After the reaction was finished,
the mixture was poured into 100 mL of water, then extracted with dichloromethane (2x50 mL). The
organic layer was dried over MgS04 and evaporated. The crude product was purified by flash column
chromatography (100% hexanes to 5% EtOAc/hexanes) to afford the desired product as a pure
white solid (289 mg, 0.56 mmol, 56%). M.p. 370-372 °C. 1H NMR (400 MHz, CDCl3): 1.62 (s, 18H),
8.12 (d, J = 9.0 Hz, 4H), 8.19 (d, ] = 9.0 Hz, 4H), 8.26 (s, 4H), 8.66 (s, 4H). 13C NMR (75 MHz, CDCl3):
32.13,35.45,122.61,123.00, 124.02, 124.54,127.63, 128.22,131.16, 131.70, 139.11, 149.30.

Scheme: Synthesis of 7,7'-di-tert-butyl-1,1"-bipyrene:?

B —
o

7,7'-di-tert-butyl-1,1'-bipyrene

6 tert-butyl chloride 6
O &

A mixture of 1,1'-bipyrene (0.8 g, 2 mmol, 1.0 eq) and 2-chloro-2-methylpropane (0.425 g, 0.5 mL,
4.4 mmol, 2.2 eq) was added in 20 mL of CH;Cl; at 0 °C and stirred for 15 min. Powdered anhydrous
AlCl3 (0.56 g, 4.2 mmol, 2.1 eq) was slowly added to a stirred solution. The reaction mixture was
continuously stirred for 3 h at room temperature, and then poured into a large excess of ice/water.
The reaction mixture was extracted with dichloromethane (2 x 20 mL). The combined organic
extracts were washed by water and brine, dried with anhydrous MgS0O4 and evaporated. The crude
product was purified by flash column chromatography (100% hexanes to 5% EtOAc/hexanes) to
afford the desired product as a yellow color solid (672 mg 1.31 mmol, 65%). M.p. 216-218 2C. 'H
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NMR (CDCl3): 1.59 (s, 18H), 7.61 (d, J = 9.2 Hz, 2H), 7.85 (d, ] = 9.2 Hz, 2H), 8.11-8.18 (m, 8H), 8.28 (d,
J=1.7 Hz, 2H), 8.33 (d, ] = 7.8 Hz, 2H). 13C NMR (CDCls): 32.08, 35.39, 122.45, 122.63, 123.17, 124.48,
124.84,125.88, 127.49, 127.84, 127.89,128.60, 129.98, 130.84, 130.96, 131.48, 136.33, 149.38.

1H NMR spectrum of 2-(tert-butyl)pyrene in CDCl3
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13C NMR spectrum of 2,7-di-tert-butylpyrene in CDCl3
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1H NMR spectrum of S-2 in CDCI3
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13C NMR spectrum of 7,7'-di-tert-butyl-2,2'-bipyrene in CDCl;
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Figure S5. Cyclic voltammograms and square waves of 2,7-tBu-pyrene, para-tBu-bipyrene, meta-tBu-bipyrene.

Table S3. Oxidation potentials of the tert-butylated pyrenes

Eoxi Eoxa
2,7-tBu-pyrene 0.83
para-tBu-bipyrene 0.82 0.95
meta-tBu-bipyrene 0.76 0.99
2-tBu-pyrene 0.84 1.0
T T T
1.0 | .

o
©
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Figure S6. Plot of the Experimental first (red), second (green), third (blue), forth (orange) and fifth (cyan) oxidation

potentials (V vs Fc¢/Fc’) of m-Py,, (n = 1-5) against cos[rt/(n+1)] trend.

