
Learning Robot Motion Control
with Demonstration and Advice-Operators

Brenna D. Argall, Brett Browning and Manuela Veloso

Abstract— As robots become more commonplace within soci-
ety, the need for tools to enable non-robotics-experts to develop
control algorithms, or policies, will increase. Learning from
Demonstration (LfD) offers one promising approach, where
the robot learns a policy from teacher task executions. Our
interests lie with robot motion control policies which map
world observations to continuous low-level actions. In this
work, we introduce Advice-Operator Policy Improvement (A-
OPI) as a novel approach for improving policies within LfD.
Two distinguishing characteristics of the A-OPI algorithm are
data source and continuous state-action space. Within LfD, more
example data can improve a policy. In A-OPI, new data is
synthesized from a student execution and teacher advice. By
contrast, typical demonstration approaches provide the learner
with exclusively teacher executions. A-OPI is effective within
continuous state-action spaces because high level human advice
is translated into continuous-valued corrections on the student
execution. This work presents a first implementation of the A-
OPI algorithm, validated on a Segway RMP robot performing
a spatial positioning task. A-OPI is found to improve task
performance, both in success and accuracy. Furthermore,
performance is shown to be similar or superior to the typical
exclusively teacher demonstrations approach.

I. INTRODUCTION

The presence of robots within society is becoming more
prevalent. Whether an exploration rover in space or recre-
ational robot for the home, successful autonomous robot
operation requires a control algorithm, or policy, which maps
observations of the world to actions available on the robot.
Policy development is currently a complex process restricted
to experts within the field. However, as robots become more
commonplace, the need for policy development which is
straightforward and feasible for non-experts will increase.

Traditional approaches to policy development model world
dynamics, and derive a mathematically-based policy. Though
theoretically well-founded, these approaches depend heavily
upon the accuracy of the world model. Not only does
the model require considerable expertise to develop, but
approximations such as linearization are often introduced for
computational tractability, thereby degrading performance.

An alternative approach is to have a robot learn its control
policy. One specific learning approach which has found
success is Learning from Demonstration (LfD), e.g. [9],

This research was sponsored by the Boeing Company under Grant No.
CMU-BA-GTA-1. The views and conclusions contained in this document
are those of the authors and should not be interpreted as necessarily
representing official policies or endorsements, either expressed or implied
of the Boeing Company.

B. Argall and B. Browning are with the Robotics In-
stitute, and M. Velsoso the Computer Science Department,
at Carnegie Mellon University, Pittsburgh, PA 15213, USA.
<bargall,brettb,mveloso>@cs.cmu.edu

[10]. Within LfD, a teacher provides example executions
of the task. Executions are recorded as observations of the
world and selected actions. From this dataset, the learner
then generalizes a control policy which maps observations
to actions. Demonstration has the attractive feature of being
an intuitive medium for human communication, as well as
focusing the dataset to areas of the state-space actually
encountered during task execution. Since it does not require
expert knowledge of the system dynamics, demonstration
also opens policy development to non-robotics-experts.

A desirable feature in any learning system is the ability
to improve a policy based upon learner experience. Though
not an explicit part of classical LfD, many LfD systems do
take policy improvement steps. The most common approach
is to add more teacher demonstration data in problem areas
of the state space, and then re-derive the policy [6], [7].

In this work, we introduce Advice-Operator Policy Im-
provement (A-OPI) as an approach for policy improvement
within an LfD framework. A key novel feature of our
approach is that more data is not provided by further teacher
demonstrations. Rather, new data is synthesized from learner
executions and teacher advice. The new data results from the
learner applying this advice to its execution data points. The
synthesized data is then added to the demonstration set.

Our work focuses specifically on robot motion control
within continuous state/action spaces. Correcting the state-
action mapping of a policy involves indicating the correct
action or state. For continuous state/action spaces, this re-
quires providing a continuous-valued correction. Expecting
the human teacher, however, to know the appropriate contin-
uous value to correct these data points is neither reasonable
nor efficient. To circumvent this, we have developed advice-
operators as a language through which the human teacher
provides advice to the robot student. Advice-operators per-
form mathematical computations on continuous-valued data
points. We introduce a finite list of advice-operators, from
which the human selects to provide advice. The robot learner
then applies the operator to its execution data point. In this
manner, we enable a framework in which advice-giving is
reasonable for a human to perform, and does result in a
continuous-valued correction.

