
In the Proceedings of the 8th International Conference on Intelligent Tutoring Systems
Jhongli, Taiwan, June 26-30, 2006

1

Cognitive Tutors as Research Platforms:
Extending an Established Tutoring System for

Collaborative and Metacognitive Experimentation

Erin Walker1, Kenneth Koedinger1, Bruce McLaren1, Nikol Rummel2

1 Human Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA,
USA

{erinwalk, koedinger,bmclaren}@cs.cmu.edu
2Department of Psychology, Albert-Ludwigs-Universitat Freiburg, Germany

rummel@psychologie.uni-freiburg.de

Abstract. Cognitive tutors have been shown to increase student learning
in long-term classroom studies but would become even more effective if they
provided collaborative support and metacognitive tutoring. Reconceptualiz-
ing an established tutoring system as a research platform to test different
collaborative and metacognitive interventions would lead to gains in learn-
ing research. In this paper, we define a component-based architecture for
such a platform, drawing from previous theoretical frameworks for tutoring
systems. We then describe two practical implementation challenges not
typically addressed by these frameworks. We detail our efforts to extend a
cognitive tutor and evaluate our progress in terms of flexibility, control,
and practicality.

1 Introduction

A cognitive tutor is an intelligent tutor that compares student action during prob-
lem-solving to a model of correct action, and provides context-sensitive hints and error
feedback. These tutors have been shown to be effective at increasing student learning
in long-term classroom studies by as much as one standard deviation over traditional
instruction [1,2]. In general, cognitive tutors have focused on instruction to increase
domain knowledge but have lacked support for collaborative activities or metacogni-
tive tutoring. However, cognitive tutors could become even more effective if used in
combination with collaborative and metacognitive interventions.

There is a need for research on which interventions are most effective. Collabora-
tion can increase student mastery of domain knowledge, reasoning strategies, and so-
cial skills, but it is only effective when designed to encourage particular behaviors [3].
Although cognitive tutors like the Cognitive Tutor Algebra I (CTAI) are used in con-
junction with collaborative classroom activities, it is difficult to control whether these
activities occur as intended and difficult to measure their effectiveness. It is necessary
to determine which activities produce desired learning effects and to control their exe-
cution. Similarly, preliminary research on supporting metacognition in intelligent
tutoring systems has yielded encouraging results [4]. More research is needed to evalu-
ate different interventions in a classroom context.

2

Tutoring systems are ideal environments for experimentation with collaborative and
metacognitive interventions. They are useful settings for the implementation of col-
laborative activities: The controlled environment adds structure, and actions can be
tutored so that desired behaviours are exhibited. Further, implementing metacognitive
instruction within the context of an intelligent tutoring system can provide monitor-
ing and support mechanisms for metacognition that may increase learning. Trying
many interventions on the same system allows researchers to examine varying effects
and explore how the interventions might complement each other. There are additional
benefits to using an established tutoring system: savings in development time, preex-
isting relationships with classrooms that are using the tutor, and a proven baseline of
effectiveness. For example, the CTAI is an integral part of the Pittsburgh Science of
Learning Center (PSLC) which facilitates experimental studies in real-world contexts
by providing access to schools and programmers.

An established tutoring system is a solid basis for a research platform. A research
platform should be flexible in terms of the number of experiments that can be con-
ducted, controlled in terms of the number of factors that can be compared in an ex-
periment, and practical in terms of its ability to facilitate interventions that are used in
a real classroom. The idea of a cognitive tutor as a research platform has been ex-
ploited before; existing tutoring systems like Project LISTEN have been used for
large-scale data collection and analysis and have been extended to test hypotheses about
tutoring cognitive skills [5]. However, these extensions have not contributed to a
flexible framework for experimentation with more complex interventions. Preexisting
tutoring systems have been extended to test collaborative and metacognitive hypothe-
ses [6], but these projects have not created a platform that researchers can use to com-
pare scenarios. Building a collaborative or metacognitive tutoring system from scratch
to test certain research hypotheses [7,8] can provide flexibility and control, but be-
cause these systems are not based on an established tutor, they may not be practical
for classroom use and would require much development to make them so.

