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Abstract 

This technical note provides guidance for the analysis activity that occurs during the 
interpretation of results produced by model-checking tools. In the model-checking analysis 
activity, the main question is, "Does the system behave correctly?” To answer this question, a 
model and a set of expected properties are used as input to a model checker. The expected 
output is a confirmation or refutation of the specified expected properties. In most cases, if 
the model checker does not confirm the property, it provides a counterexample. 

Counterexamples are executions of the model showing the sequence of steps that refutes the 
expected property. Sometimes the state space to be explored in order to find this 
counterexample is so large that it cannot be completely covered. This is the state explosion 
problem. Models must be tuned to reduce the state space; this is a manual and intuitive task. 

Interpreting the model checker's output can also be difficult. The significance of the output 
must be assessed; its interpretation may suggest an error in the claims or the model, or a 
defect in the actual system.  

This document presents the problems related to interpreting results. It provides strategies to 
overcome state explosion, analyze results, and provide feedback to the system designers and 
developers. 
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1 Introduction 

Model-Based Verification (MBV) is a systematic approach to finding defects (errors) in 
software requirements, designs, or code [Gluch 98]. The approach judiciously incorporates 
mathematical formalism, in the form of models, to provide a disciplined and logical analysis 
practice, rather than a “proof” of correctness strategy. MBV involves creating essential 
models of system behavior and analyzing these models against formal representations of 
expected properties. 

The artifacts and the key processes used in Model-Based Verification are shown in Figure 1. 
Model building and analysis are the core parts of Model-Based Verification practices. These 
two activities are performed using an iterative and incremental approach, where a small 
amount of modeling is followed by a small amount of analysis. A parallel compile activity 
gathers detailed information on errors and potential corrective actions. 
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An essential model is a simplified formal representation that captures the essence of a system, 
rather than provide an exhaustive, detailed description of it. Through the selection of only 
critical (important or risky) parts of the system and appropriately abstracted perspectives, a 
reviewer, using model-based techniques, can focus the analysis on the critical and technically 
difficult aspects of the system. Driven by the discipline and rigor required in the creation of a 
formal model, simply building the model, in and of itself, uncovers errors. 

Once the formal model is built, it can be analyzed (checked) using automated model-
checking tools such as SMV (Symbolic Model Verifier).  Within this analysis, the user 
identifies potential defects both while formulating claims about the system’s expected 
behavior and while formally analyzing the model using automated model-checking tools. 
Model checking has been shown to uncover the especially difficult-to-identify errors: the 
kind of errors that result due to the complexity associated with multiple interacting and inter-
dependent components. These include embedded as well as highly distributed applications. 

Many different formal modeling and analysis techniques are employed within MBV [Gluch 
98, Clarke 96].  The choices are based upon the type of system being analyzed and the 
technological foundation of the critical aspects of that system.  Deciding which techniques to 
use involves an engineering tradeoff among the technical perspective, formalism, level of 
abstraction, and scope of the modeling effort. 

The specific techniques and engineering practices of applying Model-Based Verification to 
software verification have yet to be fully explored and documented. A number of barriers to 
adoption of Model-Based Verification have been identified, including the lack of good tool 
support, expertise in organizations, good training materials, and process support for formal 
modeling and analysis. 

In order to address some of these issues, the SEI has created a process framework for Model-
Based Verification practice. This process framework identifies a number of key tasks and 
artifacts. Additionally, the SEI is working on a series of technical notes that can be used by 
Model-Based Verification practitioners. Each technical note is focused on a particular Model-
Based Verification task, providing guidelines and techniques for one aspect of the Model-
Based Verification practice. Currently, the technical notes that are planned address abstraction 
in building models, generating expected properties, generating formal claims, and 
interpreting the results of analysis.  

The Analysis Guidelines technical note provides guidance for the analysis activity in the 
interpretation of results produced by model-checking tools. It states the problems related to 
interpreting results and provides strategies to overcome state explosion, to analyze results, 
and to provide feedback to the system designers and developers. In an appendix, it provides 
guidance for different MBV tools. 
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2 Analyzing Models 

A central idea behind Model-Based Verification is to analyze essential models of the system 
to verify whether the model exhibits a particular behavior. Build and Analyze are MBV 
activities that cannot be separated. As shown in Figure 2, these activities follow an iterative 
approach, where a small amount of building is followed by a small amount of analysis. A 
parallel Compile activity gathers detailed information on errors and potential corrective 
actions. 

Project Level Activities

Engineering Activities

Define Scope, 
Formalism, Perspective

Compile

Build Analyze

Project Level Activities

Engineering Activities

Define Scope, 
Formalism, Perspective

Compile

Build Analyze

 

Figure 2: MBV Activities 
 

During the analysis activity, shown in Figure 3, the main question to be answered is “Does 
the system behave correctly?” Correct behavior is defined in terms of expected properties. 
Expected properties are natural language statements about the behavior of a system—
behavior that is consistent with user expectations1. Those expected properties are formalized 
into claims and checked against the model using an automated model-checking tool, such as 
Symbolic Model Verifier (SMV) [Comella 01]. 

