
Model-Based Verification:
Analysis Guidelines

Grace A. Lewis
Santiago Comella-Dorda
David P. Gluch
John Hudak
Charles Weinstock

December 2001

Performance Critical Systems Initiative

Unlimited distribution subject to the copyright.

 Technical Note
CMU/SEI-2001-TN-028

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2001 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Contents

Abstract iii

1 Introduction 1

2 Analyzing Models 3

3 Interpreting Results 6

4 State Explosion 8
4.1 Variable Ordering 8
4.2 Abstraction 9
4.3 Decomposition 12

5 Corrective Actions 13
5.1 Error in the Claim 14
5.2 Error in the Model 15
5.3 Potential Defect in the System

or Design 16

6 Summary and Conclusions 18

Appendix A – SMV Semaphore Example 19

Appendix B – Synchronous Arbiter Example 20

Appendix C – Features in CMU SMV, NuSMV,
 and Cadence SMV Related
 to Analysis 21

References 31

Tool References 35

CMU/SEI-2001-TN-028 i

List of Figures

Figure 1: Model-Based Verification Process and Artifacts 1
Figure 2: MBV Activities 3
Figure 3: Analyze Activity 4
Figure 4: Simple Example Using a Variable Modeled as

an Integer 11
Figure 5: Simple Example Using a Variable Modeled as

an Enumeration 11
Figure 6: Interpreting Results Process 13
Figure 7: Abstract Model of a Traffic Light 15
Figure 8: Sample Defect Log 17
Figure 9: Counterexample in CMU SMV 23
Figure 10:Additional Statistics that are part of a

Counterexample in the Command-Line Version
of NuSMV 25

Figure 11: Counterexample in xNuSMV – GUI Version of
NuSMV 26

Figure 12:Counterexample in Cadence SMV 27
Figure 13:Example of Layers in Cadence SMV 28

ii CMU/SEI-2001-TN-028

Abstract

This technical note provides guidance for the analysis activity that occurs during the
interpretation of results produced by model-checking tools. In the model-checking analysis
activity, the main question is, "Does the system behave correctly?” To answer this question, a
model and a set of expected properties are used as input to a model checker. The expected
output is a confirmation or refutation of the specified expected properties. In most cases, if
the model checker does not confirm the property, it provides a counterexample.

Counterexamples are executions of the model showing the sequence of steps that refutes the
expected property. Sometimes the state space to be explored in order to find this
counterexample is so large that it cannot be completely covered. This is the state explosion
problem. Models must be tuned to reduce the state space; this is a manual and intuitive task.

Interpreting the model checker's output can also be difficult. The significance of the output
must be assessed; its interpretation may suggest an error in the claims or the model, or a
defect in the actual system.

This document presents the problems related to interpreting results. It provides strategies to
overcome state explosion, analyze results, and provide feedback to the system designers and
developers.

CMU/SEI-2001-TN-028 iii

1 Introduction

Model-Based Verification (MBV) is a systematic approach to finding defects (errors) in
software requirements, designs, or code [Gluch 98]. The approach judiciously incorporates
mathematical formalism, in the form of models, to provide a disciplined and logical analysis
practice, rather than a “proof” of correctness strategy. MBV involves creating essential
models of system behavior and analyzing these models against formal representations of
expected properties.

The artifacts and the key processes used in Model-Based Verification are shown in Figure 1.
Model building and analysis are the core parts of Model-Based Verification practices. These
two activities are performed using an iterative and incremental approach, where a small
amount of modeling is followed by a small amount of analysis. A parallel compile activity
gathers detailed information on errors and potential corrective actions.

Project Level Activities Project Level Activities

ModelModel - -
BuildingBuilding

GuidelinesGuidelines

EssentialEssential
Model(s)Model(s)

ExpectedExpected
PropertyProperty
GuidelinesGuidelines

Claim Claim
Guidelines Guidelines

ExpectedExpected
PropertiesProperties

AnalysiAnalysis
Results s Results Claims Claims

Artifacts Artifacts

Artifacts Artifacts

Engineering Activities Engineering Activities

FormalFormal
Model(s)Model(s)

DefectDefect
LogsLogs

StatementStatement
of Scope,of Scope,

Formalism &Formalism &
PerspectivePerspective

Domain Domain
KnowledgeKnowledge
Repository Repository

Scope, Scope,
Formalism, Formalism,
Perspective

Perspective
Guidelines Guidelines

Specificatio Specificatio n
For Review nFor Review

Define Scope, Define Scope,
Formalism, & Perspective (SFP)Formalism, & Perspective (SFP)

Analysis Analysis
GuidelinesGuidelines

Compile Compile

Build Build Build Build Build Analyze Analyze

StatementStatement
of Scope,of Scope,

Formalism &Formalism &
PerspectivePerspective

ModifiedModified

Output Artifacts: Artifacts created Output Artifacts: Artifacts created
during one or more of the activities. during one or more of the activities.
Some outputs generated in one activity Some outputs generated in one activity
are used as inputs to other activities. are used as inputs to other activities.

Input Artifacts: Specification being Input Artifacts: Specification being
reviewed and materials used as reviewed and materials used as
reference or guidance in conducting reference or guidance in conducting
the activity the activity

Legend Legend

Figure 1: Model-Based Verification Process and Artifacts

CMU/SEI-2001-TN-028 1

An essential model is a simplified formal representation that captures the essence of a system,
rather than provide an exhaustive, detailed description of it. Through the selection of only
critical (important or risky) parts of the system and appropriately abstracted perspectives, a
reviewer, using model-based techniques, can focus the analysis on the critical and technically
difficult aspects of the system. Driven by the discipline and rigor required in the creation of a
formal model, simply building the model, in and of itself, uncovers errors.

Once the formal model is built, it can be analyzed (checked) using automated model-
checking tools such as SMV (Symbolic Model Verifier). Within this analysis, the user
identifies potential defects both while formulating claims about the system’s expected
behavior and while formally analyzing the model using automated model-checking tools.
Model checking has been shown to uncover the especially difficult-to-identify errors: the
kind of errors that result due to the complexity associated with multiple interacting and inter-
dependent components. These include embedded as well as highly distributed applications.

Many different formal modeling and analysis techniques are employed within MBV [Gluch
98, Clarke 96]. The choices are based upon the type of system being analyzed and the
technological foundation of the critical aspects of that system. Deciding which techniques to
use involves an engineering tradeoff among the technical perspective, formalism, level of
abstraction, and scope of the modeling effort.

The specific techniques and engineering practices of applying Model-Based Verification to
software verification have yet to be fully explored and documented. A number of barriers to
adoption of Model-Based Verification have been identified, including the lack of good tool
support, expertise in organizations, good training materials, and process support for formal
modeling and analysis.

In order to address some of these issues, the SEI has created a process framework for Model-
Based Verification practice. This process framework identifies a number of key tasks and
artifacts. Additionally, the SEI is working on a series of technical notes that can be used by
Model-Based Verification practitioners. Each technical note is focused on a particular Model-
Based Verification task, providing guidelines and techniques for one aspect of the Model-
Based Verification practice. Currently, the technical notes that are planned address abstraction
in building models, generating expected properties, generating formal claims, and
interpreting the results of analysis.

