The conserved positive charge in the transmembrane domain of HIV gp41 contributes to its intrinsic preference for trimerization

Timothy M. Reichart¹†, Daniel P. Leaman², Daniel I. Sands², Michael B. Zwick²*, and Philip E. Dawson¹*

¹Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
²Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
†Present address: Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Switzerland.
* Co-corresponding authors

Abstract:
The transmembrane (TM) domain of HIV glycoprotein gp41 anchors the envelope (Env) spike in the viral membrane and is highly conserved. The mid-span arginine 696 is particularly conserved, and the only other residue found in this position is lysine. Seeking to examine the role of this conserved positive charge in the structure and function of the gp41 TM domain, we synthesized a series of peptides corresponding to this region. Analysis of the peptides in a previously validated fluorescence assay in model membranes showed that the native TM domain is trimeric. Peptides in which the intramembrane arginine was mutated to alanine showed significantly lower trimerization propensity. In contrast, this mutation in the context of infectious pseudovirus caused only modest decreases in viral stability and infectivity. We propose a model to explain the importance of this charge to gp41 structure and to HIV infection.

Graphical Abstract:
Introduction

The HIV envelope glycoprotein (Env) spike is a trimer of gp120 and gp41 subunits (gp120-gp41), and is essential for virus entry into host cells. Recent work demonstrated the importance of the transmembrane (TM) domain of gp41 in modulating the adjacent membrane-proximal external region (MPER) both in terms of the structure of gp41 and recognition by broadly neutralizing antibodies. The TM domain of gp41 is highly conserved (Figure 1A), suggesting its importance to the structure and function of gp41. A functional role in intracellular trafficking has also been demonstrated. Peculiarly, there is a very highly conserved arginine at position 696 (97.2% of 1937 sequences), in the middle of the TM domain. In every case where arginine is not found, the substitution is a lysine that is also expected to be positively charged at physiological pH. Introducing a positive charge into the middle of a membrane is strongly energetically unfavorable, suggesting a strong evolutionary pressure to retain this residue. Arg 696 has been suggested to play a structural role in trimerization by forming polar contacts within the membrane, either alone or in combination with a GxxxG motif, and computational studies on the gp41 TM domain support this claim.

Biophysical studies on the HIV TM have yielded inconsistent results on the oligomeric state of this domain. An NMR analysis of a TM peptide in a DMPC/DHPC mixed micelle showed no evidence of trimerization, but the specific transmembrane peptide used in that study contained significant portions of the MPER and cytoplasmic tail. A longer MPER-TM-CT construct in dodecylphosphocholine micelles was found to be monomeric in analytical ultracentrifugation studies, but addition of adjacent domains resulted in trimer formation. In contrast, an earlier NMR study reported that the transmembrane domain forms well-ordered trimers with a three-chain coiled-coil from residues 686 to 696, stabilized by a network of polar contacts in the cytoplasmic tail.

Previous studies on the structure and function of the transmembrane domain were either structural studies of much longer constructs with larger potential interfaces or computational studies without direct experimental evidence. To bridge this gap and to probe the importance of this residue in oligomerization, we chemically synthesized several peptides containing fluorophores and analyzed them in model membranes using a previously-validated fluorescence-based oligomerization assay. We also examined the functional effects of mutating this residue in the context of single-cycle infectious pseudoviruses in order to gain a better understanding of the role of R696.

Figure 1. The conserved HIV-1 gp41 TM domain (a) A LogoPlot of the transmembrane (TM) domain of HIV gp41 sourced from the Los Alamos HIV sequence database shows its high sequence conservation; (b) Sequences of peptides used in this study. Each peptide was synthesized in N-terminal NBD, N-terminal TAMRA, and unlabeled variants.
Results

Several series of peptides corresponding to the TM domain of gp41 were synthesized using standard Boc/t-butyl solid-phase peptide synthesis (Figure 1B). Each peptide series contained three variants: one with a free N terminus, one with a nitrobenzodiazole (NBD) as a membrane-specific fluorescent dye, and with a tetramethylrhodamine (TAMRA) dye which quenches NBD fluorescence upon close association. Each peptide series was tested in a fluorescence assay to measure oligomerization. Briefly, dissolution of the peptides in 2 or 4 mM of the detergent C14 betaine (3-(N,N-dimethylmyristlammonio) propane sulfonate, above the CMC), presented the peptides in micelles previously shown to be accurate mimics of membranes for the analysis of oligomerization states of TM domains. Addition of the quenching TAMRA peptide concomitant with the equal removal of unlabeled peptide (thus maintaining a constant concentration of 2-NBD and all peptides) results in a decrease of NBD fluorescence if the peptides are closely associated.