Table S4. Experimental first, second, third, forth and fifth oxidation potentials (V vs Fc¢/Fc’) of Py, (n = 1-5).

n Eoxi Eoxa Eoxs Eoxa Eoxs
1 0.67

2 0.61 0.85

3 0.56 0.74 0.94

4 0.55 0.67 0.81 0.97

5 0.55 0.61 0.75 0.84 1.00
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S2. Generation of Py,,+° by redox titrations

The reproducible spectra of cation radicals of m-Py, in CH;Cl, at 22 2C were obtained by
quantitative redox titrations using three different aromatic oxidants, i.e. [THEO+**SbCl¢| (Ered1 = 0.67
V vs Fc/Fc*, Amax = 518 nm, €max = 7300 cmt M-1),3 [NAP**SbCle"] (Erear = 0.94 V vs Fc/Fc*, Amax = 672
nm, €max = 9300 cm! M-1)4-6 and ANT** (Erea1 = 0.53 V vs Fc/Fc*, Amax = 744 nm, €max = 23400 cm1 M-1)

obtained via redox titration with NAP+* (Figure S7).

NAP ANT

Figure S7. Chemical structures and names of three aromatic oxidants used in redox titrations.

Each redox titration experiment was carried out by an incremental addition of sub-stoichiometric
amounts of electron donor (m-Py,) to the solution of an oxidant cation radical (Ox**). The 1-e-
oxidation of m-Py, to m-Py,** and reduction of Ox**to Ox can be described by an equilibrium shown
ineq. 1.

Ox* + m-Py, 2 0x + m-Py,** (eq-1)

The redox titrations with two successive 1-e- oxidations involve multiple equilibria: one- and two-

electron redox reactions between the donor and oxidant (eqs. 2 and 3) and

comproportionation/disproportionation of D2*/D+** (eq. 4).

Kl
2
ox** + D 2 Ox+ D* (eq-2)
K,
ox** + D* 2 Ox + D?* (ea-3)
K
3 (eq. 4)

D* + D =2 2Dp*

Numerical deconvolution of the absorption spectrum at each increment (Figures S9-S22, left)
produced mole fractions of each species (Ox** and m-Py,* and/or m-Py,%*) against the added
equivalents of Py, (Figures S9-S22, right), confirming a 1:1 stoichiometry of each redox reaction. The
experimental points of mole fraction vs equivalent of added donor m-Py, were fitted by varying AG:

(= P~ EOX) and AGy, (= EXY - EPYm) 78

ox1 0x2 ox1
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Table S5. Values of AG; and AG}, obtained by fitting to the experimental mole fraction plots (Figures $9-S25).”*

ANT"+ m-Py, | THEO™+ m-Py, NAP" + m-Py,
n
AG, meV AG;, meV AG,, meV AG,, meV
1 65 30 -176 -
2 26 -116 -253 229
3 -4 -146 -266 169
4 -9 -144 - --
5 222 -131 - -
20 = ) 1.00 =
|
5= 0.75 =
§ 15 r _é
g 1.0 ,_‘,_*‘-’ 0.50 =
2 |l . o
| o
<os4 N A = .25
A A
0.0 = J\ J 0.00 =
T T T T T T
200 400 600 800 1000 0.0 0.3

Wavelength (nm)

. 0.9
Number of equivalents

Figure S8. Left: Spectral changes observed upon the reduction of 0.038 mM NAP™ in CH,Cl, (3 mL) by addition of
15-pL increments of 2.38 mM solution of ANT in CH,Cl,. Right: Plot of the mole fractions of NAP* (red) and ANT™*
(black) against the added equivalents of ANT. Symbols represent experimental points, while the solid lines show best-
fit to the experimental points using AG; =-1.3 eV.
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Figure S9. Left: Spectral changes observed upon the reduction of 0.012 mM THEO" in CH,Cl, (3 mL) by addition of
15-pL increments of 1.45 mM solution of Py, in CH,Cl,. Right: Plot of the mole fractions of THEO™ (red) and Py,
(black) against the added equivalents of Py;. Symbols represent experimental points, while the solid lines show best-fit

to the experimental points using AG; =30 meV.
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Figure S10. Left: Spectral changes observed upon the reduction of 0.031 mM THEO™ in CH,CI, (3 mL) by addition
of 15-pL increments of 0.86 mM solution of Py, in CH,Cl,. Right: Plot of the mole fractions of THEO™ (red) and
Py,"™ (black) against the added equivalents of Py,. Symbols represent experimental points, while the solid lines show