The Analysis Guidelines technical note provides guidance for the analysis activity in the
interpretation of results produced by model-checking tools. It states the problems related to
interpreting results and provides strategies to overcome state explosion, to analyze results,
and to provide feedback to the system designers and developers. In an appendix, it provides
guidance for different MBV tools.

2 CMU/SEI-2001-TN-028

2 Analyzing Models

A central idea behind Model-Based Verification is to analyze essential models of the system
to verify whether the model exhibits a particular behavior. Build and Analyze are MBV
activities that cannot be separated. As shown in Figure 2, these activities follow an iterative
approach, where a small amount of building is followed by a small amount of analysis. A
parallel Compile activity gathers detailed information on errors and potential corrective
actions.

Project Level Activities

Engineering Activities

Define Scope,
Formalism, Perspective

Compile

Build Analyze

Project Level Activities

Engineering Activities

Define Scope,
Formalism, Perspective

Compile

Build Analyze

Figure 2: MBV Activities

During the analysis activity, shown in Figure 3, the main question to be answered is “Does
the system behave correctly?” Correct behavior is defined in terms of expected properties.
Expected properties are natural language statements about the behavior of a system—
behavior that is consistent with user expectations1. Those expected properties are formalized
into claims and checked against the model using an automated model-checking tool, such as
Symbolic Model Verifier (SMV) [Comella 01].

1 Gluch, D.; Comella-Dorda, S.; Hudak, J.; Lewis, G.; & Weinstock, C. Model-Based Verification:

Guidelines for Generating Expected Properties, Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University. To be published.

CMU/SEI-2001-TN-028 3

Analyze
Generate
Expected
Properties

Generate
Expected
Properties

Translate
Expected

Properties into
claims (CTL/LTL)

Translate
Expected

Properties into
claims (CTL/LTL)

Check the
Model Against

Expected
Properties

Check the
Model Against

Expected
Properties

Generate
Expected
Properties

Generate
Expected
Properties

Translate
Expected

Properties into
claims (CTL/LTL)

Translate Expected
Properties into
Claims (CTL/LTL)

Check the
Model Against

Expected
Properties

Check the Model
Against Expected
Properties (TOOL)

From
Build

To
Build

Interpret
Results

Analyze
Generate
Expected
Properties

Generate
Expected
Properties

Translate
Expected

Properties into
claims (CTL/LTL)

Translate
Expected

Properties into
claims (CTL/LTL)

Check the
Model Against

Expected
Properties

Check the
Model Against

Expected
Properties

Generate
Expected
Properties

Generate
Expected
Properties

Translate
Expected

Properties into
claims (CTL/LTL)

Translate Expected
Properties into
Claims (CTL/LTL)

Check the
Model Against

Expected
Properties

Check the Model
Against Expected
Properties (TOOL)

From
Build

To
Build

Interpret
Results

Figure 3: Analyze Activity

The output of a state-machine-based automated model-verification tool is a confirmation or
refutation of the specified expected properties. In most cases, if the property is not confirmed
by the model checker, a counterexample will be provided. Counterexamples are executions of
the model, showing the sequence of steps that negates the expected property.

A negative result in a model-checking tool will not always produce a counterexample. The
temporal logic claim EF p (there exists a path where property p holds), for example, does not
produce any counterexample. This happens because in order to provide a counterexample that
this path does not exist, it has to enumerate all possible paths.

Obtaining a confirmation or a counterexample from a model-checking tool is not the end of
the problem. Interpreting these results can, by itself, be as difficult as creating the models or
the expected properties. The significance of the output of a model-checking tool must be
assessed, considering particularly the following:

• If a claim is confirmed,

- How to verify that in fact the system is correct?

• If a counterexample is returned,

- Is the claim correct? Does it accurately reflect a valid expected property?
- Does the model correctly reflect the behavior of the system as specified?
- Does the interpretation of the counterexample reflect a potential defect in the system?

The interpretation of the result may prompt a number of different actions. For example, it
may be necessary to revise the model to better reflect the system. This is part of the iterative
nature of MBV: build or formulate part of a model, then evaluate it to see what changes need
to be made. When a potential defect based on the interpretation above is discovered, it is
recorded in a defect log.

4 CMU/SEI-2001-TN-028

The compile activity encompasses the tasks involved in logging and organizing defect data.
Defects are compiled throughout all phases of the practice. Specific tasks in Compile include

• logging all defects

• organizing and analyzing defect data

• generating a defect analysis report

CMU/SEI-2001-TN-028 5

3 Interpreting Results

Three things can happen when a group of claims is assessed against a model using a model
checker: the claims are validated, the claims are rejected (and a counterexample is provided),
or nothing happens. When nothing happens, it is probably because the model checker is
trying to parse an excessively large state space. This is known as the state explosion problem
and is described in detail in Section 4.

If the model checker does provide an output it may well be that the claims are validated and
the model is confirmed to have satisfied the expected properties. A positive result gives
confidence but cannot assure that the model adequately represents the system at the right
level of abstraction. These positive results have to be validated: claims should be verified for
correctness; the model should be verified as an accurate representation of the system and
translation into model-checking notation. Finally, results should be presented to users,
customers, and domain experts, to confirm their validity.

Automated model checking is effective in finding cases in which the claims do not hold
against the system models. The counterexamples provided by these results can reveal
potential defects in the system or design, errors in the models, or errors in the claims. The
following are the three possible causes for obtaining a counterexample2:

1. Error in the Claim: A counterexample needs to be verified against the system
specification. If it does not reflect a valid state of the system, claims should be tested to
determine if they have been well constructed and reflect the desired property to be
verified.

2. Error in the Model: If the claims are correct, the counterexample could be caused by an
error in the model. Errors in the model can be missing or invalid transactions, missing or
invalid states, or missing initial values, among others.

3. Potential Defect in the System or Design: If after verifying the claims and the model, the
counterexample still is valid, this could reflect a potential defect in the system or design
as specified. This potential defect should be validated with domain experts and users and
the result should be registered in a defect log.

How are errors in claims, errors in the model, and potential defects in the system
distinguished? When results are inconclusive, what are the options? A good approach is to
spend a few building-analysis cycles gaining confidence in the correctness of the model
before probing the correctness of the system.

2 These causes are not mutually exclusive; a combination of them is also possible.

6 CMU/SEI-2001-TN-028

Initially, fundamental claims corresponding to key elements are generated to ensure that the
model accurately represents the behavior of the system. These first few claims often reveal
mistakes made in building the model rather than flaws in the system. They help to provide
confidence in the integrity of the model and its validity as a representation of the system.
Both expected and unexpected behaviors should be specified and verified through the model
checker at this phase. For example, in validating a model for a screen saver, an expected
behavior to be verified is that the screen saver will be displayed if there is no input from the
keyboard or mouse for a certain period of time (AG (no_input_for_x_minutes ⇒
AF (screen_saver_active)). An unexpected behavior to be verified is that the screen saver
will never be displayed at the same time a critical alarm is being displayed
(AG !(screen_saver_active ∧ critical_alarm)).

