
Relating Multiset Rewriting and Process

Algebras for Security Protocol Analysis

Stefano Bistarelli1,2, Iliano Cervesato3,
Gabriele Lenzini4,5, and Fabio Martinelli1

1 Istituto di Informatica e Telematica—CNR
Via G. Moruzzi, 1 - I-56100 PISA, Italy

{stefano.bistarelli,fabio.martinelli}@iit.cnr.it
2 Dipartimento di Scienze, Università “D’Annunzio” di Chieti-Pescara

Viale Pindaro 87, 65127 Pescara, Italy
bista@sci.unich.it

3 Advanced Engineering and Science Division, ITT Industries Inc.
Alexandria, VA 22303, USA
iliano@itd.nrl.navy.mil

4 Istituto di Scienza e Tecnologie dell’Informazione—CNR
Via G. Moruzzi, 1 - I-56100 PISA, Italy

gabriele.lenzini@isti.cnr.it

5 Departement of Computer Science, University of Twente
7500 AE Enschede, The Netherlands

lenzinig@cs.utwente.nl

Abstract. When formalizing security protocols, different specification
languages support very different reasoning methodologies, whose results
are not directly or easily comparable. Therefore, establishing clear map-
pings among different frameworks is highly desirable, as it permits vari-
ous methodologies to cooperate by interpreting theoretical and practical
results of one system into another. In this paper, we examine the rela-
tionship between two general verification frameworks: multiset rewriting
(MSR) and a process algebra (PA) inspired to CCS and the π-calculus.
Although defining a simple and general bijection between MSR and PA
appears difficult, we show that the sublanguages needed to specify cryp-
tographic protocols admit an effective translation that is not only trace-
preserving, but also induces a correspondence relation between the two
languages. In particular, the correspondence sketched in this paper per-
mits transferring several important trace-based properties such as secrecy
and many forms of authentication.

1 Introduction

In the last decade, security-related problems have attracted the attention of
many researchers from several different communities, especially formal methods
(e.g., [1, 3, 7, 11, 9, 14, 19, 21, 20, 23, 28, 36, 18]). These researchers have often
let their investigation be guided by the techniques and experiences specific to

their own areas of knowledge. While on the one hand furthering research, this
massive interest has on the other hand determined a plethora of results that
often are not directly comparable or integrable with one another. In the last
few years, attempts have been made to unify frameworks for specifying security
properties often expressed in different ways [22], and to study the relationships
between different models for representing security protocols [10].

In this paper, we relate transition-based and a form of process-based models
for the description and the analysis of a large class of security protocols. We
choose the multiset-rewriting formalism MSR as a representative of the former,
and synthesize salient features of popular process algebras in a system that we
call PA as an abstraction of the latter.

MSR, with its roots in concurrency theory and rewriting logic, has proved to
be a language of choice for studying foundational issues in security protocols [9].
It is also playing a practical role through the closely related CIL intermediate
language [14] of the CASPL security protocol analysis system [13], in particular
since translators from several tools to CIL have been developed. For these rea-
sons, MSR has become a central point when comparing languages for protocol
specification. For example, ties between MSR and strand spaces [17], a popular
specification language for crypto-protocols, have been analyzed in [10].

Process algebra encompasses a family of well-known formal frameworks pro-
posed to describe features of distributed and concurrent systems. Here we use an
instance, PA, that borrows concepts from different calculi, specifically CCS [30]
and the π-calculus [31]. We expect our results to adapt to other (value passing)
process algebras used for security protocol analysis, e.g., the spi-calculus [2] or
CSP [35]. Indeed, when applied to security protocol analysis, most such lan-
guages rely only on a well-identified subset of primitives, that we have isolated
in the language considered here.

We relate MSR and PA by defining encodings from one formalism to the
other. Moreover we propose a correspondence relation among MSR and PA pro-
tocol models, preserved by our encodings, that is sufficient to transfer several
useful trace-based properties such as secrecy and many forms of authentication.
Informally it says that an MSR configuration and a PA process correspond if
and only if the messages lying on the network and the messages known by the
intruder are the same, step by step, in the two models.

The results in this paper yield several important consequences:

– First, our encodings establish a firm relationship between the specification
methodologies underlying MSR and PA. MSR epitomizes a representation
paradigm based on transitions between explicit states, as found, for example,
in the vast majority of tools for security protocol analysis [9, 11, 13, 16,
28, 34, 35]. The approach underlying PA and the languages behind it, e.g.,
[2, 6, 20, 23, 18], represents concurrent systems, with security protocols as a
particular instance, as independent threads of computation communicating
through message passing. While specifications are obviously related, moving
between paradigms is an error-prone proposition unless guided by formal
encodings.

2

– Second, the relationship we developed helps relate verification results obtain-
able in each model, in particular as far as secrecy and authentication are con-
cerned. Systems à la MSR overwhelmingly embrace a verification methodol-
ogy based on some form of trace exploration: model-checking [11, 13, 16, 35],
theorem proving [34], or a combination [28]. The situation is more com-
plex in process-algebraic languages, which sometimes base their analysis on
traces [6, 20, 37], but also on process equivalence [2], type-checking [23] and
other forms of symbolic reasoning [24]. While we do not study what these
last three forms of analysis map to in the MSR world, we believe that the
present work opens the door to such an investigation. Authentication and
secrecy are quintessential trace-based safety properties (they are expressed
in terms of intruder knowledge and messages passed onto the network and
our encodings preserve this information). Therefore relating trace-based re-
sults in MSR and PA is valuable, in particular as these languages rely on
different notions of traces, and sometimes make different uses of them, e.g.,
[20].

– Finally, by bridging PA and MSR item we implicitly define a correspondence
between PA and other languages for security analysis. MSR has already been
related to other formalisms, such as strand spaces [17] in a setting with an
interleaving semantics (a worthy investigation as remarked in [12]), while
work about linear logic and MSR appears in [29].

The rest of the paper is organized as follows. Section 2 recalls the multi-
set rewriting and process algebra frameworks and in Section 3 their use in the
specification of security protocols. Section 4 presents the encodings from mul-
tiset rewriting to process algebra (Section 4.1), and vice-versa (Section 4.2).
Section 5 defines the notion of equivalence motivating the encodings, while Sec-
tion 6 shows how security properties are preserved when going from PA to MSR
and vice-versa via our encodings. Section 7 concludes with some final remarks.

2 Background

In this section, we recall the syntax and formal semantics of multiset rewriting
(MSR) and we define the language, PA, that we will use as a representative of
process algebras. Before doing so, we present our notation for tuples, as both
MSR and PA rely on these objects. A tuple is defined by the following grammar:

t ::= ε | t; t

A tuple t is a sequence of items. We use the semicolon (“;”) as the tuple con-
structor: it is associative but not commutative. We write ε for the empty tuple,
which acts as the left and right identity of “;”. We write t ∈ t to indicate that
item t is present in tuple t, and use the notation t

′ v t to indicate that t
′ is a

subsequence of t, i.e., that t
′ can be obtained by deleting zero or more symbols

from t. Finally, given tuples t and t
′ with t

′ v t, we write t − t
′ for the tuple

obtained by filtering out all items t′ ∈ t
′ from t, while preserving the order of

the remaining elements of the latter.

3

2.1 First Order Multiset Rewriting

The language of first-order MSR is defined by the following grammar:

Elements ã ::= · | a(t), ã

Rewriting Rules r ::= ã(x) → ∃n.b̃(x; n)
Rule sets r̃ ::= · | r, r̃

Multiset elements are chosen as atomic formulas a(t), where t is a tuple of terms
over some first-order signature Σ. We write ã(x) to emphasize that variables,
drawn from x, appear in a multiset ã. Similarly we write t (resp., t) as t(x)
(resp., t(x)), to underline that varibles x appear in a term t (resp., in the tuple
of terms t). Instead, we write t (resp., t) to emphasize, when required, that a
term t is (resp., all the term in t are) ground, i.e., variable-free.

In the sequel, the comma “,” will denote multiset union and will implicitly be
considered commutative and associative, while “·”, the empty multiset, will act
as a neutral element; we will omit it when convenient. The operational semantics
of MSR is expressed by the following two judgments:

Single rule application r̃ : ã −→ b̃

Iterated rule application r̃ : ã −→∗ b̃

The multisets ã and b̃ are called states and are always ground formulas. The
arrow represents a transition. These judgments are defined as follows:

msr0

(r̃, ã(x) → ∃n.b̃(x; n)) : (c̃, ã[t/x]) −→ (c̃, b̃[t/x, k/n])

msr∗

r̃ : ã −→∗ ã

r̃ : ã −→ b̃ r̃ : b̃ −→∗ c̃
msr1

r̃ : ã −→∗ c̃

The first inference shows how a rewrite rule r = ã(x) → ∃n.b̃(x; n) is used
to transform a state into a successor state: it identifies a ground instance ã(t) of
its antecedent and replaces it with the ground instance b̃(t; k) of its consequent,
where k are fresh constants. Here [t/x] denotes the substitution (also written θ)
replacing every occurrence of a variable x among x with the corresponding term
t in t. These rules implement a non-deterministic but sequential computation
model. This means that in general several rules are applicable at any step but
only one rule, chosen non-deterministically among them, is applied at each step.
Concurrency is captured as the permutability of (some) rule applications. The
remaining rules define −→∗ as the reflexive and transitive closure of −→.

2.2 Process Algebras

Process algebraic specifications of security protocols are generally limited to
the parallel composition of a number of processes describing the sequence of
actions performed by each agent. With this in mind, we forsake the full treat-
ment of a traditional process algebra, such as the π-calculus, in favor of a more

4

specific language, PA, that includes the features commonly used for describing
cryptographic protocols. In particular, we lay out PA on two levels: sequential
processes describe the sequence of atomic actions (input, output, name genera-
tion, etc.) performed by an individual agent and parallel processes bundle them
into a multi-agent specifications. Sequential processes are synchronous, although
a systematic use of buffer processes will prevent the possibility of blocking on an
output action. For convenience, we will rely on polyadic communication chan-
nels.

With these premises, the language of PA is defined by the following grammar:

Parallel processes Q ::= 0 | Q ‖ P | Q ‖ !P

Sequential processes P ::= 0 | a(t).P | a(x).P | [x = t] P | νx.P

Parallel processes are defined as a parallel composition of, possibly replicated,
sequential processes. These, in turn, are a sequence of communication actions
(input or output), pattern matching and constant generation. An output process
a(t).P is ready to send a tuple of terms t, each built over a signature Σ, along the
polyadic channel named a. An input process a(x).P is ready to receive a tuple
of (ground) messages, each in the corresponding variable x ∈ x. The process
[x = t]P is a parallel pattern matching construct which forces any instantiation
of x to match the pattern t, possibly binding previously unbound variables in
the latter. Finally, the creation of a new object in P (as in the π-calculus [32])
is written as νx.P (we will sometimes abbreviate νx1. . . . νxn.P as νx.P). The
binders of our language are νx, a(x) which bind each x in x, and [x = t] which
binds any first occurrence of a variable in t. This induces the usual definition of
free and bound variables in a term or process.

The operational semantics of PA is given by the following judgments:

Single interaction Q ⇒ Q′

Iterated interaction Q ⇒∗ Q′

They are defined as follows:

pa0

(Q ‖ a(t).P ‖ a(x).P ′) ⇒ (Q ‖ P ‖ P ′[t/x])

t = t
′[θ]

pa[]

(Q ‖ [t = t
′] P) ⇒ (Q ‖ P [θ])

k 6∈ c(Q) ∪ c(P)
paν

(Q ‖ νx.P) ⇒ (Q ‖ P [k/x])

P ≡ P ′ P ′ ⇒ Q′ Q′ ≡ Q
pa≡

P ⇒ Q
pa∗

Q ⇒∗ Q

Q ⇒ Q′′ Q′′ ⇒∗ Q′

pa1

Q ⇒∗ Q′

The first inference (reaction) shows how two sequential processes, respectively
one ready to perform an output of a tuple t of ground terms, and one ready
to perform an input over x react by applying the instantiating substitution
[t/x] to P ′. The second inference rule (matching) says that there must exist a
substitution θ that matches terms t

′ with ground terms t, for [t = t
′]P to evolve

5

into P [θ]. The third rule defines the semantics of νx as instantiation with a fresh
constant i.e., a name which differs form those appearing in all the process terms
(here c(P) denotes the set of constant in P). The next rule allows interactions
to happen modulo structural equivalence ≡, that in our case contains the usual
monoidal equalities of parallel processes with respect to ‖ and 0, the unfolding of
replication (i.e., !P ≡ !P ‖ P), and the equation [t = t

′] P ≡ [t∗ = t
′∗] P which

filter out identities in tuple’s matching, i.e., where t
∗ and t

′∗ are obtained from
t and t

′ by removing all identical items that lay at the same position. Finally,
the last two inferences define ⇒∗ as the reflexive and transitive closure of ⇒.

3 Security Protocols

A cryptographic protocol is a collection of distributed programs supporting com-
munication between participating agents and aimed at achieving predetermined
security outcomes such as secrecy or authentication. The agents communicating
in a protocol are called principals, while the individual programs they execute as
part of the protocol are called roles. Communication happens through a public
network and is therefore accessible to anyone, unless protected through cryptog-
raphy.

