Fast Food, Snacking and Health-related Quality of Life among Overweight and Obese Primary School Children of MyBFF@school Intervention Program

Zahari Ishak1*, Low Suet Fin2, Wan Abdul Hakim Wan Ibrahim1, Abqariyah Yahya3, Fuziah Md. Zain4, Rusidah Selamat5, Muhammad Yazid Jalaludin6, and Abdul Halim Mokhtar7

Abstract

This study aimed to elucidate the relationship between fast foods and snacks consumption with the health-related quality of life (HRQOL) among 1138 overweight and obese primary school children with mean(SD) age of 9.9(0.9) years old. Data was collected at baseline in which the frequency of fast food consumption (FFC) and snacking in the past week were measured using a pre-tested nutritional knowledge, attitude and practice questionnaire whereas the HRQOL was measured using the KINDL® questionnaire. Spearman’s rank order correlation found significant negative association between FFC and emotional well-being (r_s = -0.066, p<.05). Significant negative associations were also observed between snacking frequency with physical well-being (r_s = -0.071, p<.05) and emotional well-being (r_s = -0.073, p<.05). The findings from this study suggest that the physical well-being and emotional well-being of overweight and obese children could be attributed to the FFC and snacking. Therefore, these type of foods should not be encouraged to be included in children’s diet.

Keywords

childhood obesity, emotional well-being, health-related quality of life, physical well-being, snacking and fast food consumption

* Correspondence: irahaz@um.edu.my
1Department of Educational Psychology and Counselling, Faculty of Education, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Road User Behavioural Change Research Centre, Malaysian Institute of Road Safety Research, ASEAN Road Safety Centre, 43000 Kajang, Malaysia
3Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
4Department of Paediatrics, Putrajaya Hospital, Ministry of Health Malaysia, 62250 Putrajaya, Malaysia
5Nutrition Division, Ministry of Health Malaysia, 62590, Putrajaya, Malaysia
6Department of Paediatrics, Faculty of Medicine, University of Malaya, 59100 Kuala Lumpur, Malaysia
7Unit of Sports Medicine, Faculty of Medicine, University of Malaya, 59100 Kuala Lumpur, Malaysia
Introduction

Trans fatty acids are recommended to be taken in as low quantity as possible due to their effects on plasma lipids and cardiovascular disease (Aranceta & Pérez-Rodrigo, 2012). In addition, it can increase the level of LDL cholesterol level, lower HDL cholesterol level and also increases risk of depression as well as various cancers (Hu et al., 2011; Mensink & Katan, 1990; Sánchez-Villegas et al., 2011). Therefore, consuming fast food could bring adverse health effects as a study has found that fast food from popular fast food restaurants in 20 countries contain a high level of industrially produced trans fatty acid (Steen Stender, Dyerberg, & Astrup, 2006). Moreover, the large portion size of fast foods that are generally densely packed with high amount of energy would cause overconsumption of daily calories needed which often leads to many health issues (S Stender, Dyerberg, & Astrup, 2007). Hence, consuming fast foods should be avoided especially when they are also found to be potentially addictive (K. Garber & H. Lustig, 2011).

High snacking frequency is associated with greater risk of being overweight and developing abdominal obesity in children (Murakami & Livingstone, 2016). A study among 9131 children and adolescents in Canada found that 63% of them consumed after-school snack in which the most frequently consumed snacks might have high density of energy and poor nutritional value such as cookies and sweets (Gilbert, Miller, Olson, & St-Pierre, 2012). Moreover, children in US were also found to snack more frequently than in the past with 27% of daily energy intake coming from the snacks (Piernas & Popkin, 2010). In addition, apart from fast food, snacks such as bread, cakes, French fries, candies and crackers also contain a wide range of trans fatty acid (Elias & Innis, 2002). These foods, in addition to ice cream, chocolate and sweet snacks are all classified as ultra-processed foods which are lacking in micronutrients as they were made from processed foods as ingredients together with salt, preservatives and also additives (Monteiro, 2009). Thus, the increase in snacking frequency among children is a cause for concern as it could bring detrimental effects to the children.

Prospective studies usually focus on investigating the direct effects of frequent snacking and fast food consumption on the physical health. Impairment of the physical health could also affect health-related quality of life. However, studies on their association with health-related quality of life (HRQOL) are limited especially in obese children. The major purpose of this study is to investigate the association of HRQOL with frequency of fast food consumption and snacking frequency among overweight and obese children. Shedding light on this association could be crucial in public health as obese children were found to be having difficulties in resisting foods (Nederkoorn, Braet, Van Eijs, Tanghe, & Jansen, 2006).