Peptides in series 1 correspond to gp41(679-708), and are similar in length to those used in previous NMR studies of the TM domain. Surprisingly, these peptides did not show a decrease in NBD fluorescence upon titration of the TAMRA-labeled peptide, but instead showed a mild increase in fluorescence. However, further experiments revealed that the fluorescence parameters of 1-NBD did not match those of the NBD fluorophore in a hydrophobic membrane environment, but instead matched the fluorescence parameters corresponding to the NBD fluorophore in an aqueous environment (Figure S1), suggesting that the α-helix of the TM domain continues to propagate out of the membrane in such a way that a fluorophore five residues away from the membrane is unable to contact the hydrophobic portion of the membrane. Intriguingly, this fits the NMR data of a similar length construct that suggested a continuous, helical, monomeric TM domain, which would place the NBD group outside of the membrane and in the aqueous environment.

To ensure that the NBD group was properly positioned in the membrane and thus had the requisite fluorescence parameters, a second-generation peptide series 2 was designed that removed the five residues of the MPER. Peptide 2-NBD had a maximum excitation at $\lambda = 466$ nm and maximum emission at $\lambda = 534$ nm (Figure S2), and a significantly higher fluorescence intensity, which are evidence that the NBD group of 2-NBD could be located in the hydrophobic portion of the membrane mimic. When the quenching peptide 2-TAMRA was added to a solution of 2-NBD in C14 betaine along with the simultaneous removal of unlabeled 2, the NBD fluorescence decreased in a dose-dependent manner. This decrease in fluorescence fits a monomer-trimer equilibrium that is neither explained by monomer alone nor by a monomer-dimer equilibrium (Figure 2). Introducing a parameter for a monomer-dimer-trimer equilibrium does not improve the fit. These data were used to calculate an equilibrium constant for peptide trimerization of 2.7×10^{-8} MF2, using MF = mole fraction of peptide / detergent as the appropriate description of concentration.

Although the peptides in series 2 provide good support for a trimeric self-association of the HIV gp41 TM domain, these peptides exhibited low solubility that resulted in noisy data when working at the limits of solubility, and precluded future experiments that require high concentrations of peptide. A more soluble series of peptides 3 were designed and synthesized with four C-terminal lysine residues to enhance solubility. These peptides had higher aqueous
and micellar solubility and provided cleaner fluorescence spectra than the corresponding peptides in series 2. In the fluorescence assay of oligomerization described above, peptide 3 showed results consistent with a monomer-trimer equilibrium similar to the less-soluble peptides 2 albeit with a slightly reduced equilibrium constant of 2.8 x 10^{-7}. Next, a series of peptides 4 in unlabeled, NBD, and TAMRA forms with the R696A mutation were synthesized and used in the same assay. These peptides were still best described using a monomer-trimer equilibrium model (Figure 2A), but showed a markedly reduced propensity for trimerization with equilibrium constant 1.3 x 10^{-6}. The difference in equilibria constants for peptides 3 and 4 corresponds to a free energy difference of 3.8 kJ • mol^{-1}. For both peptides 3 and 4, a fit of the data describing a monomer-dimer equilibrium shows large residuals with a noticeable quadratic pattern—a clear indication that the model is underfitting the data (Figure 2B). In contrast, a model describing a monomer-trimer equilibrium has smaller residuals apparently randomly scattered around 0, suggesting a much better fit (Figure 2B).

To validate this assay, we synthesized a series of peptides 5 that used the designed synthetic trimeric TM domain peptides described by DeGrado and colleagues and subjected them to the same fluorescence assay of oligomerization. As expected, we observed results consistent with a monomer-trimer equilibrium and quite similar to peptides in series 2, 3, and 4 (Figure 2A).