Both transition- and process-based languages have been widely used for the
specification of cryptographic protocols (see for example [1, 3, 11, 9, 14, 19, 21,
20, 23, 28, 36, 18]). In this section, we define MSRP and PAP , two security-
oriented instances of MSR and PA respectively, and describe how they can be
used to specify security protocols.

Narrowing our investigation to a specific domain allows us to directly compare
these restricted versions of PA and MSR. Moreover by bounding our analysis to
cryptographic protocols, we are able to obtain stronger correspondence results
than what seems achievable in a general comparison between PA and MSR[4].

The two specifications will rely on a common first-order signature ΣP that
includes at least concatenation (〈 , 〉) and encryption ({ }). In both formalisms,
terms in ΣP stand for messages. Predicate symbols are interpreted as such in
MSRP , and as channel names in PAP . Variables will also be allowed in rules and
processes.

3.1 Formalizing Protocols as Multiset Rewriting

MSRP relies on the following predicate symbols [10]:

Network Messages (Ñ): are the predicates used to model the network, where
N(t) means that the term t is lying on the network.

Role States (Ã): are the predicates used to model roles. Assuming a set of
role identifiers R, the family of role state predicates {Aρi

(t) : i = 0 . . . lρ},
is intended to hold the internal state, t, of a principal in role ρ ∈ R during
the sequence of protocol steps i = 0 . . . lρ. The behavior of each role ρ is
described through a finite number of rules, indexed from 0 to lρ.

6

Intruder (Ĩ): are the predicates used to model the intruder I , where I(t),
means that the intruder knows the message t.

Persistent Predicates (π̃): are ground predicates holding data that does not
change during the unfolding of the protocol (e.g., Kp(K; K ′) indicates that
K and K ′ form a pair of public/private keys). Rules use these predicates in
a read-only manner to access the value of persistent data.

A security protocol is expressed in MSRP as a set of rewrite rules r̃ of a spe-
cific format called a security protocol theory. Given roles R, it can be partitioned
as r̃ = ∪ρ∈R(r̃ρ), r̃I , where r̃ρ and r̃I describe the behavior of a role ρ ∈ R and
of the intruder I . For each role ρ, the rules in r̃ρ consist of:

– one initial rule

instantiation rρ0 : π̃(x) → ∃n.Aρ0 (x; n), π̃(x)

– zero or more (i = 1 . . . lρ) message exchange rules :

send rρi
: Aρi−1(x) → Aρi

(x), N(t(x))

receive rρi
: Aρi−1 (x), N(y) → Aρi

(x; y)

analysis rρi
: Aρi−1(t(x)) → Aρi

(x)

The first rule (instantiation) describes the instantiation step of a protocol
role. All the new names required in a role ρ are generated during instantiation,
and similarly all the variables x referring to permanent data π̃(t) are bound
to ground permanent terms in that rule. The second rule (send) describes an
action of sending a message t composed by using (all or a subset of) the ground
terms in the role’s state. The third rule (receive) describes a receiving, where a
message t lying in the net is retrieved, bound to variable y and then stored into
the internal state of the role. The last rule (analysis) simulates the action of a
role when it analyses (e.g., decrypts or splits) previously received messages.

This fairly explicit formulation of MSR rules will simplify our comparison
with PAP . Equivalent, but more succinct, formulations can be found in [9, 8].

Rules in r̃I are the standard rules describing the intruder in the style of Dolev-
Yao [15], whose capabilities consist in intercepting, analyzing, synthesizing and
constructing messages, with the ability to access some permanent data. Formally:

rI1 : π(x) → I(x), π(x)
rI2 : · → ∃n.I(n)
rI3 : N(x) → I(x)
rI4 : I(x) → N(x), I(x)
rI5 : I(〈x1, x2〉) → I(x1), I(x2), I(〈x1, x2〉)
rI6 : I(x1), I(x2) → I(〈x1, x2〉), I(x1), I(x2)
rI7 : I({x}k), I(k), Kp(k; k′) → I(x), Kp(k; k′), I({x}k), I(k)
rI8 : I(x), I(k) → I({x}k), I(x), I(k)
rI9 : I(x) → ·

7

where x, xi’s and k are variables. Informally, the first rule allows the intruder to
access (i.e., get knowledge of) persistent data. In the second, rule the intruder
creates a new ground datum. In the third, a message lying in the network is
intercepted, while in the fourth a known message is injected into the network
channel. The remaining rules describe the intruder capabilities for managing the
messages it knows: more precisely its ability to decompose pairs, to compose
pairs, to decrypt a message (if the relative decryption key is known), and to
create encrypted messages. Finally, the last one describes the capability of the
intruder in deleting messages (i.e., forgetting knowledge).

In MSRP , a state is a multiset of the form s̃ = (Ñ , Ã, Ĩ , π̃), where the com-
ponents collect ground facts of the form N(t), Aρi

(t), I(t), and π(t) respectively.

An initial state s̃0 = (Ĩ0, π̃) contains only the initial intruder knowledge (Ĩ0) and
persistent predicates (π̃). Note that π̃ remains the same in every state. A pair
(r̃ : s̃) consisting of a protocol theory r̃ and a state s̃ is called a configuration.
The initial configuration is (r̃ : s̃0).

Example 1. We make these definitions more concrete by showing the MSRP

representation of the classical Needham-Schroeder Public Key (NSPK) proto-
col [33]. In the common informal notation, it is written as follows:

1. A −→ B : {A, NA}KB

2. B −→ A : {NA, NB}KA

3. A −→ B : {NB}KB

(1)

The abstract principal A and the role it executes are called the initiator
since it originates the first message. Dually, B is the responder. This first mes-
sage, {A, NA}KB

, consists of A’s name and a freshly generated random value NA

(a nonce), and is encrypted using B’s public key KB. Upon successfully decrypt-
ing this message (using private key K−1

B), B replies with the second message,
{NA, NB}KA

, where NB is a second nonce, generated by B. Upon successfully
processing this message, A sends the final message {NB}KB

which shall be in-
terpreted by B.

Here, A and B perform distinct although related sequences of actions: A
generates NA, sends {A, NA}KB

, waits for a message from B and verifies that it
matches the format {NA, NB}KA

, and finally sends the third message, {NB}KB
.

This sequence of actions constitute A’s role. B’s role is similar. Both MSRP and
PAP give a role-centric representation of a protocol.

The MSRP specification of the NSPK protocol consists of the rule-set RNSPK

which we partition as (RA,RB , r̃I). RA and RB implement the roles of the
initiator (A) and the responder (B) respectively, while r̃I describes the actions
of a potential attacker, and have been fixed earlier in the discussion.

First some abbreviations. We define

π̃(x; y; kx; k′
x, ky) = Pr(x), PrK(x; k′

x), PbK(y; ky), Kp(kx; k′
x)

Here, persistent predicate Pr(x) indicates that x is the name of a principal; the
predicate PbK(x; kx) defines kx to be the public key of principal x; the predicate

8

PrK(x; k′
x) says that k′

x is x’s private key; finally, Kp(kx; k′
x) relates a public key

kx and the corresponding private key k′
x. Two tuples of variable (a; b; ka; k′

a; kb)
and (b; a; kb; k

′
b; ka) will occur repeatedly in this example; therefore we shall

abbreviate them as A and B, respectively.
Then, the following rules describe A’s role:

RA

rA0 : π̃(A) → ∃na.π̃(A), A0(A; na)

rA1 : A0(A; na) → N({a, na}kb
), A1(A; na)

rA2 : A1(A; na), N(m) → A2(A; na; m)
rA3 : A2(A; na; {na, nb}ka

) → A3(A; na; nb)
rA4 : A3(A; na; nb) → N({nb}kb

), A4(A; na; nb)

The first rule rA0 in RA is the instantiation rule of this role, and takes care
of generating the initiator’s nonce, na and collecting the persistent information
used in the role. Rules rA1 and rA4 are send rules corresponding to the message
transmission step 1 and 3 in protocol (1). Rules rA2 and rA3 realize the initiator’s
actions in the second step of NSPK , namely the reception of a message m from
b and the verification that it matches the expected pattern {na, nb}ka

.
The responder’s role is similarly specified by the following MSRP rule set:

RB

rB0 : π̃(B) → ∃nb.π̃(B), B0(B; nb)

rB1 : B0(B; nb), N(m) → B1(B; nb; m)
rB2 : B1(B; nb; {a, na}kb

), → B2(B; nb; na)
rB3 : B2(B; nb; na) → N({na, nb}ka

), B3(B; nb; na)
rB4 : B3(B; nb; na), N(m′) → B4(B; nb; na; m

′)
rB5 : B4(B; nb; na; {nb}kb

) → B5(B; nb; na)

Again, the instantiation rule rB0 instantiate all the variables B to ground terms.
Rules rB1 , rB4 model the receiving steps 1 and 3 in protocol (1), while rB3 is
the rule corresponding the sending step 2. Finally rules rB2 , rB5 describe the
analysis steps performed by the role.

Finally, we define the state portion of the initial configuration (i.e., the initial
state) to consist of:

︸︷︷︸

Ñ

︸︷︷︸

Ã

I(E), I(KE), I(K ′
E)

︸ ︷︷ ︸

Ĩ

,

π̃(A; B; KA; K ′
A; KB),

π̃(B; A; KB ; K ′
B; KA),

π̃(B; E; KB ; K ′
B; KE),

π̃(E; A; KE ; K ′
E; KA),

︸ ︷︷ ︸

π̃

where A, B, E, are specific principals (a and b above were variables), with E
acting as the attacker. For each of them, the pseudo-functions K and K ′ denote
their public and private key, respectively.

In this initial state, the intruder knowledge consists of its name E and its
public/private key pair KE, K ′

E . The persistent data π̃ defines the attributes
(name, public and private key) of each of these principals, in particular of the
intruder E who may participate in the protocol as an honest player if he wishes.
This is useful, for example, when testing some authenticity property.

9

3.2 Protocols as Processes

A security protocol may be described in a fragment of PA where:

– Every communication happens through the net (here P!net is the process that
manages the net as a public channel where protocol roles send and receive
messages).

– There is an intruder, with some initial knowledge, able to intercept and forge
messages passing through the net (here Q!I , with initial knowledge QI0).

– Each principal starts the protocol in a certain role ρ.

Formally a security protocol, involving a collection of roles {ρ}, is expressed
in PAP as a security protocol process Q, defined as the parallel composition
of five components: P!net ‖

∏

ρ P!ρ ‖ Q!I ‖ Q!π ‖ QI0 where
∏

P denotes the
parallel composition of all the processes in P . More precisely:

P!net = !Ni(x).No(x).0 This process describes the behavior of the network as a
buffer that copies messages from channel Ni (input to the net) to No (output
from the net), implementing an asynchronous form of message transmission
on top of a synchronous calculus.

P!ρ Each of these replicated sequential processes capture the actions that con-
stitute a role, in the sense defined for MSRP . These processes have the form

P!ρ = !π̃(x).νn.Pρ

where Pρ is a sequential process that performs input and output only on the
network channels, and that analyses the received messages.

Notice that pattern matching is sufficient for “extracting” a piece of infor-
mation when ΣP is used, but more general mechanisms could be considered
(as in Crypto-CCS for example [22]).We have used π̃(x).P as a shortcut for
π1 (x1) . . . πk (xk).P , where xi v x. Formally,

Pρ ::= 0 | No(y).Pρ | Ni(t).Pρ | [x′ = t(x)] Pρ

Q!I = !PI1 ‖ . . . ‖ !PI9 ‖ !PI10 This is the specification of the intruder model in a
Dolev-Yao style. The dedicated channel I holds the information the intruder
operates on (it can be either initial, intercepted, or forged). Each PIi

, for
i = 1, . . . , 9 describes one capability of the intruder. The additional process
PI10 has no meaning in term of intruder capability but technically it behaves
as a “garbage” collector of messages in the intruder knowledge. Processes PIi

are defined as follows:

10

PI1 = π(x).I (x).0

PI2 = νn.I (n).0
PI3 = No(x).I (x).0
PI4 = I (x).I (x).Ni (x).0
PI5 = I (x).I (x).[x = 〈x1, x2〉].I (x1).I (x2).0
PI6 = I (x1).I (x1).I (x2).I (x2).I (〈x1, x2〉).0
PI7 = Kp(w).I (y).I (y).[w = 〈y, y′〉].I (x).I (x).[x = {z}y′].I (z).0
PI8 = I (x).I (x).I (k).I (k).I ({x}k).0
PI9 = I (x).0
PI10 = I (x).I (x).0

Processes PI1 through PI9 perform the same actions as the MSRP intruder
rules with the same index in Section 3.1. For example, PI5 retrieves an object
x previously memorized as I(x), splits it into the pair (x1, x2), and then
stores a copy of each of the terms x, x1 and x2: this is exactly what rI5

achieved. Channel I is used to store the intruder’s knowledge in a distributed
way. Process PI10 ensures that writing on I is never blocking, even in our
synchronous calculus. In particular, it allows expressing every term t known
to the intruder as the singleton process I (t).0, since it can rewrite a trailing
sequence of outputs I (t).I (t′).0 into I (t).0 ‖ I (t′).0.