As greater confidence is gained in the model, more probing claims, aimed at better
understanding of the system and uncovering defects in the system, can be explored. This
process should also be iterative such that claims motivated by investigating the system in
depth are interspersed with those that are seeking to confirm the veracity of the model.

CMU/SEI-2001-TN-028 7

4 State Explosion

A major issue in analyzing state machines is the state explosion problem. The number of
states grows very quickly as the complexity of the model increases. For example, even a
relatively simple system consisting of four state machines or concurrent processes, each with
three state variables, each having five values, results in a total state space of approximately
250 million states.

Tools such as Carnegie Mellon University (CMU) SMV use Binary Decision Diagrams3
(BDDs) to represent sets and relations in the Computational Tree Logic (CTL) model-
checking algorithm. The use of BDDs in symbolic model checking allows state spaces of 1050
states and up, with refinements of the BDD-based techniques pushing this number up to 1010

0

[Clarke 99]. 1050 is roughly equivalent to 2160, meaning that SMV, in theory, could handle
models with 160 binary variables.

Most research and literature on the topic deals with incorporating techniques and algorithms
inside the tools to automate eliminating or reducing the state explosion problem. The
following subsections present heuristics for model developers that have been derived from
these techniques and from experience in model checking.

4.1 Variable Ordering

Identifying good variable ordering for BDDs is the focus of many research papers [Chan 98,
Kamhi 98, Lu 00, Rudell 93]. This topic is claimed to be one of the central problems in using
BDDs effectively because these are very sensitive to variable ordering. The efficiency of
BDDs is based on the combination of isomorphic subtrees and the elimination of redundant
decision nodes in the tree. Because of this, the size of the final BDD will be closely related to
the variable ordering used.

Several SMV tools, for example the ones presented later in this paper, use variants of
Rudell’s dynamic sifting algorithm for dynamic variable reordering, but this process is very
time consuming [Rudell 93]. These tools also provide options to explicitly indicate the
preferred variable order; for producing output specifying the variable ordering that is being
used; and for enabling or disabling dynamic reordering. Some tools also offer options for
specifying the dynamic ordering heuristic to be used. More information is included in
Appendix C – Features in CMU SMV, NuSMV, and Cadence SMV.

3 A BDD is a decision tree, in which variables always appear in the same order as the tree is

traversed from root to leaf.

8 CMU/SEI-2001-TN-028

Even though most tools provide ways to define or dynamically perform variable ordering, it
is good to apply the following heuristics:

1. Declare closely related variables together.

2. Declare global variables first.

3. Order variables as they appear in the assignments [Winter 97].

4. Initially order variables manually or statically and run the model checker iteratively to
produce an ideal ordering; do this first even if it allows dynamic reordering.

As sample data on how state space size is affected by variable ordering, the size of the state
space in the example listed in Appendix B varies from 4802 to 3544 BDD nodes using CMU
SMV (26% reduction) if the third heuristic is applied (the order in which variables are
declared is matched to the order in which they are assigned values)4. If the first heuristic is
applied (keeping together variables that are related) to the same example, the smallest state
spaces are accomplished by ordering variables e1 through e5, either e1, e2, e3, e4, e5 or e5,
e4, e3, e2, e1. This is because each of the variables e1 through e5 is defined in terms of the
previous and/or next one. If this order is changed, so that the variables that are related are not
declared close together, the size of the state space can go from 3544 to 4716 BDD nodes
(33% increase).

4.2 Abstraction
Abstraction, when dealing with state explosion, refers to making the model’s state space
smaller. Visser states that when there are n concurrent processes or state machines with m
states each, the system has mn states [Visser 00]. The options to reduce mn are to reduce m
(abstraction), to reduce the effect of n (partial-order reduction), or to reduce n (symmetry
reduction). There is a great amount of literature on abstraction [Clarke 99, Heitmeyer 98,
Emerson 97, Visser 00], but as with variable ordering, most of the work is still in the research
stage and is slowly being integrated into model-checking tools. It is still a manual process
that requires considerable creativity [Clarke 01].

In general, abstraction reduces the state space by mapping complex components to simple
abstract representations. The problem is making sure that the abstraction correctly models the
behavior of the system it is modeling. This is also referred to as soundness.

There are some abstraction heuristics where the goal is to reduce the number of different data
values:

• SMV tools are extremely inefficient in constructing BDDs for integers and real numbers
[Chan 98]. A simple heuristic is to replace integer and real values with abstract
representations. For example, if a variable is represented as an integer, but the model is
only concerned with the ranges 0-200, 201-350, and 351-500 for that variable, it is best to

4 In the example, the order of the variables Persistent and Token was interchanged in the VAR

section to match the assignments in the ASSIGN section.

CMU/SEI-2001-TN-028 9

model it as {low, medium, high} corresponding to the previous ranges. This heuristic has
been applied with success by practitioners and is documented in several papers and case
studies [Atanacio 00, Gluch 99, Pasareanu 01].

• Also for enumerations, if there are values that are not relevant to the property being
verified, these can be substituted for the value “other.” For example, if the variable in the
previous example could also take values below 0 or above 500, but these are not
important for the property being verified, the state space can be reduced by replacing
{very low, low, medium, high, very high} with {low, medium, high, other}.

• Remove variables from the model that are not relevant to the property being verified.
This is done automatically by some tools and is called slicing5. A slice is the set of
program statements that affect a given variable. For example, if the property being
verified is AG(x>0 ⇒ y>0), all variables different from x and y that are not relevant to
changes in the values of x and y, as well as statements/transitions that are not relevant to
the relationship between x and y, can be removed while this property is verified
[Heitmeyer 98, Pasareanu 00].

• Assign initial values to state variables instead of leaving them free and minimizing
nondeterminism [Pasareanu 01]. This heuristic is useful to verify portions of the system,
but it has to be used with caution because nondeterminism is used to model unpredictable
or unknown inputs to the system and by eliminating nondeterminism these inputs become
fixed.

• Reduce the number of “symmetric” or “equivalent” components. For example, if a
distributed networked client-server system has twenty clients and five servers, the system
may be modeled as three clients and two servers [Gluch 99]. This reduction may not
preserve soundness or completeness, but it can be effective in exposing defects at
relatively low cost [Rushby 99].

As an example, Figure 4 shows a very simple model with a variable temperature declared as
0..100, that counts to 100 and then returns to 0, and a second variable condition that will
change with certain values of temperature. Verifying the simple claim that it is always
possible for condition to return to cold after it is set to warm required 1119 BDD nodes using
CMU SMV. If the first heuristic is applied and temperature is changed to type {low, medium,
high} and the condition variable still changes at certain values of temperature, and a fairness
condition is added so it will not stay in the same state (as shown in Figure 5) verifying the
same claim requires 84 BDD nodes using CMU SMV. This is obvious because it is going
from 100 different values to 3 different values for a variable, but shows that it pays off to
simplify a model in this way if it is possible.

