Sulfate-Rich Metal-Organic Framework for High Efficiency and Selective Removal of Barium from Nuclear Wastewater

Chufan Kang,† Yaguang Peng,† Yuanzhe Tang,† Hongliang Huang,*,†,‡ and Chongli Zhong†,‡,§

†State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China

‡State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China

§Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing 100029, China

Hongliang Huang, e-mail: huanghl@mail.buct.edu.cn
Content

1. Structures of MOFs.

2. Elemental analysis of Zr-BDC-NH$_2$-SO$_4$.

3. TGA plots of Zr-BDC-NH$_2$-SO$_4$.

5. Adsorption isotherm data fitting.

7. SEM image of Zr-BDC-NH$_2$-SO$_4$ after Ba$^{2+}$ adsorption.

8. N$_2$ adsorption-desorption isotherms of Zr-BDC-NH$_2$-SO$_4$ before and after gamma irradiated.

9. XRD pattern of Zr-BDC-NH$_2$-SO$_4$ after soaking in HCl solution.

10. Zeta potential of Zr-BDC-NH$_2$-SO$_4$ before and after soaked in barium solution.

11. Element molar ratio in Ba$^{2+}$ loading samples at various temperatures.

12. Elemental analysis of Zr-BDC-NH$_2$-SO$_4$ after Ba$^{2+}$ adsorption.
1. Structures of MOFs.

Figure S1. Structures of Zr-BDC-NH$_2$-SO$_4$ (a) and MOF-808-SO$_4$ (b). Color code: C, black gray; O, red; H, white; S, yellow; N, ultramarine blue; Zr, cyan.

2. Elemental analysis of Zr-BDC-NH$_2$-SO$_4$.

Table S1. Elemental analysis of Zr-BDC-NH$_2$-SO$_4$.

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>N</th>
<th>H</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21.16</td>
<td>2.31</td>
<td>2.78</td>
<td>5.98</td>
</tr>
</tbody>
</table>

3. TGA plots of Zr-BDC-NH$_2$-SO$_4$.

Figure S2. TGA spectra of Zr-BDC-NH$_2$-SO$_4$.

Adsorption kinetics data fitting was carried out using the two models follows:

Pseudo-first-order model: \(\ln(q_e - q_t) = \ln q_e - k_1 t \) \hspace{1cm} (S1)

Pseudo-second-order model: \(\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e} \) \hspace{1cm} (S2)

where \(q_e \) (mg g\(^{-1}\)) is the equilibrium adsorption capacity, \(q_t \) (mg g\(^{-1}\)) is the adsorption capacity at time \(t \) (min), \(k_1 \) (min\(^{-1}\)) is the rate constant of the pseudo-first-order model and \(k_2 \) (g min\(^{-1}\) mg\(^{-1}\)) is the rate constant of the pseudo-second-order model.

![Figure S3](image)

Figure S3. Pseudo-first-order model (a) and pseudo-second-order model (b) linearized plots of the adsorption of barium on Zr-BDC-NH\(_2\)-SO\(_4\).

Table S2. Kinetic parameters of the adsorption of barium on Zr-BDC-NH\(_2\)-SO\(_4\).

<table>
<thead>
<tr>
<th></th>
<th>Pseudo-first-order model</th>
<th>pseudo-second-order model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_e) (mg g(^{-1}))</td>
<td>2.609</td>
<td>7.282</td>
</tr>
<tr>
<td>(k_1) (min(^{-1}))</td>
<td>0.014</td>
<td>0.021</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.959</td>
<td>0.999</td>
</tr>
</tbody>
</table>

5. Adsorption isotherm data fitting.

Adsorption isotherms data fitting was carried out using the two models follows:

The Langmuir equation: \(\frac{c_e}{q_e} = \frac{1}{q_m k_L} + \frac{c_e}{q_m} \) \hspace{1cm} (S3)
The Freundlich equation:
\[\ln q_e = \ln k_F + \frac{1}{n} \ln c_e \]

(S4)

where \(c_e \) (mg L\(^{-1}\)) is the equilibrium concentration, \(q_e \) (mg g\(^{-1}\)) is the amount adsorbed on the adsorbent at equilibrium, \(q_m \) (mg g\(^{-1}\)) is the adsorption capacity for Langmuir isotherms, \(k_L \) is the Langmuir constant, \(k_F \) is the Freundlich constant and \(n \) is an empirical parameter.

Figure S4. Langmuir isotherm model (a) and Freundlich isotherms model (b) linearized plots of the adsorption of barium on Zr-BDC-NH\(_2\)-SO\(_4\).

Table S3. Adsorption isotherm parameters of the adsorption of barium on Zr-BDC-NH\(_2\)-SO\(_4\).

<table>
<thead>
<tr>
<th></th>
<th>Langmuir isotherm model</th>
<th>Freundlich isotherm model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_m) (mg g(^{-1}))</td>
<td>181.8</td>
<td>k(_F) (mg g(^{-1}))</td>
</tr>
<tr>
<td>(k_L) (L mg(^{-1}))</td>
<td>0.08122</td>
<td>n</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.99875</td>
<td>(R^2)</td>
</tr>
</tbody>
</table>

![Barium removal efficiency](image)

Figure S5. Removal efficiency for barium of Zr-BDC-NH$_2$-SO$_4$ and Na$_2$SO$_4$, initial concentration= 10 mg L$^{-1}$.

7. SEM image of Zr-BDC-NH$_2$-SO$_4$ after Ba$^{2+}$ adsorption.

![SEM image](image)

Figure S6. SEM image of Zr-BDC-NH$_2$-SO$_4$ after Ba$^{2+}$ adsorption.
8. N_2 adsorption-desorption isotherms of Zr-BDC-NH$_2$-SO$_4$ before and after gamma irradiated.

![Graph showing adsorption-desorption isotherms](image)

Figure S7. N_2 adsorption-desorption isotherms of Zr-BDC-NH$_2$-SO$_4$ before and after gamma irradiated.

9. XRD pattern of Zr-BDC-NH$_2$-SO$_4$ after soaking in HCl solution.

![XRD pattern graph](image)

Figure S8. XRD pattern of Zr-BDC-NH$_2$-SO$_4$ after soaking in HCl solution (pH=1).
10. Zeta potential of Zr-BDC-NH$_2$-SO$_4$ before and after soaked in barium solution.

Table S4. Zeta potential of samples at natural pH.

<table>
<thead>
<tr>
<th></th>
<th>Before adsorption</th>
<th>After adsorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeta potential</td>
<td>18.3 mV</td>
<td>21.3 mV</td>
</tr>
</tbody>
</table>

11. Element molar ratio in Ba$^{2+}$ loading samples at various temperatures.

Table S5. Element molar ratio in samples after saturated adsorption.

<table>
<thead>
<tr>
<th>T (K)</th>
<th>Zr/Ba</th>
</tr>
</thead>
<tbody>
<tr>
<td>303</td>
<td>4.8</td>
</tr>
<tr>
<td>318</td>
<td>4.3</td>
</tr>
<tr>
<td>333</td>
<td>3.2</td>
</tr>
</tbody>
</table>

12. Elemental analysis of Zr-BDC-NH$_2$-SO$_4$ after Ba$^{2+}$ adsorption.

Table S6. Elemental analysis of Zr-BDC-NH$_2$-SO$_4$ after Ba$^{2+}$ adsorption.

<table>
<thead>
<tr>
<th>C</th>
<th>N</th>
<th>H</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.18</td>
<td>1.86</td>
<td>2.27</td>
<td>4.82</td>
</tr>
</tbody>
</table>