                                                 
1  Gluch, D.; Comella-Dorda, S.; Hudak, J.; Lewis, G.; & Weinstock, C.  Model-Based Verification:

Guidelines for Generating Expected Properties, Pittsburgh, PA: Software Engineering Institute, 
Carnegie Mellon University. To be published. 
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Figure 3: Analyze Activity 
 

The output of a state-machine-based automated model-verification tool is a confirmation or 
refutation of the specified expected properties. In most cases, if the property is not confirmed 
by the model checker, a counterexample will be provided. Counterexamples are executions of 
the model, showing the sequence of steps that negates the expected property. 

A negative result in a model-checking tool will not always produce a counterexample. The 
temporal logic claim EF p (there exists a path where property p holds), for example, does not 
produce any counterexample. This happens because in order to provide a counterexample that 
this path does not exist, it has to enumerate all possible paths. 

Obtaining a confirmation or a counterexample from a model-checking tool is not the end of 
the problem. Interpreting these results can, by itself, be as difficult as creating the models or 
the expected properties. The significance of the output of a model-checking tool must be 
assessed, considering particularly the following:  

• If a claim is confirmed,  

- How to verify that in fact the system is correct? 

• If a counterexample is returned,  

- Is the claim correct? Does it accurately reflect a valid expected property?  
- Does the model correctly reflect the behavior of the system as specified? 
- Does the interpretation of the counterexample reflect a potential defect in the system? 

The interpretation of the result may prompt a number of different actions. For example, it 
may be necessary to revise the model to better reflect the system.  This is part of the iterative 
nature of MBV: build or formulate part of a model, then evaluate it to see what changes need 
to be made. When a potential defect based on the interpretation above is discovered, it is 
recorded in a defect log.  
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The compile activity encompasses the tasks involved in logging and organizing defect data. 
Defects are compiled throughout all phases of the practice. Specific tasks in Compile include 

• logging all defects 

• organizing and analyzing defect data 

• generating a defect analysis report 
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3 Interpreting Results 

Three things can happen when a group of claims is assessed against a model using a model 
checker: the claims are validated, the claims are rejected (and a counterexample is provided), 
or nothing happens. When nothing happens, it is probably because the model checker is 
trying to parse an excessively large state space. This is known as the state explosion problem 
and is described in detail in Section 4. 

If the model checker does provide an output it may well be that the claims are validated and 
the model is confirmed to have satisfied the expected properties. A positive result gives 
confidence but cannot assure that the model adequately represents the system at the right 
level of abstraction. These positive results have to be validated: claims should be verified for 
correctness; the model should be verified as an accurate representation of the system and 
translation into model-checking notation. Finally, results should be presented to users, 
customers, and domain experts, to confirm their validity. 

Automated model checking is effective in finding cases in which the claims do not hold 
against the system models. The counterexamples provided by these results can reveal 
potential defects in the system or design, errors in the models, or errors in the claims. The 
following are the three possible causes for obtaining a counterexample2: 

1. Error in the Claim: A counterexample needs to be verified against the system 
specification. If it does not reflect a valid state of the system, claims should be tested to 
determine if they have been well constructed and reflect the desired property to be 
verified. 

2. Error in the Model: If the claims are correct, the counterexample could be caused by an 
error in the model. Errors in the model can be missing or invalid transactions, missing or 
invalid states, or missing initial values, among others. 

3. Potential Defect in the System or Design: If after verifying the claims and the model, the 
counterexample still is valid, this could reflect a potential defect in the system or design 
as specified. This potential defect should be validated with domain experts and users and 
the result should be registered in a defect log. 

How are errors in claims, errors in the model, and potential defects in the system 
distinguished? When results are inconclusive, what are the options? A good approach is to 
spend a few building-analysis cycles gaining confidence in the correctness of the model 
before probing the correctness of the system.  

                                                 
2  These causes are not mutually exclusive; a combination of them is also possible. 
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Initially, fundamental claims corresponding to key elements are generated to ensure that the 
model accurately represents the behavior of the system. These first few claims often reveal 
mistakes made in building the model rather than flaws in the system. They help to provide 
confidence in the integrity of the model and its validity as a representation of the system. 
Both expected and unexpected behaviors should be specified and verified through the model 
checker at this phase. For example, in validating a model for a screen saver, an expected 
behavior to be verified is that the screen saver will be displayed if there is no input from the 
keyboard or mouse for a certain period of time ( AG (no_input_for_x_minutes  ⇒ 
AF (screen_saver_active) ). An unexpected behavior to be verified is that the screen saver 
will never be displayed at the same time a critical alarm is being displayed 
( AG !(screen_saver_active ∧  critical_alarm)). 

As greater confidence is gained in the model, more probing claims, aimed at better 
understanding of the system and uncovering defects in the system, can be explored. This 
process should also be iterative such that claims motivated by investigating the system in 
depth are interspersed with those that are seeking to confirm the veracity of the model. 
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4 State Explosion 

 
A major issue in analyzing state machines is the state explosion problem.  The number of 
states grows very quickly as the complexity of the model increases.  For example, even a 
relatively simple system consisting of four state machines or concurrent processes, each with 
three state variables, each having five values, results in a total state space of approximately 
250 million states.  

