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Section I. Theory 

Time course Model 

Consider a mixture of free proteins 𝑃"  and 𝑃# , with total concentrations 𝑃" $  and 𝑃# $  respectively. When 

hetero-bifunctional ligand L is added to the mixture, the reactions described in Scheme S1 (or Figure 1B) would occur. 
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Scheme S1 

Let 𝑃" , 𝑃#  be the concentrations of free proteins 1P  and 2P , 𝑃"𝐿 , 𝐿𝑃# 	𝑎𝑛𝑑	[𝑃"𝐿𝑃#]  be concentrations of 

ligand-bound form and hertero-dimerized ternary complex form of proteins, and 𝐿  be the free ligand concentration. 

The differential equations describing the model in Scheme S1 are: 
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   (S1) 

And law of mass conservation holds: 
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  (S2) 

The above equations can be combined to form a set of time course model if we start with two proteins and no 
ligand, in other words, at t=0 [L]=[P1L]=[LP2]=0. As the four reactions forms a circle, detailed balance principle 

applies to the model and 1 1 4 2 3 2 2 2 3 1 4 1[ ] [ [ ]k [] ]k P k P k kk k P P k− − − −= , which can be simplified to 3 2 4 1

2 3 1 4k
k k k k
k k k
− − − −= .  

 

Equilibrium state Model 

In accordance with the principle of detailed balance, when the system described by Scheme S1 and eqns. S1 reaches 

steady state and the concentration of each species in the mixture are approximately constant; it can be also derived that 

every step of the reactions in Scheme S1 is also in equilibrium, or in other words eqns. S2 hold. 
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Define dissociation constants 
2 3

31 2 4
1 41 2 3 4, , ,kk k k
k k k kK K K K−− − −= = = = , which satisfies the relationship: 31 24K K K K= . 

The cooperativity factor is defined as 1 2
3 4

K K
K Kα = = . We are interested the dependence of equilibrium concentrations 

on the initial (or total) concentrations of proteins and ligand ( 1 0[ ]P , 2 0[ ]P , 0[L] ) and kinetic constants 1K , 2K  and α . 

Equations (S4)-(S7) characterize the kinetic equilibrium, and equations (S8)-(S10) account for the mass balance of the 

proteins and the dimerization-inducing ligand respectively. 

 1 1 1[ ][ ] [ ]P L K PL=   (S4) 

 2 2 2[ ][ ] [ ]L P K LP=   (S5) 

 1
1 32 1 2 1 2[ ][ ] [ ] [ ]KP LP K PLP PLPα= =   (S6) 

 2
2 41 1 2 1 2[ ][ ] [ ] [ ]KPL P K PLP PLPα= =   (S7) 

 

 1 0 1 1 1 2[ ] [ ] [ ] [ ]P P PL PLP= + +   (S8) 

 2 20 1 22[ ] [ ] [ ] [ ]P P LP PLP= + +   (S9) 

 0 1 2 1 2[ ] [ ] [ ] [ ] [ ]L L PL LP PLP= + + +   (S10) 

Note that one of the first four equations is redundant. The rest six non-redundant equations constitute a set of quadratic 

equations of six variables, namely the equilibrium concentrations 𝑃" , 𝑃# , 𝑃"𝐿 , 𝐿𝑃# , 𝐿  and [𝑃"𝐿𝑃#], given total 

concentrations 𝐿 $, 𝑃" $, 𝑃# $ and parameters 𝐾", 𝐾#, 𝛼.  

Generally speaking, there are two possible approaches to derive the equilibrium state determined by a set of chemical 

reactions. The first one is to solve the set of differential equations, which are derived from chemical reaction schemes by 

law of mass action (e.g. eqns.(S1)), as a numerical initial value problem with, for instance Runge-Kutta method. The 

complexity of such method is 𝑂(𝑝2), where p is the chosen step-size and N is the number of equations involved. This is 

a general approach applicable for deriving steady state expressions by computationally simulating the chemical reactions, 

but is limited in its ability to provide analytical results owing to the difficulty in sampling a representative set of 

parameter space. The other one is to solve the system of multivariate quadratic (MQ) equations (e.g. eqns. (S4) to (S10)). 

