Autonomous Helicopter Control using
Reinforcement Learning Policy Search Methods

J. Andrew Bagnell, Jeff G. Schneider

Abstract— Many control problems in the robotics field
can be cast as Partially Observed Markovian Decision
Problems (POMDPs), an optimal control formalism.
Finding optimal solutions to such problems in general,
however is known to be intractable. It has often been
observed that in practice, simple structured controllers
suffice for good sub-optimal control, and recent research
in the artificial intelligence community has focused on pol-
icy search methods as techniques for finding sub-optimal
controllers when such structured controllers do exist. Tra-
ditional model-based reinforcement learning algorithms
make a certainty equivalence assumption on their learned
models and calculate optimal policies for a maximum-
likelihood Markovian model. In this work, we consider
algorithms that evaluate and synthesize controllers un-
der distributions of Markovian models. Previous work has
demonstrated that algorithms that maximize mean reward
with respect to model uncertainty leads to safer and more
robust controllers. We consider briefly other performance
criterion that emphasize robustness and exploration in the
search for controllers, and note the relation with experi-
ment design and active learning. To validate the power
of the approach on a robotic application we demonstrate
the presented learning control algorithm by flying an au-
tonomous helicopter. We show that the controller learned
is robust and delivers good performance in this real-world
domain.

I. INTRODUCTION

ECENTLY there has been a great deal of interest

in applying learning for control and planning in
robotics and automated systems. “Learning control” en-
tices us with the promise of obviating the need for the
tedious development of complex first principle models
(see “the curse of modeling” [1]), and suggest a variety
of methods for synthesizing controllers based on expe-
rience generated from real systems. But reinforcement
learning algorithms, particularly applied to real systems
where gathering data is costly and potentially danger-
ous, often include the need to learn some form of sys-
tem model (either implicitly or explicitly) while deter-
mining an optimal policy, so as to be efficient with the
data available. Traditional model-based reinforcement
learning algorithms make a certainty equivalence assump-
tion on their learned models and calculate optimal poli-
cles, using some variant on dynamic programming, for
a maximum-likelihood Markovian model. It is our con-
tention that these techniques face serious difficulties in

Drew Bagnell and Jeff Schneider are with Carnegie
Mellon’s Robotics Institute, E-mail:dbagnell@ieee.org,
Jeff.Schneider@ri.cmu.edu.

the application to robotics.

First, in nearly all interesting real-world systems we
cannot observe the actual state of the system as in a
Markov Decision Process (MDP), but rather at best see
some noisy function of it, as in a Partially Observed MDP
(POMDP). Learning systems should be designed to ex-
plicitly account for the resulting violations of the Markov
property.

Second, physical systems are often high-dimensional
so that it is quite impossible to have data for all parts
of state-space. It is also unlikely than any model used
by the learning algorithm is capable of capturing all of
the subtlety of the real system dynamics, so we would
like learning control algorithms to exhibit some degree
of robustness to undermodeling. Further, even given a
good model, the complexity of building optimal policies
typically rises exponentially in the number of dimensions.
(The “curse of dimensionality”, [2]).

Finally, learning systems, and particularly those oper-
ating in the physical world where experiments are costly
and time-consuming, must face the well-know explo-
ration/exploitation dilemma. The learning system must
trade off: 1) the desire to improve a model by trying
out actions and states that have not been well explored
(which could improve its overall performance in the fu-
ture), and 2) the desire to take actions that are known
to be good (which yields better near-term performance).
The exploration/exploitation problem has received con-
siderable attention. Developing strategies to explore and
exploit efficiently is an extremely difficult problem— es-
pecially under constraints that are often present in real
systems. As an example, consider a helicopter learning
its dynamics and a control policy. We want to ensure
that it will not crash while learning, or operating under
a policy derived from a learned model. Intimately tied
to this exploration/exploitation trade-off is the issue of
building controllers that are exploration or risk-sensitive.

Recent research in the artificial intelligence community
has focused on policy search methods as techniques to
ameliorate the first two difficulties mentioned above. We
argue in this paper that with appropriate performance
metrics and algorithms, policy search naturally extends
to evaluating and synthesizing controllers under distribu-
tions of Markovian models, allowing us to address issues
of robustness and exploration.