5 Variable slicing in model checking is also referred to as “cone of influence reduction.”

10 CMU/SEI-2001-TN-028

MODULE main
VAR
 temperature: 0..100;

condition: {cold, mild, warm};
ASSIGN
 init(temperature) := 0;
 init(condition) := cold;
 next (temperature) :=
 case
 temperature = 100: 0;
 1: temperature+1;
 esac;
 next (condition) :=
 case
 temperature = 0 : cold;
 temperature = 40 : mild;
 temperature = 70 : warm;
 1 : condition;
 esac;
SPEC
 AG (condition = warm -> AF condition = cold)

Figure 4: Simple Example Using a Variable Modeled as an Integer

MODULE main
VAR

 temperature: {low, medium, high};
condition: {cold, mild, warm};

ASSIGN
init(temperature) := low;
init(condition) := cold;
next (temperature) :=

 case
 temperature = low : {low, medium};
 temperature = medium : {medium, high};
 temperature = high : {high, low};
 1: temperature;
 esac;
 next (condition) :=
 case
 temperature = low : cold;
 temperature = medium : mild;
 temperature = high : warm;
 1 : condition;
 esac;

SPEC
 AG (condition = warm -> AF condition = cold)

FAIRNESS
 AG (temperature = high -> AF temperature = low)

Figure 5: Simple Example Using a Variable Modeled as an Enumeration

CMU/SEI-2001-TN-028 11

4.3 Decomposition
Another way of handling state explosion is through decomposition. Decomposition refers to
breaking big problems into small problems, and then localizing the verification of each
subproblem to a small part of the overall model [Clarke 89, McMillan 99]. In decomposition,
different parts of the model are reasoned about separately, but the separate results are used to
deduce properties of the entire system.

A form of decomposition is assume-guarantee reasoning, in which different components of a
model are verified in isolation by making appropriate assumptions about the environment
(possibly other portions of the model) [Pasareanu 99]. A heuristic based on assume-guarantee
is better explained with an example: if model X can be decomposed into X1, X2, and X3, and
if X1 can be verified, then X1 can be used as an assumption in verifying X2 and X3. This
assumption could be included as part of the model or specified as a fairness constraint. If X1,
X2, and X3 are all verified, then X is verified. The main difficulty with applying this heuristic
is that sometimes properties that hold in some part of the system, when combined with the
other parts of the system, may not hold for the original system. In this case, what holds for
X1, X2, and X3 separately might not hold when X1, X2 and X3 are combined into X.

12 CMU/SEI-2001-TN-028

5 Corrective Actions

Counterexamples normally prompt some kind of corrective action (except when the claim
was expected to be false). Counterexamples provide valuable debugging information, and can
be used by the software engineer to modify the specification, the model, or the property
checked [Chan 98]. This is the difficult part: What should be modified? Where is the error?
Figure 6 summarizes the process of interpreting results. In this section it is assumed that
MBV reviewers do not have direct responsibility for repairing the system and will complete a
defect log with the discovered errors for others to repair.

Check model against
expected properties with

model checking tool

Counterexample?*
Return to

Build
activity

No

* It is assumed that the expected behavior is that a counterexample is not produced.

END

Yes

Yes

No

Verify model and
make necessary

changes

Yes

No

Verify results
with peers and

engineers
Complete
defect log

START

Refine or create
additional claims

Potential error in
claim?

Potential error in
model?

Check model against
expected properties with

model checking tool

Counterexample?*
Return to

Build
activity

No

* It is assumed that the expected behavior is that a counterexample is not produced.

END

Yes

Yes

No

Verify model and
make necessary

changes

Yes

No

Verify results
with peers and

engineers
Complete
defect log

START

Refine or create
additional claims

Potential error in
claim?

Potential error in
model?

Figure 6: Interpreting Results Process

The next subsections illustrate each of the possible corrective actions taken after a
counterexample interpretation.

CMU/SEI-2001-TN-028 13

5.1 Error in the Claim
Counterexamples show the sequence of states that demonstrate that the property being
verified is not valid. If the sequence of states that is being presented by the counterexample
does not reflect a valid state in the system, or does not seem related to the property being
verified, there could be an error in the claim.

There are several heuristics for testing whether a claim is correct:

• Refer to a claim building guideline such as the one proposed by Comella [Comella 01]
that describes a template-based approach to specifying claims in CTL and provides a list
of simple claims templates that have been found to match a common expected property.

• Avoid using EF p (there exists a path where property p holds) because SMV cannot
produce a specific counterexample. This happens because in order to provide a
counterexample that this path does not exist, it has to enumerate all possible paths. If this
is a desired expected property, a better way to represent it is using !(EF p), or its
equivalent AG !p. If a counterexample is obtained, it means that in fact there was a path
where p holds. This is a case where a counterexample is a desired state.

• Try weaker or partial versions of the claim to iteratively work towards finding the error.

A way to apply this last heuristic is illustrated by the following examples:

Example 1

• Exact claim: Condition A is always true. Example: AG (state = busy)

• Weaker claim: Condition A is true multiple times (an infinite number of times). Example:
AG (AF (state = busy)).

• Weakest claim: Condition A is true at least once. Example: AG (EF (state = busy)).

Example 2

• Exact claim: If Condition A occurs, then Condition B must occur. Example:
AG (state=ready ⇒ AF (state=busy))

• Partial claim: Condition A occurs. Example: EF (state = ready)

Weaker or partial claims might not represent the expected property exactly, but can help in
working iteratively to find the error.

In Example 1, the idea is to start from the weakest claim and work towards the exact claim:
first check if the condition is possible, then if it occurs more than once, and finally if it is
always true.

In Example 2, the partial claim is represented by the antecedent in the implication
proposition. The proposition will be true as long as the antecedent is true, so it is a good idea
to test the antecedent by itself and work towards the complete proposition. In both examples,
the claims as well as the model are being tested iteratively.

14 CMU/SEI-2001-TN-028

5.2 Error in the Model
If the claim that generates a counterexample has been tested and appears to be correct, the
error could be in the model.

The model should accurately reflect the system or part of the system that is being analyzed.
The questions listed below can help in determining if there is an error in the model. Having a
graphical representation of the model, such as a state machine diagram or a state chart, is
useful when answering these questions because transitions can be more easily traced. Given
that this list is independent of the counterexample, it should be used to validate the model
even before passing it through the model checker.

• Are all transitions present in the model also present in the SMV representation?

• Is there an initial state?

• Is the model non-deterministic in any initial state? Is this correct?

• Is all non-determinism intentional?

• Are all cases that are supposed to be mutually exclusive, in fact mutually exclusive?

• Do all states have at least one next state, except for end states?

• Can all desired states be reached?

• Are states reached in the proper order?

• Are mandatory states always reached?

• Will temporary states always be exited?