Since the R696A mutation reduced the propensity for TM trimerization, we probed its effect on the stability and function of HIV-1 Env in the context of single-round infectious pseudoviruses. Four isolates were studied: the clade A BG505, the clade B JRFL, and the clade C isolates CH505 and COT6, the latter of which contains a rare natural K696. The A696 mutant Env viruses showed no significant differences in stability compared to wild-type viruses as measured by the reduction in infectivity through exposure to elevated temperature (Figure 3A; Table 1). We also measured the stability of the mutant Env pseudoviruses using an assay of half-life infectivity decay at 37 °C. The mutant Env pseudoviruses showed variable effects depending on the isolate. The R696A mutants of BG505 and JRFL showed no significant differences in infectivity over a 72-hour time course relative to wild-type (Figure 3B; Table 1). Notably however, the relatively stable COT6 isolate became more stable when K696 was mutated to an alanine (t_{1/2} increased from 21.3 hours to 37.1 hours), while the less stable CH505 isolate showed decreased stability over time from the R696A mutation (t_{1/2} reduced 50% from 20.2 hours to 10.4 hours).

Two of the four isolates showed diminished relative infectivity due to the mutation R696A that was statistically significant (Figure 3C). Notably, the isolate whose infectivity was most reduced by R696A, CH505, was also the least stable of the four isolates to begin with (Table 1) and the only one destabilized by R696A in the 37°C stability assay (Figure 3B). These results suggest a possible role of R696 in interactions distributed throughout the Env trimer that preserve its overall stability and function.
Figure 2: Oligomerization analysis of HIV TM peptides by fluorescence titration assays. A: Fluorescence quenching in micelles shows the trimeric nature of the TM domain of gp41 in peptides 2, 3, and 4, and an equilibrium shifted towards monomer in the R696A containing peptide 4. B: The residuals show that a monomer-dimer equilibrium does not fit the data, but a monomer-trimer equilibrium fits well.
Figure 3: Effects on HIV-1 Env infectivity and stability by Ala mutation at Env position 696 in the gp41 TM domain. a) T₉₀, or the temperature at which infectivity is reduced by 90% in a 1 h incubation period, of wild-type and R/K696A mutant pseudovirus are not statistically different across a range of isolates; b) Stability as measured by infectivity retained over time at 37 °C is unchanged by the R/K696A substitution for JRFL and BG505 isolates, increased for COT6, and decreased for CH505 as compared to wild-type of the same isolate; c) Infectivity of R/K696A mutants is significantly reduced for two of four isolates tested (p values: ns = not significant, ** ≤ .01).

Table 1. Effect on HIV-1 Env functional stability by Ala mutation at gp41 position 696.

<table>
<thead>
<tr>
<th></th>
<th>BG505</th>
<th>JRFL</th>
<th>CH505</th>
<th>COT6</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>50.9</td>
<td>51.3</td>
<td>48.8</td>
<td>47.6</td>
</tr>
<tr>
<td>R696A</td>
<td>51.3</td>
<td>49.4</td>
<td>47.6</td>
<td>47.5</td>
</tr>
<tr>
<td>T₉₀*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t₁/₂†</td>
<td>32.9</td>
<td>26.4</td>
<td>20.2</td>
<td>21.3</td>
</tr>
</tbody>
</table>

* T90 is the temperature at which infectivity is reduced by 90% in a 1 h incubation period (Figure 3A).
† t₁/₂ is the half-life of viral infectivity retained at 37 °C (Figure 3B).