Although in principle, we can deal with uncertainty in
modeling and noisy observations “optimally” by value-
iteration of a Partially-Observed Markov Decision Pro-
cess, the computational complexity is overwhelming. (It
is not even known if finding the optimal policy in a dis-
counted POMDP is computable.) The central idea of
policy search is to restrict the class of allowed controllers.
It has often been observed that in practice, simple struc-
tured controllers suffice for good sub-optimal control, and
hence recent research has focused on policy search meth-
ods as techniques for finding good sub-optimal controllers
when such structured controllers do exist. Policy search
provides a way to combat the computational complexity
issues introduced by the problems above, and requires
only a form of simulator, a more compact representation
than explicit transitions and costs. By limiting the class
of policies to search through, we can potentially much
more rapidly find a good policy. Further, limiting the
complexity of the controller serves as a form of “regu-
larization”. Without structural guarantees, it could take
an intractable number of Monte-Carlo roll-outs of a pol-
icy on a simulation to evaluate its performance— there
could always be some subtlety that is not apparent in
any reasonable number of evaluations. This property is
captured in theorems relating the uniform convergence of
such estimates and the complexity of the searched pol-
icy class. [3] Structured policies are very natural in the
robotics field as well. It is natural to build restriction
we would like on the controller directly into its structure.
One can also easily limit the amount of computation re-
quired during the control cycle by suitably limiting the
complexity of the controller structure. Finally, it is often
the case that physical insight leads to good selections of
controller class.

A. Previous Work

In [4], safety is addressed by treating learned model
uncertainty as another source of noise to be incorporated
into the stochastic transitions of an MDP. Good empir-
ical results were obtained, but this method relies on an
assumption that model error is uncorrelated through time
and space, which is rarely the case.[5] make exploration
deliberative and guarantee near-optimal performance in
polynomial time. Although this leads to nice theoreti-
cal results about the complexity of reinforcement learn-
ing, the aggressive exploration such an algorithm en-
courages 1s the antithesis of what we would hope for in
building safe controllers. The literature on the explo-
ration/exploitation problem in reinforcement learning is
extensive. See [6] for further discussion of the problem.

II. PRELIMINARY SETUP

We address first the formalism necessary to discuss our
results. The measure theoretic details are of little impor-

tance and can be ignored with little loss as they are only
considered to introduce the notion of re-using samples
in evaluations. Consider a controlled stochastic process
X:(u),0 <t < oo on some probability space (2, F,Q)
taking values in a state space A and endowed with a
bounded reward (equivalently cost) function —Rpqr <
R(x) < Rmay on the state space. Controls u come from
a space U that will typically be taken to be finite, al-
though with suitable restrictions on X;(u) , can also be a
taken as more general continuous spaces. For the proba-
bility space we will take as a canonical one [0, 1], so as
to refer to the bits of the sample space. Note that each
next state of the process will be determined by finitely
many bits. The stochastic process behaves, after a model
M and 1nitial state 1s chosen by the first bits of w, as a
Markov process with transition kernel P, sr(2’, 2) , or as
a Partially Observed Markov Process, which 1s identical
except that controllers only have access to another ran-
dom variable Y, taking values in an observation space
(0,0), that is a measurable o(X;)/0. We will usually
consider controllers mapping X; to ¢ (also called strate-
gies or policies here) that come from a restricted class,
denoted II.

For the purposes of this paper, we will consider all off-
line simulations to be on a deterministic simulative model
[7] where we can sample a typical event, w € € under
the distribution @ (the joint distribution of initial states,
models, and Markov noise in transitions and observa-
tions) and that each such w can be stored and re-used for
the evaluating different controllers. Deterministic simu-
lative models are quite reasonable for model-based com-
putations, but not so for model-free ones. It essentially
amounts to being able to reset one’s random number gen-
erator in a simulation to pick the same event for rolling
out different policies in Monte-Carlo policy evaluation,
and 1t provides a critical advantage in optimization, as it
ensures that the reward criterion to be optimized will be
a function (not noisy). Finally, the assumption of a deter-
ministic simulative model, provides complexity theoretic
benefits, in that it allows one to prove uniform conver-
gence of value-estimates to their means in time polyno-
mial in the horizon length.