However, solving systems of MQ equations is hard in general, and its associated MQ-problem is known to be 

NP-complete 1. With a small number of variables, in this case six, the equations can be numerically solved using 

MATLAB or other software.  
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Here, for the specific problem of ligand-induced hetero-dimerization, MQ equations (S4) to (S10) can be combined into 

a fifth-order polynomial equation. Solving roots of single variate polynomial is equivalent to finding the eigenvalues of 

the associated companion matrix, which can be solved with generalized schur decomposition (QZ) algorithm with 

complexity 𝑂(𝑁5), N being the order of polynomial 2. This approach reduces the time-complexity in computing steady 

state, and is conducive to providing an efficient least-square fitting algorithm to experimental data. In the next section, 

we combine the six-variable quadratic equations  (S4) to (S10) to a quintic equation of 𝐿  and provide the analytical 

expressions of the other five variables in the form of 𝐿 . 

Derivation of the Binding Polynomial. 

Eqs(S4)-(S5), (S8)-(S10) can be arranged to yield expression of equilibrium 1[ ]P , 2[ ]P , 1[ ]PL , 2[ ]LP  and 1 2[ ]PLP  

as a function of free inducer concentration L , total inducer concentration 0[ ]L  , total protein concentrations 1 0[ ]P , 

2 0[ ]P , and equilibrium parameters 1K , 2K  and cooperativity α . 
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  (S11) 

We next substitute expressions of 𝑃"𝐿 , 𝑃#  and 𝑃"𝐿𝑃#  from eqn.(S11) into Eq. (S6), and rearrange it to yield a 

quintic equation of 𝐿  (Eq.(S12) with coefficients written out in full). Hence the equilibrium concentrations of 1[ ]P , 

2[ ]P , 1[ ]PL , 2[ ]LP  and 1 2[ ]PLP  can be derived using expressions in equations(S11). 
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Maximum of induced ternary complex during titration of inducer. 

Some of the following results (eqs. S19, S20) have been previously obtained by Douglass et. al.3, here we provide 

derivation process for the completeness of the paper. 

Derivation-Part 1. 

In this section, we discuss the situation when the concentration of two proteins and inducer complex 1 2[ ]PLP reaches its 

maximum. Theoretically, the amount of total inducer necessary to produce the maximum amount of 1 2[ ]PLP can be 

derived with Eq.(S13). 

 1 2
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∂
=

∂
  (S13) 

 However, this expression cannot be easily obtained. To simplify the calculation, we tackle the problem through the 

observation that the concentration of inducer-bound proteins (e.g. 𝑃"𝐿 , [𝐿𝑃#]) would monotonically increase when the 

amount of inducer is increased ( 1 2
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solving Eq.(S13) is equivalent to solving Eq.(S14). 
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Now we are going to derive an implicit expression of the form 1 2 1([ ],[ ]) 0f PLP PL =  to solve Eq.(S14).  

Substituting [𝑃#] and [𝐿𝑃#] in Eq.(S9) with expressions: 
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Therefore, the first derivative of Eq.(S15) with respect to 1[ ]PL  can be simplified to yield expression Eq.(S16). 

Combined with Eq.(S14): 

2 1 2 1 1 2
2 2

1 1 0 1 2 1

[ ] [ ]
0
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−
+ =

− −   
Recall that 𝑃" $ = 𝑃" + 𝑃"𝐿 + [𝑃"𝐿𝑃#], thus 

 2 2
2 1 1 1[ ] [ ]K P K PL=   (S16) 

 

Derivation-Part 2. 

In summary, several interesting relations concerning the equilibrium concentrations of various species, when the induced 
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1 2[ ]PLP  is maximized, can be derived.  

1) Combining Eq.(S16) and Eq.(S4) ( 𝑃" 𝐿 = 𝐾"[𝑃"𝐿]), we know the free inducer equilibrium concentration when 

induced complex is maximized (in Eq.(S17)). Apparently, this variable is independent of the protein concentrations 

and the cooperativity factor.  