Discussion

Chemical synthesis of fluorescently tagged peptides corresponding to the HIV gp41 TM domain enabled the study of the TM peptide oligomerization state in model membranes. The dose-dependent decrease in fluorescence upon the addition of a quenching fluorophore matched that of a monomer-trimer equilibrium, without showing evidence of a dimer intermediate. These data suggest that the TM domain of gp41 energetically favors a trimer in the absence of the rest of the protein. Replacing the arginine buried in the membrane with an alanine also resulted in a monomer-trimer equilibrium but with the equilibrium shifted towards monomer. The difference in equilibria constants corresponds to a free energy difference of 3.8 kJ • mol⁻¹. Thus, arginine
696 contributes to trimer formation but is not the sole determinant. Peptide 1, which included five residues of the MPER, did not show this behavior. Because of the low fluorescence signal, this is not strong evidence for a preference for monomer in membranes, although the data is consistent with this interpretation and could potentially help explain the disparities between the structures suggested by different NMR studies. When the R696A mutation was made in the context of whole Env on virus, the modest free energy change of the gp41 TM domain corresponded to variable changes in Env structure and function. Of the four isolates studied, two had significantly reduced infectivity when arginine 696 was mutated to alanine. Notably, the isolate whose infectivity was most affected by the mutation was also destabilized by the mutation at physiological temperature. Thus, perturbations to the TM domain trimer tend to also reduce HIV-1 infectivity. This relationship can be explained as a stabilization of the unliganded state relative to the CD4-bound state, matching the conclusion from the peptide fluorescence assays, although our data do not rule out that the energetic difference instead results from a destabilization of the CD4-bound state or other possibilities. This fine-tuned intramolecular interaction, coupled with the high conservation of the TM domain, suggests a functional role for the TM domain in virus infectivity. Extensive structural rearrangements of gp41 occur after CD4 engagement of the target cell and dissociation of the gp120 subunit.20-22 The energetically favorable six-helix bundle formation in the extracellular domains of gp41, for example, requires significant structural rearrangements that lead to viral fusion.23,24

In the context of full length Env, the R696A mutation did not result in significant or uniform effects on sensitivity to thermal denaturation or on infectivity decay at physiological temperature. Two Env variants showed comparable rates of infectivity decay at 37 °C, suggesting a similar activation energy towards degradation of the unliganded state into nonfunctional spikes. Of note, the degradation of Env spikes to nonfunctional spikes is irreversible and not an equilibrium process and this energetic landscape may change based on the particular isolate of HIV studied. Our observations that the COT6 isolate was stabilized slightly at 37 °C by the K696A mutation and was also thermally stable with a high T\textsubscript{90}, imply a greater activation energy between the unliganded state and the nonfunctional states. The reverse argument can explain the less stable CH505 variant having a lower activation energy from the unliganded state to the nonfunctional state, and less stability at 37°C. This reduced stability of CH505 R696A was observed experimentally as reduced infectivity half-life at 37 °C.

We propose that the TM domain in the viral membrane is an additional reservoir of potential energy that contributes to the series of structural rearrangements upon engagement of the virus with CD4 on the target cell and that disruption of these interactions might reduce or abrogate viral infectivity. Our work suggests that the conserved positive charge at position 696 helps promote trimerization of this domain. The wild-type TM domain in model membranes exists in equilibrium between monomeric and trimeric states, with the trimeric form favored under physiological conditions. Previous reports suggest that the folded structure of the trimeric Env spikes require each gp41 TM domain to be spatially distal from the others in the unliganded state of the virus, but form a tight trimer in the CD4-bound state.8 Upon trimerization, the energetic penalty of positioning an arginine in an isolated, membrane-embedded TM domain is relieved, providing an element of the driving force for the gp41 rearrangements that ultimately lead to viral fusion.
Conclusions

This work suggests that the latent potential for trimerization contained in the TM domain of HIV gp41 is an important energetic reservoir for necessary structural rearrangements in Env required for HIV-1 infection. The conserved positive charge at position 696, which is typically energetically disfavored in membranes, contributes to this potential energy by destabilizing the monomeric state of the TM compared to the trimeric state. This destabilization of the monomeric state of the TM causes a reduction in the infectivity of HIV virions in a subset of isolates.

Acknowledgements

This research was supported by the California HIV/AIDS Research Grant Program, D10-SRI-30 (T.M.R.), International AIDS Vaccine Initiative (P.E.D.), and NIH AI114401 and AI143563 (M.B.Z.) and GM098871 (P.E.D.). We thank Arthur S. Kim for technical help with early experiments.

References

