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Abstract

We describe the {enormous) size of the search space for Dynamic Causal Models and generalizations of
them. We describe a greedy heuristic search for modulation relations, and give evidence of its refiability
by showing it gives the same results as does an exhaustive search using an SPM8 example. Using that
example and the SPM8 Bayes factor model comparison criteria, we compare “conventional” DCM
models with models in which input variables can also have modulation effects, and give another
empirical illustration. Using the SPM8 example, we also consider the statistical result of allowing models
in which any variable, whether designated “input” or “ancillary” or “contextual” can both directly
influence regions of interest and modulate effective connections, We conclude by considering what

these results may mean for finding and interpreting the best fitting DCM model or generalization.




Introduction

The Dynamic Causal Model {DCM) framework for interpreting fMRI contrasts requires the specification
of a detailed model, which is aided by SPM8 software. Penny, et al. {2004) have called for machine
learning approaches to DCM model specification, and the SPM8 manual lists comparison of alternative
models by Bayesian model selection in its counsels for using DCM models in fMRI studies. Specification
of DCM models has at least two aspects: the specification of a directed graphical model describing the
causal connectivity refations between inputs and regions of interest and between regions of interest,
and the specification of which of these connections are modulated by ancillary or contextual variables.
While the SPM8 manual and supporting literature {Friston, et al., 2003} on DCM mode! specification
separates, in practice, exogenous variables that directly affect regions of interest {“input”}) from
exogenous variables that modulate the strengths of effective connections (“ancillary,” “contextual”},
that separation is sometimes violated in applications that posit models in which an input variable
influences a region of interest directly and also modulates one or more effective connections. To our
knowledge, the statistical advantages or disadvantages of allowing such multiple roles for exogenous
variables is unexplored. Ramsey, et al., {2010) have proposed and validated on simulated data a
procedure {“iIMAGES”) for identifying feed-forward graphical structure, but search for feedback relations
remains a matter of trial and error using Bayes factor comparisons. To our knowledge, no search
method for modulation relations has been proposed and validated except trial and error search using

Bayes factors.

In what follows, we describe the {enormous) size of the search space for DCM models and
generalizations of them. We describe a greedy heuristic search for modulation relations, and, using an
SPMS8 example, we give evidence of its reliability by showing It gives the same results as does an
exhaustive search. Using that example and the SPM8 Bayes factor model comparison criteria, we
compare “conventional” DCM models with models in which input variables can also have modulation
effects, and give another empirical illustration. Finally, using the SPM8 example, we consider the
statistical result of allowing models in which any variable, whether designated “input” or “ancillary” or
“contextual” can both directly influence regions of interest and modulate effective connections. We

conclude by considering what these results may mean for interpreting the best fitting DCM model.




The Structure of Dynamic Causal Models

Dynamic causal models represent a system of ordinary differential equations. The neural state equation
expresses the rate of change of the system in terms of the current state and its interaction with the

inputs.
2= (A+ ZujBf)z + Cu

A, B, and C are matrices representing intrinsic connectivity (effective connections between ROls),
modulation of this connectivity due to different inputs {B/ is the modulation matrix for the j’th input},
and the main-effects from inputs respectively. These matrices represent the rate of change of the
neural state with respect to the state itself (A}, the rate of change of the neural state with respect to the
j'th input and the state (8), and the rate of change of the neural state with respect to the inputs directly

(€), as shown in the above diagram from the SPM8 manyal.

Specifying a DCM requires the specification of the A, B, and € matrices. An illustration from the SPM8

manual based on data from Buchel and Friston {1997} is shown In Figure 1,
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Figure 1: “mod_bwd”, the first a priori specified model examined in the SPM8 manual for the Friston & Buchel data.
I

If we allow the rows and columns of the A and B matrices to denote V1, V5, and SPC in order, and if we
interpret a “1” at column £, row j as “there is an edge from i to j*, then we can write out Figure 1in

matrix form. Furthermore, number the inputs as follows: 1 — photic, 2—motion, 3—attention,