Studying the counterexample is also useful - follow the sequence of states presented by the
counterexample and map it to the graphical representation of the model (if one is available)
or follow its execution. The abstraction heuristics listed in Section 4.2 – Abstraction can be
used if the sequence is too long. Before checking the property against the abstract model, it is
important to re-verify all basic claims to make sure that the abstraction has not introduced
additional errors. A model can be incorrect due to over-abstraction. As a very simple
example, suppose a traffic light is abstracted as shown in Figure 7 [Clarke 00].

green

yellow

red

go

red

Abstraction

Figure 7: Abstract Model of a Traffic Light

CMU/SEI-2001-TN-028 15

If the property to prove is AG AF(state = red) (the traffic light is red infinitely often), the
abstraction will produce the false counterexample < red, go, go >, which does not appear in
the original model. In this case the abstraction is not a correct representation of the original
model. If the loop from go to go is removed, the above property would be true in the original
model and the abstraction.

The heuristic to be applied is that if a model is abstracted further during the process, basic
properties, as well as all properties that had previously been verified, must be re-verified.

5.3 Potential Defect in the System or Design
If after the model has been verified there is still a counterexample that negates the property
being verified, it could be an error in the specification or in the system being reviewed. The
difficult part is how to make a judgment, especially for problems that are very domain-
specific. It is often useful to have peer reviews or presentations to engineers where the defect
is presented, along with the model and the analysis. The analysis must be translated into a
representation that the attendants will understand. Gluch presents a procedure for peer
reviews in model checking [Gluch 99]. In presenting the defect, the trace given by the
counterexample should be the basis for explaining what sequence of events led to the error.

System requirements, domain experts, system architects, and artifacts such as specifications,
code, and antecedent specifications are the places to look for answers. Interviews with users,
customers, or domain engineers can help verify if the detected defect is in fact a system error.
The system artifacts and other artifacts are used to map the defect to the system.

All defects have to be recorded in a defect log6. No special form is needed. The defect log can
be based upon what is already in use within the organization. Items that should be included
are

• unique defect identifier

• date the defect was found

• location of the defect in the specification

• comments about and/or a description of the defect

Other items that may be included are

• classification of the type of defect found

• activity where the defect was found

• injection point of the defect

• level of certainty (validity) of the defect

6 In routine practice only potential defects in the system or design are logged. As an instrument for

process improvement, defects could be recorded for all MBV activities.

16 CMU/SEI-2001-TN-028

• level of importance/severity of the defect

• estimation of effort required to fix the defect

A sample of a defect log is presented in Figure 8. Established organizational defect
classification approaches can be used to enable the process to be readily integrated into
existing practices.

Activity Date ID Type Doc Name Page Section Description

Figure 8: Sample Defect Log

For significant defects found, it may be useful to create a detailed report that may include a

• defect summary

• system background information

• detailed description of the defect discovered

• statement on how the defect was found

• summary of any supporting documentation

A defect will require modifying the system, and consequently to modify, reanalyze, extend, or
completely replace portions of the model. It is very important that modifications to the model
stay consistent with the specification. It is also critical that the results from the model
checking become a part of the overall verification process for the project.

CMU/SEI-2001-TN-028 17

6 Summary and Conclusions

Obtaining valuable results from a model-checking tool depends on a thorough analysis of
these results. Dealing with state explosion is still a very manual and intuitive task, even
though there is a great deal of active research on how to overcome it. Determining the
validity of a counterexample requires acquisition of domain and system knowledge. When a
counterexample is finally categorized as being the result of a potential defect, the analysis
results must be communicated properly to the people responsible for system design.

This technical note has presented heuristics for dealing with state explosion; guidelines to
help identify the type of result obtained; and finally ways to feed back the results to the
system designers and developers. These heuristics and techniques are to be applied after the
model is complete and expected properties are expressed as claims; they are not intended to
replace the abstraction job and are not to be used as “quick solutions to a poor modeling job.”

There are still very few reports and sparse experience on the application of Model-Based
Verification to software. Hopefully, as Model-Based Verification becomes more widely used
and more commercial and research tools are available, outcomes of increased experience will
feed back into the MBV community and will bring more insight into its application to
detecting defects in software at an early stage.

18 CMU/SEI-2001-TN-028

Appendix A – SMV Semaphore Example7

This is an example of a semaphore in SMV. It will be used as a reference to illustrate what a
counterexample looks like in the different tools that are addressed in this report.

MODULE main

VAR
 semaphore : boolean;
 proc1 : process user(semaphore);
 proc2 : process user(semaphore);

ASSIGN
 init(semaphore) := 0;

SPEC
 AG (proc1.state = entering -> AF proc1.state = critical)

MODULE user(semaphore)

VAR
 state : {idle,entering,critical,exiting};

ASSIGN
 init(state) := idle;
 next(state) :=
 case
 state = idle : {idle,entering};
 state = entering & !semaphore : critical;
 state = critical : {critical,exiting};
 state = exiting : idle;
 1 : state;
 esac;
 next(semaphore) :=
 case
 state = entering : 1;
 state = exiting : 0;
 1 : semaphore;
 esac;

FAIRNESS

 running

7 Example taken from the CMU SMV documentation (http://www.cs.cmu.edu/~modelcheck/).

CMU/SEI-2001-TN-028 19

Appendix B – Synchronous Arbiter Example8

This is an example of a synchronous arbiter in SMV. It will be used as a reference to illustrate
the effects of variable ordering for dealing with state explosion.

MODULE arbiter-element(above,below,init-token)

VAR
 Persistent : boolean;
 Token : boolean;
 Request : boolean;

ASSIGN
 init(Token) := init-token;
 next(Token) := token-in;
 init(Persistent) := 0;
 next(Persistent) := Request & (Persistent | Token);

DEFINE
 above.token-in := Token;
 override-out := above.override-out | (Persistent & Token);
 grant-out := !Request & below.grant-out;
 ack-out := Request & (Persistent & Token | below.grant-out);

SPEC
 AG ((ack-out -> Request) & AF (!Request | ack-out))

MODULE main

VAR
 e5 : arbiter-element(self,e4,0);
 e4 : arbiter-element(e5,e3,0);
 e3 : arbiter-element(e4,e2,0);
 e2 : arbiter-element(e3,e1,0);
 e1 : arbiter-element(e2,self,1);

DEFINE
 grant-in := 1;
 e1.token-in := token-in;
 override-out := 0;
 grant-out := grant-in & !e1.override-out;

SPEC
 AG (
 !(e1.ack-out & e2.ack-out)
 & !(e1.ack-out & e3.ack-out)
 & !(e2.ack-out & e3.ack-out)
 & !(e1.ack-out & e4.ack-out)
 & !(e2.ack-out & e4.ack-out)
 & !(e3.ack-out & e4.ack-out)
 & !(e1.ack-out & e5.ack-out)
 & !(e2.ack-out & e5.ack-out)
 & !(e3.ack-out & e5.ack-out)
 & !(e4.ack-out & e5.ack-out)
)

8 Example taken from the CMU SMV documentation (http://www.cs.cmu.edu/~modelcheck/).

20 CMU/SEI-2001-TN-028

Appendix C – Features in CMU SMV, NuSMV, and Cadence SMV

 Related to Analysis

The purpose of this appendix is to illustrate references to features of model-checking tools
that have been made throughout this report.