 
1 2[ ] 1 2[ ]

maxP LPL K K=   (S17) 

2) Further, an interesting relationship among monomer proteins and protein-inducer complexes can be obtained when 

1 2[ ]PLP  is maximized (Eq.(S18)). 
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The expression of 
1 20,[P ][ ]

maxLPL  obtained by Perelson4 is similar to Eq.(S17), due to their assumption that total 

amount of inducer is equivalent to the amount of free inducer. Obviously, the second term in Eq.(S19) accounts for 

the amount of inducers in the protein-bound form. This equation indicates that the protein-bound form of inducer can 

be ignored, or equivalently the assumption of free inducer being equal to the total inducer is valid, only when the 

protein concentrations 𝑃" $	𝑎𝑛𝑑	 𝑃# $  is significantly smaller than dissociation constants 𝐾"	𝑎𝑛𝑑	𝐾# . More 

importantly, Eq.(S19) implies the possibility to calculate the dissociation constants by varying protein concentrations 

and observe the amount of inducer necessary to produce maximum complex.  

4) The maximum amount of induced-complex 1 2 max[ ]PLP  can also be obtained. 

Substitute 1 0 1 2
1

1

1

2
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[ ] =

K + K
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+ K
L  into Eq.(S6) yields a quadratic equation: 
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 { }2
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where	 ( ) ( )2 2

1 2 3 4/ appK K K K Kα= =+ + 	

5) The equilibrium concentration of all other species when 1 2[ ]PLP  is maximized can be trivially obtained, with each 

expression presented below (Eq.(S21)). 
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Section II. Results and Discussion 

Effects of parameters on the response curve. 

 The bell-shaped response curve of [P1LP2] versus [L]0 is evaluated under various parametric conditions (Figure S3) 

as well as different concentrations of the proteins (Figures S4-S6). For simplicity, it is assumed that all quantities 

(namely [P1]0, [P2]0, K1, K2) share the same unit, e.g. nM, and unit notations are omitted in these Figures. 

Dependence on K1 and K2. Comparison of the 4 curves in each panel of Figure S3-S5 shows that if the magnitudes of K1 

and K2 are significantly different, the width of the bell-shaped response curve would notably increase. This is because 

when one of the proteins binds to the inducer with much higher affinity than the other (say K1<<K2), P1L is quickly 

(almost) saturated at low inducer concentration, while LP2 forms relatively slower at high inducer concentration.  

Dependence on α. The effect of different values of α  can also be generalized from Figures S3, where the proteins 

concentrations are comparable. When the system is non-cooperative, or α=1, the curves are symmetrical about the 

maximum (Figures S3A). With positively cooperative systems (α>1), the slope of the response curve is positive and 

steep when [L]0<[L]0, max, and is negative and shallow when [L]0>[L]0, max. Positive cooperativity postpones the reduction 

of [P1LP2] because the binding of P1 or P2 to LP2 or P1L is more favored that the binding of P1 or P2 to L. Accordingly, 

with negatively cooperative system (α<1), the curve is steeper when [L]0>[L]0, max. 

Dependence on [P1]0 and [P2]0. Further, in order to examine the system behavior when the two protein concentrations 

are drastically different, we regenerated the curves in Figure S3 using the same set of parametric range while assuming 

[P2]0 is in excess over [P1]0 (Figure S4) or [P1]0 is in excess over [P2]0 (Figure S5). One result is that for non-cooperative 

system (α=1, Figure S4A), the curve is unsymmetrical for small K2, unlike the curves with large K2. This is because [P2]0 

(200 units) is in excess over K2 (1 units), as previously pointed out by Douglass et. al.3. Further, examination of the 

corresponding curves in Figure S3, S4 and S5 shows that the bell-shaped response curve tends to be widened when the 

protein concentrations are very different, as compared with similar protein concentrations.  