IIT. OpTIMAL POLICIES
A. Performance Criterion

To formalize the notion of building optimal controllers
we require a criterion on which to judge the performance
of a given controller on a trajectory. A natural one to con-
sider is the (discounted) sum of future rewards achieved
under a controller. We denote by Jr(w) the empirical
performance of a policy on a single trajectory:

v €(0,1], N = (0..00).

To consider this as a metric on policies, we sug-
gest that policies be ordered by mean trajectory per-
formance, where the expectation is taken with respect
to measure @ (including Markov noise and model dis-
tribution). Note that the initial state, dynamic model,
and effects of noise are all specified in the w. Consider-
ing the expectation over model uncertainty and noise is a
more complete way to look at model-based reinforcement
learning solutions than is usually done when evaluating
certainty-equivalence based approaches. We consider the
entire posterior distribution on models, and not just the
point maximume-likelihood estimate. Finding the optimal
controller with this metric corresponds to the Bayesian
decision-theoretic optimal controller, when we know the
controller cannot be changed at a later time due to new
information. Formally,

Definition 1: A policy ©* 1s € near-optimal in Bayesian
Stationary Performance if

B3) 2 sup EelJn(w)] - < e

B. Connections to robustness and exploration

In many applications it will be important to consider
optimization criterion that more explicitly encourage ro-
bustness and exploration. We address these issues at
length in [8]. Briefly, the central idea for safety and
robustness criterion is to consider maximizing the per-
formance on the worst model in a large set of models,
or on almost all trajectories the controller executes, so as
to, with high-probability, bound the worse-case controller
performance. Such robustness procedures when inverted
to look at best, instead of worst, performance are simi-
lar to heuristic approaches commonly used in experiment
design. (For a discussion of the application of stochastic
optimization in artificial intelligence and a description
of the algorithms mentioned here, see [9].) Algorithms
developing controllers to maximize this criterion can be
seen as searching for a good experiment to perform to
collect information; they are essentially designed accord-
ing to the “optimism in the face of uncertainty” heuristic.
Under this interpretation, the Bayes optimal stationary
controller described here can be seen as being a version
of PMAX- choosing an experiment at the point of largest
expected value.

B.1 Convergence of Algorithms

We briefly note that the following theorem on the com-
plexity of evaluating a policy class under the Bayesian

Stationary Performance criterion follows immediately
from [7]:

Theorem 1: Let a discrete distribution of two-action
POMDPs be given, and let II be a class of strategies with
Vapnik-Chervonenkis dimension d = VC(IT). Also let any
€,6 > 0 be fixed, and let V be the policy estimates de-
termined by a sampling algorithm using m samples from
2 (the same samples used to evaluate every policy) from
scenarios where

Rmax L1
m = O(poly(d, ; ,log 5 m)), (3)

then with probability at least 1 — 6, V will be uniformly
close to V (within €) over all policies in that class. B

This type of result, while not typically leading to a use-
ful number of samples to actually perform, is encouraging
in terms of the tractability of the approach. This result
on the polynomial complexity of uniform bounds on the
evaluation of performance criterion can be extended to
the case of infinite action spaces (with suitable assump-
tion on the complexity of the dynamics). See [7] and [3]
for more discussion about policy search and the complex-
ity of uniform bounds on evaluations.

C. Computational Complexity of Achieving Optimality

Proposition 1: Finding the unrestricted stationary
memoryless policy that achieves the largest expected re-
ward on distributions over Markovian (or Partially Ob-
served Markovian) Decision Process is NP-hard.

The distribution over models resulting from Bayes es-
timation in model-based RL leads to a difficult compu-
tational problem as we lose the Markov property that
makes dynamic programming an efficient solution tech-
nique. The problem becomes similar to the one of finding
memoryless policies in a POMDP, and thus a reduction
similar to [10] proves the result.

D. Sampling Algorithms

Until this point we have deferred the question of sam-
pling from the space €2. In the case of Bayesian paramet-
ric approximators of system dynamics, sampling can be
obtained simply by sampling from the posterior of the pa-
rameters and then rolling out trajectories as is standard
in Monte-Carlo policy evaluation.