Methods

This was a baseline study for a school-based cluster randomised controlled trial with a proportionate stratified random sampling. Overweight and obese children from 23 primary schools in Kuala Lumpur, Selangor and Negeri Sembilan were recruited to participate in this study. There were 16 schools in the control group and 7 schools in the intervention group where all schools have not implemented any obesity intervention program prior to this study. Schools in the control group followed the usual school program and the national standard curriculum and co-curriculum whereas the schools in the intervention group carried out the ‘My Body is Fit and Fabulous’ at school (MyBFF@school) program, a school-based obesity intervention program. The program incorporates three components namely small-sided games, nutrition and psychology component which were conducted for six months from February 2016 until August 2016 by a trained personnel stationed at each school.

Participants recruitment were done by measuring their weight and height and calculating their BMI to determine their body-weight category. Children with BMI-for-age more than +1SD and less than or equal to +2SD were classified as overweight while children with BMI-for-age more than +2SD were classified as obese which are based on the WHO 2007 Growth Reference (“WHO | BMI-for-age (5-19 years),” n.d.). Children who have mental or physical disability, have medical condition affecting
physical activity, have comorbidities that could affect the study and children who were on medication were excluded from the study.

Trained personnel measured the BMI of 11950 children from the 23 schools where 3516 children were found to have met the criteria to join the program. All of them were approached to gain consent from their parents or guardians and 1397 (39.7%) children have received informed written consent before the commencement of the study. Informed written assent were also received from all children participating in this study. Baseline data was collected through socio-demographic characteristics questionnaire completed by their parents as well as through two self-report questionnaires namely the nutrition knowledge, attitude and practice (KAP) questionnaire and the KINDLR questionnaire.

This study was conducted according to the guidelines laid down in the Declaration of Helsinki and all procedures involving research study participants were approved by the Medical Research and Ethics Committee (MREC), Ministry of Health Malaysia and Educational Planning and Research Division (EPRD), Ministry of Education Malaysia (ethical code: NMRR-13-439-16563). Written informed consent was obtained from the parents or guardian of all subjects and written informed assent was obtained from all subjects.

The instrument

Data for the nutrition component were collected through a pre-tested nutrition KAP questionnaire in the Malay language. The children were asked on the frequency of fast food and snacks that they have consumed in the past seven days among many other questions. Fast foods meant in the questions are foods purchased from fast food restaurant such as burger, pizza, fried chicken and French fries whereas snacks refer to food that were consumed in between traditional mealtime such as breakfast, lunch and dinner. Examples of snacks are candy, chocolates, crackers and pickels. The children were also asked to specify the snacks that they eat most often.

On the other hand, KINDLR Questionnaire was used to gather data on HRQOL. It was first developed in German language by Bullinger et al. (Bullinger, 1994) and then revised by Ravens-Sieberer and Bullinger (Ravens-Sieberer & Bullinger, 1998). This instrument was developed specifically for the measurement of HRQOL among children and adolescents (Wille, Erhart, Petersen, & Ravens-Sieberer, 2008). With scores ranging from 4 to 20, it comprises 24 Likert-scaled items and 6 subscales which are physical well-being, emotional well-being, self-esteem, friend, family and school functioning. A good HRQOL is signified by greater score on the instrument (Ravens-Sieberer & Bullinger, 1998).

The KINDLR questionnaire had been translated from English to Malay by a team of professional translator through a back-to-back translation process. It was then pretested and revised accordingly. The value of Cronbach alpha when tested in a pilot study conducted in schools at Putrajaya in 2015 was 0.70. Meanwhile, the value of Cronbach alpha in this study is .78 which proves the reliability of the instrument (Hinton, Brownlow, McMurray, & Cozens, 2004).

Statistical Analysis

All statistical tests were conducted at 5% significance level. Chi-square test of homogeneity was used to determine the distribution of the children across their socio-demographic characteristics. Spearman’s rank order correlation was run to determine the association of fast food consumption and snacking with the HRQOL of the children. The Spearman’s rank order correlation was used because the HRQOL of the children is an ordinal variable computed from Likert-scaled items. All data analyses were run using IBM Statistical Package for Social Sciences (SPSS) version 20 (SPSS Inc., Chicago,IL., USA).
Results

From the 1397 overweight and obese children who have received parental consent, 1036 children with a mean (SD) age of 9.88 (0.893) years old answered the nutrition KAP questionnaire and the KINDL® questionnaire. Chi-square test shows a significant difference in the ethnicity of the children, $X^2(3) = 82.284, p<0.01$. There is unequal distribution of the children across their ethnicity as most of them are of the Malay race and there are not many Chinese and Indian children participating in this study. The distribution of the children across other socio-demographic characteristics are the same as Chi-square test shows no significant differences. Table 1 depicts the socio-demographic characteristics of the children in the intervention group and the control group.