In this paper, we describe the extension of an established tutoring system into a re-
search platform that provides support for both collaborative and metacognitive inter-
ventions. We define a theoretical architecture for such a platform, discuss practical
challenges in implementing the architecture, and evaluate our specific efforts in ex-
tending the CTAI into a platform for experimentation.

2 Component-Based Architecture

A research platform must allow flexibility in terms of the number of tutoring experi-
ments that can be run and control within an experiment to facilitate ablation studies.
These requirements can be met using a component-based architecture that emphasizes
the development of independent, reusable components [9]. An ideal implementation of
this approach yields a situation where components can be created for use in a variety
of situations and can be added or removed without much effort.

Component-based architectures have been proposed as a way to enhance the effec-
tiveness of intelligent tutoring systems, but it is often difficult to integrate compo-
nents created for different purposes [10]. Standards for curriculum representation like
the Scaleable Content Object Reference Model have been proposed to resolve this
problem [11], and distributed architectures like KnowledgeTree [12] and multi-agent
approaches such as I-help [13] have been developed to integrate individual web-based

3

services more effectively. Architectures designed for collaborative activities have also
been developed, with a focus on synchronizing objects between components to create
shared activity spaces [14]. We model our approach after these approaches, focusing on
developing reusable components and interaction standards.

We have developed a component-based architecture (Figure 1) for a research plat-
form for collaborative and metacognitive tutoring, based on Ritter and Koedinger's
architecture for plug-in tutoring agents [15]. We focus on students solving problems
in a single application, unlike the above research, which focuses on the integration of
multiple applications. We intend the components we discuss to be situated in a larger
web-based system for the delivery of multiple applications (e.g., [12]), and to be capa-
ble of receiving curriculum information independently.

Fig. 1. Our component-based architecture. The figure depicts 3 tutors, 6 tools, and 2 us-
ers, but in theory, it could have any number of tools, tutors, and users.

 We separate the components in our architecture into tools and tutors. Tool compo-
nents are the part of the application that the user sees, while tutor components are the
part of application that evaluates and offers advice to the student [15]. A spreadsheet is
a tool, while the software module that gives feedback to a student on completing the
spreadsheet is a tutor. Adding multiple tool components to a given application can
facilitate collaboration; each collaborator might use a different tool on a different com-
puter. Adding multiple tutor components to a given application can facilitate meta-
cognitive tutoring. A tool that incorporates self-explanation could have two corre-
sponding tutors, one that is responsible for the cognitive elements of the task, and one
that is responsible for the self-explanation elements of the task [6]. To facilitate reuse,
tools should be built to be compatible with any corresponding tutor, and tutors should
be built to be usable with any corresponding tool.
 Establishing standards for messages exchanged by components during a tutoring
session, based on the protocol in [15], can also enable component reuse. In general,
tools send messages that communicate information about user actions, while tutors

4

send messages that provide feedback about user actions. A proposed set of messages is
shown in Table 1. To facilitate reuse, any message that can be sent by a tool should
be understood by a tutor, and any message that can be sent by a tutor should be under-
stood by a tool. Although this protocol was originally designed to support cognitive
tutoring, it can be applied to metacognitive and collaborative tutoring, where message
content may be different but message structure would be the same.

Table 1. Message types for tool and tutor components.

Component Message Type Message Meaning

Note input Student uses an interface element

Note create Student creates an element
Note delete Student deletes an element
Note hint request Student asks for a hint

Tool User action

Note done Student indicates problem complete
Approve Answer is correct
Flag Answer is incorrect
Point to Points to an element
Send message Gives feedback

Tutor feedback

Update assessment Changes student assessment
Send input Performs user action
Undo input Undoes user action
Send create Creates element

Tutor

Tutor action

Send delete Deletes element

Following Ritter [16], we define a remotely located mediator to control the interac-
tion between components. The mediator is aware of which components are involved in
a collaborative session, and during tutoring, receives messages and passes them to the
appropriate components. The mediator also holds a set of rules for dealing with mes-
sage conflicts (sample rules are described in [16]). Because knowledge for how to deal
with interacting components is located within the mediator, only the mediator has to
be changed when adding or removing components.