However, in many problems in robotics, it has been
demonstrated that non-parametric regression techniques
admirably serve to model the often highly non-linear and
noisy dynamics. [11] These techniques make it impossi-
ble to directly sample from the space of possible mod-
els. Some non-parametric models like Locally Weighted
Bayesian Regression do make it possible to sample from
a set of posterior local parameters, and hence can gen-
erate samples from the 1-step predictive distribution due

to model uncertainty. We argue that this, combined with
the ability to re-estimate the model in the Bayes-optimal
way, 1s sufficient to create arbitrary length trajectories
that are independent samples from the n-step predictive
distribution. If a regression algorithm like LWBR is not
a Bayes optimal estimator, the technique described in
this section provides biased n-step samples that we hope
are close approximations to the ideal samples.

Algorithm 1 (N-step predictive sampler) Algorithm to
generate samples from the N-step predictive distribution
of a learner with 1-step predictive distributions
1. Generate a sample state transition from the 1-step pre-
dictive distribution and update the current state
2. Update the learned model using the generated state
transition as if it were a training point observed from the
real system
3. Repeat to 1 until a termination state is entered or ef-
fective horizon is reached (For the analysis below assume
we repeat n times.

4. Reset the learned model back to the original model
|

If our estimator were optimal in the Bayesian sense,
we would expect that iteratively re-estimating the model
using generated samples from the model, as the algorithm
above suggests, would indeed allow us to sample from the
n-step predictive distribution.

Theorem 2 (Sufficiency of 1-step predictive learners) If
model M in algorithm (1) can be recursively updated in
the Bayes-optimal way, the trajectories generated by the
algorithm (1) are independent samples from the n-step
predictive distribution.

Proof: We argue by induction. Consider the two step
predictive distribution:

(X2, X11X0,T) = p(Xo| X1, Xo, T)p(X1|1X0,T) (4)

where 7T is the observed data used to build the model.
For a discrete model set,

P(X2|X1, X0, T) = > p(Xa| X1, Xo, T, M')p(M'| X1, Xo, T)

M
(5)
=D p(Xa X0, M)p(M'|T7)
M

where M denotes the discrete class of models to be es-
timated from the data. The second distribution in each
summation is just the posterior model M’; that is, the
distribution over Markov models conditioned on the ob-
served data and the transition from Xy to X;. But then
the final equation shows that p(Xs, X1| X0, 7) is just an-
other one-step distribution from the new distribution of
models P(M’), simply the learned model under the old
data and the new observed transition.

Fig. 1. The CMU Yamaha R50 helicopter in autonomous flight.

Similar results can be shown with more technical detail
in the case of other model distributions. It follows then
from the law of composition that if X 1s first drawn 1.1.d
p(X1|Xo, 7T) and then X5 is drawn from p(X2| X1, Xo, 7),
the pair is 1.1.d from the joint predictive distribution.

|

IV. EXPERIMENTAL RESULTS

There is ample room to apply the techniques developed
in the machine learning community to the problems in
the control of autonomous helicopters. Autonomous he-
licopter control is difficult as the dynamics are unstable,
non-minimum phase, have large delays, and vary a great
deal across the flight envelope. In this section we detail
some of the results from applying the policy search meth-
ods described in the previous sections to the problem of
the flight control of an autonomous helicopter.

A. Dynamics

We begin by specifying the problem. To provide a man-
ageable first goal in applying policy-search to the heli-
copter, we considered only the so-called “core dynamics”
of the helicopter, the pitch, roll, and horizontal transla-
tions. The dynamic instabilities are known to lie in these
dynamics, and control of these is therefore paramount.
[12] Existing proportional-derivative (PD) controllers, te-
diously tuned by the helicopter team, were used on the
yaw-heave dynamics. From a high-level, the goal will be
the regulation of the helicopter hovering about a point,
or a slowly varying trajectory. This will be formalized as
a cost function to be optimized.

B. Modeling

Modeling a dynamical system is always challenging. To
learn the dynamics of the helicopter, we chose to imple-
ment a LWBR state-space model of the following form (a
locally affine model):

2T = A(P)T + 10H(F) + B(T) [dion] (6)

1 1
? = [xavl‘agag_ _gaya vya¢a¢_ _¢]T
z z

deltaLat

deltaLon

Fig. 2. A graphical depiction as a neural network of the structure
of the policy used to control the helicopter.

where z i1s the forward-shift operator. The inputs,
d1on and d;4¢ reflect the cyclic controls of the helicopter.
The state variables x and y refer translational devia-
tion of the helicopter from its set point. Massive cross-
validation was applied to determine appropriate kernel
widths. Data was collected from pilot tele-operation of
the helicopter. This data was recorded off the Kalman
state-estimator at 100Hz and down-sampled to 10Hz.
The down-sampling introduces aliasing into the data due
to the higher-order dynamics of the helicopter, but has
the advantage that it reduces the apparent delay in con-
trols applied caused by the unobservable rotor and actua-
tor dynamics. We hope to still capture much of the prin-
ciple behavior of the helicopter with the lower frequency
model. Interesting future work would involve building
a different state-space model capable of capturing the
higher frequency dynamics the helicopter demonstrates.