Tools such as Carnegie Mellon University (CMU) SMV use Binary Decision Diagrams3 
(BDDs) to represent sets and relations in the Computational Tree Logic (CTL) model-
checking algorithm. The use of BDDs in symbolic model checking allows state spaces of 1050 
states and up, with refinements of the BDD-based techniques pushing this number up to 1010

                                                

0 

[Clarke 99]. 1050 is roughly equivalent to 2160, meaning that SMV, in theory, could handle 
models with 160 binary variables.    

Most research and literature on the topic deals with incorporating techniques and algorithms 
inside the tools to automate eliminating or reducing the state explosion problem. The 
following subsections present heuristics for model developers that have been derived from 
these techniques and from experience in model checking. 

4.1 Variable Ordering 
 

Identifying good variable ordering for BDDs is the focus of many research papers [Chan 98, 
Kamhi 98, Lu 00, Rudell 93]. This topic is claimed to be one of the central problems in using 
BDDs effectively because these are very sensitive to variable ordering. The efficiency of 
BDDs is based on the combination of isomorphic subtrees and the elimination of redundant 
decision nodes in the tree. Because of this, the size of the final BDD will be closely related to 
the variable ordering used.  

Several SMV tools, for example the ones presented later in this paper, use variants of 
Rudell’s dynamic sifting algorithm for dynamic variable reordering, but this process is very 
time consuming [Rudell 93]. These tools also provide options to explicitly indicate the 
preferred variable order; for producing output specifying the variable ordering that is being 
used; and for enabling or disabling dynamic reordering. Some tools also offer options for 
specifying the dynamic ordering heuristic to be used. More information is included in 
Appendix C – Features in CMU SMV, NuSMV, and Cadence SMV. 

 
3  A BDD is a decision tree, in which variables always appear in the same order as the tree is 

traversed from root to leaf.   
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Even though most tools provide ways to define or dynamically perform variable ordering, it 
is good to apply the following heuristics: 

1. Declare closely related variables together. 

2. Declare global variables first.  

3. Order variables as they appear in the assignments [Winter 97].  

4. Initially order variables manually or statically and run the model checker iteratively to 
produce an ideal ordering; do this first even if it allows dynamic reordering. 

As sample data on how state space size is affected by variable ordering, the size of the state 
space in the example listed in Appendix B varies from 4802 to 3544 BDD nodes using CMU 
SMV (26% reduction) if the third heuristic is applied (the order in which variables are 
declared is matched to the order in which they are assigned values)4. If the first heuristic is 
applied (keeping together variables that are related) to the same example, the smallest state 
spaces are accomplished by ordering variables e1 through e5, either e1, e2, e3, e4, e5 or e5, 
e4, e3, e2, e1. This is because each of the variables e1 through e5 is defined in terms of the 
previous and/or next one. If this order is changed, so that the variables that are related are not 
declared close together, the size of the state space can go from 3544 to 4716 BDD nodes 
(33% increase). 

4.2 Abstraction 
Abstraction, when dealing with state explosion, refers to making the model’s state space 
smaller. Visser states that when there are n concurrent processes or state machines with m 
states each, the system has mn states [Visser 00]. The options to reduce mn are to reduce m 
(abstraction), to reduce the effect of n (partial-order reduction), or to reduce n (symmetry 
reduction). There is a great amount of literature on abstraction [Clarke 99, Heitmeyer 98, 
Emerson 97, Visser 00], but as with variable ordering, most of the work is still in the research 
stage and is slowly being integrated into model-checking tools. It is still a manual process 
that requires considerable creativity [Clarke 01]. 

In general, abstraction reduces the state space by mapping complex components to simple 
abstract representations. The problem is making sure that the abstraction correctly models the 
behavior of the system it is modeling. This is also referred to as soundness.  

There are some abstraction heuristics where the goal is to reduce the number of different data 
values: 

• SMV tools are extremely inefficient in constructing BDDs for integers and real numbers 
[Chan 98]. A simple heuristic is to replace integer and real values with abstract 
representations. For example, if a variable is represented as an integer, but the model is 
only concerned with the ranges 0-200, 201-350, and 351-500 for that variable, it is best to 

                                                 
4  In the example, the order of the variables Persistent and Token was interchanged in the VAR 

section to match the assignments in the ASSIGN section. 
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model it as {low, medium, high} corresponding to the previous ranges. This heuristic has 
been applied with success by practitioners and is documented in several papers and case 
studies [Atanacio 00, Gluch 99, Pasareanu 01].  

• Also for enumerations, if there are values that are not relevant to the property being 
verified, these can be substituted for the value “other.” For example, if the variable in the 
previous example could also take values below 0 or above 500, but these are not 
important for the property being verified, the state space can be reduced by replacing 
{very low, low, medium, high, very high} with {low, medium, high, other}. 

• Remove variables from the model that are not relevant to the property being verified. 
This is done automatically by some tools and is called slicing5. A slice is the set of 
program statements that affect a given variable. For example, if the property being 
verified is AG(x>0 ⇒ y>0), all variables different from x and y that are not relevant to 
changes in the values of x and y, as well as statements/transitions that are not relevant to 
the relationship between x and y, can be removed while this property is verified  
[Heitmeyer 98, Pasareanu 00]. 

• Assign initial values to state variables instead of leaving them free and minimizing 
nondeterminism [Pasareanu 01]. This heuristic is useful to verify portions of the system, 
but it has to be used with caution because nondeterminism is used to model unpredictable 
or unknown inputs to the system and by eliminating nondeterminism these inputs become 
fixed. 