3 Practical Challenges

Although theoretical frameworks can provide guidelines for the design of independent,
reusable components, there is a question as to whether these architectures are practical
for development and classroom use. It is not always feasible to design for reuse be-
cause usability can be in conflict with reusability, and it can be impractical to develop
reusable components on a realistic schedule. Architectures must be more specific
about expectations for component reuse.

3.1 Feasibility of Designing for Reuse

5

There is a conflict between designing for reuse and designing for usability. Different
tools can be easier to use together if their relation is represented in the interface. When
a student has to input values in a spreadsheet and then plot the values on a graph, it is
easier to have each point plotting widget located next to the appropriate spreadsheet
cell, so that the connection between the two tasks is clear. However, tools then be-
come dependent on each other, making it more difficult for developers to reuse them.
Theoretical architectures need to account for compromises that must be made between
usability and reuse. Developers could consider linked tools as a single tool, making
the larger tool reusable.

Further, developing for reuse is not always an attainable goal. On a tight devel-
opment schedule, it is unlikely that programmers can give tools the higher level of
functionality required for reuse. When a tool was not originally designed for collabora-
tive use, adding functionality for tutor actions is not a high priority. It also may be
unreasonable to modularize components to the level required for reuse. For small tu-
toring interventions, it may be simpler to modify the primary tutor rather than to add
an adjunct tutor. Frameworks should prioritize reuse requirements so that developers
can implement critical functionality for reuse but code flexibly enough to facilitate the
future implementation of other requirements. Explicit implementation guidelines for
usability and reuse would aid in design decisions.

3.2 Separation between Tool and Tutor Components

Taking usability and a practical development schedule into account can create difficult
decisions when attempting to implement a theoretical framework that does not specify
tool and tutor responsibilities. We attempt to define tool responsibilities to maximize
the flexibility and experimental control provided by a multi-agent architecture. Tools
should act as more than an interface to the tutor. For instance, in an equation solver,
when a student subtracts both sides of an equation by five the result needs to be dis-
played by the tool. If the tool behaves as an interface, some agent would be needed to
compute the result of the student action, which means that the tool is dependent on
that agent for updating its state. One might argue that it is not practical to emphasize
independence for tools that do not mimic anything outside a tutor. However, one
should design with future extensions in mind. In an architecture where components
can be easily added and removed, it is necessary that the tool hold the logic for calcu-
lating the result of student actions.

A more difficult question is whether the tool should require permission from a tutor
to update its state based on student actions. When a student requests to create a point
on a graph, does the tool wait for permission from a tutor to approve the request be-
fore creating the point (synchronous operation), or create the point, allow the student
to continue, and then deliver tutor feedback (asynchronous operation)? Waiting for
permission means that the tool cannot function independently of a particular tutor, but
providing asynchronous feedback might decrease usability. One solution could be to
increase tool functionality so that it can always undo the previous action. However,
this solution is problematic for usability, as it may be confusing to the student to see
their action mysteriously reversed (e.g., creating a point and then immediately deleting
it). The best solution may be to sacrifice reuse and have certain actions, like user “cre-
ate” actions, require an immediate response from a tutor.

6

The final decision in component separation is whether to give the tool knowledge
about tutoring. When an entry in a spreadsheet is flagged, does the tool or the tutor
know to display the error by turning the text red? If the knowledge is located in the
tool, tutors will not need to know about the specifics of each tool in order to send
approve and flag messages. However, having the tool know about the tutoring might
be unreasonable in situations where tools are pre-designed; one would not expect Mi-
crosoft Excel to be developed with a tutoring framework in mind! Developers have to
be prepared both to use pre-designed tools and to design tools specifically for tutoring.
When using an off-the-shelf tool in a tutoring scenario, a translator component can be
built to transform a flag message into a more specific series of messages for that par-
ticular tool. When designing or modifying a tool for use in a component-based tutor-
ing framework, it should have feedback behaviors built in. Although theoretical archi-
tectures specify that tool and tutor components should be separated, examining the
issue yields a set of guidelines on where that separation should occur.