Q!π =
∏

!π(t).0 This process represents what we called “persistent information”
in the case of MSRP . We can assume the same predicate (here channel)
names with the same meaning. This information is made available to client
processes on each channel π (e.g., Kp). It is assumed that no other process
performs an output on π.

QI0 =
∏

I (t).0 for terms t. QI0 represents the initial knowledge of the intruder.

In PAP , an initial state is a process (P!net ‖
∏

ρ!Pρ ‖ Q!I ‖ Q!π ‖ QI0).
Subsequent states are obtained by applying the execution rules of PA defined in
Section 2.2.

Example 2. In order to gain a better understanding of the PAP specification
methodology, we will now express the NSPK protocol (1) in this language.

The PAP specification of NSPK protocol will consist of the following pro-
cesses:

QNSPK = P!net ‖ P!A ‖ P!B ‖ Q!I ‖ Q!π ‖ QI0

where P!net and Q!I have already been defined. As with MSRP , we rely on the
abbreviations A = (a; b; ka; k′

a; kb) and B = (b; a; kb; k
′
b; ka) for the given tuples

of variables. The other processes are as follows:

P!A = !π̃(A). νna. Ni({a, na}kb
). No(m). [m = {na, nb}ka

] . Ni ({nb}kb
). 0

where precisely π̃(A) is a shortcut for the prefix

Pr(a).PrK(a; k′
a).PbK(b; kb).Kp(ka; k′

a)

11

First, process P!A receives, through channels π̃, the instantiating constants of
the initiator role. Then it sends the encrypted message {a, na}kb

on the net,
where na is a fresh name and kb the responder’s public key. Then, P!A receives
a message m that it tries to interprete as {na, nb}ka

by decryption using the
private key ka, and by splitting the results as the pair (na, nb).

If this step succeeds the message {nb}kb
is sent back to the net.

The process P!B representing the responder of NSPK is similarly defined as
follows:

P!B = !π̃(B). νnb. No(m).[m = {a, na}kb
] .

Ni({na, nb}ka
). No(m′). [m′ = {nb}kb

] . 0

The initial knowledge of the intruder is:

QI0 = I (E).0 ‖ I (KE).0 ‖ I (K ′
E).0

i.e., the intruder knows its name and its private/public key pairs. Finally the
processes modeling the persistent information are the following:

Q!π = Qπ̃(A;B;KA;K′

A
;KB) ‖ Qπ̃(B;A;KB;K′

B
;KA) ‖

Qπ̃(B;E;KB;K′

B
;KE) ‖ Qπ̃(E;A;KE;K′

E
;KA)

where Qπ̃(x;y;kx;k′

x;ky) is the parallel composition of simple replicated processes
that output each object in π̃(x; y; kx; k′

x; ky) on channels π̃, i.e., :

!Pr(x).0 ‖ !PrK(x; k′
x).0 ‖ !PbK(y; ky).0 ‖ !Kp(kx; k′

x).0 . �

4 Encoding Protocol Specifications

This section describes two encodings: one from MSRP to PAP and the other from
PAP to MSRP . As we define these encodings, we assume a common underlying
signature ΣP . In particular, the predicate symbols and terms in MSRP find their
counterpart in channel names and messages in PAP , respectively.

The first mapping, from MSRP to PAP , is based on the observation that
role state predicates force MSRP rules to be applied sequentially within a role
(this is not true for general MSR theories). Minor technicalities are involved in
dealing with the presence of multiple instances of a same role (they are addressed
through replicated processes).

At its core, the inverse encoding, from PAP to MSRP , maps sequential agents
to a set of MSRP rules corresponding to roles: we generate appropriate role
state predicates in correspondence of the intermediate stages of each sequential
process. The bang operator is not directly involved in this mapping as it finds
its counterpart in the way rewriting rules are applied. The transformation of the
intruder, whose behavior is fixed a priori, is treated off-line in both directions.

Before proceeding we introduce some simplifying assumptions and a prelim-
inary observation. Without loss of generality, we assume that the rewrite rules
of an MSRP theory are written in the following form: variables occurring in two

12

occurrences of a role state predicate Aρi
(x), one in the antecedent and one in

the consequent of two consecutive rules, have the same name. Moreover, in the
antecedent Aρi

(t(x)) of an analysis rule, we require that all the variables intro-
duced by t(x) be distinct from the variables x

′ in the consequent Aρi
(x′) of the

preceding rule. These assumptions, purely syntactical, simplify situations in the
proofs without invalidating our analysis. Example 1 implements them.

We begin by characterizing the structure of a generic PAP state reachable
from an initial specification (see Sec. 3.2) as the parallel composition of precisely
identified processes. We have the following proposition:

Proposition 1. Let Q be a PAP initial state. If Q is such that Q0 ⇒∗ Q then
Q can be written as:

Q ≡

Q!
︷ ︸︸ ︷

(P!net ‖
∏

ρ

P!ρ ‖ Q!I ‖ Q!π) ‖ (Qnet ‖
∏

ρ

Pρ ‖ QI ‖ Qrem)

where:

Qnet ::= 0 |
∏

No(t).0

Pρ ::= 0 | No(x).Pρ | Ni (t).Pρ | [t = t
′] Pρ

QI ::= suffix of PIj
, for all j

Qrem ::= 0 | No(x).Ni (x).0 | π̃(x).νn.Pρ | νn.Pρ |
∏

π(t).0

Proof. By induction over the number of transition steps. As the base of the
induction let us observe that a PAP initial state Q0 is exactly the process Q! ‖
QI0 (where Q! = P!net ‖

∏

ρ P!ρ ‖ Q!I ‖ Q!π), and that Q0 ⇒∗ Q0. Then, let
be Q such that Q0 ⇒∗ Q′ ⇒ Q. For inductive hypothesis Q′ may be written
as a process of form Q! ‖ (Qnet ‖

∏

ρ Pρ ‖ QI ‖ Qrem), and it is easy to check
that, each transition Q from Q′ can be written as well as a process of form
Q! ‖ (Q′

net ‖
∏

ρ P ′
ρ ‖ Q′

I ‖ Q′
rem). �

4.1 From MSRP to PAP

This section defines the transformation d e that, given an MSRP configuration
(r̃ : s̃) with r̃ = (∪ρ(r̃ρ), r̃I) and s̃ = (Ñ , Ã, Ĩ , π̃) returns a PAP state Q! ‖ Qnet ‖∏

ρ Pρ ‖ QI (with Q! = (P!net ‖
∏

ρ P!ρ ‖ Q!I ‖ Q!π)).

More precisely d e is a tuple of encodings d eRρ , d eRI , d eN d eAρ , d eI , d eπ,
each operating on a different component of the MSRP configuration, as depicted
in the following scheme:

d(∪ρ(r̃ρ) ∪ r̃I : Ñ , Ã, Ĩ , π̃)e =

Q!
︷ ︸︸ ︷

(!Pnet ‖
∏

ρ

P!ρ

︸ ︷︷ ︸

d∪ρ(r̃ρ)eRρ

‖ Q!I
︸︷︷︸

dr̃IeRI

‖ Q!π
︸︷︷︸

dπ̃eπ

) ‖ (Qnet
︸︷︷︸

dÑeN

‖
∏

ρ

Pρ

︸ ︷︷ ︸

dÃeAρ

‖ QI
︸︷︷︸

dĨeI

)

13

This definition is interpreted as follows:

– Pnet is fixed a priori (see Section 3.2);
–

∏

ρ P!ρ and Q!I , result from the transformation of respectively ∪ρ(r̃ρ) and
r̃I ;

– Q!π results from the transformation of π̃, and
– Qnet,

∏

ρ Pρ, and QI result from transformation of, resp., Ñ , Ã and Ĩ .

Intuitively, transformations d∪ρ(r̃ρ)e
Rρ and dr̃Ie

RI return the parallel com-
position of banged (i.e., preceeded by a !) processes modeling the sequence of
actions of each role and of the intruder, respectively. The bang operator makes
these processes always available for instantiation as the MSR rules are. The
intruder process is fixed a priori and its transformation is obvious. The transfor-
mation of r̃ρ, e.g., the rules of role ρ, is more interesting: it results in a sequential
process Pρ, whose send, receive or match sub-processes are obtained, resp., from
send, receive and analysis rules in r̃ρ (see also Example 3). Particular attention
is reserved for the translation of the first instantiation rule rρ0 .

The next transformations act on predicates Ñ , Ã and Ĩ in the MSRP state,
and return the parallel composition of sequential processes. More precisely, all
the predicates N(t) in Ñ are transformed into singleton output processes No(t).0
representing the availability of the ground datum t on the net. Similarly predi-
cates I(t) in Ĩ are transformed into output processes I (t).0 representing the in-
truder knows the datum t. Finally the transformation of each predicates Aρi

(t),

in Ã returns the suffix of the process Pρ that model the remaining role rules
rρi+1 , . . . , rρlρ

. Variable in Pρ are partially instantiated depending on terms in t.
The acquisition of permanent facts and the creation of new variables x are

mapped, resp., to a sequence of input actions from processes Q!π, and actions
νx for each x in x. In turn Q!π is the parallel composition of banged output
processes π(t).0, each obtained from a permanent predicates π(t) in π̃. Their
task is to make permanent fact always available to be received.

Whenever unambiguous, we will omit the identifying subscript from the en-
coding functions d eRρ , d eRI , d eN d eAρ , d eI , or d eπ, simplifying them to d e.

d eRρ . In transforming processes P!ρ, for each role ρ, a subroutine function d e#(x)

is called by the top level transformation d e. d e#
(x) ranges over the set of role

rules ∪ρ(r̃ρ), and takes a tuple x of variables as parameter. This parameter,
initially the empty tuple ε, collects variables used along the rewriting rule,
and uses them opportunely in the building process. We define it on the
structure of the role rule rρi

∈ r̃ρ involved. Formally for i = 0:

drρ0e = π̃(x).νn.drρ1e
#
(x;n) if rρ0 : π̃(x) → ∃n.Aρ0(x; n), π̃(x)

A role generation rule is mapped onto a process which first receives, in
sequence, permanent terms via the channels π in π̃ and then generates all
the new names n used in this role.

14

For 0 < i ≤ lρ − 1:

drρi+1e
#
(x) =

Ni (t(x)).drρi+2e
#
(x) , if rρi+1 = Aρi

(x) → Aρi+1 (x), N(t(x))

No(y)drρi+2e
#
(x;y) , if rρi+1 = Aρi

(x), N(y) → Aρi+1(x; y)

[x = t(x′)] drρi+2e
#

(x′)
, if rρi+1 = Aρi

(t(x′)),→ Aρi+1(x
′)

The transformation of a send or a receive rewriting rule is straightforward.
The translation of an analysis rewriting rule is less obvious: the matching
[x = t(x′)] is intended to simulate the matching that — in the semantics of
MSR — happens between the terms in consequent, Aρi

(x), of rule rρi
and

the terms in the antecedent Aρi
(t(x′)) of (actual) rule rρi+1 . Finally and

with a little abuse of notation, we set drρlρ+1
e#(x) = 0.

The final process defining the role ρ behavior is the following: Pρ
def
= drρ0e

d eRI . The intruder is handled by simply mapping r̃I to Q!I . More precisely,
we define the transformation function d e that relates the intruder rewriting
rule rIj

with the sequential agents PIj
defined in Section 3.2. Moreover the

transformation produces the additional process !PI10 .

At this point the transformation is complete as soon as the state s̃ = (Ñ , Ã, Ĩ, π̃)
is treated.

d eAρ . For each Aρi
(t) ∈ Ã, we define PAρi

(t) = drρi+1e
#
(x)[t/x], where drρi+1e

#
()

was defined above and x are the variables appearing as argument of the
consequent predicate Aρi

(x) in rρi
.

d eN , d eI , d eπ. The multiset Ñ guides the definition of Qnet, that is Qnet
def
=

∏

N(t)∈Ñ N (t).0. Similarly, QI
def
=

∏

I(t)∈Ĩ I (t).0, and Q!π
def
=

∏

π(t)∈π̃ !π(t).0.
Formally:

d·e =0

dN(t), Ñe=No(t).0 ‖ dÑe
d·e = 0

dI(t), Ĩe= I (t).0 ‖ dĨe
d·e =0
dπ(t), π̃e=!π(t).0 ‖ dπ̃e

Example 3 (Translation of NSPK from MSRP to PAP). We now provide an ex-
ample on how the translation d e works, by applying it to the MSRP specification

15

of NSPK given in Section 3.1.

d

π̃(A)→∃na.π̃(A),A0(A;na)
︷︸︸︷
rA0 e = !π̃(A).νna.drA1e

#
(A;na)

d

A0(A;na)→N({a,na}kb
),A1(A;na)

︷︸︸︷
rA1 e#(A;na) = Ni ({a, na}kb

).drA2e
#
(A;na)

d

A1(A;na),N(m)→A2(A;na;m)
︷︸︸︷
rA2 e#(A;na) = No(m).drA3e

#
(A;na;m)

d

A2(A;na;{na,nb}ka)→A3(A;na;nb)
︷︸︸︷
rA3 e#(A;na;m) =

[(A; na; m) = (A; na; {na, nb}ka
)] .

drA4e
#
(A;na;nb)

d

A3(A;na;nb)→N({nb}kb
),A4(A;na;nb)

︷︸︸︷
rA4 e#(A;na;nb)

= Ni ({nb}kb
).d.e#(A;na;nb)

d.e#(A;na;nb)
= 0

In summary:

dRAe = !π̃(A).νna.Ni ({a, na}kb
).No(m).