• Reduce the number of  “symmetric” or “equivalent” components.  For example, if a 
distributed networked client-server system has twenty clients and five servers, the system 
may be modeled as three clients and two servers [Gluch 99]. This reduction may not 
preserve soundness or completeness, but it can be effective in exposing defects at 
relatively low cost [Rushby 99]. 

As an example, Figure 4 shows a very simple model with a variable temperature declared as 
0..100, that counts to 100 and then returns to 0, and a second variable condition that will 
change with certain values of temperature. Verifying the simple claim that it is always 
possible for condition to return to cold after it is set to warm required 1119 BDD nodes using 
CMU SMV. If the first heuristic is applied and temperature is changed to type {low, medium, 
high} and the condition variable still changes at certain values of temperature, and a fairness 
condition is added so it will not stay in the same state (as shown in Figure 5) verifying the 
same claim requires 84 BDD nodes using CMU SMV. This is obvious because it is going 
from 100 different values to 3 different values for a variable, but shows that it pays off to 
simplify a model in this way if it is possible. 

                                                 
5 Variable slicing in model checking is also referred to as “cone of influence reduction.” 
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MODULE main 
VAR  
     temperature: 0..100; 

condition: {cold, mild, warm}; 
ASSIGN 
     init(temperature) := 0; 
     init(condition) := cold; 
     next (temperature) := 
        case 
             temperature = 100: 0; 
             1: temperature+1; 
        esac; 
     next (condition) := 
        case 
             temperature = 0 : cold; 
              temperature = 40 : mild; 
              temperature = 70 : warm; 
              1 : condition; 
        esac; 
SPEC 
      AG ( condition = warm -> AF condition = cold ) 
 

Figure 4: Simple Example Using a Variable Modeled as an Integer  
 

 
 
 
MODULE main 
VAR  

       temperature: {low, medium, high}; 
condition: {cold, mild, warm}; 

ASSIGN 
init(temperature) := low; 
init(condition) := cold; 
next (temperature) := 

          case 
               temperature = low : {low, medium}; 
               temperature = medium : {medium, high}; 
               temperature = high : {high, low};  
               1: temperature; 
           esac; 
      next (condition) := 
          case 
               temperature = low : cold; 
               temperature = medium : mild; 
               temperature = high : warm; 
               1 : condition; 
           esac; 

SPEC 
       AG ( condition = warm -> AF condition = cold ) 
 

FAIRNESS 
       AG ( temperature = high -> AF temperature = low) 
 

Figure 5: Simple Example Using a Variable Modeled as an Enumeration 
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4.3 Decomposition 
Another way of handling state explosion is through decomposition. Decomposition refers to 
breaking big problems into small problems, and then localizing the verification of each 
subproblem to a small part of the overall model [Clarke 89, McMillan 99]. In decomposition, 
different parts of the model are reasoned about separately, but the separate results are used to 
deduce properties of the entire system.  

A form of decomposition is assume-guarantee reasoning, in which different components of a 
model are verified in isolation by making appropriate assumptions about the environment 
(possibly other portions of the model) [Pasareanu 99]. A heuristic based on assume-guarantee 
is better explained with an example: if model X can be decomposed into X1, X2, and X3, and 
if X1 can be verified, then X1 can be used as an assumption in verifying X2 and X3. This 
assumption could be included as part of the model or specified as a fairness constraint. If X1, 
X2, and X3 are all verified, then X is verified. The main difficulty with applying this heuristic 
is that sometimes properties that hold in some part of the system, when combined with the 
other parts of the system, may not hold for the original system. In this case, what holds for 
X1, X2, and X3 separately might not hold when X1, X2 and X3 are combined into X. 

12  CMU/SEI-2001-TN-028 



5 Corrective Actions 

Counterexamples normally prompt some kind of corrective action (except when the claim 
was expected to be false). Counterexamples provide valuable debugging information, and can 
be used by the software engineer to modify the specification, the model, or the property 
checked [Chan 98]. This is the difficult part: What should be modified? Where is the error?  
Figure 6 summarizes the process of interpreting results. In this section it is assumed that 
MBV reviewers do not have direct responsibility for repairing the system and will complete a 
defect log with the discovered errors for others to repair. 
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Figure 6: Interpreting Results Process 
 

The next subsections illustrate each of the possible corrective actions taken after a 
counterexample interpretation. 
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5.1 Error in the Claim 
Counterexamples show the sequence of states that demonstrate that the property being 
verified is not valid. If the sequence of states that is being presented by the counterexample 
does not reflect a valid state in the system, or does not seem related to the property being 
verified, there could be an error in the claim. 

There are several heuristics for testing whether a claim is correct: 

• Refer to a claim building guideline such as the one proposed by Comella [Comella 01] 
that describes a template-based approach to specifying claims in CTL and provides a list 
of simple claims templates that have been found to match a common expected property.  

• Avoid using EF p (there exists a path where property p holds) because SMV cannot 
produce a specific counterexample. This happens because in order to provide a 
counterexample that this path does not exist, it has to enumerate all possible paths. If this 
is a desired expected property, a better way to represent it is using !(EF p), or its 
equivalent AG !p. If a counterexample is obtained, it means that in fact there was a path 
where p holds. This is a case where a counterexample is a desired state. 