We have implemented A-OPI on a Segway RMP robot
performing a spatial positioning task. We show that A-OPI
enables similar or superior performance when compared
to a policy derived from the typical exclusively teacher
demonstrations approach. Furthermore, by concentrating new
data exclusively to the areas visited by the robot and needing
improvement, A-OPI produces noticeably smaller datasets.

In the next Section, we motivate the development of A-
OPI, grounded within a review of related literature. Section
III presents the A-OPI algorithm in depth. Section IV details
our experimental implementation on a Segway RMP robot.
Empirical results are presented within Section V, along with
further discussion. In Section VI we conclude.

II. MOTIVATION AND RELATED WORK
The problem of learning a mapping between world ob-

servations and proper action selection lies at the heart of
many robotics applications. Formally, our world consists of
states S and actions A, with the mapping between states by
way of actions being defined by the probabilistic transition
function T (s′|s, a) : S × A × S → [0, 1]. We assume that
state is not fully observable. The learner instead has access
to observed state Z, through the mapping M : S → Z. A
policy π : Z → A selects actions based on observations of
the world state. Learning for the robot consists of changing
its control policy π so as to improve task performance.

A. Learning from Demonstration
One technique for robot policy learning is to learn from

demonstration. Formally, a teacher demonstration dj ∈ D is
represented as tj pairs of observations and actions such that
dj = {(zij ,aij)} ∈ D, zij ∈ Z,aij ∈ A, i = 0 · · · tj . The set
D of these demonstrations are provided to the learner.

When gathering teacher demonstrations, three key deci-
sions to make are the choices of demonstration teacher,
demonstration platform, and recording sensors. These deci-
sions heavily influences the introduction of correspondence
issues, where demonstrations do not immediately transfer to
the robot due to sensing or motion differences between the
teacher and learner.

Most LfD work to date uses human demonstrators [3]. We
similarly restrict the scope of our work to humans, though the
algorithm itself is general to any teacher. Many approaches
exist for executing and recording teacher demonstrations [7],
[9]. We teleoperate our robot while recording from its own
sensors, as this minimizes correspondence issues.

There are three core approaches to policy derivation from
demonstration data. In the first approach, the data is used
to directly approximate the underlying function mapping
observations to actions [5]. In the second approach, the data
is used to determine the world dynamics model T (s′|s, a)
and possibly a function R(s) associating reward with world
state [4]. In the third approach, a sequence of actions are
produced by a planner after learning a model of action
pre- and post-conditions [10]. Our work explores policy
derivation and improvement within the first approach.

B. Policy Improvement within Learning from Demonstration
An attractive feature for any learning system is the ability

to update the policy based on learner executions. Though
not a part of the classical LfD formulation, a variety of
LfD systems do implement policy improvement steps. For
example, when a policy is derived under the world dynam-
ics model and reward approach, execution experience may
update T (s′|s, a) [1], or reward-determined state values [11].

When a policy is derived by approximating the underlying
mapping function, which is the approach we explore, a
common technique for improvement is to provide more
demonstration data. Algorithms driven by learner requests for
more data [7], [8], and teacher initiation of further demon-
stration [6], have been shown to improve policy performance.

Fig. 1. Generating demonstration data. Typical approaches provide demon-
stration data from teacher executions (top). Our approach introduces a novel
technique for generating data based upon learner executions and teacher
advice (bottom, shaded box).

We contribute with this work a novel approach which
instead derives new data from learner executions modified
by advice from a human teacher (Fig. 1). Furthermore, this
advice differs from the traditional Reinforcement Learning
reward by providing a correction on the executed state-action
mapping. By contrast, reward provides only an indication of
the desirability of visiting a particular state; to determine the
correction (i.e. the more desirable state) alternate states must
be visited. This can be unfocused and intractable to optimize
when working on real robot systems with an infinite number
of world state-action combinations.

C. An Alternative to Teacher Demonstration

Instead of providing more teacher demonstrations, with
A-OPI we synthesize new demonstration data based upon
student executions and teacher advice. The following con-
siderations motivate our interest in alternate data sources to
teacher demonstration:
• No need to recreate state. This is especially useful if

the world states where demonstration is needed are
dangerous (e.g. lead to a collision), or difficult to access
(e.g. in the middle of a motion trajectory).

• When unable to demonstrate. Further demonstration
may actually be impossible (e.g. rover teleoperation
over a 40 minute Earth-Mars communications lag).

• Not limited by demonstrator. A demonstrated training
set is inherently limited by the demonstrator’s perfor-
mance, which may be suboptimal.