[A; na; m = A; na; {na, nb}ka
] .Ni({nb}kb

).0

which can be simplified into

dRAe = !π̃(A).νna.Ni ({a, na}kb
).No(m).

[m = {na, nb}ka
] .Ni({nb}kb

).0

by means of the structural equivalence (that removes positional corresponding
and identical items in a tuples pattern matching). This process is exactly the
same provided in Section 3.2.

Similarly (omitting the details) it is easy to check that:

dRBe = !π̃(B).νnb.No(m).
[B; nb; m = B; nb; {a, na}kb

] .Ni({na, nb}ka
).

No(m).[B; nb; na; m′ = B; nb; na; {nb}kb
] .0 �

4.2 From PAP to MSRP

This section defines the transformation b c that given a PAP state returns a
configuration in MSRP . Indeed b c consists of encodings

b c!ρ, b c!I , b cnet, b cρ b cI and b cπ,
each operating on different sub-processes of the PAP state. The following

schema describes the overall encoding pictorially (processes involved in any
transformation are boxed):

b(

Q!
︷ ︸︸ ︷

P!net ‖
∏

ρ P!ρ ‖ Q!I ‖ Q!π)c ‖ (Qnet ‖
∏

ρ Pρ ‖ QI ‖ Qrem) =

16

(∪ρ(r̃ρ)
︸ ︷︷ ︸

b
Q

ρ P!ρc!ρ

∪ r̃I
︸︷︷︸

bQ!Ic!I

: Ñ
︸︷︷︸

bQnetcnet

, Ã
︸︷︷︸

b
Q

ρ Pρcρ

Ĩ
︸︷︷︸

bQIcI

π̃
︸︷︷︸

bQ!πcπ

,)

Note that the following processes are not involved in any transformation:

– P!net, since it implements a form of buffering that is unnecessary in MSR;

– Qrem, since it represents partial computations (see Proposition 1). As we
will see later, they will not have any significant MSRP counterpart.

Intuitively b
∏

ρ P!ρc!ρ analyzes each (un-banged) sequential processes Pρ in
∏

ρ P!ρ and for each ρ returns the multiset of rule corresponding to Pρ’s sequential
steps. Input, output and analysis sub-process in Pρ are mapped into receive,
send, and analysis rewriting rules for role ρ, respectively. Prefixes νx and input
sequences π̃(x) are turned into an instantiation rule. Technicalities are needed
for the management of variables and of the predicate indexes in building rules
rρi

’s. Two parameters, the step number and the variables, are passed along the
transformation. Similar devices support the transformation of each processes
Pρ in

∏

ρ Pρ. They represent partial execution of the protocol by role ρ, their
analysis produces the state predicates Aρi

(t), for suitable i and t.

The transformation of Q!I and Q!π are straightforward: the former maps
directly to the intruder rewriting rules of MSRP , while in the latter each !π(t).0
in Q!π is mapped to the persistent predicates π(t). The same can be said about
processes Qnet: each sequential process No(t).0 is mapped into a predicate N(t)
in the MSRP state.

The transformation of the processes in QI is more complex. Indeed, we need
to distinguish between processes that represent immediately available intruder
knowledge (e.g., I (t).0) from processes that do not (e.g., No(x).I (x).0). The
former are transformed in corresponding intruder predicates I(t), while the lat-
ter are generally discarded. Generally speaking b c is not injective, and similar
situations can happen while transforming processes into MSRP states. Said dif-
ferently, PAP steps are finer grained then MSRP ’s, and as a consequence some
processes do not represent proper MSR objects (for example processes in Qrem)
and they have to be ignored, while others represent MSRP objects even when
they are only partially completed (for example processes I (t).P ′

I) and their trans-
lation can be anticipated (see also Figure 1 or later for details).

In the following, with a little abuse of notation, we drop the subscript from
the transformations, b c!ρ, b c!I , b cnet, b cρ, b cI and b cπ, when no ambiguity
arises, writing them instead as b c. We now describe each transformation in
detail.

b c!ρ. The basic translation involves the transformation function b c#
(i;x) for the

P!ρ’s (called as a subroutine by the top level transformation b c) which, given
a sequential agent representing a role ρ, returns the multiset of rules r̃ρ. Here

17

i is a non-negative integer. Formally:

bπ̃(x).νn.P ′
ρc = {π̃(x) → ∃n.Aρ0(n; x)} ∪ bP ′

ρc
#
(1:(x;n))

bNo(y).P ′
ρc

#
(i:x) = {Aρi−1(x), N(y) → Aρi

(x; y)} ∪ bP ′
ρc

#
(i+1:(x;y))

bNi(t).P
′
ρc

#
(i:x) = {Aρi−1(x) → Aρi

(x), N(t)} ∪ bP ′
ρc

#
(i+1:x)

b[x′ = t(x′′)] .P ′
ρc

#
(i:x) = {Aρi−1(x[t(x′′)/x

′]) → Aρi
(x[(x′′− x)/x

′]), N(t)}

∪ bP ′
ρc

#
(i+1:(x[(x′′−x)/x′]))

b0c#(i;x) = ·

The transformation of a send, of a receive and of a new process are quite
obvious and require no additional comment. The translation of a match
process [x′ = t(x′′)] .P ′

ρ, whose aim is to analyze some previously received
message, yields an analysis rewrite rule. It would be straightforward if all
the variables of the role were matched each time (possibly redundantly)
as these variables could be used to build the corresponding role predicate.
Instead, only a subset of variable appears during matching (the one that are
being analyzed), while the corresponding role predicate needs all of them. We
reconstruct them be carrying a parameter which stores the tuple of all the
variables used so far by the role. With this as a template, we can construct
the right tuples in the rule’s antecedent and in the rule’s consequent.

b c!I . The intruder process Q!I is mapped directly to the MSRP intruder rules
r̃I , with each !PIj

associated with rIj
. Process !PI10 is dropped.

b cnet. Each occurrence of a process No(t).0 in Qnet is mapped to a state element
N(t).

b cρ. Let P!ρ be the role specification of which an object Pρ in
∏

ρ Pρ is an
instantiated suffix and θ = [x/t] the witnessing substitution. If Pρ starts
with either a persistent input π(x) or the ν operator, we set bPρc = ·.
Otherwise, let i be the index at which Pρ occurs in P!ρ as for the above
definition. Then bPρc = Aρi

(t).
b cI . Each object in QI (that, we remind, contains all the prefixes of PIj

pro-
cesses), is translated using the function b cI , defined below:

b0cI = bNo(t).0cI = bνn.PIcI = bI (x).PIcI = bπ(x).PIcI = ·

bI (t).PIcI = I(t), bPIcI

b[t = t(x)] .PIcI =

{
bPI [θ]cI if t(x)[θ] = t

· otherwise

b cπ. Each process !π(x) in P!π, or π(x) in Pπ is translated into the state object
π(x).
The intuition underlying the definition of b cI is to collect all the ground
output events of a partially executed intruder processes (i.e., processes that
are suffixes of some PIj

, but that do have not the form I (t).0)1 as process PI10

1 From now on let us call them all intruder partial suffixes.

18

has the potential of turning them into the canonical form I (t).0. In this way,
we map any such intruder suffix into an MSRP state where this knowledge
is already present. In particular, each object I (t).0 (resp., the I (t).I (t).0) in
QI is rendered as the state element I(t) (resp., pair of elements I(t), I(t)),
and that the un-banged processes PIj

are mapped into the empty multiset.
Note that b cI is not injective.

P!net and Qrem disappear (i.e., they are mapped onto the empty multiset).

Example 4 (Translation of NSPK from PAP to MSRP). We now provide an
example on how translation b c works, by applying it to the PAP specification
of NSPK given in Section 3.2. Let us start by considering the process PA:

PA = π̃(A).νna.

P ′

A
︷ ︸︸ ︷

Ni({a, na}kb
).No(m).

P ′′′

A
︷ ︸︸ ︷

[m = {na, nb}ka
] .Ni({nb}kb

).0
︸ ︷︷ ︸

P ′′′′

A
︸ ︷︷ ︸

P ′′

A

we have:

bPAc = π̃(A) → ∃na.π̃(A), A0(A; na)

∪bP ′
Ac

#
(1:(A;na))

bP ′
Ac

#
(1:(A;na)) = A0(A; na) → N({A, na}kb

), A1(A; na)

∪bP ′′
Ac

#
(2:(A;na))

bP ′′
Ac

#
(2:(A;na)) = A1(A; na), N(m) → A2(A; na; m)

∪bP ′′′
A c#(3:(A;na;m))

bP ′′′
A c#(3:(A;na;m)) = A2(A; NA; {na, nb}ka

) → A3(A; na; nb)

∪bP ′′′
A c#(4:(A;na;nb))

bP ′′′′
A c#(4:(A;na;nb))

= A3(A; na; nb) → N({nb}kb
), A4(A; na; nb)

∪b0c#(5:(A;na;nb))

b0c#(5:(A;na;nb))
= ·

In summary:

bPAc =

π̃(A) → ∃na.π̃(A), A0(A; na)
A0(A; na) → N({a, na}kb

), A1(A; na)
A1(A; na), N(m) → A2(A; na; m)
A2(A; na; {na, nb}ka

) → A3(A; na; nb)
A3(A; na; nb) → N({nb}kb

), A4(A; na; nb)

19

Similarly (omitting details):

bPBc =

π̃(B) → ∃nb.π̃(B), B0(B; nb)
B0(B; nb), N(m) → B1(B; nb; m)
B1(B; nb; {a, na}kb

), → B2(B; nb; na)
B2(B; nb; na) → N({na, nb}ka

), B3(B; nb; na)
B3(B; nb; na), N(m′) → B4(B; nb; na; m′)
B4(B; nb; na; {nb}kb

) → B5(B; nb; na) �

5 Correspondence

This section introduces a correspondence relation between MSRP configurations
and PAP states, such that two corresponding computations are characterized
by identical network messages and intruder knowledge, step by step. This will
allow us to prove that the translations presented in this paper are reachability-
preserving in a very strong sense. Indeed, we show that our encodings transform
a configuration (resp., a state) into a state (resp., configuration) that correspond
to each other in our relation, and this implies that our encodings can preserve
secrecy and authenticity properties while going from MSR to PA and vice versa
(this is further discussed in Section 6). In the following we formalize the notion
of observation and transition step w.r.t. the intruder and the network in the
MSR and PA frameworks.

Our notion of observation is concerned with only those messages representing
terms in the net and the intruder knowledge. They are given by the predicates
N(t) and I(t) in an MSRP configuration. Formally we have:

Definition 1. Given a multiset of ground atoms s̃ and a predicate name a ∈
{N, I}, we define the projection of s̃ along a as the set Prj a(s̃) = {t : a(t) ∈ s̃}.
If C = (r̃; s̃) is a configuration, we set Prj a(C̃) = Prj a(s̃).

Collecting the network messages and the intruder knowledge of a PAP state
P is trickier because of the particular form of the processes representing the
intruder and the network (see Section 3). More precisely, these terms appear in
output actions (over channels No or I) that will be surely executed by either QI

or Qnet. Indeed, QI and Qnet outputs (on those channels) are always realizable,
because processes PI10 and P!net can always accept them as input. In order to

collect those messages we introduce the notation Q
α
→ to indicate that α is the

set of output actions that process Q (intended to be QI or Qnet) is able to
execute in later steps of execution. Formally:

Definition 2. Given a process Q, the judgment Q
α
→ is defined by the following

rules:

0
∅
→ a(x).P

∅
→

P
α
→

a(t).P
{a(t)}∪α

→ νn.P
∅
→

Q′ α
→ Q ≡ Q′

Q
α
→

20

Q
α
→ P

α′

→

(Q ‖ P)
α∪α′

→

P [θ]
α
→ t

′ = t[θ]

[t′ = t] .P
α
→

6 ∃θ : t
′ = t[θ]

[t′ = t] .P
∅
→

In the following we write a(t) ∈ Q if a(t) ∈ α where α : Q
α
→.

Definition 3. Let a be a channel label in {No, I}, we define the observations of
process Q along a as the set Obsa(Q) = {t : a(t) ∈ Q}.

Using Definitions 1 and 3, we make precise what we intend for an MSRP

configuration and a PAP state to be corresponding.

Definition 4. Given an MSRP configuration C and a PAP state Q. We say
that C and Q are corresponding, written C ./ Q, if and only if the following
conditions hold:

1. Prj N (C) = ObsNo
(Q)

2. Prj I(C) = ObsI(Q)

Informally C ./ Q means that the messages that are lying on the net and the
intruder knowledge are the same in configuration C and state Q.