best-fit to the experimental points using AG; =-116 meV.
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Figure S11. Left: Spectral changes observed upon the reduction of 0.029 mM THEO™ in CH,CI, (3 mL) by addition
of 15-pL increments of 0.76 mM solution of Py; in CH,Cl,. Right: Plot of the mole fractions of THEO™ (red) and
Py;™ (black) against the added equivalents of Py;. Symbols represent experimental points, while the solid lines show
best-fit to the experimental points using AG; = -146 meV.
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Figure S12. Left: Spectral changes observed upon the reduction of 0.035 mM THEO™ in CH,CI, (3 mL) by addition
of 15-pL increments of 0.48 mM solution of Py, in CH,Cl,. Right: Plot of the mole fractions of THEO™ (red) and
Py," (black) against the added equivalents of Py,. Symbols represent experimental points, while the solid lines show
best-fit to the experimental points using AG; = -144 meV.
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Figure S13. Left: Spectral changes observed upon the reduction of 0.022 mM THEO™ in CH,Cl, (3 mL) by addition
of 15-pL increments of 0.41 mM solution of Pys in CH,Cl,. Right: Plot of the mole fractions of THEO™ (red) and
Pys™ (black) against the added equivalents of Pys. Symbols represent experimental points, while the solid lines show
best-fit to the experimental points using AG; =-131 meV.
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Figure S14. Left: Spectral changes observed upon the reduction of 0.0097 mM NAP*" in CH,Cl, (3 mL) by addition of
15-pL increments of 2.23 mM solution of Py; in CH,Cl,. Right: Plot of the mole fractions of NAP* (red) and Py,"
(black) against the added equivalents of Py;. Symbols represent experimental points, while the solid lines show best-fit

to the experimental points using AG; =-176 meV.
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Figure S15. Left: Spectral changes observed upon the reduction of 0.041 mM NAP* in CH,Cl, (3 mL) by addition of
15-uL increments of 1.39 mM solution of Py, in CH,Cl,. Right: Plot of the mole fractions of NAP* (red), Py,”
(black) and Py,*" (blue) against the added equivalents of Py,. Symbols represent experimental points, while the solid
lines show best-fit to the experimental points using AG; = -253 meV and AG; = 229 meV.
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Figure S16. Left: Spectral changes observed upon the reduction of 0.033 mM NAP* in CH,Cl, (3 mL) by addition of
15-pL increments of 1.18 mM solution of Py; in CH,Cl,. Right: Plot of the mole fractions of NAP* (red), Py;"
(black) and Py;*" (blue) against the added equivalents of Pys. Symbols represent experimental points, while the solid
lines show best-fit to the experimental points using AG; = -266 meV and AG; = 169 meV.
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Figure S17. Left: Spectral changes observed upon the reduction of 0.028 mM NAP* in CH,Cl, (3 mL) by addition of

15-pL increments of 0.60 mM solution of Py, in CH,Cl,. Right: Spectral changes observed upon the reduction of
0.032 mM NAP* in CH,Cl, (3 mL) by addition of 15-uL increments of 0.53 mM solution of Pys in CH,Cl,.
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Figure S18. Left: Spectral changes observed upon the reduction of 0.036 mM ANT" in CH,CI, (3 mL) by addition of
15-pL increments of 1.78 mM solution of Py; in CH,Cl,. Right: Plot of the mole fractions of ANT" (red) and Py,"
(black) against the added equivalents of Py;. Symbols represent experimental points, while the solid lines show best-fit
to the experimental points using AG; = 65 mV.
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Figure S19. Left: Spectral changes observed upon the reduction of 0.028 mM ANT" in CH,CI, (3 mL) by addition of
15-pL increments of 1.14 mM solution of Py, in CH,Cl,. Right: Plot of the mole fractions of ANT" (red) and Py,"
(black) against the added equivalents of Py;. Symbols represent experimental points, while the solid lines show best-fit
to the experimental points using AG; =26 mV.