• Try weaker or partial versions of the claim to iteratively work towards finding the error. 

A way to apply this last heuristic is illustrated by the following examples: 

Example 1 

• Exact claim: Condition A is always true. Example: AG (state = busy) 

• Weaker claim: Condition A is true multiple times (an infinite number of times). Example:  
AG (AF (state = busy)). 

• Weakest claim: Condition A is true at least once. Example: AG (EF (state = busy)). 

Example 2 

• Exact claim: If Condition A occurs, then Condition B must occur. Example: 
AG (state=ready ⇒ AF (state=busy)) 

• Partial claim: Condition A occurs. Example: EF (state = ready) 

Weaker or partial claims might not represent the expected property exactly, but can help in 
working iteratively to find the error.  

In Example 1, the idea is to start from the weakest claim and work towards the exact claim: 
first check if the condition is possible, then if it occurs more than once, and finally if it is 
always true.  

In Example 2, the partial claim is represented by the antecedent in the implication 
proposition. The proposition will be true as long as the antecedent is true, so it is a good idea 
to test the antecedent by itself and work towards the complete proposition. In both examples, 
the claims as well as the model are being tested iteratively. 
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5.2 Error in the Model 
If the claim that generates a counterexample has been tested and appears to be correct, the 
error could be in the model. 

The model should accurately reflect the system or part of the system that is being analyzed. 
The questions listed below can help in determining if there is an error in the model. Having a 
graphical representation of the model, such as a state machine diagram or a state chart, is 
useful when answering these questions because transitions can be more easily traced. Given 
that this list is independent of the counterexample, it should be used to validate the model 
even before passing it through the model checker. 

• Are all transitions present in the model also present in the SMV representation? 

• Is there an initial state? 

• Is the model non-deterministic in any initial state? Is this correct? 

• Is all non-determinism intentional? 

• Are all cases that are supposed to be mutually exclusive, in fact mutually exclusive? 

• Do all states have at least one next state, except for end states? 

• Can all desired states be reached? 

• Are states reached in the proper order? 

• Are mandatory states always reached? 

• Will temporary states always be exited? 

Studying the counterexample is also useful - follow the sequence of states presented by the 
counterexample and map it to the graphical representation of the model (if one is available) 
or follow its execution. The abstraction heuristics listed in Section 4.2 – Abstraction can be 
used if the sequence is too long. Before checking the property against the abstract model, it is 
important to re-verify all basic claims to make sure that the abstraction has not introduced 
additional errors. A model can be incorrect due to over-abstraction. As a very simple 
example, suppose a traffic light is abstracted as shown in  Figure 7 [Clarke 00]. 

 

 

 

 
green 

 
yellow

 
red 

 
go 

 
red 

Abstraction

 

Figure 7: Abstract Model of a Traffic Light 
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If the property to prove is AG AF(state = red) (the traffic light is red infinitely often), the 
abstraction will produce the false counterexample < red, go, go >, which does not appear in 
the original model. In this case the abstraction is not a correct representation of the original 
model. If the loop from go to go is removed, the above property would be true in the original 
model and the abstraction.  

The heuristic to be applied is that if a model is abstracted further during the process, basic 
properties, as well as all properties that had previously been verified, must be re-verified.  

5.3 Potential Defect in the System or Design 
If after the model has been verified there is still a counterexample that negates the property 
being verified, it could be an error in the specification or in the system being reviewed. The 
difficult part is how to make a judgment, especially for problems that are very domain-
specific. It is often useful to have peer reviews or presentations to engineers where the defect 
is presented, along with the model and the analysis. The analysis must be translated into a 
representation that the attendants will understand. Gluch presents a procedure for peer 
reviews in model checking [Gluch 99]. In presenting the defect, the trace given by the 
counterexample should be the basis for explaining what sequence of events led to the error.  

System requirements, domain experts, system architects, and artifacts such as specifications, 
code, and antecedent specifications are the places to look for answers.  Interviews with users, 
customers, or domain engineers can help verify if the detected defect is in fact a system error. 
The system artifacts and other artifacts are used to map the defect to the system. 

All defects have to be recorded in a defect log6. No special form is needed. The defect log can 
be based upon what is already in use within the organization. Items that should be included 
are 

• unique defect identifier 

• date the defect was found  

• location of the defect in the specification 

• comments about and/or a description of the defect 

Other items that may be included are 

• classification of the type of defect found  

• activity where the defect was found 

• injection point of the defect 

• level of certainty (validity) of the defect  

                                                 
6 In routine practice only potential defects in the system or design are logged. As an instrument for 

process improvement, defects could be recorded for all MBV activities. 
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• level of importance/severity of the defect 

• estimation of effort required to fix the defect 

A sample of a defect log is presented in Figure 8. Established organizational defect 
classification approaches can be used to enable the process to be readily integrated into 
existing practices.  