1 1 0 0 0 0 0 0 O 0 0 0
A=1 1 1 Bl=0 0 0 B2=1 0 0 B3=10 0 1
011 0 00 0 00 0 0 0

100

=0 0 0

0 00

The columns in the € matrix are to be interpreted as the inputs, in the order specified ahove, while the
rows remain the same ROls. Each B! entry specifies a modulating edge {or absence) from input i. The
DCM framework assumes a Gaussian shrinkage prior distribution over these and other parameters
representing the hemodynamic response, and uses an iterative expectation-maximization scheme for

estimation,
Evaluation and Comparison of Dynamic Causal Models

Let © denote the parameters of model m with respect to data y. Following the SPM manual, we can

write the likelihood of these parameters as:

_ p8, m)p(8im)
pBly,m) = PO

p(y|m) is the likelihood of the data given the model, which acts as a normalization term. This is called

the “model evidence”, and can be written as:

p(yim) = [ p(@ly,m)p(0|m)ds

This integral is typically not solvable analytically, and a variety of approximations to the model evidence
exist, including the BIC, AIC, and F {negative free-energy) approximations (Penny et al. 2004}. We will

use F, which is expressed as the following balance between accuracy and complexity:
Inp(ylm) = accuracy(m) — complexity(m)

where
accuracy(m) = [—%ln |C.) - % ty — h{u, ng1y)) €t (¥ — h(w, 161y ))]

complexity(m) = [31n [G,] -2In |Cory ! -5 oty — )" Cr Chary — 6p)]




8 is the model parameters, y the data, h the prediction function, ngjy the conditional probability of the
parameters given the data, Cgyy, the conditional covariance of the parameters given the data, and C,,

C,, and 8,the error covariance, prior covariance, and prior mean of the parameters respectively.

The Bayes factor between models m; and my, is!

Assuming the models are exclusive and exhaustive, the Bayes factor can be mapped to relative posterior
probability estimate of the models. The mode! with higher posterior is of course preferred, other things
equal, but Penny, et al., (2004} suggest preferring the more probable model only if the ratio of

probabilities Is equal to or greater than the base of the natural logarithms.

In the SPM8 manual, mode! comparison is illustrated with the DCMs in Figures 1 and 2,
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Figure 2: “mad_fwd”, the preferred a priori specified model discussed in the SPM8 manual, selected by comparing its made!
evidence against mod_bwd.

The ratio of the probabilities of the model of Figure 2 to the model of Figure 1 given in the SPM8 manual

is roughly 0.8/0.2.

DCM Search Spaces

Given a set of ROIs, stimulus inputs and ancillary variables in an experimental setup, possible DCMs can
differ in thelr intrinsic connections (A-matrix), their modulatory connections (8-matrix), or their main-

effects from inputs to ROIs (C-matrix). In what follows we will consider violating the separation of




variables into C matrix (input) variables and B matrix (ancillary) variables. We describe the search space

of these generalized DCM models as a function of the number of regions of interest.

Let there be n ROIs and k inputs, not distinguishing between experimentally controlled inputs and
2
ancillary variables. There are n® possible directed edges, hence (ﬂl ) directed graphs with i edges, or

equivalently non-zero entries in the A matrix for n ROls. For any particular configuration of the A-matrix
with / edges there are 2 possible sets of modulation relations given by the B-matrix. There are 2**

possible configurations of the C-matrix,

This yields the following measure of generalized DCM possibility spaces,

n(n-1)

okn Z (n(ni“l)) ki

i=0

For many interesting problems, the number of mathematically possible generalized DCMs is enormous,
and exhaustive searches are abviously not feasible. This space of possibilities for the B-matrix is reduced
by adhering to the conventional separation of input and ancillary variables. With r input variables and a
disjoint set of s modulation variables, the function of n changes to:
n(n-1)
o Z (n(n "" 1)) 751

i
=0

Substantive prior knowledge may of course reduce these dimensions of search, In the case of the
Buchel and Friston, {1997} data that is analyzed in the SPM8 manual n = 3 and k = 3, meaning there are

272,097,792 hypothetical models for this data expressibie in the framework of DCM.

Modulation Search

Figure 2 shows the DCM model preferred to the model of Figure 1 in the SPM8 manual, assuming the
directed graph and applying a trial and error search for modulation effects using the SPM8 model
selection criteria. An exhaustive search over configurations of possible modulation relations, under the
SPM8 separation of input (photic) and modulation (motion, attention) variables, finds that the most

probable model is that in Figure 3.




Figure 3: result of an exhaustive search over B-mateix entries from motion and attention, starting from the A and C-matrix of

mod_fwd, The posterior probability of this model versus mod_fwd is 1.0/0.0 according to 5PivI8 BMS.