Model-checking tools based on SMV take specifications for a given system, written in SMV
language, and verify that every possible behavior of the system satisfies the specification.
Sometimes the tool will produce a counterexample – an execution path that violates the
specified property.

SMV, NuSMV, and Cadence SMV are free research tools available on the Internet.
References for these tools are listed in the section “Tool References.”

A General Notion about Fairness
One way in which SMV can produce counterexamples that are inconclusive is when an
asynchronous system, where processes run in parallel, “stalls” infinitely in the same state
because one of the processes is being starved. Fairness constraints will force the model
checker to consider only fair execution paths. SMV has an internal variable for each process
- called running - that is true if and only if that process is running. For example, the statement

FAIRNESS

 running

will ensure that the process runs eventually and that no process will run indefinitely because
it only considers paths where running = 1 infinitely often.

Running is not the only fairness constraint that can be specified. For example

FAIRNESS

 !(state = busy)

will not explore paths where the system is “stalled” in the busy state indefinitely.

CMU SMV
CMU SMV (Symbolic Model Verifier) is the original version of SMV, developed at Carnegie
Mellon University by Ken McMillan. It is a command-line tool that takes a system
represented as a set of states and transitions as input. It allows for the specification of

CMU/SEI-2001-TN-028 21

expected properties in Computation Tree Logic (CTL) notation and automatically checks
these properties against the state machine representation. Because CMU SMV is intended for
describing state machines, it only accepts boolean, scalars, and fixed arrays data types, and
allows for construction of static structured data types. CMU SMV is available for Windows
and Unix platforms.

In CMU SMV, counterexamples are presented as a command-line printout with a trace in
which the specification is false. Each state in the trace presents the values of variables that
change and lead to the counterexample. Figure 9 shows a counterexample in which the
property in the semaphore example listed in Appendix A could not be verified. The trace
shows the execution sequence and the variables that changed in each state of the execution.
The text -- loop starts here – indicates that states 1.3 to 1.9 repeat forever.

22 CMU/SEI-2001-TN-028

-- specification AG (proc1.state = entering -> AF proc1.s...
is false
-- as demonstrated by the following execution sequence
state 1.1:
semaphore = 0
proc1.state = idle
proc2.state = idle

state 1.2:
[executing process proc1]

-- loop starts here --
state 1.3:
proc1.state = entering

state 1.4:
[executing process proc2]

state 1.5:
[executing process proc2]
proc2.state = entering

state 1.6:
[executing process proc1]
semaphore = 1
proc2.state = critical

state 1.7:
[executing process proc2]

state 1.8:
[executing process proc2]
proc2.state = exiting

state 1.9:
semaphore = 0
proc2.state = idle

resources used:
processor time: 0.02 s,
BDD nodes allocated: 1131
Bytes allocated: 1045212
BDD nodes representing transition relation: 69 + 1

Figure 9: Counterexample in CMU SMV

Variable ordering in SMV can be adjusted manually using an “order file.” At any point, the
variable ordering can be written to a file, for inspection and possibly reordering. Dynamic
variable ordering can also be enabled, but this will slow down the verification process. There
is also the possibility of specifying a BDD size that when reached will start the dynamic
variable reordering.

CMU/SEI-2001-TN-028 23

A new experimental feature in CMU SMV allows evaluation of AG specifications while
building the set of reachable states. This often helps in finding bugs earlier before the
complete model is built, but only works for AG specifications. If a specification is false, it
prints a counterexample and removes the specification from the list, so it won't be evaluated
again. If no specs are left, it exits immediately. This option is useful for dealing with state
explosion, but may slow down verification.

NuSMV
NuSMV is a symbolic model checker developed as a joint project between the Formal
Methods group in the Automated Reasoning System division at ITC-IRST and the Model
Checking Group at Carnegie Mellon University. It is a newer version of the original SMV
that also includes LTL for expressing claims and has command-line interface as well as a
graphical user interface (GUI). NuSMV is only available for Unix-based platforms.

In the NuSMV command-line interface version, counterexamples look very similar to the
ones produced by CMU SMV. The difference is in the statistics that it provides after showing
the trace, as presented in Figure 10. This is the last part of the counterexample in which the
property in the semaphore example listed in Appendix A could not be verified. If this data is
compared to the counterexample from CMU SMV (Figure 9), a difference that can be seen is
the number of BDD nodes allocated (NuSMV: 902 vs. CMU SMV: 1131). This is mainly due
to the algorithm and heuristics improvements in NuSMV to deal with state explosion.

In the NuSMV GUI interface version, called xNuSMV, when the model is processed the
counterexample information shown in the Output Messages window is the same as that
produced by the command-line interface with the addition of the line “A Counterexample
(trace no. 1) has been generated.” This trace can be viewed using the Trace Viewer. Figure 11
shows a counterexample in which the property in the semaphore example listed in Appendix
A could not be verified. The trace shows the states that lead to the counterexample and the
value that each variable had in each state. The arrow pointing from State 9 to State 3 indicates
that States 3 to 9 repeat forever.

24 CMU/SEI-2001-TN-028

 ###

Runtime Statistics

Machine name: unix14.andrew.cmu.edu
User time 0.070 seconds
System time 0.110 seconds

Average resident text size = 0K
Average resident data+stack size = 0K
Maximum resident size = 0K

Virtual text size = 671K
Virtual data size = 7180K
 data size initialized = 74K
 data size uninitialized = 1106K
 data size sbrk = 6000K
Virtual memory limit = 76800K (76800K)

Major page faults = 76
Minor page faults = 0
Swaps = 0
Input blocks = 0
Output blocks = 1
Context switch (voluntary) = 150
Context switch (involuntary) = 13

BDD statistics

BDD nodes allocated: 902
Monolithic Transition Relation:
BDD nodes representing transition relation: 67 + 1

Figure 10: Additional Statistics that are Part of a Counterexample in the
Command-Line Version of NuSMV

CMU/SEI-2001-TN-028 25

Figure 11: Counterexample in xNuSMV – GUI Version of NuSMV

There is an open source development of NuSMV called NuSMV2 that combines BDD-based
and SAT-based model-checking techniques9 to deal with the state explosion problem
[NuSMV 01].

NuSMV also accepts variable order files. The difference between SMV and NuSMV in this
aspect is that NuSMV accepts partial variable specification as well as variables not declared
in the model. It accepts specification of a method to use as the heuristic for variable ordering,
such as several forms of sifting10, random selection, windowing, annealing, genetic, and
linear transformations11.