C. Controller design
C.1 Controller structure

In proposing an initial controller structure, we looked
towards simple controllers known to be capable of flying
the helicopter. To this end, we proposed a simple, neural-
network style structure (see Figure (2)) that is decoupled
in the pitch and roll axis, and about equilibrium is sim-
iliar to a linear PD controller. There were 10 parame-
ters to modify in the controller structure, corresponding
to the weights between output nodes and parameters in
the sigmoidal functions at the hidden and output layers.
This is a fairly simple controller that leads to a policy
differentiable in its parameters and nearly linear about
equilibrium. Because of the hidden layer unit, it is able
to adapt to large set-point shifts in the position variables,
unlike a linear one.

C.2 Optimization

For the purposes of optimization, we maximized the
Bayesian Stationary Performance criterion. It has pre-
viously been demonstrated that this criterion (or rather
the approximation of it given in [4]) typically leads to
controllers that are neither too conservative, nor as ag-
gressive as that obtained by a optimizing a maximum
likelihood model. A variety of cost criterion were im-

o 5 10 15 20 2 %0 5 10 15
time (5) time (s)

Fig. 3. Data logs from the R-50 demonstrating performance hover-
ing under (left) a highly trained pilot’s control, and (right) the
neural-net controller built by the robust policy search methods.

plemented, each leading to different (although mildly so)
controllers. A typical example was the quadratic form:

2?4yt + 2% g7 +.0001 % 07, 4+ .0001 %52, (7)

Quadratic forms in the position variables are typically
not reflective of our real performance goals. A better re-
flection of our preferences in control is one that emphasis
stability in velocities and angles rather than placing huge
penalties on modest deviation from nominal set point— es-
pecially as we will expect the controller to perform well
even when started quite far (as distant as 25 meters) from
the set point. To reflect this preference, our immediate
cost criterion on the position variables is computed linear
in the magnitude of the state variable, or of a form like
the following:

22 Y2
10 10 8
x2—|—1+ y2+1 (8)

Finally, we assigned a large penalty for large (10°) for
state-variables that were outside the space of the data we
had observed.

After establishing the cost criterion, we considered the
task of optimizing the parameters. Trajectories were
rolled out using the sampling technique described in al-
gorithm (1) for the LTWBR model. Typical policy eval-
uations were 30 trajectories of horizon length 500 with
discount factor y = .995. The amoeba (simplex) opti-
mization technique [9] was used to modify the controller
parameters and guide the search for optima. Random
restarts were applied to initial weights to allow the opti-
mizer to find a reasonable solution. Note that is possible
to use differentiable optimization techniques instead, if
we were willing to smooth the “out-of-bounds” penalties
introduced on the state-variables.

D. Validation

Initial validation experiments were performed on a lin-
ear model of the rotorcraft about hover given in [12].
Good performance on this model was encouraging as it is
significantly higher-dimensional (14'* order) and larger

bandwidth model than that obtained using the locally
weighted regression technique described here, and was
developed by a different set of techniques. In particular,
to formulate a state-space model [12] uses the U.S. Army
developed CIFER system, designed specifically for full-
scale rotorcraft identification. CIFER performs system
identification in the frequency domain using the Chirp-Z
transform, and treats the state space identification as an
optimal matching problem. This approach has been vali-
dated numerous times, and takes advantage of the known
physics of the helicopter. Further, because of the state
space structure, CIFER explicitly models rotor dynam-
ics (which introduce a significant delay into the system
dynamics). This modeling enables Mettler et. al. to
capture higher frequency dynamics than we can hope to.
However, the frequency domain approach is fundamen-
tally a linear one, and thus one can only capture dy-
namics in a small part of the flight envelope. Further,
the inflexibility of the state-space model in CIFER, forces
the response into a particular structure that one cannot
be sure is accurate for all rotorcraft, particularly ones of
dramatically different scales then that for which CIFER
was originally designed. Despite these reservations, it is
apparent that [12] get excellent results for the hover cen-
tered model.