[P1]0 and [P2] << K1 and K2. A special circumstance is when both of [P1]0 and [P2]0 are significantly smaller than K1 and 

K2 (Figure S6). Under this situation, the amount of hetero-dimer [P1LP2] is only a small fraction of [P1]0 or [P2]0 due to 

the exceedingly large dissociation constants. Yet, if the signal produced by the hetero-dimer is still detectable, for 

instance inside the cell where the dimerized receptors initiates a cascade of reactions which substantially amplifies the 

signal, the response curve can still be measured. The theoretically generated response curves in Figure S6 show that, 

unlike previously discussed in Figures S3-S5, all curves appear to be symmetrical about maximum despite the change in 

α or relative magnitude between K1 and K2. In fact, the consequence of the [P1]0, [P2]0 << K1, K2 is that [L]0,max can be 
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simplified to 𝐾"𝐾# (Eq. (20), and that the ligand is in great excess over both proteins, and [L]0 ≈ [L]. In this situation, 

the ligand-in-excess theory (initially derived by Perelson1) can be applied instead of the exact theory presented here. 

 

Simulation of the FKBP-rapamycin-FRB system with different K1. 

In the case of very tight binding, the protein concentrations used in experiments are usually much higher than 

dissociation constant. As shown in Figures S8C, S8D, when K1 is on the orders of 0.1~1 nM, the binding curves with 

different values of K1 become indistinguishable, suggesting that the concentration of P1 in the solution is much larger than 

the dissociation constant, K1. This may result in the inaccuracy for determining the tight binding constant. In order to 

further address the issue, we used the equation (4) to generate theoretically simulated data (each with 10% Gaussian 

noise), and then estimate the three parameters by fitting the data with our non-linear regression program. As shown in 

Figure S10, the data points for K1=0.3 nM and 3 nM are rather similar, hence the difference in the dissociation constant 

cannot be detected. However, the data points generated with K1 =20 nM or 50 nM are clearly discernable, therefore the 

p-values for K1 estimation in these cases are small and the estimations are relatively precise (Figures S10C, S10D). 

 

Theoretical test of the model with another system. 

To further validate the new method, we propose to test our model using theoretical simulation. We believe that the 

well-characterized induced PPI system, dimerization of FKBP and SH2 domain of Fyn induced by a bifunctional 

molecule SLFpYEEI 5, is appropriate for test for the following reasons. The reactions involved in this system have been 

quantitatively analyzed using fluorescence polarization and competitive inhibition where the parameters are estimated as: 

K1=12 nM, K2=1.16 µM, K3=60 nM and K4=6 µM. As these parameters are different from rapamycin, the system should 

constitute a satisfying test of our method. To avoid the circular argument, we used the [P1LP2] quintic polynomial 

presented in Douglass et. al.3 to generate theoretically simulated data (each with 10% Gaussian noise), and then analyze 

the simulated data by our program for determination of the three parameters (Figure S11).  

As previously stated, the choice of protein concentrations used in the experiment is critical for accurate estimation 

of parameters. When we simulate data with the same [P1]0 and [P2]0 concentrations as used in rapamycin system, the 

parameter estimation for both K4 and C are extremely inaccurate (Figure S11A). However, if we increase the [P2]0 

concentrations, non-linear fitting results in nicely overall fit and low p-values for all parameter estimations (Figure S11B). 

The reason for inaccuracy in Figure S11A is that, as the maximal level of hetero-dimer is controlled by both K3, K4 (see 

the following subsection) and the scaling factor C, thus neither can be accurately measured if both [P1]0 and [P2]0 are 

much smaller than Kapp.  
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Implications of the expressions of [L]0, max and [P1LP2]max. 

Here we further discuss two interesting properties of the bell-shaped response curve.  

 

1. The implication of expression of [L]0, max (Eq. S19):  

Most notably, the analytical expression for [L]0, max demonstrates that the amount of ligand necessary to produce the 

largest hetero-dimer is not subject to change in cooperativity α. It also shows that [L]0, max is directly proportional to both 

protein concentrations. Therefore, the knowledge of protein concentrations, which could be estimated through 

fluorescence labeling or immunoblotting, and [L]0, max, which could be estimated by maximal level of response curve, can 

be used to derive dissociation constants for in vivo experiments (Figure S12). For instance, for the same [P2]0, [L]0, max is 

linearly related to [P1]0 where the slope = 89
8:; 89

 and the intercept = 𝐾" +
8:

8:; 89
𝑃# $ (Eq. S19). 