The model of Figure 3 Is almost saturated: only one possible modification relation is omitted. In fact,
starting with no modulation effects, the addition of further modifications increases the posterior
probability estimate almost monotonically until the most probable model is found. The histogram of
models as a function of differences of each possible model's posterior probability to mod_fwd’s {Figure

2) in direct pair-wise comparison is plotted in Figure 4.
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Figure 4: Histogram of the posterior probabilities of modulation models. 0 marks the SPMB preferred model of figure 2,
mod_fwid. All models are compared to this model. Models to the right of 0 are deemed superiar to mod_fwd by SPM8.

Exhaustive search for modulation effects is generally infeasible even under the SPM8 restriction of
possible modulators, Consequently, we propose the following simple heuristic search for modulation
relations: the first stage considers each possible one edge addition from possible modulators to edges of
the effective connectivity graph, and adds the modulation edge that has the largest probability
difference with the original graph. At stage n, the single edge that most improves the probability
compared to the graph obtained at stage n - 1 is added. The search stops when no further
improvement in posterior probability is obtained. The result of this procedure for the SPM8 example,
beginning with the SPM8 A and C matrices, is the same as the result of the exhaustive search in figure 3.
We find in almost all of the cases examined in this paper that the most probable model instantiates

more than half of the possible modulation relations allowed, suggesting that it would be more efficient




to run the heuristic search in reverse, starting with all possible modulation relations and eliminating

them one by one in a greedy search.

The heuristic search for modulation effects could conceivably find a sub-optimal model by the SPM8
model comparison criterion if, for example, edge o is preferred to edge B, and with edge o added, edge
y is preferred at the next {or later) step to edge 8, but the addition of edges P and & yields a more
probable model than the addition of edges a and y. We have no proof that, within the DCM framework
which uses Gaussian shrinkage priors on parameters, no such errors can occur, but they clearly do not in

the SPM8 example.

Violating B-Matrix Conventions

In SPM8 and associated literature, input variables are not afforded B-matrix entries for modulator
relations. Schuyler, et al. (2010) violate this convention but give no comparison with models that accord
with it. Ramsey, et al., have provided a feed-forward directed graphical model for data from an
experiment (Xue and Poldrack, 2007) in which subjects are shown rhyming and non-rhyming words and
hon-words in 4 blocks, We add feedback for each feed-forward edge, as shown in Figure 5, and
compare DCM models based on that graph in which the input does, and alternatively does not, also

modulate effective connections. We consider only a single subject {subject 1} from among thirteen,

The input variabte for this example was constructed from the onset vector of the experimental
condition. [t is binary — “on” when the experimental condition is present, “off” when it's not, and lagged
by two time-steps to synchronize It roughly with the hemodynamic response, Our IMAGES result, run
across all thirteen subjects as in Ramsey, et al. {2010), is identical to Ramsey’s result, which uses a

convolved input.

There are 2% possible modulation models, and exhaustive search is Impossible. The best modulation
model obtained with our heuristic search is shown in Figure 6. The relative posterior probabilities for the

comparison of the modeis in Figure 5 and Figure 6 are 0 and 1, respectively,




Figure 6: result of the greedy modulation search applied to figure 5m allowing the input to modulate. The posterior

probability is 1.0 versus figure 5,

In the best model found, the input modulates 9 of the 14 postulated effective connections.

The same method can be applied to the 3 variable SPM8 model, where, allowing photic, motion and
attention to modulate freely, the space of possible modulation models is 2% = 4098 and can be searched
exhaustively and compared with the heuristic search, The two searches agree on the best model, shown

in Figure 7. Figure 7, when compared to Figure 3, yields a posterior probability of 1.
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Figure 7: result of both an exhaustive search and a greedy modulation search, starting from the A and C-matrices of

mod_fwd, allowing photic to have B-matrix entries as well.