4 Evaluation of Progress

We now evaluate our efforts in extending the CTAI into a research platform. We
wished to retain the strengths of the CTAI while adding collaborative functionality.
To this end, we expanded the CTAI to incorporate a peer tutoring script (PTS). We
have implemented the architecture from Section 2, while negotiating the challenges
discussed in Section 3. Our changes form the beginning of a flexible, controlled, and
practical framework for future extensions.

4.1 Proposed Extension to the Cognitive Tutor Algebra-1

The CTAI focuses on “the mathematical analysis of real-world situations and the use of
computational tools” [1]. Students read a word problem and use various tools to solve the
problem. As students work, the cognitive tutor monitors their progress based on a model
of performance and gives immediate feedback. When students make an error, the cognitive
tutor will immediately “flag” it (e.g., by turning input text red) and, for common errors,
output a message that explains the misconception. At any time, the student can request
help, and the cognitive tutor will provide hints. The tutor keeps an estimate of student
mastery of skills. Skill levels are displayed so that students are aware of their progress,
and problems are chosen based on skills that students have not yet mastered.

We are integrating collaboration and metacognitive tutoring into the CTAI using a
peer tutoring script. Instead of the computer tutoring students on math, students tutor
each other, while the computer provides collaborative support. The human peer tutors
prepare by solving the problem that they will be teaching with the help of the com-
puter tutor. While tutoring, peer tutors mark tutees' answers as wrong or right, pro-
vide hints and feedback in a chat window, and assess the tutees' skill mastery. Peer
tutees can also engage the tutor in discussion in the chat window. See Figure 2 for a
screenshot of the peer tutor's interface. Peer tutoring scripts have improved learning,
particularly when peer tutors prepare ahead of time, peer tutors provide elaborated ex-
planations which peer tutees use constructively, and students set goals for the tutoring
and monitor skills being acquired [17]. We believe that the PTS encourages these ele-
ments and will enhance the effectiveness of the CTAI.

7

Fig. 2. Screenshot of peer tutor's interface in the peer tutoring script (PTS)

4.2 Implementation of Extensions

To implement PTS, we changed the CTAI so that the tool and tutor components func-
tion independently of each other, are remotely located, and communicate through a
mediator, as illustrated in Figure 3. Although the CTAI was designed to follow the
architecture described in [15], development constraints lead its current state to evolve
from this ideal. Components were dependent on each other for launching, and some
tool functionality was located within the tutor. The tool and tutor were capable of
communicating remotely using the message protocol defined in Section 1, but there
was no mediator in place. We created central classes that could function remotely to
control functions such as beginning a session, launching the tutor, and shutting down
the tutor. We added a mediator to intercept remote messages between the tool and tu-
tor.

We then created some new tutor components, which required further negotiation of
the tool/tutor separation. We built an echoing module to echo input from one user's
screen onto the other. The echoing tutor receives user action messages, and transforms
them into the appropriate tutor feedback and action messages. For example, a “note
input” message on a given widget would be changed into a parallel “send input” mes-
sage. To make the echoing tutor effective and reusable, we implemented most of the
tool-side functionality detailed in Section 3.2, and improved tool response to tutor
action messages, which were rarely used in the CTAI. We tested the echoing tutor in a
configuration with the original cognitive tutor, and two original tools (see Figure 3).
We also implemented a prototype metacognitive tutor to listen for certain messages
and provide metacognitive instruction when appropriate.

