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Table S1. Crystallographic details for structures of ligand 1, and complexes of yttrium
(2) and dysprosium (3).

Compound 1 2 3
Formula CeHsN205 C36H30N12030Y> C36H30N12030Dy>
M/ g mol” 186.13 1288.54 1435.72
T (K) 100 100 100

AIA 0.71073 0.71073 0.71073
Cryst syst Monoclinic Monoclinic Monoclinic
Space group Cc P2.c P2./c
alA 5.112(3) 9.2140(4) 9.249(2)
b/A 13.193(3) 29.2776(13) 29.630(3)
clA 22.059(3) 8.4568(4) 8.538(2)
a/® 90 90 90

B/° 92.561(5) 90.212(2) 90.503(4)
c/° 90 90 90

viA 1486.2(9) 2281.32(18) 2339.8(8)
z 8 2 2
p(gcm?®) 1.664 1.876 2.038

2 (mm™) 0.148 2.651 3.286
Uniq. reflect. 4670 55957 14144

R (int) 0.049 0.034 0.087
GOF on F~ 1.126 1.351 1.143
R[> 20(/)] 0.099 0.036 0.126
wR2 [l > 20(/)] 2 0.259 0.086 0.245

®R(F) = X|Fo| - [Fell/XIFo; WR(F?) = [Xw(Fo” — o) /EwF*"




Table S2.- Continuous Shape Measurements for the LnOg coordination environment.

Low values indicate high proximity to the analyzed ideal geometry.

OP-8 1 Dgn Octagon
HPY-8 2 C7y Heptagonal pyramid
HBPY-8 3 D¢n Hexagonal bipyramid
CU-8 4 Op, Cube
SAPR-8 5 D4g Square antiprism
TDD-8 6 Dyg Triangular dodecahedron
JGBF-8 7 Dyg Johnson gyrobifastigium J26
JETBPY-8 8 D3, Johnson elongated triangular bipyramid J14
JBTPR-8 9 C,y Biaugmented trigonal prism J50
BTPR-8 10 C,, Biaugmented trigonal prism
JSD-8 11 Dyg Snub diphenoid J84
TT-8 12 T4 Triakis tetrahedron
ETBPY-8 13 D3, Elongated trigonal bipyramid
OP-8 HPY-8 HB: Y- CU-8 | SAPR-8 | TDD-8 | JGBF-8
Comp 2 | 29.660 | 23.380 14.856 9.990 1.183 2.019 13.811
Comp 3 | 29.675 | 23.063 14.742 9.985 1.284 2.092 13.757
JETBPY-8 | JBTPR-8 | BTPR-8 JSD-8 TT-8 ETBPY-8
Comp 2 27.678 1.593 1.126 3.642 10.630 23.210
Comp 3 27.695 1.612 1.086 3.765 10.610 22.710




Table S3. Bond distances (A) for compounds 1 — 3.

1

2

3

C1A 02A 1.215(18)
C1A O1A 1.307(19)
C1A C2A 1.51(2)
C1B 02B 1.216(17)
C1B O1B 1.219(17)
C1B C2B 1.479(19)
C2A N1A 1.31(2)
C2A C3A 1.42(2)
C2B C3B 1.39(2)
C2B N1B 1.42(2)
C3A C4A 1.38(2)
C3B C4B 1.32(2)
C4A C5A 1.36(2)
C4B C5B 1.35(2)
C5A CBA 1.41(2)
C5A N2A 1.45(2)
C5B C6B 1.38(2)
C5B N2B 1.49(2)
C6A N1A 1.33(2)
C6B N1B 1.39(2)
N2A O3A 1.220(17)
N2A O4A 1.227(17)
N2B 03B 1.220(19)
N2B 04B 1.312(18)

Y1 O1B 2.2645(16)
Y1 01W 2.2877(18)
Y1 O1A 2.3068(17)
Y1 02W 2.3182(17)
Y1 01C 2.3889(17)
Y1 01C 2.4389(16)

Y1 N1C 2.517(2)

Y1 N1A 2.626(2)

Dy1 O1B 2.281(10)
Dy1 O1W 2.318(12)
Dy1 O1A 2.327(11)
Dy1 O2W 2.351(12)
Dy1 O1C 2.386(11)
Dy1 O1C 2.452(11)
Dy1 N1C 2.525(14)

Dy1 N1A 2.632(14)




Table S4. Bond angles (°) for compounds 1 - 3

1

2

3

0O2A C1A O1A 125.3(14
0O2A C1A C2A 122.2(13
O1A C1A C2A 112.4(13
02B C1B O1B 127.5(13

)
)
)
)
02B C1B C2B 116.9(12)
)