 

Activity Date ID Type Doc Name Page Section Description

Figure 8: Sample Defect Log 
 

For significant defects found, it may be useful to create a detailed report that may include a 

• defect summary 

• system background information 

• detailed description of the defect discovered 

• statement on how the defect was found 

• summary of any supporting documentation 

A defect will require modifying the system, and consequently to modify, reanalyze, extend, or 
completely replace portions of the model. It is very important that modifications to the model 
stay consistent with the specification. It is also critical that the results from the model 
checking become a part of the overall verification process for the project. 
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6 Summary and Conclusions 

Obtaining valuable results from a model-checking tool depends on a thorough analysis of 
these results. Dealing with state explosion is still a very manual and intuitive task, even 
though there is a great deal of active research on how to overcome it. Determining the 
validity of a counterexample requires acquisition of domain and system knowledge. When a 
counterexample is finally categorized as being the result of a potential defect, the analysis 
results must be communicated properly to the people responsible for system design. 

This technical note has presented heuristics for dealing with state explosion; guidelines to 
help identify the type of result obtained; and finally ways to feed back the results to the 
system designers and developers. These heuristics and techniques are to be applied after the 
model is complete and expected properties are expressed as claims; they are not intended to 
replace the abstraction job and are not to be used as “quick solutions to a poor modeling job.” 

There are still very few reports and sparse experience on the application of Model-Based 
Verification to software. Hopefully, as Model-Based Verification becomes more widely used 
and more commercial and research tools are available, outcomes of increased experience will 
feed back into the MBV community and will bring more insight into its application to 
detecting defects in software at an early stage. 
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Appendix A – SMV Semaphore Example7  

This is an example of a semaphore in SMV. It will be used as a reference to illustrate what a 
counterexample looks like in the different tools that are addressed in this report. 

MODULE main 
 
VAR 
  semaphore : boolean; 
  proc1 : process user(semaphore); 
  proc2 : process user(semaphore); 
 
ASSIGN 
  init(semaphore) := 0; 
 
SPEC 
  AG (proc1.state = entering -> AF proc1.state = critical) 
 
MODULE user(semaphore) 
 
VAR 
  state : {idle,entering,critical,exiting}; 
 
ASSIGN 
  init(state) := idle; 
  next(state) :=  
    case  
      state = idle : {idle,entering}; 
      state = entering & !semaphore : critical; 
      state = critical : {critical,exiting}; 
      state = exiting : idle; 
      1 : state; 
    esac; 
  next(semaphore) :=  
    case 
      state = entering : 1; 
      state = exiting : 0; 
      1 : semaphore; 
    esac; 
 
FAIRNESS 

  running 

 

                                                 
7  Example taken from the CMU SMV documentation (http://www.cs.cmu.edu/~modelcheck/).  
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Appendix B – Synchronous Arbiter Example8  

This is an example of a synchronous arbiter in SMV. It will be used as a reference to illustrate 
the effects of variable ordering for dealing with state explosion. 

MODULE arbiter-element(above,below,init-token) 
 
VAR 
  Persistent : boolean; 
  Token : boolean; 
  Request : boolean; 
 
ASSIGN 
  init(Token) := init-token; 
  next(Token) := token-in; 
  init(Persistent) := 0; 
  next(Persistent) := Request & (Persistent | Token); 
 
DEFINE 
  above.token-in := Token; 
  override-out := above.override-out | (Persistent & Token); 
  grant-out := !Request & below.grant-out; 
  ack-out := Request & (Persistent & Token | below.grant-out); 
 
SPEC 
  AG ((ack-out -> Request) & AF (!Request | ack-out)) 
 
MODULE main 
 
VAR 
  e5 : arbiter-element(self,e4,0); 
  e4 : arbiter-element(e5,e3,0); 
  e3 : arbiter-element(e4,e2,0); 
  e2 : arbiter-element(e3,e1,0); 
  e1 : arbiter-element(e2,self,1); 
 
DEFINE 
  grant-in := 1; 
  e1.token-in := token-in; 
  override-out := 0; 
  grant-out := grant-in & !e1.override-out; 
 
SPEC 
  AG ( 
      !(e1.ack-out & e2.ack-out) 
      & !(e1.ack-out & e3.ack-out) 
      & !(e2.ack-out & e3.ack-out) 
      & !(e1.ack-out & e4.ack-out) 
      & !(e2.ack-out & e4.ack-out) 
      & !(e3.ack-out & e4.ack-out) 
      & !(e1.ack-out & e5.ack-out) 
      & !(e2.ack-out & e5.ack-out) 
      & !(e3.ack-out & e5.ack-out) 
      & !(e4.ack-out & e5.ack-out) 
     ) 

                                                 
8 Example taken from the CMU SMV documentation (http://www.cs.cmu.edu/~modelcheck/).  
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Appendix C – Features in CMU SMV, NuSMV, and Cadence SMV  

                      Related to Analysis 

The purpose of this appendix is to illustrate references to features of model-checking tools 
that have been made throughout this report. 

Model-checking tools based on SMV take specifications for a given system, written in SMV 
language, and verify that every possible behavior of the system satisfies the specification. 
Sometimes the tool will produce a counterexample – an execution path that violates the 
specified property.  

SMV, NuSMV, and Cadence SMV are free research tools available on the Internet. 
References for these tools are listed in the section “Tool References.” 