 Finally, we created the tool components required for the PTS, attempting to plan
for both usability and reuse. We added a chat tool for the peer tutor and tutee. We also
modified the peer tutor's tools, disabling widgets for inputting answers, and

8

adding widgets for approving and flagging to the title bar. This setup is more usable
because these new widgets are in one place, but reusable in that changing the title bar
removes peer tutoring functions from the tools while retaining other characteristics.

Fig. 3. Three steps in extending the CTAI to implement the peer tutoring script.

4.3 Results and Discussion

We evaluate our implementation with respect to our criteria for a good research plat-
form: flexibility, control, and practicality. The framework that we have developed is
flexible in terms of the potential reuse of components that have been implemented and
the variety of new components that could be integrated. In addition to the peer tutoring
extension to the CTAI, developed components suggest other extensions. Combining
the echoing agent with two regular tools yields a collaborative setup for solving cog-
nitive tutor problems. Combining the echoing agent and the cognitive tutor agent
with a regular tool and a modified peer tutor tool so that the peer tutor cannot input
values or perform tutoring actions yields an actor/observer configuration, where one
person solves the problem, the other watches.

A variety of new components can be integrated into this framework, illustrating the
extensibility of the CTAI. The mediator potentially allows any components to con-
nect to it, as long as they include a translator class to translate the messages into the
protocol we have developed. For example, we intend to use the framework to imple-
ment another collaborative session type, called the collaborative problem-solving
script (CPS), where two students alternate between working independently and to-
gether to solve problems [18]. Students collaborate at the same computer terminal.
They require a tool modified for the requirements of the CPS, the cognitive tutor, an
instruction tutor that listens for certain messages from the cognitive tutor and provides
scripted instruction, and a collaborative help tutor that listens for certain messages

9

from the tool and provides adaptive support. Adding components to the CTAI would
not be possible without the implemented framework.

The framework can also ensure experimental control in research by facilitating abla-
tion studies to examine the independent effects of components. Because components
have no knowledge of each other but are connected through the mediator, specifying a
different configuration in the mediator can remove the component. For example, it is
simple to compare versions of the PTS with or without a specific tutoring agent,
simply by changing the mediator to include or exclude that agent. One could also
make comparisons between different versions of the tools; for example, comparing the
differing effects of using the regular skill display to the effects of using the peer tutor-
able display. In the CPS, removing the instruction tutor and/or the collaborative help
component allows different interventions to be compared. The implemented framework
allows examination of why an intervention is effective.

Practicality is the final criteria for evaluating our implementation. We have at-
tempted to design for usability in addition to reuse, and tried to keep the development
demands for reuse to a minimum. We have extended the CTAI, a tutor that has been
shown to be effective, which means we are comparing our interventions to a gold
standard. The tutor is already used in roughly 2000 classrooms across the United
States, and is an integral part of the Pittsburgh Science of Learning Center (PSLC),
which is engaged in facilitating experimental research in real classrooms. Using the
CTAI means there is institutionalized support with accessing teachers, schools, and
CTAI developers. At this early stage, it appears that the extended CTAI is practical for
development and classroom use.

We have developed a theoretical architecture for extending an established cognitive
tutor into a platform for collaborative and metacognitive experimentation, discussed
some practical challenges with the implementation, and evaluated our efforts to expand
the CTAI using a peer tutoring script. We will soon be evaluating the PTS in the
classroom, and using the framework with other scenarios such as the CPS, which
should give us a clearer idea of the effectiveness of the CTAI as a research platform.
Other established tutoring systems can be extended in a similar manner, using a multi-
component architecture that is specific about component responsibilities and takes
usability needs and development schedule into account. Reconceptualizing the cogni-
tive tutor as a research platform is a powerful idea for furthering educational research
and improving intelligent tutoring technology.

Acknowledgements

This research is funded by the National Science Foundation, award #0354220. I thank
Jonathan Steinhart, Dale Walters, Steve Ritter, and Dejana Diziol for their help.