0.8 - 1.00 =
Py;"
0.6 = £ 075
2 [}
2 =
o
g 0.4 = .50 -
20. L O.
o
2 @
< o
02~ =025~
4+
ANT
0.0 = 0.00 =
] ] ] ] ] ] ] ]
1000 2000 3000 00 25 50 75 100 125
Wavelength (nm) Number of equivalents

Figure S20. Left: Spectral changes observed upon the reduction of 0.029 mM ANT" in CH,CI, (3 mL) by addition of
15-pL increments of 0.74 mM solution of Py; in CH,Cl,. Right: Plot of the mole fractions of ANT" (red) and Py;"
(black) against the added equivalents of Pys. Symbols represent experimental points, while the solid lines show best-fit
to the experimental points using AG; = -4 mV.
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Figure S21. Left: Spectral changes observed upon the reduction of 0.046 mM ANT™ in CH,Cl, (3 mL) by addition of
15-pL increments of 0.44 mM solution of Py, in CH,Cl,. Right: Plot of the mole fractions of ANT" (red) and Py,"
(black) against the added equivalents of Py,. Symbols represent experimental points, while the solid lines show best-fit
to the experimental points using AG; =-9 mV.
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Figure S22. Left: Spectral changes observed upon the reduction of 0.035 mM ANT" in CH,Cl, (3 mL) by addition of
15-pL increments of 0.26 mM solution of Pys in CH,Cl,. Right: Plot of the mole fractions of ANT" (red) and Pys"
(black) against the added equivalents of Pys. Symbols represent experimental points, while the solid lines show best-fit
to the experimental points using AG; =-22 mV.
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Density functional theory calculations

Computational details

The electronic structure calculations were performed using B1LYP-40/6-31G(d)%10 level of
theory with 40% contribution of the Hartree-Fock exchange term1-15 as implemented in Gaussian 09
package, revision D.01.16 Solvent effects were included using the implicit integral equation formalism
polarizable continuum model (IEF-PCM)'7-21 with dichloromethane solvent parameters (¢ = 8.93).
Ultrafine Lebedev’s grid was used with 99 radial shells per atom and 590 angular points in each shell.
Tight cutoffs on forces and atomic displacement were used to determine convergence in geometry
optimization procedure. Harmonic vibrational frequency calculations were performed for the
optimized Py,/Py,* (n = 1-4) structures to confirm absence of imaginary frequencies. The transition
state of m-Pys** was confirmed by the presence of a single imaginary frequency (i549.6) and IRC

calculations?? that led to expected equilibrium geometries of m-Py,**.

For cation radicals, wavefunction stability tests23 were performed to ensure absence of solutions
with lower energy. The values of <S2> operator after spin annihilation were confirmed to be close to
the expectation value of 0.75. Unpaired spin density surface were obtained using isovalue of 0.001
a.u. Atomic charges were calculated using natural population analysis approach.z425 Calculations of
the first excited state of Py, and Py,** were performed using the time-dependent density functional

theory (TD-DFT) method.26-30
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S3. m-Py, in neutral and cation radical states

Table S6. Energies (v) and oscillator strength (fos.) of Sp—>S; transitions, oxidation energies (E.x;) of m-Py,,

energies (v) and oscillator strengths (f;c) of Dy—>D; transitions in m-Py,” calculated using (TD) BILYP-40/6-
31G(d)+PCM(CH,Cl,).

m-Py, absorption Sy—S; m-Py," absorption Dy—D, E v
oxl» €
n v, eV A, nm Jose v, eV A, nm Jose 1
1 3.78 328 0.571 1.54 807 0.000 5.14
2 3.48 356 1.030 0.59 2096 0.353 5.03
3 3.34 371 1.697 0.67 1861 0.466 4.98
4 3.29 377 2.400 0.62 2010 0.541 4.99
5 3.25 381 3.131 0.60 2081 0.626 4.99
6 3.23 383 3.846 0.59 2098 0.647 4.99
7 3.22 385 4.584 0.59 2093 0.665 4.99
A 3.6 M , , , , , BO.80 . . . . . . c . . . . .
y=-0.62x+3.79 075k 1 5.04 y=-0.21x+514 A
35 | R2=100 4 .70l ] R? =1.00
' 5.02 i
> °
© 34l 1° 0.65 |- . —%
5 3 0.60 fy oee 2500 .
133} 41 s055F s o
n Q (I |
N N 050 @ | 498
3.2 | °
0.45 ° e 4 4.96 ]
31 1 1 1 1 | 1 040 1 1 1 1 1 1 1 1 1 1 1 1
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Figure $23. Plots of Sy—S, excitation energies of m-Py, (A), Dy—D; excitation energies of m-Py," (B; blue: DFT,
black: experiment) and first oxidation energies E,y; of m-Py, against cos[sn/(n+1)] calculated using (TD) B1LYP-40/6-