A General Notion about Fairness 
One way in which SMV can produce counterexamples that are inconclusive is when an 
asynchronous system, where processes run in parallel, “stalls” infinitely in the same state 
because one of the processes is being starved. Fairness constraints will force the model 
checker to consider only fair execution paths. SMV has an internal variable for each process  
- called running - that is true if and only if that process is running. For example, the statement 

FAIRNESS 

 running 

will ensure that the process runs eventually and that no process will run indefinitely because 
it only considers paths where running = 1 infinitely often. 

Running is not the only fairness constraint that can be specified. For example 

FAIRNESS 

 !(state = busy) 

will not explore paths where the system is “stalled” in the busy state indefinitely. 

CMU SMV 
CMU SMV (Symbolic Model Verifier) is the original version of SMV, developed at Carnegie 
Mellon University by Ken McMillan. It is a command-line tool that takes a system 
represented as a set of states and transitions as input. It allows for the specification of 
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expected properties in Computation Tree Logic (CTL) notation and automatically checks 
these properties against the state machine representation. Because CMU SMV is intended for 
describing state machines, it only accepts boolean, scalars, and fixed arrays data types, and 
allows for construction of static structured data types. CMU SMV is available for Windows 
and Unix platforms. 

In CMU SMV, counterexamples are presented as a command-line printout with a trace in 
which the specification is false. Each state in the trace presents the values of variables that 
change and lead to the counterexample. Figure 9 shows a counterexample in which the 
property in the semaphore example listed in Appendix A could not be verified. The trace 
shows the execution sequence and the variables that changed in each state of the execution. 
The text -- loop starts here – indicates that states 1.3 to 1.9 repeat forever. 
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-- specification AG (proc1.state = entering -> AF proc1.s... 
is false 
-- as demonstrated by the following execution sequence 
state 1.1: 
semaphore = 0 
proc1.state = idle 
proc2.state = idle 

  
state 1.2: 
[executing process proc1] 

 
-- loop starts here -- 
state 1.3: 
proc1.state = entering 

 
state 1.4: 
[executing process proc2] 

 
state 1.5: 
[executing process proc2] 
proc2.state = entering 

 
state 1.6: 
[executing process proc1] 
semaphore = 1 
proc2.state = critical 

 
state 1.7: 
[executing process proc2] 

 
state 1.8: 
[executing process proc2] 
proc2.state = exiting 

 
state 1.9: 
semaphore = 0 
proc2.state = idle 

 
 

resources used: 
processor time: 0.02 s,  
BDD nodes allocated: 1131 
Bytes allocated: 1045212 
BDD nodes representing transition relation: 69 + 1 

 

Figure 9: Counterexample in CMU SMV 
 

Variable ordering in SMV can be adjusted manually using an “order file.” At any point, the 
variable ordering can be written to a file, for inspection and possibly reordering. Dynamic 
variable ordering can also be enabled, but this will slow down the verification process. There 
is also the possibility of specifying a BDD size that when reached will start the dynamic 
variable reordering. 
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A new experimental feature in CMU SMV allows evaluation of AG specifications while 
building the set of reachable states. This often helps in finding bugs earlier before the 
complete model is built, but only works for AG specifications. If a specification is false, it 
prints a counterexample and removes the specification from the list, so it won't be evaluated 
again.  If no specs are left, it exits immediately. This option is useful for dealing with state 
explosion, but may slow down verification. 

NuSMV 
NuSMV is a symbolic model checker developed as a joint project between the Formal 
Methods group in the Automated Reasoning System division at ITC-IRST and the Model 
Checking Group at Carnegie Mellon University. It is a newer version of the original SMV 
that also includes LTL for expressing claims and has command-line interface as well as a 
graphical user interface (GUI). NuSMV is only available for Unix-based platforms. 

In the NuSMV command-line interface version, counterexamples look very similar to the 
ones produced by CMU SMV. The difference is in the statistics that it provides after showing 
the trace, as presented in Figure 10. This is the last part of the counterexample in which the 
property in the semaphore example listed in Appendix A could not be verified. If this data is 
compared to the counterexample from CMU SMV (Figure 9), a difference that can be seen is 
the number of BDD nodes allocated (NuSMV: 902 vs. CMU SMV: 1131). This is mainly due 
to the algorithm and heuristics improvements in NuSMV to deal with state explosion. 

In the NuSMV GUI interface version, called xNuSMV, when the model is processed the 
counterexample information shown in the Output Messages window is the same as that 
produced by the command-line interface with the addition of the line “A Counterexample 
(trace no. 1) has been generated.” This trace can be viewed using the Trace Viewer. Figure 11 
shows a counterexample in which the property in the semaphore example listed in Appendix 
A could not be verified. The trace shows the states that lead to the counterexample and the 
value that each variable had in each state. The arrow pointing from State 9 to State 3 indicates 
that States 3 to 9 repeat forever. 