III. ADVICE-OPERATOR POLICY IMPROVEMENT

We now detail the A-OPI algorithm. The approach consists
of two phases. During the demonstration phase, a set of
teacher demonstrations is provided to the learner. From this
the learner generalizes an initial policy. During the advising
phase, the learner executes this initial policy. Advice on the
learner execution is offered by a human advisor, and is used

by the learner to update its policy. Psuedo-code for the A-OPI
algorithm is provided in Figure 2. To begin, we discuss the
central technique of our advising approach: advice-operators.

A. Advice-Operators: How Humans Provide Robot Advice

The purpose of advice is to correct the robot’s policy.
Though this policy is unknown to the human advisor, it is
represented by observation-action mapping pairs. To correct
the policy, our approach therefore offers corrective informa-
tion about observation-action pairings from a learner execu-
tion. However, as previously mentioned, to have a human
provide continuous-valued corrective information represents
a significant challenge.

We contribute a novel technique to address this issue by
providing corrective information through advice-operators.
Key characteristics of advice-operators are that they:
• Perform mathematical computations on data points.
• Are defined commonly between the student and advisor.
• May be applied to observations or actions.
We concretely define an advice-operator as a mathematical

computation performed on an observation input or action
output. An example of an observation-modifying operator is
“reset goal to x̃,” so that an observation previously computed
with the goal x is recomputed using goal x̃. An example of
an action-modifying operator is “increase speed,” so that the
executed value of the speed action is increased.

A key insight to the A-OPI approach is that pairing a
modified observation (or action) with the executed action (or
observation) now represents a corrected mapping. Assuming
accurate policy derivation techniques, adding this data point
to the demonstration set and re-deriving the policy will thus
also correct the policy.

B. Demonstration Phase

In the first, demonstration phase of the algorithm, the
learner derives an initial policy from the demonstration set
D. This set is populated with data recorded during teacher
executions of the task. The learner generalizes from this data
to build an approximation to the observation-action mappings
it contains. An initial policy π is the result (Fig. 2, line 01).

C. Advising Phase

In the second, advising phase of the algorithm, the learner
policy is improved. The learner executes its current policy.
The teacher observes this execution, and offers improvement
advice. This advice is interpreted by the learner to modify
its executed data points. The interpretation happens through
advice-operators, defined within the set OP. The modified
data points are added to the demonstration dataset and a
new, improved policy is derived.

For each advising run, an observed goal state zgoal ∈ Z
is provided (line 02). To begin the robot performs the task
(Execute, lines 04-08), and the advisor then provides advice
on this performance (Advise, lines 09-17).

First, the learner executes the task, producing execution
trace d. The learner executes until achieving goal state zgoal.
At each timestep the learner selects action at according

00 Given D, Z, OP
01 π ← policyDerivation(D)
02 Given zgoal ∈ Z
03 d← {}
04 Execute
05 while zt ! = zgoal

06 at ← π (zt)
07 d ← {d, (zt,at)}
08 end
09 Advise
10 {op, d̂} ← advice(d) , op ∈ OP, d̂ ∈ d
11 foreach

(
zk,ak

)
∈ d̂

12 if observation-modifying
13

(
zk,ak

)
←
(
op
(
zk
)
,ak
)

14 elseif action-modifying
15

(
zk,ak

)
←
(
zk, op

(
ak
))

16 end
17 end
18 Update
19 D ← {D, d̂}
20 π ← policyDerivation(D)

Fig. 2. Psuedo-code for the A-OPI algorithm.

to π(zt) (line 06). This action is recorded, along with the
observation zt, within the execution trace d (line 07).

Second, the advisor provides advice on the execution d.
The advisor indicates an advice-operator op ∈ OP and a
subset of execution points d̂ ∈ d over which to apply the
operator (line 10). The operator is applied to each execution
point

(
zk,ak

)
in the subset d̂ (lines 11-17). The data point is

modified according to line 13 or 15 depending upon whether
op is observation- or action-modifying, respectively.

Finally, the set d̂ of modified data points is added to the
dataset D (line 19). A new policy π is then derived from
this set (line 20).

D. A-OPI for Robot Motion Control

A-OPI is targeted for low level robot motion control.
The algorithm learns a mapping from observations of world
state to continuous-valued robot actions. Here we overview
regression as the tool for deriving continuous-valued policies
from demonstration data, and the advice-operators we have
developed as tools to modify motion control policies.