Violating B and C-Matrix Conventions

In the conventional DCM framework, ancillary variables that have non-zero entries in the B matrix are
not (typically) allowed entries in the C matrix of inputs. That restriction can be violated as well, In the
SPMS8 example, motion and attention are logically related to photic input. If the Ramsey, et al, search is
run with all variables, motion and attention are screened off from the regions of interest by photic.
Alternatively, the Ramsey search can be run separately with photic as the only input, with motion as the
only input, and with attention as the only input. Motion and attention are then found to directly

influence V5,

Combining the edges of the three graphs thus obtained, supplemented with feedback for the effective
connections, and then carrying out an exhaustive, or heuristic, search for modulation relations, results in

the model of Figure 8.
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Figure 8: result of unioning iIMAGES searches with each controlled varfable sequentially, allowing ancillary variables to have
main-effects, followed by an exhaustive or heuristic search for modulation relations. The iIMAGES searches establish the feed-

ferward structure; back-projections are added to each edge,
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The model of Figure 8 has posterior probability essentially 1 compared to the model of Figure 7, and s
the most probable model we have found using the effective connections postulated in the SPM8

models.

The models of Figure 8 is not plausible: we expect influences on V5 to pass through V1, That it is
nonetheless more probable that any models that prohibit main Influences from ancillary variables is

curious, and therefore potentially troublesome,

Violating A, B, and C-Matrix Conventions

An iIMAGES search yields the feed-forward structure of the SPM8 model effective connections, but does
not yield feedback relations. In the general case, an exhaustive search for feedback models using
posterior probability connections would be daunting, but perhaps feasible with some parallelization. In
the SPM8 example, however, only one further feedback edge is possible, from SPC to V1. Adding that
edge to the effective connections, repeating the three iIMAGES searches separately with photic, motion
and attention as unique inputs, combining the results, and carrying out an exhaustive and heuristic

search for modulation relations yields the model of Figure 9.

Figure 9: result of searching across possible feedback structures. Each possible feedback struclure was investigated with a
greedy modulation search. These results were compared to find the hest, resulting in the above model. Compared to figure

4, the posterior probabilities are 0.8242/0,1758.
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Figure 9 and Figure 8, in a heads-up comparison using $PMS, yield posterior probabilities of 0.8242 and
0.1758 respectively. Figure 9 is the most probable modet we have found for the Buchel and Friston,

(1997} data.

Discussion

Our exploration of the search space of DCM models and generalizations raises a number of fundamental
guestions to which we have no answers: Are there compelling neurophysiological reasons for strictly
separating modulators from inputs, B matrix variables from C matrix variables? By what
neurophysiological mechanisms can contextual variables modulate effective connections? Are there
neurochemical reasons for thinking that external stimulations may stimulate modulation of many
effective connections nearly simultaneously? Why are the most probable models we find so heavily

parameterized?

Breaking the convention al separation of roles for ancillary and input variables improves the posterior
probability considerably, but does not necessarily result in a plausbile model. That may be because in
the SPM example, attention and motionn are logically connected to photic. When ancillary variables are
independent of regions of interest conditional on input variables, we do not recommend allowing the
anciliary variables entry into the DCM C matrix, a procedure we used only to illustrate the behavior of
the SPM8 model selection critierion. We suggest a useful and applicable criterion for separating C
matrix from B matrix variables is this: find the smallest set, 1, of exogenous variables conditional on
which the remaining exogenous variables are independent of the ROIs, I is the set of variables that
influence ROIs; the rematning exogenous variables do not. This separation is easily found with Ramsey’s

procedure or many other,

In our examples, the model selection criteria favor heavily parameterized models. The most probable
model, shown in Figure 9, omits only one possible effective connection, and only 4 of 15 possible
modulation connections. Abiding by the separation of variable roles in the conventional DCM formalism
yields a most probable model, shown in Figure 3, in which all but one of the possible modulation
connections is realized. In the DCM model for the Xue and Poldrack data, the most probable model has

the input modulating the majority of effective connections.
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The heavy parameterization of a most probable model within some search space may be because the
model is true, or truer than the many alternatives examined, but it may also be because the posterior
probabilities calculated are an unreliable guide to truth. Posterior probabilities may fail as a guide either
because of biases in the prior probahility distribution, or because of unsatisfactory approximations in
computing posterlor probabilities, or because the model search space is inappropriate. in other
contexts, it is a famillar fact that misspecification of the model search space often leads to over-
parameterization, Merely for one kind of example, if in truth a collection of variables are all confounded
by a common cause, and the postulated search space excludes that possibility, the measured variables
will typically all be dependent; each pair of measured variables will typically be dependent even
conditionally on any other set of measured variables. A complete graph and complete parameterization
will result. That is why substantive assumptions about the space of possible models are invaluable—if

correct.
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