 

2. The implication of expression of [P1LP2]max (Eq. S20): 

Interestingly, Eq. S20 resembles the expression of protein-protein complex concentration in a typical bimolecular 

interaction. It predicts that the maximal amount of heterodimer ([P1LP2]max) exhibits the same behavior as the [P1P2] in a 

bimolecular association, where Kapp = 𝐾5 + 𝐾<
#
 is the apparent dissociation constant. Therefore, Kapp can be 

estimated by fixing one of the protein concentrations, e.g. [P1]0, while changing [P2]0.  

When [P1]0 << Kapp, the relation between the signal [P2]0 is given by Eq. S23. 

 { }
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When [P2]0 << Kapp, the signal is given by Eq. S24: 

 1 0 2 0[ ] [ ]
app

Signal
K
C P P= ⋅   (S24) 

Therefore, changing [P2]0 only yields C/ Kapp, but not C or Kapp. This explains why the protein concentrations of Figure 

S11A did not yield accurate estimation of K4 and C, while those of Figure S11B results in high-confidence estimation of 

all parameters. 

 

The choice of protein concentrations during experimental design. 
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To sum up, we believe that the protein concentration choice is crucial in our method. There are two notes for the 

choice of protein concentrations: 

i. The protein concentrations should be on the similar order as or smaller than the primary dissociation constants 

K1, K2. 

ii. At least one of the protein concentrations should be on the similar order as or larger than the secondary 

dissociation constants K3, K4. 

It should be noted that these two rules are not stringent, and that protein concentrations can be one order of magnitude 

smaller or larger than the dissociation constants and the parameters can still be confidently estimated. We further note 

that the two rules above are deduced from general concerns for parameter estimation. In actual experiments, the 

limitations of experimental settings, for instance, the range of signal that can be accurately detected or the maximum 

protein concentration that is experimentally achievable, must also be taken into consideration.  

 

Finally, in order to arrive at confident estimation of parameter with fewer number of trials, researchers are recommended 

to use the script provided in our MATLAB program (simulate_data.m) to generate theoretical test data to determine if the 

parameter estimation would be good enough under certain experimental settings. 

 

Situations with ligand-induced conformal change. 

Ligand-induced conformal change of the receptor is quite often observed in nature. For the ligand-mediated 

mechanism, where ligand induced conformational change in receptors, and then the dimerization is still mediated through 

direct interaction of the ligand to both receptors (Scheme S2, below), our model is still applicable. 

 

 
Scheme S2. Ligand-induced conformational change in P1.  
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However, in the ‘receptor-mediated’ model (e.g. EGFR dimerization by EGF), dimerization is mediated entirely by 

receptor-receptor interactions after the ligand induction 6,7. In such cases, the ligand binds to their cognate receptor in 1:1 

complex, and association is mediated through the induced allosteric conformational change of receptors Such model 

would produce a saturation response curve to increasing ligand concentrations, instead of a bell-shaped response curve 

that is observed in our model, and our method would not be applicable to these situations. 
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Section III. Figures. 

 

Figure S1. Constructs and SDS-page of fusion proteins. (A) Constructs for FKBP-CyPet and FRB-YPet. (B) 

SDS-page for purified FKBP-CyPet and FRB-YPet. 

 

 

Figure S2. Emission spectra of fusion proteins. Black: PBS buffer (pH 7.4, with 2.5% EtOH), yellow: FRB-YPet (39 

nM), green: FKBP-CyPet (47.5 nM), light blue: FKBP-CyPet (47.5 nM) + FRB-YPet (39 nM), blue: FKBP-CyPet (47.5 

nM) + FRB-YPet (39 nM) + rapamycin (100 nM). All specimens were excited at the Donor excitation wavelength (λex(D) 

= 438 nm). 
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Figures S3-S6. The response curve for different values of α, K1, K2, [P1]0 and [P2]0. 