It is interesting to note that controller developed by
policy search on the maximum likelihood model had
highly oscillatory (nearly unstable) performance on the
linear simulator. The controller learned on the distribu-
tion of models, in contrast had significantly lower loop
gain.

After a degree of confidence was achieved by simula-
tion on the model, the controller was ported to Carnegie-
Mellon’s autonomous R-50 helicopter control computer.
The estimation-control loop on-board operates at 100Hz
(as opposed to the simulation 10Hz). To ensure the con-
troller wasn’t operating outside the modeled bandwidth,
a first order low-pass digital filter was implemented on
the control outputs.

The helicopter was then test flown. The results were
encouraging, and demonstrate that the simple policy
search technique can generate controllers that are appli-
cable to robotic systems. Despite quite windy conditions
the rotorcraft was able to track moving set points and re-
ject strong gusts. Figure (3) shows typical performance
during the flight, contrasting the hovering of a highly
trained human pilot with the controller obtained using
the safe learning control methods described above.

V. CONCLUSIONS

Our current work establishes a framework for the de-
velopment of structured controllers sensitive model un-
certainty and then demonstrates the viability of the ap-
proach on a difficult physical control problem. Future

research directions include more sophisticated control of
the rotorcraft to exercise more of the flight envelope. An-
other interesting area to pursue is the online implementa-
tion of the inner-loop policy search to dynamically recon-
figure the controller. This is particular interesting in the
context of error-recovery. In the event of a failure of some
sub-system of the helicopter, it will be critical to, based
only on very limited experience after the fault, quickly
search for a viable controller. We will also extend this
work to apply more efficient techniques in the inner loop
search, including faster optimization and using reward
shaping in a principled way. Finally, we will continue the
investigation into explicit criterion for exploration and
risk sensitivity using policy search described in [8].

ACKNOWLEDGMENTS

The authors gratefully acknowledge enlightening con-
versations with Bernard Mettler and Andrew Ng, and
particularly the help of Omead Amidi in the implemen-
tation and experiments with the helicopter. Finally, the
authors thank Chuck Thorpe for his support throughout
the research. Drew Bagnell was supported by Robotics
Institute and National Science Foundation Fellowships.

REFERENCES

[1] D. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Programming.
Athena Scientific, 1996.

[2] R. Bellman, Dynamic Programming. Princeton University
Press, 1957.

[3] M. Kearns, Y. Mansour, and A. Ng, “Approximate planning in
large pomdps via reusable trajectories,” in Neural Information
Processing Systems 12, 1999.

[4] J. Schneider, “Exploiting model uncertainty estimates for safe
dynamic control learning,” in Neural Information Processing
Systems 9, 1996.

[6] M. Kearns and S. Singh, “Near-optimal reinforcement learning
in polynomial time,” in International Conference on Machine
Learing, 1998.

[6] R. Sutton and A. Barto, Reinforcement Learning: An Intro-
duction. MIT Press, 1998.

[7] A. Ng, D. Harada, and S. Russell, “Pegasus: A policy search
method for large mdps and pomdps,” in Uncertainty in Ar-
tificial Intelligence, Proceedings of the Sizteenth Conference,
1999.

[8] J. Bagnell, J. Schneider, and A. Ng, “Robustness and explo-
ration in policy-search based reinforcement learning,” tech.
rep., Robotics Institure, Carnegie Mellon University, 2000.

[9] A. Moore and J. Schneider, “Memory based stochastic opti-
mization,” in Advances in Neural Information Processing Sys-
tems (NIPS-8), 1995.

[10] M. Littman, Algorithms for Sequential Decision Making. PhD
thesis, Brown University, 1996.

[11] C. Atkeson, “Using locally weighted regression for robot learn-
ing,” in Proceedings of the 91 IEEE Int. Conference on
Robotics and Automation, April 1991.

[12] B. Mettler, M. Tischler, and T. Kanade, “System identification
of small-size unmanned helicopter dynamics,” in Presented at
the American Helicopter Society’s 55" Forum, 1999.