(12
O1B C1B C2B 115.7(12
N1A C2A C3A 124.0(15)
N1A C2A C1A 118.4(14)
C3A C2A C1A 117.4(14)
C3B C2B N1B 122.3(14)
C3B C2B C1B 119.4(13)
N1B C2B C1B 118.2(12)
C4A C3A C2A 116.4(15)
C4B C3B C2B 121.7(15)
C5A C4A C3A 118.5(15)
C3B C4B C5B 118.3(14)
C4A C5A CBA 122.1(15)
C4A C5A N2A 119.6(14)
C6A C5A N2A 118.3(15)
C4B C5B C6B 122.1(14)
C4B C5B N2B 116.8(13)
C6B C5B N2B 121.2(14)
N1A CBA C5A 118.7(15)
C5B C6B N1B 122.4(15)
C2A N1A CBA 120.2(14)
C6B N1B C2B 113.2(14)
O3A N2A O4A 121.2(13)
O3A N2A C5A 119.0(13)

O1B Y1 O1W 81.37(6)
0O1B Y1 O1A 137.68(6)
O1W Y1 O1A 79.84(6)
O1B Y1 O2W 75.94(6)
O1W Y1 O2W 120.57(6)
O1A Y1 O2W 145.55(6)
0O1B Y1 O1C 133.43(6)
O1W Y1 O1C 80.30(6)
O1A Y1 O1C 79.64(6)
0O2W Y1 O1C 77.40(6)
0O1B Y1 O1C 139.97(6)
O1W Y1 0O1C 138.33(6)
O1A Y1 O1C 70.31(6)
0O2W Y1 O1C 77.09(6)
01C Y1 O1C 66.50(7)
O1B Y1 N1C 82.29(6)
O1W Y1 N1C 146.60(6)
O1A Y1 N1C 93.25(6)
O2W Y1 N1C 82.94(6)
0O1C Y1 N1C 130.94(6)
0O1C Y1 N1C 65.45(6)
O1B Y1 N1A 74.21(6)
O1W Y1 N1A 76.59(6)
O1A Y1 N1A 64.69(6)
O2W Y1 N1A 142.46(6)
0O1C Y1 N1A 140.14(6)
0O1C Y1 N1A 113.53(6)
N1C Y1 N1A 71.00(6)

O1B Dy1 O1W 81.1(4)
O1B Dy1 O1A 137.3(4)
O1W Dy1 O1A 79.5(4)
O1B Dy1 O2W 75.8(4)
O1W Dy1 O2W 121.1(5)
O1A Dy1 O2W 146.0(4)
01B Dy1 O1C 134.0(4)
O1W Dy1 O1C 81.7(4)
O1A Dy1 O1C 79.8(4)
O2W Dy1 O1C 77.3(4)
01B Dy1 O1C 139.8(4)
O1W Dy1 O1C 138.7(4)
O1A Dy1 O1C 70.9(4)
02W Dy1 O1C 76.9(4)
01C Dy1 O1C 65.5(5)
O1B Dy1 N1C 83.2(4)
O1W Dy1 N1C 146.2(5)
O1A Dy1 N1C 92.4(5)
02W Dy1 N1C 83.2(5)
01C Dy1 N1C 129.4(4)
01C Dy1 N1C 64.8(4)
O1B Dy1 N1A 74.5(4)
O1W Dy1 N1A 76.0(4)
O1A Dy1 N1A 64.0(4)
02W Dy1 N1A 142.5(4)
01C Dy1 N1A 140.1(4)
01C Dy1 N1A 113.6(4)
N1C Dy1 N1A 71.0(5)
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Figure S1. "H-NMR (500.13 MHz, DMSO-ds) spectrum of complex 2.
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Figure S2. "C-NMR (125.76 MHz, DMSO-d;) spectrum of complex 2.
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Figure S3. C-NMR (125.76 MHz, DMSO-ds) and DEPT-135 spectra of complex 2.
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Figure S4. 'H,"*C gHMBC spectrum of complex 2.
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Figure S5. Expanded 'H,">C gHMBC spectrum of complex 2.
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Figure S6. 'H-NMR (500.13 MHz, DMSO-d;) spectrum of complex 3.
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Figure S7. "H-NMR (500.13 MHz, DMSO-ds) spectrum of 5-nitropicolinic acid.
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Figure S8. C-NMR (125. 76 MHz, DMSO-d;) spectrum of 5-nitropicolinic acid
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Figure S9. Section of the 'H, "N gHMBC 2D NMR spectrum acquired in a 500 MHz
spectrometer for a 180 mM sample of ligand 1 in DMSO-d; at 295 K. Complete data set
was acquired in 4 h 33 min for 160-F1 series with a preparation delay optimized for a 7
Hz coupling constant and 80 of number of scans. The gradient ratio was calculated

according to the y values and set to 70:30:50.1.