 

Figure S3. The response curve for different values of α and K1, K2 under fixed protein concentrations [P1]0 = [P2]0 = 10. 

All the theoretically generated hetero-dimer concentrations are normalized by total P1 concentration. The cooperativity 

factor is shown as: α=1 (A), α=0.1 (B), α=10 (C), α=100 (D). The dissociation constant K1=10 is fixed, while K2 is 

selected to range 4 orders of magnitudes: K2=1 (black), K2=10 (green), K2=100 (red), K2=1000 (blue) as indicated in 

each panel.  

 

Figure S4. The response curve for different values of α and K1, K2 under fixed protein concentrations [P1]0 = 10, [P2]0 = 

200. As the maximum amount of hetero-dimer [P1LP2] is limited by the smaller one of [P1]0 and [P2]0, all the theoretical 

lines generated in this figure are normalized by [P1]0. The coloring scheme is the same as in Figure S3. 



S-16 
	

 

Figure S5. The response curve for different values of α and K1, K2 under fixed protein concentrations [P1]0 = 200, [P2]0 

= 10. As the maximum amount of hetero-dimer [P1LP2] is limited by the smaller one of [P1]0 and [P2]0, all the theoretical 

lines generated in this figure are normalized by [P2]0. The coloring scheme is the same as in Figure S3. 

 

Figure S6. The response curve for different values of α and K1, K2 under fixed protein concentrations [P1]0 = [P2]0 = 0.5 

(<<K1, K2). The coloring scheme is the same as in Figure S3. 
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Figure S7. Experimental data before extraction of F0. Experimental data of rapamycin induced FKBP-CyPet and 

FRB-YPet before extraction of F0 (non-FRET fluorescence at λ530 without rapamycin).  

 

Figure S8. Analysis of parameter K1. (A-B) The FRET experimental data was analyzed by our method with (A) no 

restraints and (B) K1=0.3 nM fixed. (Figure 2C is shown again in (A) for side-to-side comparison.) The curves represent 

different protein concentrations: [FRB-Ypet]0 = 39 nM and [FKBP-CyPet]0 = 39.6 nM (red), 55.4 nM (green), 71.2 nM 

(blue). The fitting results of K2, K4 and C in (B) are similar to those in (A) (see Tables S1, S2 for detail). (C-D) 

Theoretically generated equilibrium concentrations of all species in the mixture assuming different K1. The equilibrium 

concentrations are shown as =:
=: >

 (green, dashed line), =9
=9 >

 (red, dashed line), =:?
=: >

 (green, dotted line), ?=9
=9 >

 (green, 

dashed line) and =:?=9
=9 >

 (black, solid line). All lines are generated with: K2 = 1.4 µM, K4 = 12 nM, [FKBP-CyPet]0 ([P1]0) 

= 55.4 nM, [FRB-YPet]0 ([P2]0) = 39 nM and K1 = 2 nM (C), K1 = 0.3 nM (D). 
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Figure S9. Influence of K2 on the shape of the curve. The two protein concentrations are assumed to be equal and K1 is 

assumed to be 0.3 nM for all theoretical lines. The figure shows percentage of hetero-dimer concentration for (A) α =100 

and (B) α =1000, and various level of K2 as indicated. This figure demonstrates that large K2 significantly slows down 

the decomposition process of P1LP2. Therefore, our experimental data of rapamycin induced FKBP-CyPet and FRB-YPet 

dimerization (Figure 2C) defies the possibility for a large K2 (e.g. >10 µM). 
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Figure S10. Analysis of theoretically simulated data with various K1 value. The protein concentrations [P2]0 = 39 nM 

and [P1]0 = 39.6 nM (red), 55.4 nM (green), 71.3 nM (blue). The equilibrium parameters are assumed as indicated in the 

figure. The simulated data points are labeled as crosses, and fitted curves are plotted. The statistics of non-linear fitting 

are provided below each figure. Unlike in the cases where K1=0.3 nM or 3 nM. the p-values for the cases where K1=20 

nM or 50 nM are relatively small, thus these estimations are more precise. 
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Figure S11. Simulation of SLFpYEEI induced FKBP and Fyn-SH2 dimerization and parameter estimation. The 

data points are theoretically generated with addition of 10% Gaussian noise. The equilibrium parameters are assumed as 

indicated in the figure. (A) Data simulated using [P2]0 = 39 nM and [P1]0 = 39.6 nM (red), 55.4 nM (green), 71.3 nM 