The interaction between our notions of observation and our encodings is
captured in the following proposition:

Proposition 2. Let C be an MSRP configuration, and Q be a PAP state. Then:

bdCec = C; (2)

dbQce = Q′ where Q′ is such that bQ′c ./ Q, (3)

ObsNo
(Q′) = ObsNo

(Q) and ObsI(Q
′) = ObsI(Q).

Proof. The critical point here is when the non injective b c function is applied.
More precisely, b c shows its non-injectivity when dealing with:

(a) intruder partial suffixes i.e., suffixes of some PIj
that do not have the form

I (t).0;
(b) not-yet-instantiated process roles, i.e., un-banged processes in Pρ starting

with π or ν.

In proving (2), we observe that starting from an MSRP configuration C,
process dCe contain neither intruder partial suffixes nor not-yet-instantiated
role processes. As a consequence by applying again b c, an easy induction yields
C back.

More difficult is the proof of (3). Here Q may contain some process that
is an intruder partial suffix, or a not-yet-instantiated process role. In this case
different Q, Q′, may converge, via b c, to the same set of predicates π̃, Ĩ . However
not-yet-instantiated process roles do not affect the ./ relation, because only
communication over π or paν transitions are possible from them. Then all the
remaining difficulties are hidden in intruder partial suffixes. In Figure 1, we have
depicted one of these situation, involving where partial suffixes of PI5 and PI6 .
Now we can observe that:

21

– because of the way we have defined ObsI() and from the fact that bQcI =
bQ′cI = . . . = Ĩ , we have that ObsI(Q) = ObsI (Q

′) = . . ., i.e., all the PI ’s
are equivalent w.r.t. the following relation

O(Q1, Q2)
def
= ObsI(Q1) = ObsI(Q2)

From now on let us consider a witness [Q] of the quotient class QI/O.
– Prj I(bQ

′cI) = ObsI(Q
′) for all Q′ ∈ [Q′], because b cI is build exactly to

maintain the intruder knowledge.

Now when applying dbQcIeI back for some Q′ ∈ [Q], by definition of d eI ,
we obtain exactly that Q# ∈ [Q] that contain no partial suffixes of PIj

. Again
Figure 1 may help visualize the intuition. Analogous considerations (indeed sim-
pler) can be provided when predicates Ñ and processes in Pnet are involved.
�

Moreover we have that an MSRP configuration always corresponds to its
encoding in PAP :

Lemma 1. Let C be an MSRP configuration. Then C ./ dCe.

Proof. Observe that dÑe =
∏

N(t)∈Ñ No(t).0, that dĨe =
∏

I(t)∈Ĩ I (t).0, and

that no other multiset in C generates any No(t).0 or I (t).0, via d e. Then it
easily follows that:

PrjN (C) = ObsNo
(dCe)

Prj I(C) = ObsI(dCe) �

The dual result holds as well, i.e., every PAP state always corresponds to its
MSRP encoding:

Lemma 2. Let be Q a PAP state. Then bQc ./ Q.

Proof. The proof follows considering similar argument of Lemma 1. �

On the basis of these concepts, we can now define a relation between MSRP

configurations and PAP states, a form of weak bisimulation we call correspon-
dence, such that if in MSRP is possible to perform an action (by applying a
rule) that will lead to a new configuration, then in PAP is possible to follow
some transitions that will lead in a corresponding state, and vice versa.

Definition 5. Let C and Q be the set of all MSRP configurations and PAP

states, respectively. We call correspondence the largest relation ∼ ⊆ C ×Q sat-
isfying the following conditions: for all (r̃ : s̃) ∼ Q

1. (r̃ : s̃) ./ Q;
2. if r̃ : s̃ −→ s̃′, then Q ⇒∗ Q′ and (r̃ : s̃′) ∼ Q′;
3. if Q ⇒ Q′, then r̃ : s̃ −→∗ s̃′ and (r̃ : s̃′) ∼ Q′.

We say (r̃ : s̃) and Q are correspondent is there exists a correspondence ∼ such
that (r̃ : s̃) ∼ Q.

22

I(t1), I(t2)

I(t1).0 ‖ I(t2).0

[〈t1, t2〉 = 〈x1, x2〉].I(x1).I(x2).0

I (t1).I(t2).0

b c
d e

MSRP state

PAP states

I (t2).0 ‖ I (t1).I (x2).I (x2).I(〈t1, x2〉).0

Fig. 1. A Possible Situation when Applying bd eIcI

The following theorems affirm that there is a correspondence between security
protocol specifications written in MSRP and PAP when related via the encodings
here presented.

Theorem 1. Given an MSRP security protocol theory C. Then C ∼ dCe.

Proof. See Appendix A

Theorem 2. Given an PAP security protocol process Q. Then bQc ∼ Q.

Proof. See Appendix A

This means that any MSRP step can be faithfully simulated by zero or more steps
in PAP through the mediation of the encoding d e, and vice-versa, the reverse
translation b c will map steps in PAP into corresponding steps in MSRP .

We conclude by observing that our encodings and Theorem 1 and 2 allow us
to reason about security properties in one of either frameworks and transfer the
results to the other.

6 Security Analysis

This section shows how our encodings preserve some security properties from
one: formalisms to the other: precisely those security properties whose definitions
can be expressed in terms of predicates over the intruder knowledge or the set
of messages on the networks, specifically secrecy and authenticity.

6.1 Secrecy

A secrecy property requires that a certain message, say M , cannot be discov-
ered by an intruder during any possible interactions with protocol participants.

23

Generally speaking the discovery of a secrecy flaw can be performed by looking
for traces where the intruder acquires knowledge of the secret. If no such trace
exists, then secrecy is preserved.

In MSRP , the formal definition of such a secrecy violation is straightforwards
in our context by using the Prj I() function:

Definition 6 (Secrecy violation in MSRP).
Let be C be an MSRP configuration of a protocol, and M be a ground message.

We say that C does not preserve the secrecy of M if and only if

∃C ′. C −→∗ C ′ and M ∈ Prj I(C
′)

Definition 6 can often be verified quite efficiently using modern model checking
and theorem proving techniques [34, 9].

A secrecy flaw is defined similarly in PAP :

Definition 7 (Secrecy violation in PAP). Let Q be a PAP model of a pro-
tocol, and M be a ground message. We say that Q does not preserve the secrecy
of M if and only if

∃Q′, Q ⇒∗ Q′, and M ∈ ObsI(Q
′)

Again, Definition 7 can be efficiently verified by one of the existing strategies for
checking secrecy violation or secrecy preservation developed for process algebras,
e.g., using reachability analysis techniques [19, 6].

The main fact here is that, independently from the checking strategy chosen,
our correspondence relation preserves secrecy. Indeed, the intruder knowledge in
two corresponding models, an MSRP configuration and a PAP state respectively,
is the same step by step. So whenever there is a computation that leads the
intruder to discover a secret M in the MSRP model, there shall be a computation
in the PAP model where the intruder is able to capture the same message.
Then, by producing corresponding models, our encodings are able to map secrecy
properties from MSRP to PAP and vice versa. In fact:

Proposition 3. Let be C an MSRP configuration and M a ground message.
Then

M ∈ Prj I(C) iff M ∈ ObsI(dCe)

Proof. Straightforward by Theorem 1.

and

Proposition 4. Let be Q a PAP state and M a ground message. Then

M ∈ ObsI(Q) iff M ∈ Prj I(bQc)

Proof. Straightforward by Theorem 2.

The obvious conclusion is that secrecy is preserved by our encodings.

24

Theorem 3. Let be C an MSRP model of a protocol (i.e., an initial MSRP

configuration). Then for any message M , a secrecy violation (w.r.t M) happens
in C if and only if a secrecy violation (w.r.t. M) happens in dCe.

Proof. Straightforward by Theorem 1 and Proposition 3.

Theorem 4. Let be Let be Q a PAP model of a protocol (i.e., an initial PAP

state). Then for any message M , a secrecy violation (w.r.t. M) happens in Q if
and only if a secrecy violation (w.r.t. M) happens in bQc.

Proof. Straightforward by Theorem 2 and Proposition 4.

6.2 Authentication

The treatment of authentication properties is a bit more intricate. There are
several notions of authentication. One of the most popular techniques was in-
troduced by Woo and Lam [38]. Roles are annotated with unforgeable control
actions called assertions that describe the state of the protocol execution from
the point of view of the principal executing it: for example the initiator may use
begin(L) to assert that the protocol has started, while the responder may assert
end(L) when it reaches its last event. The label L uniquely identifies relevant
parameters of this session (the principals involved, their role, nonces, etc.).

Generally speaking, if a protocol guarantees authentication, then in every
run each end(L) event matches a distinct begin(L) event preceeding it, even in
the presence of an attacker. If this is the case, we know that the initiator and
the responder have a compatible view of the world. If we abstract a run as the
sequence of assertions issued by all parties, this is equivalent [27] to checking
that in each run the number of end(L) never exceeds the number of begin(L),
for the same L.

Definition 8. A protocol P satisfies authenticity if and only if for every run
of the protocol and for every L, the number of end(L) events never exceeds the
number of begin(L) events.

We show how this mechanism works for detecting Lowe’s attack on the
NSPK protocol [25]. Consider that when one user A starts to run the pro-
tocol as initiator apparently with a responder B, it sends a control message
begin(〈A, B〉). When one user B running the role of responder finishes a pro-
tocol apparently with an initiator A running the role of initiator then it sends
the message end(〈A, B〉). Ideally, if we assume that these messages are never
removed from the net, the number of messages of the form begin(〈A, B〉) must
be greater than the number of messages of the form end(〈A, B〉) at any point of
any computation.

The attack is given by the following sequence of actions. We only need three
users: A, B and E such that A initiates a run with a dishonest principal E who

25

reroute it as a run with B. We write E(A) to denote the intruder impersonating
the agent A:

A −→ E : {NA, A}KE

E(A) −→ B : {NA, A}KB

B −→ E(A) : {NA, NB}KA

E −→ A : {NA, NB}KA

A −→ E : {NB}KE

E(A) −→ B : {NB}KB

Principal A starts a run of the protocol with the dishonest agent E, who decrypts
the transmitted values and repackages them as if they were intended for principal
B. Agent B, believing he is responding to A, sends the message {NA, NB}KA

to
E, who simply forwards it to A. This principal replies to E with the last message
{NA, NB}KA

, that E repackages for B as earlier. In the end, A correctly believes
she has authenticated E, but B incorrectly assumes he has authenticated A
while he was talking to E only. Woo and Lam’s method reveals this failure of
authentication: if we start the initiator role with the assertion begin(〈A, B〉)
and conclude the responder role with end(〈A, B〉), we extract from the above
run the trace {begin(〈A, E〉), end(〈A, B〉)}, which violates Definition 8. While
this method may seem rather simple it has been shown very useful for detecting
attacks on security protocols (e.g., see [26]).

A possible solution to include authenticity in our framework comes from the
observation that it is possible to encode begin-end assertions through particular
control messages in such a way that the observational power of our correspon-
dence relation is enough. Since our correspondence relation “observes” only the
status of the net and of the intruder knowledge, this implies that we have to find
a way to record the begin-end events in either the intruder knowledge or in the
network. Moreover because our notion of observation concerns sets we must face
the problem of losing the number of repetitions of events in sets. Both problem
can be easily solved (e.g., see [27]).

The latter one, for example can be solved by introducing in each control
message information that makes it unique e.g., a timestamp. This information
is then filtered out when used to check related begin-end events.

To solve the former problem we will develop a different strategy that consists
in sending begin-end assertions over a private network, we call NP . The goal of
this private network is only to collect control messages for sake of verification.
Moreover we assume assertions be coded as control messages 〈begin, L〉, 〈end, L〉,
where the label L carries sufficient information for uniquely identify the session.
Moreover we assume that L carries timestamp information that make them
unique in different run of the protocol.

In MSRP to model such a network we need a new predicate NP . A role may
assert something by sending a control message over NP . This can be done, for
example, by using the send rewriting rule. This requires a new class of assertion
rules, similar to send rules:

assertion rule Aρi−1(x) → Aρi
(x), NP (〈a, L(x)〉)

26

where a ∈ {begin, end}.

In PAP the private network NP is modeled by the process !N P
i (x).N P

o (x).0,
while a process’s assertion is modeled by sending a message, of form either
〈begin, L(x)〉 or 〈end, L(x)〉, towards the channel NP

i . We deal with authentica-
tion by slightly modifying our encodings to take into account the new symbols
NP . The correspondence relation needs to be modified too. We handle NP by
simply mirroring the treatment of N .

We can now define our instances of Definition 8 as in the following.

Definition 9 (Authenticity violation in MSRP). Let be C be an MSRP

model of a protocol (i.e., an initial configuration). We say that C violates au-
thenticity if and only if for some L, ∃C ′, C −→∗ C ′, such that in Prj NP (C ′) the
number of 〈end, L〉 is greater of the number of 〈begin, L〉.

If it is the case will write C 6|= {end(L) ↪→ begin(L)}.

Definition 10 (Authenticity violation in PAP). Let be Q be a PAP model
of a protocol. We say that Q violates authenticity if and only if for some L,
∃Q′, Q ⇒∗ Q′ such that in ObsNP (Q′) the number of 〈end, L〉 if greater of the
number of 〈begin, L〉.