31G(d)+PCM(CH,Cl,) level of theory.
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Figure S24. Oscillators strengths (fs) of Sp—>S; transitions in m-Py,, n = 1-7 (A) and Dy—D) transitions in m-Py,", n

=1-7(B)
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Figure S25. Correlation plot between experimental first oxidation potential Eqy (V vs Fc¢/Fc¢*) and first oxidation
energies Ey (eV) calculated at BILYP-40/6-31G(d)+PCM(CH,Cl,) level of theory.
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Figure S26. Per-unit barplot representations of HOMOs of neutral m-Py,, NPA spin densities and charges of m-Py,"

in ground state.

Table S7. Comparison of the oxidation-induced bond length changes in the tetraisopro
X-ray crystallography and from calculations using BILYP-40/6-31G(d)+PCM(CH,Cl,).

Q QU O S

~

DFT (TIP), pm
139.0
141.0
143.4
135.1
142.6
143.8

DFT (TIP*‘), pm
138.85
143.3
140.8
137.4
142.3
142.5

s

?lylpyrene (TIP) obtained from

A DFT, pm A X-Ray, pm
-0.15 -0.3
2.3 24
-2.6 -2.2
2.3 2.8
-0.3 -0.3
-1.3 -1.8
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Figure S27. Distribution of the oxidation-induced bond lengths and dihedral angle changes in m-Py,/m-Py,"
calculated using BILYP-40/6-31G(d)+PCM(CH,Cl,).

Table S8. Energy (electronic energy E, enthalpy H and free energy G) differences between transition state and
equilibrium structures of m-Py,™ and a value of the imaginary frequency of the transition state. Mode displacements

with the imaginary frequencies are represented by vectors below.

o, cm’! AE*, keal/mol  AHY, kcal/mol  AGH, keal/mol
1549.6 0.19 -1.48 -1.01
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S4. p-Py, in neutral and cation radical states

Table S9. Energies (v) and oscillator strength (fos.) of Sy—S; transitions, oxidation energies (E.;) of p-Py,, energies
(v) and oscillator strengths (fo) of Dy—D, transitions in p-Py," calculated using (TD) BILYP-40/6-

31G(d)+PCM(CH,CL).

p-Py, absorption Sy—S; p-Py," absorption Dy—D, EuioV
n v, eV A, nm Jose v, eV A, nm Jose
1 | 3.78 328 0.571 1.54 807 0.000 5.14
2 | 3.68 337 1.414 0.75 1648 0.004 5.15
3 ]3.63 341 2.389 0.72 1729 0.008 5.18
4 | 3.61 343 3.427 0.72 1733 0.005 5.18
5 | 3.60 344 4.381 5.18
A 39— T T T T T
2? i %ZO <02, para-Py, |
o 3.6 F e
@ 3.5 e
g,]l 3.4 i
33 F -
3.2 | e
3.1 ! ! ! ! !
0.0 0.2 04 06 0.8 1.0
cos(—=7)

Figure S28. Evolution of the Sy—S; transition energies in p-Py, and m-Py, against cos[wt/(n+1)] trend calculated using
TD-B1LYP-40/6-31G(d)+PCM(CH,Cl,).
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Figure $29. Isovalue plots of HOMOs (0.03 au) of neutral p-Py, and spin-densities (0.001 au) of p-Py,™ calculated
using BILYP-40/6-31G(d)+PCM(CH,Cl,).
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Theoretical Modeling

S5. Marcus-Hush two-state models of F,”, m-Py," and p-Py,"