8(8%Y) = 43.8 ppm

c)MMNuMWWwWNMWWWWWWWNWW
b)WMWMWWVWWWW

a)
T T T T T T T T T
200 150 100 50 0 -50 -100 -150 -200
-0,05 0,15 0,35 0,55 0,75 0,95
4] ‘"‘\‘,:171_.,,1_‘
-0,5 \\ ~ ~-—, Recta 1@9.46
" um“"’%ﬁ\‘{ : —#— Recta 2@8.74
_ \ o
< \ - Recta 3@8.29
g 15 Recta 4@2.52
2 \ Recta 5@2.11
<
-2,5 =
-3
-3,5

G2 (a.u.)

Figure S10. Top: a) 1D ¥Y NMR spectrum (24.5 MHz) for a saturated (20 mM)
sample of complex 2 in DMSO-d; at 295 K (spectral window 12255 Hz). Complete data

set was acquired in 61h with repetition delay of 20s, an inverse-gated sequence and a
hard pulse of 30° (7.5 ps); b) 1D ¥Y NMR spectrum after elimination of the first 8
points of the FID before FT (with backwards linear prediction); c) 1D ¥Y NMR

spectrum after elimination of the first 16 points of the FID before FT (with backwards

linear prediction). Bottom: Stejskal-Tanner plots from 'H PGSE diffusion experiments

in DMSO-d at room temperature, using the stimulated echo sequence, of ligand 1 at 60

mM. The solid lines represent linear least-squares fits to the experimental data. Yellow

and blue lines correspond to the attenuation of H,O and DMSO, respectively.
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Figure S11. Temperature dependence of the ymT product for compound 3 in the
presence of an external magnetic field H= 0.1 T (yy is the molar susceptibility per Dy’
atom).
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Modified Stokes-Einstein equation: Size' and form® factors. The equations that
should be considered are summarized below.

6
D= kT c(rsm) = - 2234
c (e, ) f5 (@, b)nT 1+0.695 (%)
__height a L — 0312 0.565 0.1
P= Width b~ ¢ y=03lat =t e
.
2p“\3
£ = (T) VOlumesphere = VOlumecylinder
° In(p) +v
w3 TpZ 3(22
Szhere = Cy:nder L ¢cylinder = ¢sphere ﬁ

In order to calculate these factors we have executed a recursive algorithm. The radius
(rg) of DMSO employed was set to 1.56 A. The c coefficient obtained was 5.833 and
the factor shape fy(a,b) deduced was 1.03. The semiaxis of the cylinder were 7.77 and
4.73 A for a and b, respectively. Both factors gave us a hydrodynamic radius for
complex 2 equal to 6.5 A.

The programmed code is:

%$%Chen and form calculation
= 1.38065*10"(-23); %Boltzmann constant
= 294; % Temperature (K)
h = 0.002077; %Viscosity value (k/m2)
DDMSO = 6.655*10" (-10) ; % Diffusion coefficient of DMSO
rHDMSO = k*T/ (6*pi*h*DDMSO); % rH of DMSO
D2 = 1.593*%107(-10); % Diffusion coefficient of 2
rH2 = 2*k*T/(6*pi*h*D2); % rh of 2
a = 19;
b =11;
p = a/b; % Relation among height and width
gamma = 0.312+0.565/p+0.1/p"2;
fs = (2*p"2/3)"(1/3)/ (log(p) +tgamma); % Cylinder approximation;
N = 20; % N iteration
% Recursive algorithm
for 1 = 1:N
C(i) = 6/(14+0.695* (rHDMSO/rH2) ~2.234)
rH2 = k*T/(C(i)*fs*pi*h*D2);
end

H o~
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Figure S14. ESI-MS spectrum for complex 2.
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Figure S15. Experimental and calculated ESI-MS spectra for the molecular ion of
complex 2.
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Figure S17. Experimental and calculated ESI-MS spectra for the molecular ion of
complex 3.
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Figure S18. IR (KBr) spectrum of the yttrium complex 2.
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Figure S19. IR (KBr) spectrum of the dysprosium complex 3.



As can be seen in both spectra, after coordination to lanthanide ions the bands
corresponding to the C=0 stretching vibrations (at around 1700 and 1730 cm™ for 5-
nitropicolinic acid, see http://webbook.nist.gov/cgi/inchi?ID=C30651242&Mask=80)
move to lower wavenumbers (below 1664-1666 cm™), as expected. The assignment of
the bands found in the 1666-1534 cm™ range and the identification of their relation with
the different coordination modes of the carboxylate groups is not easy to do due to the
diverse origin of the bands that appear in this region (C=0 stretching, N-O asymmetric
stretching of the nitro group and aromatic C=C stretching). In both spectra, the most
intense band at 1348-1349 cm™ comes from the symmetric N-O stretching of the nitro

group.
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