(blue), same as previously used in rapamycin experiment. (B) Data simulated using [FKBP]0 ([P1]0) = 50 nM, [Fyn]0 

([P2]0) = 2.0 µM (red), 4.0 µM (green) and 6.0 µM (blue). Both sets of data are then used to generate the parameter 

estimations with our program, with the resultant non-linear fitting statistics shown below. The parameter estimations in 

(B) are more reliable than in (A). 
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Figure S12. Theoretical experiment that shows an estimation of dissociation constants. For systems where the 

maximum of response curve is clearly discernible, dissociation constants can be directly estimated from Eq. S19. For the 

demonstration here, dissociation constants are assumed to be: K1 = 2 nM , K2 =20 nM. (A) Theoretical curves generated 

with [P2] = 0.1 µM, and different [P1] (black lines), with the positions where [P1LP2] is maximized indicated as blue 

crosses. Inset: linear fitting to Eq. S19. (B) Theoretical curves generated with [P1] = 0.1 µM and different [P2]. Both 

theoretical experiments yield the correct dissociation constants as previously defined. 
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Section IV. Tables 

Table S1. Statistics of parametric fitting to experimental data. 

Estimated Coefficients: 

          Estimate       SE        tStat       pValue   

            (nM)       _______    ______    __________ 

 

    K1    2.0589       1.9095    1.0783       0.28898 

    K2    1434.8       461.48     3.109     0.0039249 

    K4    12.358       6.2576    1.9749      0.056959 

    C     10.541      0.94649    11.137    1.5249e-12 

Number of observations: 36, Error degrees of freedom: 32 

Root Mean Squared Error: 8.72 

R-Squared: 0.991, Adjusted R-Squared 0.99 

F-statistic vs. zero model: 5.15e+03, p-value = 1.9e-44 

 
 

Table S2. Statistics of parametric fitting to experimental data while fixing K1=0.3 nM. 

Fixed Coefficients: 

K1=0.3 nM 

Estimated Coefficients: 

          Estimate      SE       tStat       pValue   

            (nM)      _______    ______    __________ 

 

    K2    1643.8       433.45    3.7923    0.00060427 

    K4     14.05       6.5253    2.1531      0.038713 

    C     10.722      0.96532    11.107    1.0951e-12 

Number of observations: 36, Error degrees of freedom: 33 

Root Mean Squared Error: 8.91 

R-Squared: 0.99, Adjusted R-Squared 0.989 

F-statistic vs. zero model: 6.57e+03, p-value = 7.05e-46 
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Table S3. Experimental non-linear fitting results compared with literature value. 

K1 

𝑛𝑀 

K2 

𝑛𝑀 

K3 

𝑛𝑀 

K4 

𝑛𝑀 

𝛼 source 

0.35 26,000 1.6×10D<* 12 2,170* Banaszynski et al. 

0.3 -  24  Tamura et al. 

2.1# 1,400 2.5×10D5* 12 117* This study 
*Calculated based on experimental results. #Low confidence parameter. 
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Notes for usage of MATLAB program. 

The MATLAB programs and their respective functions are listed below. 

  

MATLAB Program Function Corresponding Figures 

demo_fit_fret_data.m Analysis of FRET experiment Figures 2C, S8A 

demo_fit_fret_data_fixk1.m Analysis of FRET experiment Figure S8B 

change_K2.m Analyze response curves for different K2 Figures S3-S6, S9 

generate_theoretical_data.m Generate all equilibrium concentrations Figures 1C, S8C and S8D 

simulate_data.m Perform theoretical simulation Figure S10 

simulate_fkbp_fyn.m Simulation of SLFpYEEI system. Figure S11 

 


