MOBIS-COVID19/01
Results as of 06/04/2020

Joseph Molloy
Christopher Tchervenkov
Beaumont Schoeman
Beat Hintermann
Kay W. Axhausen
Abstract

To slow down the spread of the Coronavirus, the population has been instructed to stay at home if possible. This measure consequently has a major impact on our daily mobility behaviour. But who is being affected, and how? The MOBIS-COVID-19 research project, an initiative of ETH Zurich and the University of Basel, is a continuation of the original MOBIS study. The aim of the project is to get a picture of how the crisis is affecting mobility and everyday life in Switzerland.

Keywords
GPS logger; Travel diary app; COVID-19; Corona virus; MOBIS; Mobility behaviour; Switzerland

Suggested Citation
Molloy, J., C. Tchervenkov and K.W. Axhausen (2020) MOBIS-COVID19/01: Results as of 06/04/2020, Arbeitsberichte Verkehrs- und Raumplanung, 1489, IVT, ETH Zurich, Zurich.
Zusammenfassung

Schlagworte

GPS logger; Travel diary app; COVID-19; Corona virus; MOBIS; Mobility behaviour; Switzerland

Zitierungsvorschlag

Molloy, J., C. Tchervenkov and K.W. Axhausen (2020) MOBIS-COVID19/01: Results as of 06/04/2020, Arbeitsberichte Verkehrs- und Raumplanung, 1489, IVT, ETH Zurich, Zurich.
MOBIS-Covid registrations

On March 16, 2020, 3700 participants who completed the MOBIS study between September 2019 and January 2020 were invited to reinstall the GPS Logger and Travel Diary App ‘Catch-my-Day’ to record their mobility behaviour during the period of special measures implemented to control the spread of the Corona Virus. The first 4 weeks of mobility data from the original MOBIS Study is taken for each participant as a baseline against which to compare current mobility patterns. These 4 weeks start place anywhere between 1st September and 15th November, depending on the participant. Only trips in Switzerland are currently considered, although data on cross border travel is available.

The following figure shows the number of registered and tracking participants per day. A running panel of around 250 participants were already tracking before the sample was reinvited. This allows results for the weeks before the MOBIS-Covid study was officially started, although the sample size is a lot smaller, and hence the results.

The daily values are normalized where necessary by the number of tracking participants per day. The analysis will be extended in the coming weeks to accommodate participants
who record no GPS activity but are participating in the study - This will be necessary if a total lockdown is implemented.

The GPS Travel diary used, Catch-my-Day (for iOS and Android) can have a 2-3 day delay before the tracks are available for analysis. The scaling by active participants accommodates for this, but the results of previous reports may change when the report is updated.

Differences in the distributions

The following charts show the characteristics of the MOBIS-Covid sample compared to the original MOBIS Sample. There are some small differences, but generally the samples are consistent. This chart will be extended to compare to the relevant census data.
Average daily distance

Overall change in kilometers travelled by transport mode
Normalized against the baseline period

[Graphs showing changes in travel distances for different categories: Access to car, Age, Education, Gender, HH size, Income]
Reduction in kilometers travelled by Canton

Table 1: Change in kilometers travelled by home canton (%)

<table>
<thead>
<tr>
<th>Canton</th>
<th>N</th>
<th>Mar-02</th>
<th>Mar-09</th>
<th>Mar-16</th>
<th>Mar-23</th>
<th>Mar-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aargau</td>
<td>68</td>
<td>-25</td>
<td>-41</td>
<td>-71</td>
<td>-58</td>
<td>-51</td>
</tr>
<tr>
<td>Basel-Landschaft</td>
<td>150</td>
<td>-13</td>
<td>-8</td>
<td>-60</td>
<td>-60</td>
<td>-58</td>
</tr>
<tr>
<td>Basel-Stadt</td>
<td>30</td>
<td>-14</td>
<td>-36</td>
<td>-71</td>
<td>-74</td>
<td>-66</td>
</tr>
<tr>
<td>Bern</td>
<td>163</td>
<td>-30</td>
<td>-34</td>
<td>-66</td>
<td>-59</td>
<td>-56</td>
</tr>
<tr>
<td>Fribourg</td>
<td>7</td>
<td>-61</td>
<td>-23</td>
<td>-63</td>
<td>-56</td>
<td>-60</td>
</tr>
<tr>
<td>Geneva</td>
<td>105</td>
<td>-7</td>
<td>-45</td>
<td>-69</td>
<td>-60</td>
<td>-56</td>
</tr>
<tr>
<td>Schaffhausen</td>
<td>12</td>
<td>-18</td>
<td>-12</td>
<td>-42</td>
<td>-67</td>
<td>-45</td>
</tr>
<tr>
<td>Solothurn</td>
<td>16</td>
<td>-13</td>
<td>-41</td>
<td>-62</td>
<td>-65</td>
<td>-63</td>
</tr>
<tr>
<td>Vaud</td>
<td>247</td>
<td>-7</td>
<td>-22</td>
<td>-64</td>
<td>-70</td>
<td>-67</td>
</tr>
<tr>
<td>Zurich</td>
<td>583</td>
<td>-16</td>
<td>-25</td>
<td>-60</td>
<td>-58</td>
<td>-56</td>
</tr>
</tbody>
</table>