If it is the case will write Q 6|= {end(L) ↪→ begin(L)}.
All the results stated in Section 5, remain valid. Precisely because the mes-

sages lying on the network in two correspondent models, resp., an MSRP and
a PAP , are the same step by step if there is a computation that leads to a au-
thenticity flaw in the MSRP model, there would be another computation in the
PAP model where the same flaw is shown, and vice versa. Then our encodings,
mapping models into correspondent models, are able to map authenticity prop-
erties from MSR to PA and vice versa. The previous results can be formalized
into the following propositions

Proposition 5. Let be C an MSRP model of a protocol and L a ground control
message. Then C 6|= {end(L) ↪→ begin(L)} iff dCe 6|= {end(L) ↪→ begin(L)}.

Proof. Straightforward by Theorem 1.

Proposition 6. Let be Q a PAP model of a protocol and L a ground control
message. Then Q 6|= {end(L) ↪→ begin(L)} iff bQc 6|= {end(L) ↪→ begin(L)}.

Proof. Straightforward by Theorem 2.

The obvious conclusion is that authenticity is reserved by our encodings.

Theorem 5. Let be Let be C an MSRP model of a protocol. Then C preserves
authenticity if and only if dCe does.

Proof. Straightforward by Theorem 1 and Proposition 5.

Theorem 6. Let be Let be Q a PAP model of a protocol. Then Q preserves
authenticity if and only if bQc does.

Proof. Straightforward by Theorem 2 and Proposition 6.

27

7 Conclusions

This paper shows how multiset rewriting theories (MSR) and process algebras
(PA) used to describe security protocols may be related. Indeed we show how
to define transformations between MSR and PA describing protocols, and we
prove their semantics (based on labeled transition systems) to be related. The
paper introduces a correspondence relation based on what messages appear on
the network and on what messages the intruder knows. A direct consequence
of this results is that many security property established in one framework can
automatically be ported to the other.

8 Acknowledgment

S. Bistarelli was partially supported by MIUR project “Constraint Based Veri-
fication of Reactive Systems” (COVER), by the MIUR project “Network Aware
Programming: Object, Languages, Implementation” (NAPOLI), and the project
“SeTAPS”. I. Cervesato was partially supported by NRL under contract N00173-
00-C-2086. G. Lenzini was supported by the MIUR-CNR Project SP4, and par-
tially by the project ”Privacy in an Ambient World” a TUD/DIES/KUN/TNO-
EIB/TNO-FEL collaboration funded by IOP GenCom under project nr. IGC-
03001-IOP. F. Martinelli was partially supported by MIUR project “Constraint
Based Verification of Reactive Systems” (COVER), by MIUR project “MEFI-
STO”, by Microsoft Research and by the CSP project “SeTAPS II”.

We would like to thank the selection committee and attendees of the WITS’03
workshop where a preliminary version of this paper was presented [5]. There we
had stimulating discussions there led to the present revision.

Finally we thank our anonymous referees whose feedbacks gave us precious
suggestions for improving the presentation of the present work.

References

[1] M. Abadi and B. Blanchet. Analyzing Security Protocols with Secrecy Types and
Logic Programs. ACM SIGPLAN Notices, 31(1):33–44, 2002. Proc. of the 29th
ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages
(POPL’02).

[2] M. Abadi and A. D. Gordon. Reasoning about Cryptographic Protocols in the
Spi Calculus. In Proc. of CONCUR ’97: Concurrency Theory, 8th International
Conference, volume 1243 of Lecture Notes in Computer Science, pages 59–73.
Springer-Verlag, 1997.

[3] M. Abadi and A. D. Gordon. A Bisimulation Methods for Cryptographic Proto-
cols. In Proc. of ESOP’98, 1998.

[4] S. Bistarelli, I. Cervesato, G. Lenzini, and F. Martinelli. Relating multiset rewrit-
ing and process algebras for immediate decryption protocols. In in Proc. of the
Second International Workshop on Mathematical Methods, Models and Architec-
tures for Computer Network Security (MMM’03), LNAI 2776, St. Peterburg, Rus-
sia, 20-24 September 2003.

28

[5] S. Bistarelli, I. Cervesato, G. Lenzini, and F. Martinelli. Relating Process Algebras
and Multiset Rewriting for Security Protocol Analysis. In R. Gorrieri, editor,
Third Workshop on Issues in the Theory of Security — WITS’03, pages 21–31,
Warsaw, Poland, 2003.

[6] M. Boreale. Symbolic trace analysis of cryptographic protocols in the spi-calculus.
In Proc. of ICALP 2001, 2001.

[7] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. In Proc. of
the Royal Society of London, volume 426 of Lecture Notes in Computer Science,
pages 233–271. Springer-Verlag, 1989.

[8] I. Cervesato. Typed multiset rewriting specification of security protocols. In
Electronic Notes in Theoretical Computer Science, volume 40. Elsevier-Science,
2001.

[9] I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov. A Meta-
Notation for Protocol Analysis. In Proc. of the 12th IEEE Computer Security
Foundations Workshop (CSFW’99). IEEE Computer Society Press, 1999.

[10] I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov. Relating
strands and multiset rewriting for security protocol analysis. In Proc. of the 13th
IEEE Computer Security Foundations Workshop (CSFW ’00), pages 35–51. IEEE,
2000.

[11] E. M. Clarke, S. Jha, and W. Marrero. A Machine Checkable Logic of Knowledge
for Protocols. In Proc. of Workshop on Formal Methods and Security Protocols,
1998.

[12] F. Crazzolara and G. Winskel. Events in security protocols. In Proceedings of the
8th ACM conference on Computer and Communications Security, pages 96–105.
ACM Press, 2001.

[13] G. Denker and J. K. Millen. Capsl integrated protocol environment. In Proc.
of DARPA Information Survivability Conference (DISCEX 2000), pp 207-221,
IEEE Computer Society, 2000, 2000.

[14] G. Denker, J. K. Millen, A. Grau, and J. K. Filipe. Optimizing protocol rewrite
rules of CIL specifications. In CSFW, pages 52–62, 2000.

[15] D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transaction
on Information Theory, 29(2):198–208, 1983.

[16] B. Donovan, P. Norris, and G. Lowe. Analyzing Library of Security Protocols
using Casper and FDR. In Proc. of the Workshop on Formal Methods and Security
Protocols, 1999.

[17] J. Thayer Fábrega, J. Herzog, and J. D. Guttman. Honest ideals on strand spaces.
In Proc. of the 11th IEEE Computer Security Foundations Workshop (CSFW ’98),
pages 66–78, Washington - Brussels - Tokyo, 1998. IEEE.

[18] J. Thayer Fábrega, J. Herzog, and J. D. Guttman. Strand spaces: Why is a
security protocol correct? In Proc. of the 19th IEEE Computer Society Symposium
on Research in Security and Privacy, 1998.

[19] M. Fiore and M. Abadi. Computing Symbolic Models for Verifying Cryptographic
Protocols. In Proc. of the 14th Computer Security Foundation Workshop (CSFW-
14), pages 160–173. IEEE, Computer Society Press, 2001.

[20] R. Focardi and R. Gorrieri. The Compositional Security Checker: A tool for
the Verification of Information Flow Security Properties. IEEE Transactions on
Software Engineering, 23(9):550–571, 1997.

[21] R. Focardi, R. Gorrieri, and F. Martinelli. NonInterference for the Analysis of
Cryptographic Protocols. In Proc. of the ICALP’00. Springer-Verlag, 2000.

29

[22] R. Focardi and F. Martinelli. A Uniform Approch for the Definition of Security
Properties. In Proc. of Congress on Formal Methods (FM’99), volume 1708 of
Lecture Notes in Computer Science, pages 794–813. Springer-Verlag, 1999.

[23] A. D. Gordon and A. Jeffrey. Authenticity by Typing for Security Protocols. In
Proc. 14th IEEE Computer Security Foundations Workshop (CSFW 2001), pages
145–159. IEEE Computer Society, 2001.

[24] J. D. Guttman and F. J. Thayer Fábrega. Authentication tests and the structure
of bundles. Theoretical Computer Science, 283(2):333–380, 2002.

[25] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol us-
ing FDR. In Proc. of 19th IEEE Computer Security Foundations Workshop
(CSFW’96), volume 1055 of Lecture Notes in Computer Science, pages 147–166.
Springer-Verlag, 1996.

[26] G. Lowe. Some New Attacks upon Security Protocols. In Proc. of 19th IEEE
Computer Security Foundations Workshop (CSFW’96), volume 1055 of Lecture
Notes in Computer Science, pages 147–166. Springer-Verlag, 1996.

[27] F. Martinelli. Encoding several security properties as properties of the intruder’s
knowledge. Dec. 20, Institute of Informatics and telematics - CNR, 2001.

[28] C. A. Meadows. The NRL protocol analyzer: an overview. In Proc. of the 2nd
International Conference on the Practical Application of PROLOG, 1994.

[29] D. Miller. Higher-order quantification and proof search. In Proceedings of the
AMAST confrerence, LNCS. Springer, 2002.

[30] R. Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989.

[31] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, 2000.

[32] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, I and II.
Information and Computation, 100(1):1–40, 1992.

[33] R. M. Needham and M. D. Schroeder. Using Encryption for Authentication in
Large Network of Computer. Communication of the ACM, 21(12):993–999, 1978.

[34] L. C. Paulson. Proving Properties of Security Protocols by Induction. In Proc.
of The 10th Computer Security Foundations Workshop. IEEE Computer Society
Press, 1997.

[35] S. Schneider. Security properties and CSP. In Proc. of the IEEE Symposium on
Research in Security and Privacy, pages 174–187, 1996.

[36] S. Schneider. Verifying Authentication Protocols in CSP. IEEE Transaction on
Sofware Engineering, 24(8):743–758, 1998.

[37] Dawn Song. Athena: a new efficient automatic checker for security protocol analy-
sis. In Proceedings of the Twelth IEEE Computer Security Foundations Workshop,
pages 192–202, Mordano, Italy, June 1999. IEEE Computer Society Press.

[38] T. Woo and S. Lam. A Semantic Model for Authentication Protocols. In Proc.
of the IEEE Symposium on Research in Security and Privacy, 1993.

A Proofs

This appendix provides a proof for Theorem 1 and a proof for Theorem 2.
We begin this section by reminding that a MSRP state is a multiset of form

s̃ = (Ñ , Ã, Ĩ , π̃), where the components collect ground facts N(t), Aρi
(t), I(t)

and π(t) respectively, while a PAP state is a process (see Proposition 1)

30

Q!
︷ ︸︸ ︷

(P!net ‖
∏

ρ

P!ρ ‖ Q!I ‖ Q!π) ‖ (Qnet ‖
∏

ρ

Pρ ‖ QI ‖ Qrem)

where:

Qnet ::= 0 |
∏

No(t).0

Pρ ::= 0 | No(x).Pρ | Ni (t).Pρ | [t = t
′] Pρ

QI ::= suffixes of PIj
, for all j

Qrem ::= 0 | No(x).Ni (x).0 | π̃(x).νn.Pρ | νn.Pρ |
∏

π(t).0

Moreover in the following we will use implicitly the following proposition:

Proposition 7. b!P ‖ P ‖ Qc = b!P ‖ Qc

Proof. It is based on the fact that b c maps processes P , coming from any tran-
sition !P ⇒ P ‖!P , into the empty multiset. Formally:

b!P ‖ P ‖ Qc = b!P c, bP c, bQc = b!P c, ·, bQc = b!Pc, bQc = b!P ‖ Qc

We now prove the following main theorem:

Theorem (Reminder) 1. Given an MSRP security protocol theory C. Then
C ∼ dCe.

Proof. The proof consists in showing that

R = {(C, dCe) : C0 −→∗ C} ∪ {(C, Q) : C0 −→∗ C, bQc = C}

is a correspondence ∼. Specifically, because of Lemma 1 and Lemma 2 it is
sufficient to show that for all (C, Q) ∈ R:

(I) C −→ C ′ implies Q ⇒∗ Q′ and (C ′, Q′) ∈ R
(II) Q ⇒ Q′ implies C −→∗ C ′ and (C ′, Q′) ∈ R.

Precisely (C ′, Q′) ∈ R means that either bQ′c = C ′ or Q′ = dC ′e.
Before explaining the technical steps of the proof, let us focus on the following

question. What are the (C ′, Q′) ∈ R that are reachable via a MSRP or PAP

transition from (C, Q) ∈ R? In other words, given a transition C −→ C ′ (resp.,
Q ⇒ Q′) what transitions dCe ⇒∗ Q′ or Q ⇒∗ Q′ where bQc = C (resp.,
bQc −→∗ C ′ or C −→∗ C ′ where dCe = Q) satisfy condition (I) (resp., condition
(II)) above?

Let us first focus on (I) and on Figure 2. and suppose that a MSRP transition
C −→ C ′ triggers. Via d e the only possibile PAP transition is dCe ⇒∗ dC ′e (e.g.,
states Q and Q′ and the relative Q ⇒∗ Q′ transition in Figure 2). Instead via b c,
more transitions Q ⇒∗ Q′ are possible; precisely all those such that bQc = C and
bQ′c = C ′ (e.g., processes Q′′′, Q and Q′′ in Figure 2 and transitions Q′′′ ⇒∗ Q′,
Q ⇒∗ Q′ and Q′′ ⇒∗ Q′).