To investigate the mechanism of hole stabilization in F»**, m-Py.,** and p-Py.** we performed the
computational scans, obtained as series of constrained optimizations with fixed interchromophoric
dihedral angle (¢ = 0°-90° at 5° increment) and subsequent single point TD-DFT calculation of the

excitation energy (v), as shown schematically in Figure S30B.32

class Il class I class |

class Il class Ill

[ ] o 0.00 0.50 1:00

cos(o)

Figure S30. (A) Robin-Day classification of the mixed-valence compounds. (B) A schematic plot of v against cos(¢).
Two distinct regions are separated by the crossover angle, where mechanism of hole delocalization changes from full
delocalization (class III) to partial delocalization (class 1)

As the electronic coupling Ha, scales linearly with cos(¢), the computed v follows a linear
dependence with cos(¢) in the range of angles where v = 2H., 2Hap > A (Figure S30B). While the
electronic coupling Ha, continues to decrease linearly with lowering of cos(¢), in case when 2Hap,
equals A, hole delocalization switches to a different regime with the v-vs-cos(¢) dependence that is
among various polynomials is best described by the quadratic function (Figure S30B). This switch in
the v/cos(¢) dependence corresponds to the change in the mechanism of hole delocalization from
full delocalization(class III) to partial delocalization (class II). Based on the Marcus-Hush two-state
model in case of 2Ha, < A, the energy v directly provides the value of reorganization energy, i.e. v =

233

Table S10. Linear and quadratic trends fitted to the data points from computational scans of m-Py,™ and F,"

Vabs = ZHab Vabs = A Hélbs eV 7\., eV
F," y=1.00x+0.25 | y=-0.69x>+0.12x+0.83 | 0.60 0.33
m-Py," y=1.01x-0.06 y=-03 1x> + 0.05x + 0.66 0.30 0.56
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S6. Application of multistate state model (MSM) to m-Py,"

Complete oxidation of the pyrene unit with coordinate x; leads to the structural distortions of this
unit and accumulation of the negative charge from the solvent around the unit. Then, with the
geometry of the wire and solvent arrangement being fixed, a variation of the reaction coordinate x in
the vicinity of the reorganized unit leads to the quadratic increase in energy, while at a larger
separation distance (i.e. x — x;) the energy reaches a finite value following the Coulomb law of the
electrostatic interaction.3¢ The diabatic state H;(x) can be represented as a bell-shaped continuous
function of the charge coordinate x using the composite quadratic/reciprocal dependence:3+

— )2 — x| <
Hix) = {Awl—(tm;lz xllf lij} |xxi|x_i|tz t
where 4 is the structural reorganization, A” is the energy of the completely separated hole and
reorganization, parameters t = m and a = 2At3 are defined by the continuity of H;(x) and its
first derivative. Parameter t defines a separation distance after which the interaction mechanism

switches from the short-range to the long-range interaction.

The Hamiltonian matrix can be represented as:

H;(x) Hy - 0 0
Hy Hy(x) — 0 0
H(x) = : : : :
0 0 o Hyg (%) Hap
0 0 e Hy  HG0

Hamiltonian matrices at various x were constructed using values Ha, = 0.33 eV and A = 0.56 eV
obtained from the computational scan, and A1*° = 3.5 eV obtained via empirical adjustment to
reproduce excitation energies.34 Numerical diagonalization of the Hamiltonian matrix H(x) for each x
results in the adiabatic potential energy surface with the lowest-energy surface G, (x) corresponding
to the ground state of Py,*. The minimum on the ground state surface G,(x) defines the position
Xmin Of the center of the hole distribution and the lowest energy eigenvalue at this point Gy (x;)
corresponds to the oxidation potential Eqx1 of Py,. The difference between two lowest eigenvalues at

point xmin provides the vertical excitation energy, i.e. AG(Xmin) = G1(Xmin)- Go(Xmin)-
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Figure S31. A: Plot of excitation energies of m-Py,"” and F,," from MSM

. B: Barplot representation of the hole of m-
Py, and F,” in the ground and vertically excited state from MSM.
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