Cadence SMV
Ken McMillan, original author for SMV, created Cadence SMV at Cadence Berkeley Labs. It
is a tool oriented to computer hardware verification with more constructs and data types, but
accepts CMU SMV as well as Synchronous Verilog as input. It supports composition and

9 SAT-based model checking techniques are based on prepositional decision procedures and claim to

not suffer from the potential state explosion of BDD-based techniques [Biere 99].
10 Sifting is a heuristic for dynamic variable reordering [Meinel 97, Rudell 93, Kamhi 98].
11 An explanation of all these heuristics can be found in the URL for NuSMV listed in the Tool

References section.

26 CMU/SEI-2001-TN-028

refinement; that is, it allows the user to verify properties of one part of the system and use
these properties as assumptions when verifying another part of the system. It allows the use
of a high-level model of the system as a specification, and verifies separately that each
system component implements its part of the high-level specification. It also includes an
easy-to-use graphical user interface (GUI) and properties can be expressed in CTL as well as
LTL. Cadence SMV is available for Windows and Unix.

In Cadence SMV, counterexamples are presented as traces with a truth assignment to all the
state variables that show that a property is false. Figure 12 shows a counterexample in which
the property in the semaphore example listed in Appendix A could not be verified. The trace
shows the values for each of the variables that lead to a state where the property is false.
States 2 and 6 are marked with “repeat” signs, thus: |: 2 … 6:| indicates that states 2 to 6
repeat forever. The log tab will also show the resources used, variable ordering, and other
data concerning the verification operation.

Figure 12: Counterexample in Cadence SMV

The set of variables that a property depends on is referred to as the cone of that property. It is
generally best to keep the number of variables in the cone small, when possible. Cadence
SMV allows the viewer to select a given property to verify, then to view the cone of that

CMU/SEI-2001-TN-028 27

property by clicking the “Cone” tab. Some state variables will be listed as “free”. This is
because they are unconstrained and thus are free to take on any values in their type.

Cadence SMV supports refinement maps by allowing specification of many abstract
definitions for the same state variable using a construct called a “layer”. A layer is a
collection of abstract state variable definitions. A layer allows for proof that every
implementation behavior is consistent with all of the given assignments. If this is the case, it
can be said that the implementation refines the specification. Also, a different abstraction of
the implementation can be used to prove each component of the specification.

A simple example of the use of layers in SMV is taken directly from the Cadence SMV
documentation [Cadence SMV] and is shown in Figure 13. This sample is not written in
CMU SMV input language, but in Cadence SMV input language.

 module main(){

 x : boolean;

 /* the specification */

 layer spec: {

 init(x) := 0;

 if(x=0) next(x) := 1;

 else next(x) := {0,1};

 }

 /* the implementation */

 init(x) := 0;

 next(x) := ~x;

 }

Figure 13: Example of Layers in Cadence SMV

The tool checks that the implementation satisfies the conditions in the specification by
exhaustive search of the state space of the implementation. In the above example, the two
instructions listed under the implementation are checked against the instructions included in
the specification. In this case, the implementation satisfies the specification because next(x)
:= ~x satisfies the condition in the specification for values 0 and 1. If more than one state
variable is assigned a value in a layer, these two variable definitions can be verified
separately. A different abstraction of the implementation can be used to prove each
component of the specification. For example, if state variables x and y are assigned values in
the specification, and the specification definition of x needs to be verified, either the
specification definition of y or the implementation definition of y can be used. However, if

28 CMU/SEI-2001-TN-028

the specification definition of y is used, one state variable is eliminated from the model.
Thus, by decomposing a specification into parts, and using one part as the “environment” for
another, the number of state variables in the model is reduced.

Cadence SMV has built-in heuristics for selecting the variable ordering, which can also be
disabled so that variables appear in the BDDs in the same order in which they are declared in
the program. It also allows sifting,12 which slows down the verification process but reduces
the state space. Variable ordering can also be adjusted manually by adding redundant variable
declarations to the program, so that the variables are declared in the desired order, or by
creating a variable order file. The variable order used can also be output to a file.

12 See previous footnote.

CMU/SEI-2001-TN-028 29

30 CMU/SEI-2001-TN-028

References

Atanacio 00 Atanacio, B. Modeling the Space Shuttle Liquid Hydrogen Subsystem
(CMU/SEI-2000-TN-002). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2000. http://www.sei.cmu.edu
/publications/documents/00.reports/00tn002.html

Biere 99 Biere, A.; Cimatti, A.; Clarke, E.; Fujita, M.; & Zhu, Y. Symbolic Model
Checking Using SAT Procedures Instead of BDDs (CMU-CS-99-145).
Pittsburgh, PA: School 0f Computer Science, Carnegie Mellon University,
1999.

Chan 98 Chan, W.; Anderson, R.; Beame, P.; Burns, S.; Modugno, F.; Notkin, D.; &
Reese, J. “Model Checking Large Software Specifications.” IEEE
Transactions on Software Engineering 24, 7 (July 1998): 498-519.

Clarke 89 Clarke, E; Long, D; & McMillan, K. “Compositional Model Checking.”
Proceedings of the Fourth Annual Symposium on Logic in Computer Science
- LICS '89. Pacific Grove, CA, June 1989. New York, NY: IEEE Computer
Society Press, 1989.

Clarke 92 Clarke, E.; Grumberg, O.; & Long, D. “Model Checking and Abstraction.”
Proceedings of the Nineteenth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. Asilomar, CA,
January 1992. New York, NY: ACM Press, 1992.

Clarke 95 Clarke, E.; Grumberg, O.; Hiraishi, H.; Jha, S.; Long, D.; McMillan, K. &
Ness, L. “Verification of the Futurebus+ Cache Coherence Protocol.”
Formal Methods in System Design 6, 2 (March 1995): 217-232.

Clarke 96 Clarke, E. & Wing, J. “Formal Methods: State of the Art and Future
Directions.” ACM Computing Surveys 28, 4 (December 1996): 626-643.

Clarke 00 Clarke, E.; Grumberg, O.; Jha, S.; & Veith, H. “Counterexample-guided
Abstraction Refinement.” Proceedings of the Twelfth International
Conference on Computer Aided Verification. Chicago, IL, July 2000.
Heidelberg, Germany: Springer-Verlag, 2000.

CMU/SEI-2001-TN-028 31

Clarke 01 Clarke, E.; Grumberg, O.; Jha, S.; Lu, Y.; & Veith, H. “Progress on the State Explosion
Problem in Model Checking.” in R Wilhelm (Ed.) “Informatics. 10 Years Back. 10
Years Ahead.” Heidelberg, Germany: Springer-Verlag, 2001.
http://link.springer.de/link/service/series/0558/papers/2000/20000176.pdf(2001).

Comella 01 Comella-Dorda, S.; Gluch, D.; Hudak, J.; Lewis, G.; & Weinstock, C. Model-
Based Verification: Claim Creation Guidelines (SEI/CMU-2001-TN018).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University,
2001. http://www.sei.cmu.edu/publications/documents/01.reports
/01tn018.html

Emerson 97 Emerson, C.; Jha, S.; & Peled, D. “Combining Partial Order and Symmetry
Reductions.” Proceedings of the Third International Workshop on Tools and
Algorithms for the Construction and Analysis of Systems. Enschede, The
Netherlands, April 1997. Heidelberg, Germany: Springer-Verlag, 1997.