31

Let now focus on (II) and on Figure 2 again. Let suppose a PAP transition
Q ⇒ Q′ triggers. Here it may be that the only couple (C ′, Q′) corresponding
in R, via either b c or d e, to (C, Q) is such that C = C ′. This happens when
transition Q ⇒ Q′ is not able to simulate any complete MSRP step (e.g., as the
transition Q ⇒ Q′′ and its correspondent C −→∗ C, in Figure 2).

Proof of Part (I). The scheme which guides the proof of this part, is the follow-
ing:

(I) C −→ C ′ implies
(a) dCe ⇒∗ Q′ and (C ′, Q′) ∈ R
(b) ∀Q : bQc = C, Q ⇒∗ Q′ and (C ′, Q′) ∈ R

(4)

In the following we will itemize each sub-case with (I.a), (I.a′), etc., or (I.b)
(I.b′), etc., depending on it is respectively the first, second, etc., sub-case of
branches (a) or (b) of (4); moreover let us observe that, because bdCec = C (see
Lemma 2)

{(C, dCe) : C0 −→∗ C} ∩ {(C, Q) : C0 −→∗ C, bQc = C} 6= ∅

As a consequence some sub-cases of (b) will coincide with some sub-case of (a).
Precisely those that do really differ, are those involving pairs (bQc, Q) such that
Q 6= dCe; to avoid repetitions we will treat in (I.b) only those cases that differ
from cases in (I.a).

Let be C ′ such that C −→ C ′. It must have happened as a consequence of an
application of either a rewriting rule rρ0 , rρi

send or rρi
receive or rρi

analysis
for i > 0, . . . , lρ or finally an intruder rule rIj

for j = 0, . . . , 9. We will treat each
rule separately. We also remind that for each rule we will list different sub-cases
(I.a) and (I.b).

• (instantiation rule) rρ0 = π̃(x) → ∃n.Aρ0(n, x), π̃(x)

In this case transition C −→ C ′ can be specifically rewritten as:

C = π̃(k), C ′′

→ Aρ0 [

θ
︷ ︸︸ ︷

k/x; m/n], π̃(k), C ′′

= Aρ0(k; m), C
︸ ︷︷ ︸

C′

where, we remind, π̃(k) is a shortcut for π(k1), · · · , π(kr) where ki for all i, are
all ground tuples of terms.

32

MSRP state

b cb c b c

d e

PAP states

b c

d e

Q′′QQ′′′ Q′

C′

⇒ ⇒

−→

C

⇒

C ./ Q

C ./ Q′′′ C ./ Q′′

C′ ./ Q′

where:

Fig. 2. A possible scenario of corresponding couples (C,Q) and (C ′, Q′) in R when
either a transition C −→ C ′ or a transition Q ⇒ Q′, triggers.

? Case (I.a): (C, Q) = (C, dCe). We have:

dCe =

dπ̃(k)e
︷ ︸︸ ︷

!π̃(k).0 ‖

drρ0 e
︷ ︸︸ ︷

!π̃(x).νn.

drρ1 e
#
(x;n)

︷︸︸︷

Pρ ‖ Q′′

︸ ︷︷ ︸

dC′′e

[def. of d e]

≡ π̃(k).0 ‖ π̃(x).νn.Pρ ‖ !π̃(k).0 ‖ !π̃(x).νn.Pρ ‖ Q′′

︸ ︷︷ ︸

dCe

⇒∗ 0 ‖ Pρ[θ] ‖ dCe
︸ ︷︷ ︸

Q′

[pa0, pa≡, paν]

= 0 ‖ drρ1e
#
(x;n)[θ] ‖ dCe

= 0 ‖ dAρ0(k; m)e ‖ dCe [def. of dAρi
(t)e]

≡ dAρ0 (k; m)e ‖ dCe

= dC ′e

? Case (I.b): (C, Q) = (bQc, Q). We need to identify those Q’s such that bQc =
C = π̃(k), C ′′. The only different case, w.r.t. (I.a), (indeed a family of cases)
happen when

Q =
(

r∏

i=m

π(ki).0
)
‖ πm(xm). · · · .πr (xr).νn.Pρ[θ

′] ‖ dCe

where θ′ = [k1/x1, · · · , km−1/xm−1]. In words, Q is a partially instantiated
role that has already started receiving its permanent terms, but not all. It is

33

worth to underline that both
∏

i=m,...,r π(ki).0 and πm(xm). · · · .πr (xr).νn.Pρ[θ
′]

are mapped by b c into the empty multiset; as a consequence bQc = C. Let now
observe that:

Q =

(∏

i=m,...,r π(ki).0
)
‖

πm(xm). · · · .πr (xr).νn.Pρ[θ
′]

‖ dCe
⇒∗ 0 ‖ Pρ[θ] ‖ dCe [pa0 and paν with m as new

names]

≡ Pρ[θ] ‖ dCe
︸ ︷︷ ︸

Q′

and it easy to check that dC ′e = Q′.

• (send rule) rρi
= Aρi−1 (x) → Aρi

(x), N(t(x))

In this case transition C −→ C ′ can be specifically rewritten as:

C = Aρi−1(x[θ]), C ′′ → Aρi
(x[θ]), N(t[θ]), C ′′

︸ ︷︷ ︸

C′

(5)

where θ is the substitution that allows the rule rρi
to be applied. The only

significative situation happens as a sub-case of statement (a) of (4).
? Case (I.a): (C, Q) = (C, dCe). We have:

dCe = drρi
e#(x)[θ] ‖ dC ′′e [def. of dAρi−1 (x[θ])e]

= Ni (t[θ]).drρi+1e
#
(x)[θ] ‖ dC ′′e [unfolding drρi

e#(x)[θ]]

=

Ni(t[θ]).drρi+1e
#
(x)[θ] ‖

!Ni(x).No(x).0 ‖ dC ′′′e
︸ ︷︷ ︸

dC′′e

[def. of P!net in dC ′′e]

≡

Ni(t[θ]).drρi+1e
#
(x)[θ]

‖ Ni(x).No(x).0 ‖

!Ni (x).No(x).0 ‖ dC ′′′e
︸ ︷︷ ︸

dC′′e

⇒

dAρi
(x[θ])e

︷ ︸︸ ︷

drρi+1e
#
(x)[θ] ‖

dN(t[θ])e
︷ ︸︸ ︷

No(t[θ]).0 ‖ dC ′′e
︸ ︷︷ ︸

Q′

[def. of pa0]

= dC ′e

• (receive rule) rρi
= Aρi−1 (x), N(y) −→ Aρi

(x; y)

34

In this case transition C −→ C ′ can be specifically rewritten as:

C = Aρi−1 (x[θ]), N(t), C ′′ −→ Aρi
(x[θ]; y[t/y]), C ′′

︸ ︷︷ ︸

C′

(6)

where θ is the substitution that allows the rule rρi
to be applied. Again the only

significative case happens as a sub-case of class (a) in statement (4).
? Case (I.a): (C, Q) = (C, dCe). We have:

dCe = drρi
e#(x)[θ] ‖ No(t).0 ‖ dC ′′e [def. of dAρi−1 (x[θ])e]

= No(y).drρi+1e
#
(x;y)[θ] ‖ No(t).0 ‖ dC ′′e [espanding drρi

e#(x)[θ]]

⇒ drρi+1e
#
(x;y)[θ][t/y] ‖ 0 ‖ dC ′′e

︸ ︷︷ ︸

Q′

[pa0]

= dC ′e

• (analysis rule) rρi
= Aρi−1(t(x)) −→ Aρi

(x).

In this case transition C −→ C ′ can be specifically rewritten as:

C = Aρi−1 (t(x)[θ′]), C ′′ −→ Aρi
(x[θ′]), C ′′

︸ ︷︷ ︸

C′

(7)

Again the only interesting scenario comes from sub-case (a) of (4). While ana-
lyzing this case let us:

– rewrite the ground term t(x)[θ′] as k;

– assume that the consequent predicate of rule rρi−1 is Aρi−1(x
′), i.e., rule

rρi−1 = . . . −→ Aρi−1 (x
′).

– assume θ be the unifier such that x
′[θ] = k, that is the substitution that

unifies the predicate Aρi−1 (x
′) with the ground predicate Aρi−1(k) in the

MSRP state C.

? Case (I.a): (C, Q) = (C, dCe). We have:

dCe = drρi
e#(x′)[θ] ‖ dC ′′e

= [

k

︷︸︸︷

x
′[θ] = t(x)[θ]].drρi+1e

#
(x)[θ] ‖ dC ′′e [def. of drρi

e#(x′)]

⇒ drρi+1e
#
(x)[θ][θ

′′] ‖ dC ′′e [pa[], and t(x)[θ][θ′′] = k]

= drρi+1e
#
(x)[θ

′] ‖ dC ′′e
︸ ︷︷ ︸

Q′

[(see text below)]

= dC ′e

Note that here, θ′ can be used instead of θθ′′ because θ′ and θθ′′ coincide on x,
that in turn are all the variables appearing in drρi+1e.

35

• (intruder rules) rIj
, for j = 0, . . . , 9.

Let us consider just a significative rule, for example rule rI6 = I(x1), I(x2) →
I(〈x1, x2〉), I(x1), I(x2). The proofs for the other intruder’s rules are similar. In
this case transition C −→ C ′ can be specifically rewritten as:

C = I(t1), I(t2), C
′′ −→ I(〈t1, t2〉), I(t1), I(t2), C

′′

︸ ︷︷ ︸

C′

. (8)

? Case (I.a): (C, Q) = (C, dCe). Then we have:

dCe =

dI(t1)eI

︷ ︸︸ ︷

I (t1).0 ‖

dI(t2)eI

︷ ︸︸ ︷

I (t2).0 ‖ dC ′′e [def. of d e]

= I (t1).0 ‖ I (t2).0 ‖ Q!I ‖ Q′′

︸ ︷︷ ︸

dC′′e

[expanding
PAP state]

≡

I (t1).0 ‖ I (t2).0
‖ I (x1).I (x1).I (x2).I (x2).I (〈x1, x2〉).0
‖ I (x).I (x).0 ‖ I (x).I (x).0
‖ dC ′′e

[expanding
Q!I (PI6 and
PI10)]

⇒∗ 0 ‖

dI(〈t1, t2〉)e
I

︷ ︸︸ ︷

I (〈t1, t2〉.0) ‖

dI(t1)eI

︷ ︸︸ ︷

I (t1).0 ‖

dI(t2)eI

︷ ︸︸ ︷

I (t2).0 ‖ dC ′′e
︸ ︷︷ ︸

Q′

[pa0]

= dC ′e

Let now start analyzing the case (C, Q) = (bQc, Q). We need to identify
those Q’s such that bQc = I(t1), I(t2), C

′′. In fact, more different Q’s (precisely
different QI) exist, for the non injective b cI is now involved in the translation
(see also Figure 1). In addition, we remind, the only really significative (w.r.t.
case (I.a)) situations are those ones where Q’s are such that Q 6= dCe
? Case (I.b′): a first case happens when Q contains both the process I (t2).0 and

the proper suffix of PI6 , I (t1).I (x2).I (x2).I (〈t1, x2〉).0.

Q = I (t2).0 ‖ I (t1).I (x2).I (x2).I (〈t1, x2〉).0 ‖ dC ′′e

≡

I (t2).0
‖ I (t1).I (x2).I (x2).I (〈t1, x2〉).0
‖ I (x).I (x).0 ‖ I (x).I (x).0
‖ dC ′′e

[espanding
Q!I]

⇒∗ 0 ‖ I (〈t1, t2〉).0 ‖ I (t1).0 ‖ I (t2).0 ‖ dC ′′e
︸ ︷︷ ︸

Q′

[pa0]

and it is easy to verify that bQ′c = C ′.

36

? Case (I.b′′): a second case happens when Q is [〈t1, t2〉 = 〈x1, x2〉].I (x1).I (x2).0
‖ dC ′′e. In words Q contains a proper suffix of process PI5 , standing for the
intruder that has already acquired the message 〈t1, t2〉, but that has not yet
performed the output in which it splits it. We remind that in this case b cI

translates the process as it would have already performed the outputs, obtaining
the predicates I(t1), I(t2). Then we have:

Q = [〈t1, t2〉 = 〈x1, x2〉].I (x1).I (x2).0 ‖ dC ′′e

≡
[〈t1, t2〉 = 〈x1, x2〉].I (x1).I (x2).0

‖ I (x).I (x).0 ‖ dC ′′e
[from !PI10 ;
pa!]

⇒ I (t1).I (t2).0 ‖ I (x).I (x).0 ‖ dC ′′e [pa[]]

⇒ I (t2).0 ‖ I (t1).0 ‖ Q′′ [pa0]

⇒∗ 0 ‖ I (〈t1, t2〉).0 ‖ I (t1).0 ‖ I (t2).0 ‖ Q′′

︸ ︷︷ ︸

Q′

[see Case (I.a)]

and it is easy to verify that bQ′c = C ′.

? Case (I.b′′′): the last case is when Q = I (t1).I (t2).0 ‖ dC ′′e, where again a
suffix of PI5 is involved. This case is simply a sub-case of the previous one.