Activity space and daily travel radius

A commonly used simple definition of the activity space is the 95% confidence ellipse of the activity locations, in this case weighted by duration. In the following analysis, the
activities at the home location are included, for those that had the app activated on that day. This is an important metric which gives an idea of the area in which travel is being performed. The daily travel radius is also presented.

![Distribution of average daily activity spaces](image)

Table 2: Change in activity space area (%)

<table>
<thead>
<tr>
<th>Week</th>
<th>Weekday</th>
<th># Activities/day</th>
<th>Change</th>
<th>Area (km2)</th>
<th>Change</th>
<th>Daily Radius (km)</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>week</td>
<td>7.00</td>
<td>-</td>
<td>193.44</td>
<td>0%</td>
<td>12.76</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>weekend</td>
<td>6.19</td>
<td>-</td>
<td>261.21</td>
<td>0%</td>
<td>13.82</td>
<td>-</td>
</tr>
<tr>
<td>Mar-02</td>
<td>week</td>
<td>6.12</td>
<td>-13%</td>
<td>172.58</td>
<td>-11%</td>
<td>10.92</td>
<td>-14%</td>
</tr>
<tr>
<td></td>
<td>weekend</td>
<td>5.65</td>
<td>-9%</td>
<td>181.15</td>
<td>-31%</td>
<td>11.25</td>
<td>-19%</td>
</tr>
<tr>
<td>Mar-09</td>
<td>week</td>
<td>6.39</td>
<td>-9%</td>
<td>120.36</td>
<td>-38%</td>
<td>10.27</td>
<td>-20%</td>
</tr>
<tr>
<td></td>
<td>weekend</td>
<td>5.47</td>
<td>-12%</td>
<td>91.58</td>
<td>-65%</td>
<td>8.80</td>
<td>-36%</td>
</tr>
<tr>
<td>Mar-16</td>
<td>week</td>
<td>4.82</td>
<td>-31%</td>
<td>35.96</td>
<td>-81%</td>
<td>5.71</td>
<td>-55%</td>
</tr>
<tr>
<td></td>
<td>weekend</td>
<td>3.56</td>
<td>-42%</td>
<td>27.82</td>
<td>-89%</td>
<td>3.71</td>
<td>-73%</td>
</tr>
<tr>
<td>Mar-23</td>
<td>week</td>
<td>4.39</td>
<td>-37%</td>
<td>37.84</td>
<td>-80%</td>
<td>4.92</td>
<td>-61%</td>
</tr>
<tr>
<td></td>
<td>weekend</td>
<td>3.95</td>
<td>-36%</td>
<td>57.94</td>
<td>-78%</td>
<td>4.96</td>
<td>-64%</td>
</tr>
<tr>
<td>Mar-30</td>
<td>week</td>
<td>4.76</td>
<td>-32%</td>
<td>47.79</td>
<td>-75%</td>
<td>5.35</td>
<td>-58%</td>
</tr>
<tr>
<td></td>
<td>weekend</td>
<td>4.25</td>
<td>-31%</td>
<td>37.31</td>
<td>-86%</td>
<td>5.16</td>
<td>-63%</td>
</tr>
</tbody>
</table>

Hourly counts

The number of trips started per hour, smoothed with a rolling average over 3 hours. The y axis is normalized by the maximum hourly value in the graph.
Hourly trip count (Walk)

Week

Weekend

Number of started trips (relative to max value)

Hour

Normalized by number of participants travelling per day
Counts between midnight and 4am excluded

Hourly trip count (Train)

Week

Weekend

Number of started trips (relative to max value)

Hour

Normalized by number of participants travelling per day
Counts between midnight and 4am excluded
Hourly trip count (Local PT)

Week

Weekend

Number of started trips (relative to max value)

Normalized by number of participants travelling per day
Counts between midnight and 4am excluded

Control
Mar-02
Mar-09
Mar-16
Mar-23
Mar-30