Table 1. Socio-demographic characteristics of participants

<table>
<thead>
<tr>
<th>Characteristic of respondents</th>
<th>Control</th>
<th>Intervention</th>
<th>Chi-square</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, n(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boys</td>
<td>251 (52.7)</td>
<td>295 (52.7)</td>
<td>0</td>
<td>0.987</td>
</tr>
<tr>
<td>Girls</td>
<td>225 (47.3)</td>
<td>265 (47.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location, n(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>292 (61.3)</td>
<td>322 (57.5)</td>
<td>1.575</td>
<td>0.209</td>
</tr>
<tr>
<td>Rural</td>
<td>184 (38.7)</td>
<td>238 (42.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age groups, n(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 years</td>
<td>24 (5.0)</td>
<td>44 (7.9)</td>
<td>3.533</td>
<td>0.316</td>
</tr>
<tr>
<td>9 years</td>
<td>132 (27.7)</td>
<td>149 (26.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 years</td>
<td>183 (38.4)</td>
<td>216 (38.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 years</td>
<td>137 (28.8)</td>
<td>151 (27.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethnicity, n(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malay</td>
<td>424 (89.1)</td>
<td>423 (75.5)</td>
<td>82.284</td>
<td><0.001*</td>
</tr>
<tr>
<td>Chinese</td>
<td>1 (0.2)</td>
<td>91 (16.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indian</td>
<td>46 (9.7)</td>
<td>40 (7.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>5 (1.1)</td>
<td>6 (1.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body weight groups, n(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overweight</td>
<td>178 (37.4)</td>
<td>220 (39.3)</td>
<td>0.389</td>
<td>0.533</td>
</tr>
<tr>
<td>Obese</td>
<td>298 (62.6)</td>
<td>340 (60.7)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$p<.01$

There is a very weak negative correlation between frequency of fast food consumption in the past seven days with the emotional well-being of the children that is statistically significant ($r_s = -0.066, p<0.05$). Apart from that, there are also very weak negative associations of snacking frequency in the past seven days with physical well-being ($r_s = -0.071, p<0.05$) and emotional well-being ($r_s = -0.073, p<0.05$). Both of them are also statistically significant. Other dimensions show no significant associations with both frequency of fast food consumption and snacking frequency. Table 2 shows the Spearman's rank-order correlation between frequency of fast food consumption and snacking frequency.
frequency with all dimensions of HRQOL. The differences in the number of samples for each subscale are due to the children not answering some of the items in the questionnaire.

Table 2. Spearman’s rank-order correlation between fast food consumption, snacking and HRQOL

<table>
<thead>
<tr>
<th>HRQOL</th>
<th>Fast Food Consumption</th>
<th>Snacking Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Correlation coefficient</td>
</tr>
<tr>
<td>PWB</td>
<td>1031</td>
<td>-0.053</td>
</tr>
<tr>
<td>EWB</td>
<td>1029</td>
<td>-0.066*</td>
</tr>
<tr>
<td>SE</td>
<td>1014</td>
<td>0.032</td>
</tr>
<tr>
<td>Family</td>
<td>1024</td>
<td>0.017</td>
</tr>
<tr>
<td>Friends</td>
<td>1028</td>
<td>-0.055</td>
</tr>
<tr>
<td>School</td>
<td>1026</td>
<td>-0.024</td>
</tr>
</tbody>
</table>

*p<.05

PWB – physical well-being
EWB – emotional well-being
SE – self-esteem

Discussion

The findings from this study show that there are significant weak negative association between frequency of fast food consumption with emotional and well-being. There are also significant weak negative association between snacking frequency with physical well-being and emotional well-being. We hypothesize that the aforementioned significant associations are closely related to the gut-brain axis. Recent research have found a growing evidence on the relationship between the brain and the gut linking the emotional and cognitive function of the brain with the function of the intestines (Carabotti, Scirocco, Maselli, & Severi, 2015). The microbiota in the gut consists of bacterial community that colonize the gastrointestinal tract since birth as well as transient bacteria that were introduced by ingested foods (Bercik, Collins, & Verdu, 2012). These microbiota could produce neurotransmitters found in the brain thus affecting the neurochemistry of the brain as well as transient bacteria that were introduced by ingested foods (Bercik, Collins, & Verdu, 2012). These microbiota could produce neurotransmitters found in the brain thus affecting the neurochemistry of the brain as well as mood and behavior (Dinan & Cryan, 2017). A study has also found significant correlation between microbiota found in faeces and nutrient intake where different food groups correlate with different microbiota (Seura, Yoshino, & Fukuwatari, 2017). The significant negative association found in our study between fast food consumption and snacking frequency with emotional well-being of the children could be due to changes in the microbiota affecting the mood of the children. The fast foods and snacks consumed by the children could introduce transient bacteria to the microbiota in the gut which could change the brain chemistry.