1) Policy Derivation with Regression: Regression tech-
niques predict actions using a current observation and the
training (demonstration) dataset. A wealth of regression
approaches exist, and we emphasize that any may be used
with A-OPI. Our specific implementation employs a form of
Locally Weighted Learning [2]. Given current observation zt,
action at is predicted through an averaging of data points in
D, weighted by their kernelized distance to zt. Thus,

at =
∑

(zi,ai)∈D

wti · ai, wti = e(zi−zt)Σ−1(zi−zt)T

(1)

where the weights wti have been normalized over i, and Σ−1

is a constant parameter scaling observation dimension (tuned

through cross-validation). Regression tuning is external to
A-OPI and tied to policy derivation, occurring for initial
derivation (line 01) and possibly for re-derivations (line 20).
In our implementation the distance computation is Euclidean,
and the kernel is Gaussian.

2) Motion Control Advice-Operators: The advice-
operators which we have developed for motion control are
presented within Figure 3. These operators were developed
with the aim of representing corrections which would be
straightforward and intuitive for a human to identify. To
select an operator, therefore, the human need only rely
upon his own observation of the robot execution, without
requiring further specifics; for example, exact speed value.
Note that many operators do not take any parameters, and
those which do require only a binary indication.

Operator Description Parameter
0 Reset goal, compute observation
1 No turning
2 Start turning [cw/ccw]
3 Smooth rotational speed [ac/de]
4 Turn [less/more] tightly [less/more]
5 No translation
6 Smooth translational speed [ac/de]
7 Translational [ac/de]celeration [ac/de]
8 Stop all motion

Fig. 3. Advice-operators for the spatial positioning task. [Key:
cw=clockwise, ccw=counterclockwise, ac=accelerate, de=decelerate]

To illustrate, we consider the “Translational
[ac/de]celeration” operator as an example. Suppose the
teacher indicates the “accelerate” parameter and a chunk
of 10 data points over which to apply the operator. Our
implementation of this operator functions by augmenting the
actions by linearly increasing percentages of the executed
speed; for example updating the translational speed of point
0 to a0 ← 1.1 · a0, point 1 to a1 ← 1.2 · a1, and so forth
through to the final point 9 to a9 ← 2.0 · a9.

In practice, advice may be provided during or after the
robot execution (but in either case will influence behavior
only after a policy update). In our advising-interface imple-
mentation, a graphical representation of the 2-D path taken
by the robot is provided post-execution. This is a tool through
which the human flags recorded observation-action pairings
for modification, by selecting segments of the displayed path.

IV. EXPERIMENTAL DESIGN

In this section we present our experimental setup, includ-
ing the strategy for policy development and task evaluation.

A. Task: Spatial Positioning with Heading

The task chosen to experimentally validate the A-OPI
algorithm is spatial positioning with a Segway RMP robot
(Fig. 4). The spatial positioning task consists of attaining a
2D planar target position (xg, yg), with a target heading θg .

The Segway RMP is a dynamically balancing differential
drive robot produced by Segway LLC. The platform accepts

wheel speed commands, but does not allow access to its
balancing control mechanisms. The inverted pendulum dy-
namics of the robot present an additional element of uncer-
tainty for low level motion control. Furthermore, for this task
smoothly coupled rotational and translational speeds were
preferred, in contrast to turning on spot to θg after attaining
(xg, yg). To mathematically define such trajectories for this
specific robot platform is thus non-trivial, encouraging the
use of alternate control approaches such as A-OPI. That the
task is straightforward for a human to evaluate and correct
further supports A-OPI as a candidate approach. While the
task was chosen for its suitability to validate A-OPI, to our
knowledge this work also constitutes the first implementation
of such a motion task on a real Segway RMP platform.

Fig. 4. Segway RMP robot performing the spatial positioning task.

The observations and actions for this task are 3- and
2-dimensional, respectively. Let the current robot position
and heading within the world be represented as (xr, yr, θr),
and the vector pointing from the robot position to the goal
position be (xv, yv) = (xg − xr, yg − yr). An observation
consists of: squared Euclidean distance to the goal (x2

v+y2
v),

the angle between the vector (xv, yv) and robot heading
θr, and the difference between the current and target robot
headings (θg − θr). An action consists of: translational and
rotational speeds. The robot samples these values from wheel
encoders at 30 Hz.

B. Policy Development

The set D is seeded with demonstrations recorded as the
teacher teleoperates the robot learner (here 9 demonstrations,
900 data points). We will refer to the initial policy derived
from this dataset as the Baseline Policy.