References

1. Koedinger, K.R.; Anderson, J.R.; Hadley, W.H.; and Mark, M.A.: Intelligent Tutoring Goes to School
in the Big City. Journal of Artificial Intelligence in Education, 8. 30–43. (1997)

2. Morgan, P., & Ritter, S. (2002). An experimental study of the effects of Cognitive Tutor®
Alegbra I on student knowledge and attitude. (Available from Carnegie Learning, Inc.,
www.carnegielearning.com/research/research_reports/morgan_ritter_2002.pdf)

10

3. Johnson, D. W. and Johnson, R. T. (1990). Cooperative learning and achievement. In S. Sharan (Ed.),
Cooperative learning: Theory and research (pp. 23-37). NY: Praeger.

4. Aleven, V., McLaren, B. M., Roll, I. and Koedinger, K. R. (2004). Toward Tutoring Help Seeking:
Applying Cognitive Modeling to Meta-Cognitive Skills; Proceedings of the 7th International Confer-
ence on Intelligent Tutoring Systems (ITS-2004).

5. Beck, J.E., Mostow, J., & Bey, J. (2004). Can automated questions scaffold children's reading compre-
hension? The 7th International Conference on Intelligent Tutoring Systems.

6. Aleven, V., Roll, I., McLaren, B. M., Ryu, E. J., & Koedinger, K. R. (2005). An architecture to com-
bine meta-cognitive and cognitive tutoring: Pilot testing the Help Tutor. Proceedings of 12th Interna-
tional Conference on Artificial Intelligence in Education.

7. Weinberger, A., Reiserer, M., Ertl, B., Fischer, F. & Mandl, H. (2003). Facilitating collaborative
knowledge construction in computer-mediated learning with structuring tools. In R. Bromme, F. Hesse
& H. Spada (Eds.), Barriers and Biases in network-based knowledge communication in groups.
Dordrecht: Kluwer.

8. McLaren, B. M., Bollen, L., Walker, E., Harrer, A., and Sewall, J (2005). Cognitive Tutoring of Col-
laboration: Developmental and Empirical Steps Toward Realization. Proceedings of the Conference
on Computer Supported Collaborative Learning,.

9. Krueger, Charles W.. Software reuse. Computing Surveys, 24(2):131–183, June 1992.
10. Roschelle, J., Kaput, J., Stroup, W., & Kahn, T. M. (1998). Scaleable integration of educational soft-

ware: Exploring the promise of component architectures. Journal of Interactive Media in Education
(6).

11. ADL (2004a). Sharable Content Object Reference Model 2004 2nd Edition Overview..
12. Brusilovsky, P. KnowledgeTree: A distributed architecture for adaptive e-learning. In Proc. of

WWW2004 - The Thirteen International World Wide Web Conference, 2004.
13. Vassileva, J., McCalla, G., and Greer J. (2003). “Multi-Agent Multi-User Modeling”, User Modeling

and User-Adapted Interaction, 13 (1-2), 179-210.
14. Muhlenbrock, M., Tewissen, F. and Hoppe, H. U.: A framework system for intelligent support in open

distributed learning environments, International Journal of Artificial Intelligence in Education, 9, 256-
274.

15. Ritter, S. and Koedinger, K.R. An architecture for plug-in tutor agents. Journal of Artificial Intelli-
gence in Education, 7, 3/4 (1996), 315-347.

16. Ritter, S. (1997). Communication, cooperation and competition among multiple tutor agents. In du
Boulay, B. and Mizoguchi, R. (Eds). Artificial Intelligence in Education: Knowledge and media in
learning systems (pp. 31-38). Amsterdam: IOS Press.

17. Walker, E. (2005). Mutual peer tutoring: A Collaborative Addition to the Cognitive Tutor Algebra I.
Accepted as a Young Researcher's Track paper at the International Conference on Artificial Intelli-
gence and Education.

18. McLaren, B. M., Walker, E., Koedinger, K., Rummel, N., Spada, H., and Kalchman, M. (2005). Im-
proving Algebra Learning and Collaboration through Collaborative Extensions to the Algebra Cogni-
tive Tutor., Poster Presented at CSCL-05, Taipei, Taiwan.