The negative association could also be explained by a study that found unhealthy food could affect the mood negatively whereas sweet and fatty food could alleviate low mood due to production of dopamine in the brain (Leigh Gibson, 2006). This can be supported by another research that discovered self-reported stress may lead to ingesting more foods (Groesz et al., 2012). These findings could mean that the children were low in emotional well-being due to eating unhealthy food or the children could be snacking on sweet and fatty foods more frequently as they were in low mood to begin with. As such, this could lead to overeating, weight gain and obesity among the children thus affecting their physical well-being as well (Groesz et al., 2012; Leigh Gibson, 2006). The composition of the microbiota in the gut could also influence the development of disease such as inflammation and obesity that could affect the physical well-being of the children (Clemente, Ursell, Parfrey, & Knight, 2012; Cryan & Dinan, 2012).

Fast foods and snacks that are typically high in fats, sugars or both are highly palatable energy-dense foods that could lead to episodes of binge eating (Avena, Rada, & Hoebel, 2009). Findings from a
Ishak et al. study using animal model suggest that overconsumption of fats could cause weight gain while excessive sugar consumption could produce behaviors similar to effects of addiction such as sugar dependence due to overproduction of dopamine. The effects also include symptoms similar to withdrawal syndromes of drugs such as anxiety and somatic problem (Avena et al., 2009). Another study that also uses animal model found that consumption of trans fatty acid during growth and development could cause oxidative damage to the brain and frequent consumption could result in development of anxiety when exposed to daily stress (Pase et al., 2013). These effects could negatively affect both the physical well-being and emotional well-being of the children.

The findings from this study show that fast foods and snacking only significantly correlate with the physical and emotion of the children. However, they do not correlate with their attitude toward other people and toward themselves which are proven from the lack of significance in their association with the dimension of friend functioning, school functioning, family functioning as well as self-esteem. These findings can be contended by a study among 945 adult men and women that found strong significant association between consumption of trans-fatty acids with aggression (Golomb, Evans, White, & Dimsdale, 2012). The difference between the effects of trans fatty acids on children and adult might be due to the late development of the children’s brains specifically the development of dorsolateral prefrontal cortex that control impulses, judgement and decision-making (Lenroot & Giedd, 2006). These particular functions are closely related in the social aspects of their life which could be the root cause of the non-significant association of fast foods and snacks with the social aspect of the HRQOL. Moreover, a randomized controlled trial among women participating in a low-fat, high-carbohydrate diet intervention for 5 years found no significant difference in social functioning between the intervention and control group (Hislop et al., 2006).

On the other hand, a study among school children in Kuwait found that self-esteem is positively associated with the consumption frequency of sugar products such as chocolate, biscuits and cakes (Honkala, Honkala, & Al-Sahli, 2006). The finding from this study is similar to our study even though the correlation found in our study are not significant. However, the finding from the study in Kuwait can be contended by a low-carbohydrate diet intervention study that found improved self-esteem (measured using the Rosenberg Self-esteem Survey) among obese teens participating in the study after 2 months and 6 months of intervention (Siegel et al., 2009).

A limitation of this study is the possibility of recall bias by the children regarding the frequency of fast food consumption and snacking in the past seven days when completing the nutritional KAP questionnaire due to the differences in accuracy or completeness of recollections retrieved by the children. Another limitation is the application of an assessment tool, the KINDL® questionnaire to infer the HRQOL of the children. However, the KINDL® instrument has good reliability with Cronbach alpha more than 0.70.

Conclusion

Frequency of fast food consumption is negatively associated with emotional well-being while frequent snacking is significantly associated with low physical well-being and emotional well being. Therefore, children’s diet should be closely monitored so that fast food and snacks could be minimized or even removed from their diet. Instead of including unhealthy food as part of their diet, a well-balanced diet cooked using fresh ingredients would be the best diet for their growth and also for their health-related quality of life.

Acknowledgements

The authors would like to thank the Director General of Health Malaysia for his permission to publish this article, the Ministry of Education for giving the approval for us to undertake this study, all researchers, staff of Ministry of Health, participants and teachers for helping in data collection. Special thanks to Dr. Hj. Tahir Bin Aris as the coordinator of MyBFF@School project.
Declaration of Conflicting Interests

The authors declare that there is no conflict of interest.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Ministry of Health Malaysia [grant number NMRR-13-439-16563].

References

Ishak et al.