Policy improvement proceeds as follows. A goal
is selected (without replacement) from a practice
set consisting of (x, y, θ) goals drawn uniformly
within the bounds of the demonstration dataset
([−0.33, 4.5]m, [−4.0, 0.17]m, [−3.1, 1.1]rad). The robot
executes its current policy to attain this goal. The advisor
observes this execution. If the execution is considered poor,
the advisor offers policy improvement information. The
policy is re-derived. Drawing a new goal then initiates
another practice cycle.

Three policies were developed using distinct techniques,
differing in what was offered as policy improvement infor-
mation. The first provided advice exclusively, in the form
of advice-operators (A-OPI Advised Policy). The second
involved an initial phase of exclusively more teleoperation,
followed by a phase of exclusively offering advice (A-
OPI Hybrid Policy). The third provided further teleoperation
teacher demonstrations exclusively (Teleoperation Policy).
We refer to these collectively as the improvement policies.

C. Policy Evaluation

Policy performance is evaluated on a test set, consisting of
25 (x, y, θ) goals, again drawn from a uniform distribution
within the bounds of the demonstration dataset. The test set
is independent, and no executions associated with it receive
policy improvement information.

Policies are evaluated for accuracy and success. Accuracy
is defined as Euclidean distance between the final robot and
goal positions ex,y = ‖(xg − xr, yg − yr)‖, and the final
robot and goal headings eθ = |θg − θr|. We define success
generously as ex,y < 1.0 m and eθ < π

2 rad.

V. EMPIRICAL RESULTS AND DISCUSSION
Policy performance improved with A-OPI advising, in

both execution success and accuracy. When compared to
the approach of providing more teleoperation data, final
improvement amounts were found to be similar or superior.
Furthermore, this performance was achieved with a similar
number of practice executions, but smaller final dataset D.

For each policy improvement approach, the policy im-
provement phase was halted once performance on the test set
no longer improved. The final A-OPI Advised, A-OPI Hybrid
and Teleoperation Policies contained data from 69, 68 and
60 executions, respectively (with the first 9 demonstrations
for each attributable to seeding with the Baseline Policy).

A. Increase in Successful Executions

Figure 5 presents the percent execution success of each
policy on the independent test set. When compared to the
Baseline Policy, all policy improvement approaches display
increased success. Both the advised A-OPI policies addition-
ally achieve higher success than the Teleoperation Policy.

Test Set Percent Success
A-OPI Advised A-OPI Hybrid Teleop Baseline

88% 92% 80% 32%

Fig. 5. Percent successfully attained test set goals.

B. Improved Accuracy

Figure 6 plots the average position and heading error on
the test set goals, for each policy. For positional error, all
improvement policies display similar performance, which is a
dramatic improvement over the Baseline Policy. For heading,
A-OPI Advised reduces more error than A-OPI Hybrid, with
both showing marked improvements over the Baseline Policy.
By contrast, the Teleoperation Policy displays no overall
improvement in heading error.

That heading error proved in general more difficult to
improve than positional error is consistent with our prior
experience with this robot platform, being highly sensitivity
to rotational dead reckoning error accumulation.

Test Set Error, Final Policies

Fig. 6. Average test set error on target position (left) and heading (right),
with the final policies.

Intermediate policies are produced as a result of our
iterative policy development approach (Section IV-B). A
sampling of these policies were also evaluated on the test set,
to mark improvement progress for each policy improvement
technique. Figure 7 shows the average position and heading
error, on the test set goals, for these intermediate policies.

Test Set Error, Intermediate Policies

Fig. 7. Average test set error on target position (top) and heading (bottom),
with intermediate policies (shown against the number of advised and/or
teleoperated demonstrations).

Superior heading error is consistently produced by advis-
ing, throughout policy improvement. Greater positional error
improvement is initially seen through teleoperation. Advising
reduces positional error more slowly, but does eventually
converge to the teleoperation level.

The teleoperation phase of the A-OPI Hybrid Policy
resulted from seeding with an intermediate Teleoperation
Policy (23 demonstrations). Following this seeding, advising
occurs. The A-OPI Hybrid Policy thus initially displays the
superior reduction in positional error, and inferior reduction
in heading error, of the Teleoperation Policy, followed by
substantial reductions in heading error through advising.