Gluch 98 Gluch D. & Weinstock, C. Model-Based Verification: A Technology for
Dependable Systems Upgrade (CMU/SEI-98-TR-009, ADA354756).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University,
1998. http://www.sei.cmu.edu/publications/documents /98.reports
/98tr009/98tr009abstract.html

Gluch 99 Gluch, D. & Brockway, J. An Introduction to Software Engineering
Practices Using Model-Based Verification (CMU/SEI-99-TR-005,
ADA366089). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 1999. http://www.sei.cmu.edu/publications
/documents/99.reports/99tr005/99tr005abstract.html

Heitmeyer 98 Heitmeyer, C.; Kirby, J.; Labaw, B.; Archer, M.; & Bharadwaj, R. “Using
Abstraction and Model Checking to Detect Safety Violations in
Requirements Specifications.” IEEE Transactions on Software Engineering
24, 1 (November 1998): 927-948.

Kamhi 98 Kamhi, Gila & Fix, L. “Adaptive Variable Reordering for Symbolic Model
Checking.” IEEE/ACM 1998 International Conference on Computer-Aided
Design Proceedings. San Jose, CA, Nov. 8-12, 1998. In IEEE/ACM Digest of
Technical Papers. New York, NY. ACM Press, 1998.

Lu 00 Lu, Y.; Jain, J.; Clarke, E.; & Fujita, M. Efficient Variable Ordering Using a
BDD Based Sampling. Proceedings of the 37th Conference on Design
Automation. Los Angeles, CA, June 5-9, 2000. New York, NY: Association
for Computing Machinery, 2000.

32 CMU/SEI-2001-TN-028

McMillan 92 McMillan, K. The SMV System, Symbolic Model Checking - An Approach to
the State Explosion Problem (CMUCS-92-131). Pittsburgh, PA: School of
Computer Science, Carnegie Mellon University, 1992.

McMillan 99 McMillan, K. Verification of Infinite State Systems by Compositional Model
Checking. Berkeley, CA: Cadence Berkeley Labs, 1999.

Meinel 97 Meinel C. & Slobodová, A. “Speeding up Variable Reordering of OBDDs.”
IEEE 1997 International Conference on Computer Design Proceedings.
Austin, TX, Oct. 12-15, 1997. New York, NY: IEEE Computer Society
Press, 1990.

NuSMV 01 Open Source NuSMV Project. http://nusmv.irst.itc.it/open_nusmv/flier.html
(2001).

Pasareanu 99 Pasareanu, C.; Dwyer, M.; & Huth. M. “Assume-Guarantee Model
Checking of Software: A Comparative Case Study.” Theoretical and
Practical Aspects of SPIN Model Checking: 5th and 6th International SPIN
Workshops. Heildelberg, Germany:Springer-Verlag, 1999.

Pasareanu 01 Pasareanu, C.; Dwyer, M.; & Visser. W. “Finding Feasible Counter-examples
when Model Checking Abstracted Java Programs.” Proceedings of the 7th
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Genova, Italy, April 2-6, 2001.

Rudell 93 R. Rudell. “Dynamic Variable Ordering for Ordered Binary Decision
Diagrams.” IEEE/ACM 1993 International Conference on Computer Aided
Design Proceedings. Santa Clara, CA, Nov. 7-11, 1993. NewYork, NY: IEEE
Computer Society Press, 1994.

Rushby 99 Rushby, J. “Integrated Formal Verification: Using Model Checking with
Automated Abstraction, Invariant Generation, and Theorem Proving.”
Theoretical and Practical Aspects of SPIN Model Checking: 5th and 6th
International SPIN Workshops. Heidelberg, Germany:Springer-Verlag, 1999.

Sreemani 96 Sreemani T. & Atlee, J. “Feasibility of Model Checking Software
Requirements: A Case Study.” Proceedings of the 11th Annual Conference
on Computer Assurance. Gaithersburg, MD, June 17-12, 1996.

Winter 97 Winter, K. “Model Checking for Abstract State Machines.” Journal of
Universal Computer Science 3, 5 (May 1997): 689-701.

Visser 00 Visser, W. & Pecheur, C. “Model for Software.” Tutorial presented at the

CMU/SEI-2001-TN-028 33

Automated Software Engineering 2000 Conference. Grenoble, France,
September 12, 2000.

34 CMU/SEI-2001-TN-028

Tool References

Symbolic Model Verifiers (SMVs)

Cadence SMV http://www-cad.eecs.berkeley.edu/~kenmcmil/smv/

CMU SMV http://www.cs.cmu.edu/~modelcheck/

NuSMV http://sra.itc.it/tools/nusmv/

CMU/SEI-2001-TN-028 35

36 CMU/SEI-2001-TN-028

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations
and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

December 2001
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Model-Based Verification: Analysis Guidelines
5. FUNDING NUMBERS

F19628-00-C-0003
6. AUTHOR(S)

Grace A. Lewis, Santiago Comella-Dorda, David P. Gluch, John Hudak, Charles Weinstock
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2001-TN-028

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This technical note provides guidance for the analysis activity that occurs during the interpretation of results produced
by model-checking tools. In the model-checking analysis activity, the main question is, "Does the system behave
correctly?” To answer this question, a model and a set of expected properties are used as input to a model checker.
The expected output is a confirmation or refutation of the specified expected properties. In most cases, if the model
checker does not confirm the property, it provides a counterexample.

Counterexamples are executions of the model showing the sequence of steps that refutes the expected property.
Sometimes the state space to be explored in order to find this counterexample is so large that it cannot be completely
covered. This is the state explosion problem. Models must be tuned to reduce the state space; this is a manual and
intuitive task.

Interpreting the model checker's output can also be difficult. The significance of the output must be assessed; its
interpretation may suggest an error in the claims or the model, or a defect in the actual system.

This document presents the problems related to interpreting results. It provides strategies to overcome state explosion,
analyze results, and provide feedback to the system designers and developers.

14. SUBJECT TERMS

Model-Based Verification, model checking, symbolic model verifier, Cadence SMV,
CMU SMV, NuSMV, state explosion

15. NUMBER OF PAGES

41

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Contents
	List of Figures
	Abstract
	Introduction
	Analyzing Models
	Interpreting Results
	State Explosion
	Variable Ordering
	Abstraction
	Decomposition

	Corrective Actions
	Error in the Claim
	Error in the Model
	Potential Defect in the System or Design

	Summary and Conclusions
	Appendix A – SMV Semaphore Example
	Appendix B – Synchronous Arbiter Example
	Appendix C – Features in CMU SMV, NuSMV, and Cade
	A General Notion about Fairness
	CMU SMV
	NuSMV
	Cadence SMV
	References
	Tool References
	Symbolic Model Verifiers (SMVs)