 

24  CMU/SEI-2001-TN-028 



 
      ########################################################### 

Runtime Statistics 
------------------ 
Machine name: unix14.andrew.cmu.edu 
User time    0.070 seconds 
System time  0.110 seconds 

  
Average resident text size       =     0K 
Average resident data+stack size =     0K 
Maximum resident size            =     0K 

  
Virtual text size                =   671K 
Virtual data size                =  7180K 
    data size initialized        =    74K 
    data size uninitialized      =  1106K 
    data size sbrk               =  6000K 
Virtual memory limit             = 76800K (76800K) 

 
Major page faults = 76 
Minor page faults = 0 
Swaps = 0 
Input blocks = 0 
Output blocks = 1 
Context switch (voluntary) = 150 
Context switch (involuntary) = 13 
############################################################ 
BDD statistics 
-------------------- 
BDD nodes allocated: 902 
Monolithic Transition Relation: 
BDD nodes representing transition relation: 67 + 1 

 

Figure 10: Additional Statistics that are Part of a Counterexample in the 
Command-Line Version of NuSMV 
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Figure 11: Counterexample in xNuSMV – GUI Version of NuSMV 
 

There is an open source development of NuSMV called NuSMV2 that combines BDD-based 
and SAT-based model-checking techniques9 to deal with the state explosion problem 
[NuSMV 01]. 

NuSMV also accepts variable order files. The difference between SMV and NuSMV in this 
aspect is that NuSMV accepts partial variable specification as well as variables not declared 
in the model. It accepts specification of a method to use as the heuristic for variable ordering, 
such as several forms of sifting10, random selection, windowing, annealing, genetic, and 
linear transformations11. 

Cadence SMV 
Ken McMillan, original author for SMV, created Cadence SMV at Cadence Berkeley Labs. It 
is a tool oriented to computer hardware verification with more constructs and data types, but 
accepts CMU SMV as well as Synchronous Verilog as input. It supports composition and 

                                                 
9 SAT-based model checking techniques are based on prepositional decision procedures and claim to 

not suffer from the potential state explosion of BDD-based techniques [Biere 99].  
10 Sifting is a heuristic for dynamic variable reordering [Meinel 97, Rudell 93, Kamhi 98]. 
11 An explanation of all these heuristics can be found in the URL for NuSMV listed in the Tool 

References section. 
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refinement; that is, it allows the user to verify properties of one part of the system and use 
these properties as assumptions when verifying another part of the system. It allows the use 
of a high-level model of the system as a specification, and verifies separately that each 
system component implements its part of the high-level specification. It also includes an 
easy-to-use graphical user interface (GUI) and properties can be expressed in CTL as well as 
LTL. Cadence SMV is available for Windows and Unix. 

In Cadence SMV, counterexamples are presented as traces with a truth assignment to all the 
state variables that show that a property is false. Figure 12 shows a counterexample in which 
the property in the semaphore example listed in Appendix A could not be verified. The trace 
shows the values for each of the variables that lead to a state where the property is false. 
States 2 and 6 are marked with “repeat” signs, thus: |: 2 … 6:| indicates that states 2 to 6 
repeat forever.  The log tab will also show the resources used, variable ordering, and other 
data concerning the verification operation. 

 

Figure 12: Counterexample in Cadence SMV 
 

The set of variables that a property depends on is referred to as the cone of that property. It is 
generally best to keep the number of variables in the cone small, when possible. Cadence 
SMV allows the viewer to select a given property to verify, then to view the cone of that 
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property by clicking the “Cone” tab. Some state variables will be listed as “free”. This is 
because they are unconstrained and thus are free to take on any values in their type.  

Cadence SMV supports refinement maps by allowing specification of many abstract 
definitions for the same state variable using a construct called a “layer”. A layer is a 
collection of abstract state variable definitions. A layer allows for proof that every 
implementation behavior is consistent with all of the given assignments. If this is the case, it 
can be said that the implementation refines the specification. Also, a different abstraction of 
the implementation can be used to prove each component of the specification. 

A simple example of the use of layers in SMV is taken directly from the Cadence SMV 
documentation [Cadence SMV] and is shown in Figure 13. This sample is not written in 
CMU SMV input language, but in Cadence SMV input language. 

 module main(){ 

  x : boolean; 

 

  /* the specification */ 

 

  layer spec: { 

   init(x) := 0; 

       if(x=0) next(x) := 1; 

       else next(x) := {0,1}; 

     } 

 

     /* the implementation */ 

 

     init(x) := 0; 

     next(x) := ~x; 

  } 

 

Figure 13: Example of Layers in Cadence SMV 
 

The tool checks that the implementation satisfies the conditions in the specification by 
exhaustive search of the state space of the implementation. In the above example, the two 
instructions listed under the implementation are checked against the instructions included in 
the specification. In this case, the implementation satisfies the specification because next(x) 
:= ~x satisfies the condition in the specification for values 0 and 1. If more than one state 
variable is assigned a value in a layer, these two variable definitions can be verified 
separately. A different abstraction of the implementation can be used to prove each 
component of the specification. For example, if state variables x and y are assigned values in 
the specification, and the specification definition of x needs to be verified, either the 
specification definition of y or the implementation definition of y can be used. However, if 
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the specification definition of y is used, one state variable is eliminated from the model. 
Thus, by decomposing a specification into parts, and using one part as the “environment” for 
another, the number of state variables in the model is reduced. 

Cadence SMV has built-in heuristics for selecting the variable ordering, which can also be 
disabled so that variables appear in the BDDs in the same order in which they are declared in 
the program. It also allows sifting,12 which slows down the verification process but reduces 
the state space. Variable ordering can also be adjusted manually by adding redundant variable 
declarations to the program, so that the variables are declared in the desired order, or by 
creating a variable order file. The variable order used can also be output to a file. 

                                                 
12 See previous footnote. 
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