C. More Focused Improvement

The results of Figure 7 are plotted against the number
of executions contributing to the set D. How many data
points are added with each execution, however, varies greatly
depending upon whether the execution is advised or teleop-
erated (Fig. 8). This is because, in contrast to teleoperation,
only subsets of an advised execution are added to D; in
particular, only those execution points which actually receive
advice. States visited during good performance portions of
the student execution are not redundantly added to the
dataset. In this manner, the final policy performances shown
in Figure 6 are achieved with much smaller datasets for both
A-OPI policies, in comparison to the Teleoperation Policy.

Dataset Size

Fig. 8. Dataset size growth with demonstration number.

D. Discussion

The empirical results confirm that a human teacher was
able to effectively advise within continuous action spaces.
This occurred without the teacher providing continuous-
values for the corrections, or requiring value-based execution
details (e.g. speed) to select operators. The robot, and not the
human, applied the operator.

The teacher was able to provide advice quickly, because
the algorithm is robust to fuzzy selections of execution
points. Since regression treats each data point independently,
a point added to the dataset does not depend upon whether
nearby points from the execution were also added. Further-
more, operators are “smart” enough to check for particular
data point qualities when necessary. For example, a point
which already had zero rotational speed would be skipped
by the “No turning” operator.

We finish with comments on the hybrid policy. The hybrid
policy was seeded with an intermediate Teleoperation Policy
and then advised, in an attempt to exploit the strengths of

each approach. One direction for future work could interleave
providing advice and more teleoperation. Alternately, a suffi-
ciently populated demonstration set could be provided at the
start. This is fundamentally different from providing more
teleoperation in response to student executions, however. It
requires prior knowledge of all states the student will visit;
generally impossible in continuous-state real worlds.

The hybrid approach was motivated from noting that (i)
more teleoperation quickly reduced initial positional error but
struggled to reduce heading error, and (ii) advice gradually
reduced both types of error overall. The reason, we suspect,
is that teleoperation is more effective for reaching previously
undemonstrated areas of the state space; by contrast, advice
can only be offered on states already visited, and therefore
reachable with the current policy. Correspondingly, advice is
more effective at correcting visited states; by contrast, it is
difficult for the teacher to revisit real world states through
teleoperatation, especially when they lie in the middle of a
motion trajectory.

VI. CONCLUSION

We have introduced Advice-Operator Policy Improvement
(A-OPI) as an algorithm for policy improvement based
on human advice within a Learning from Demonstration
framework. A-OPI is distinguished by improving policies
within continuous action spaces, and providing an alternative
data source to teacher demonstrations. As such, it is suitable
for developing low level motion control policies. We have
presented a first implementation of A-OPI on a real robot
system. Policy modifications due to A-OPI were shown to
improve policy performance on a Segway RMP robot, both
in execution success and accuracy. Furthermore, performance
was found to be similar or superior to the typical approach
of providing more teacher demonstrations.

REFERENCES

[1] P. Abbeel and A. Y. Ng. Exploration and apprenticeship learning in
reinforcement learning. In Proceedings of ICML ’05, 2005.

[2] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning
for control. Artificial Intelligence Review, 11:75–113, 1997.

[3] C. G. Atkeson and S. Schaal. Robot learning from demonstration. In
J. Douglas H. Fisher, editor, Proceedings of ICML ’97, 1997.

[4] J. Bagnell, A. Y. Ng, and J. Schneider. Solving uncertain Markov
Decision Problems. Technical report, Robotics Institute, CMU, 2001.

[5] D. C. Bentivegna. Learning from Observation Using Primitives. PhD
thesis, College of Computing, Georgia Institute of Technology, 2004.

[6] S. Calinon and A. Billard. Incremental learning of gestures by
imitation in a humanoid robot. In Proceedings of HRI ’07, 2007.

[7] S. Chernova and M. Veloso. Confidence-based learning from demon-
stration using Gaussian Mixture Models. In Proceedings of AAMAS
’07, 2007.

[8] D. H. Grollman and O. C. Jenkins. Dogged learning for robots. In
Proceedings of ICRA ’07, 2007.

[9] A. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with
nonlinear dynamical systems in humanoid robots. In Proceedings of
ICRA ’02, 2002.

[10] M. N. Nicolescu and M. J. Mataric. Methods for robot task learn-
ing: Demonstrations, generalization and practice. In Proceedings of
AAMAS ’03, 2003.

[11] M. Stolle and C. G. Atkeson. Knowledge transfer using local features.
In Proceedings of ADPRL ’07, 2007.