Here ends the proof of (I), where we have shown that for every (C, Q) ∈ R
C −→ C ′ implies Q ⇒∗ Q′, and (C ′, Q′) ∈ R.

Proof of Part (II). The scheme which guides the proof of this part is the fol-
lowing:

(II) ∀(C, Q) ∈ R, Q ⇒ Q′ implies C −→∗ C ′ and (C ′, Q′) ∈ R

Because, we remind, R = {(C, dCe) : C0 −→∗ C} ∪ {(C, Q) : C0 −→∗

C, bQc = C}, the previous statement can be specifically restated as:

∀(C, Q) ∈ R,
(a) dCe ⇒ Q′ implies C −→∗ C ′ and (C ′, Q′) ∈ R
(b) ∀Q : bQc = C, Q ⇒ Q′ implies C −→∗ C ′ and (C ′, Q′) ∈ R

(9)

where (C ′, Q′) ∈ R means that either bQ′c = C ′ or Q′ = dC ′e. In the follow-
ing we treat a list of cases. Each case corresponds to a possible ⇒ transition.
Again we will itemize each sub-case with (II.a), (II.a′), etc., or (II.b) (II.b′),
etc., depending on it is respectively the first, second, etc., sub-case of branches
(a) or (b) of (9).

• (pa0: i.e., communication transition)

Reasoning about pa0, we must distinguish among the name of the channel a
involved in the reaction i.e., a = Ni, No, π, I . Let us discuss each case separately.

37

(a = Ni) Here we treat with transitions that involve channel Ni.
? Case (II.a): (C, Q) = (C, dCe).
This case may happens when C = Aρi−1(x[θ]), C ′′ and rρi

: Aρi−1(x) −→
Aρi−1 (x), N(t(x)).
In this case transition dCe ⇒ Q′ can be specifically rewritten as:

dCe =

Aρi−1
(x[θ])

︷ ︸︸ ︷

Ni (t(x)[θ]).

drρi+1
e#
(x)

[θ]

︷ ︸︸ ︷

Pρ[θ] ‖ dC ′′e

≡ Ni (t(x)[θ]).Pρ[θ] ‖ Ni(x).N (x).0 ‖ dC ′′e [expanding PAP state]

⇒ Pρ[θ] ‖ N (t(x)[θ]).0 ‖ dC ′′e
︸ ︷︷ ︸

Q′

Then we have:

C = Aρi−1 (x[θ]), C ′′ −→ N(t(x)[θ]), C ′′

︸ ︷︷ ︸

C′

[rρi+1]

and it is easy to check that dC ′e = Q′.
? Case (II.b): (C, Q) = (bQc, Q). The only different case in this sub-part
happens when bQc = I(t), bQ′′c. We observe that a Q producing such a
MSRP state is the following:

Q = I (t).0 ‖ Ni (t
′).0 ‖ Ni(x).No(x).0 ‖ Q′′

where Ni(t).0 is an intruder partial suffix of PI4 = I (x).Ni (x).0. We remind
that Ni (t).0 and Ni (x).No(x).0 are mapped, by b c, onto the empty multiset.
Let observe that transition Q ⇒ Q′ can be specifically rewritten as:

Q = I (t).0 ‖ Ni (t).0 ‖ Ni(x).No(x).0 ‖ Q′′

⇒ I (t).0 ‖ 0 ‖ No(t).0 ‖ Q′′

︸ ︷︷ ︸

Q′

Then we have:

bQc = I(t), bQ′′c −→ I(t), N(t), bQ′′c
︸ ︷︷ ︸

C′

[by rI4]

and it is easy to check that C ′ = bQ′c.

(a = No) Here we treat with transitions that involve channel No.
? Case (II.a): (C, Q) = (C, dCe). This case happens when C = N(t), Aρi−1(x[θ]), C ′′

and rρi
: Aρi−1 (x), N(y) −→ Aρi−1(x; y). In this case transition dCe ⇒ Q′

can be specifically rewritten as:

38

dCe = No(t).0 ‖

dAρi−1
(x[θ])e

︷ ︸︸ ︷

No(y).

drρi+1
e#
(x)

[θ]

︷ ︸︸ ︷

Pρ[θ] ‖ dC ′′e

⇒ 0 ‖ Pρ[θ][t/y] ‖ dC ′′e
︸ ︷︷ ︸

Q′

Then we have:

C = N(t), Aρi−1(x[θ]), C ′′ −→ Aρi−1(x; y)[θ][t/y], C ′′

︸ ︷︷ ︸

C′

[by rρi
]

and it is easy to check that C ′ = bQ′c.
? Case (II.a′). Another case of this class happen when C = N(t), C ′′ and
rI3 = N(x) −→ I(x). Let observe that transition dCe ⇒ Q′ can be specifi-
cally rewritten as:

dCe = No(t).0 ‖ dC ′′e

≡ No(t).0 ‖ No(x).I (x).0 ‖ dC ′′e [expanding P!I]

⇒ I (t).0 ‖ dC ′′e
︸ ︷︷ ︸

Q′

Then we have:

C = N(t), C ′′ −→ I(t), C ′′

︸ ︷︷ ︸

C′

[by rI3]

and it is easy to check that C ′ = bQ′c.
(a = π) Here we will treat with transitions that involve channel π’s.

? Case (II.a): (C, Q) = (C, dCe). The only interesting scenario in this sub-
case happens when in C no role predicates, w.r.t. a role ρ are yet pro-
duced and when rρ0 = π̃(t(x)) −→ ∃n.Aρ0 (x; n). Let observe that transition
dCe ⇒ Q′ can be specifically rewritten as:

dCe = P!ρ ‖ Q!π ‖ dC ′′e

≡

π1 (x1).··· .πk (xk))
︷︸︸︷

π̃(t) .νn.

drρ1 e
#
(x;n)

︷︸︸︷

Pρ ‖!π1 (t).0 ‖ dCe [by expanding Q!π, P!ρ]

⇒ π2 (x2). · · · .πk (xk).νn.Pρ[t0/x1] ‖ dCe
︸ ︷︷ ︸

Q′

At this point, by observing that process π2 (t2). · · · .πk (tk).νn.Pρ[t0/t1]. is
indeed one that is considered garbage by the b c (i.e., it is mapped into the
empty multiset) it is easy to check that bQ′c = C, and we conclude observing
that C −→∗ C is a possible transition 2.

2 Note that the particular case where dCe = νn.Pρ i.e., is part of the case paν .

39

? Case (II.a′). Another sub-case happens when intruder is involved. Specif-
ically when dCe = Q!π ‖ Q!I ‖ dC ′′e and transition dCe ⇒ Q′ may be
istantiated as:

dCe = Q!π ‖ Q!I ‖ dC ′′e

≡ π(t).0 ‖ π(x).I (x).0 ‖ dC ′′e

⇒ 0 ‖ I (t).0 ‖ dC ′′e
︸ ︷︷ ︸

Q′

Then we have:

C = π(t), C ′′ −→ π(t), I(t), dC ′′e
︸ ︷︷ ︸

C′

[by rI1]

and it is easy to check that C ′ = bQ′c.
? Case (II.b): (C, Q) = (bQc, Q). The only interesting cases in this side,
arise by considering those Q’s such that bQc = C, for some C : C0 −→∗ C.
In fact, if C contains no role predicates, w.r.t. a role ρ, every Q containing
only partial instantiations of that role (i.e., processes starting with a π or ν
that are suffix of Pρ) is such that bQc = C. Treating this class of case as a
one general case, the transition Q ⇒ Q′ can be written as:

Q = πj (xj). · · · .πk (xk).νn.Pρ ‖ πj (t).0 ‖ bC ′′c [j > 1]

⇒ πj+1 (xj+1). · · · .πk (xk).νn.Pρ[t/xj].0 ‖ bC ′′c
︸ ︷︷ ︸

Q′

Note that despite this transition, bQ′c = C still hold. In fact partial instanti-
ated (role) processes are mapped onto the empty multiset. Then we conclude
observing that C −→∗ C is a possible transition.

(a = I) Here we treat with transitions that involve channel I . When the in-
truder channel I is involved, many different situations involving the intruder
arise. Here we will treat just some of the most significative ones i.e., those
involving the states in Figure 1. The others can be analyzed in a similar way.
? Case (II.a): (C, Q) = (C, dCe). A sub-case of this class happens when
C = I(t1), I(t2), C

′′. We start observing that transition dCe ⇒ Q′ can be
written as:

dCe = I (t1).0 ‖ I (t2).0 ‖ dC ′′e

≡
I (t1).0 ‖ I (t2).0 ‖
I (x1).I (x1).I (x2).I (x2).I (〈x1, x2〉).0
‖ dC ′′e

[expanding PAP state]

⇒
0 ‖ I (t2).0 ‖
I (t1).I (x2).I (x2).I (〈t1, x2〉).0
‖ dC ′′e
︸ ︷︷ ︸

Q′

[expanding PAP state]

40

Note that despite this transition, bQ′c = C still holds. In fact partial in-
stantiated (role) processes are mapped onto the empty multiset. Then we
conclude observing that C −→∗ C is a possible transition.
No more interesting cases fall in this class. On the contrary, many cases arise
when considering situation in class (b) i.e., those Q such that bQc = C =
I(t1), I(t2), C

′′.
? Cases (II.b), (II.b′), (II.b′′): (C, Q) = (bQc, Q′). Let us consider the fol-
lowing processes (see also Figure 1)

Q1 = I (t1).0 ‖ I (t1).I (x2).I (x2).I (〈t1, x2〉).0 ‖ dC ′′e

Q2 = I (t1).I (t2).0 ‖ dC ′′e

Q3 = [〈t1, t2〉 = 〈x1, x2〉] I (x1).I (x2).0 ‖ dC ′′e

each translated into C via b c (specifically via b cI). Let us observe that for
any Q′

i : Qi ⇒ Q′
i then bQ′

ic = C, for i = 1, 2, 3. Then we conclude observing
that C −→∗ C is a possible corresponding transition.
? Case (I.b)′′′: A last interesting situation happens when:

Q = I (t2).0 ‖ I (t1).0 ‖ I (x2).I (x2).I (〈t1, x2〉).0 ‖ dC ′′e

In this case we observe that:

Q = I (t2).0 ‖ I (t1).0 ‖ I (x2).I (x2).I (〈t1, x2〉).0 ‖ dC ′′e

⇒ 0 ‖ I (t1).0 ‖ I (t2).I (〈t1, t2〉).0 ‖ dC ′′e
︸ ︷︷ ︸

Q′

Then we have:

bQc = I(t2), I(t1), C
′′ −→ I(t2), I(t1), I(〈t1, t2〉), C

′′

︸ ︷︷ ︸

C′

[by rI6]

and it is easy to check that bQ′c = C ′.

• paν (i.e., new name generation)

The only possible transition paν happens when analyzing cases in (b) i.e.,
when (C, Q) = (Q, bQc). In fact no process obtained from d e can perform a paν

transition as first step.
? Case (II.b): (C, Q) = (bQc, Q′). The first easy scenario is the following:

Q =

νn1.··· .νnh
︷︸︸︷
νn .Pρ ‖ dCe

⇒ νn2. · · · νnh.Pρ[m/n1] ‖ dCe
︸ ︷︷ ︸

Q′

In this case, being νn2. · · · νnh.Pρ[m/n1] one of the processes left out by encoding
b c, we have that bQ′c = bQc = C, and we conclude observing that C −→∗ C is
a possible transition.

41

? Case (II.b′): the second, more interesting, scenario happens when :

Q = νnh.Pρ[θ] ‖ dCe [where θ are the substitu-
tions applyed so far]

⇒ Pρ

θ′

︷ ︸︸ ︷

[θ][m/n1] ‖ dCe
︸ ︷︷ ︸

Q′

Then we have

bQc =

dCe
︷ ︸︸ ︷

π̃(t), C ′′ −→ Aρ0(x; n)[θ′], dCe
︸ ︷︷ ︸

C′

[by rρ0]

and it is easy to check that dC ′e = Q′.

• pa[] (i.e., matching)

The only interesting case happens when C = Aρi−1 (x
′[θ]), C ′′ and rρi

=
Aρi−1(t(x)) −→ Aρi

(x). Let start observing that in this case transition dCe ⇒
Q′ can be written as:

dCe =

dAρi−1
(x′[θ])e

︷ ︸︸ ︷

[x′[θ] = t(x)].

drρi+1
e#
(x)

[θ]

︷ ︸︸ ︷

Pρ[θ] ‖ bC ′′c

⇒

drρi+1
e#
(x)

[θ][θ′]=dAρi
(x[θ][θ′])e

︷ ︸︸ ︷

Pρ[θ][θ
′] ‖ bC ′′c [where θ′ : x

′[θ] = t(x)[θ′]]

Then we have:

C = Aρi−1(x
′[θ]), C ′′ −→ Aρi

(x[θ][θ′]), C ′′

︸ ︷︷ ︸

C′

and it is easy to check that dC ′e = Q′.

• pa≡ (i.e., structural equivalence)

The proof in case of pa≡ transitions, follows easily from the previous transi-
tion cases by induction.

Here ends proof of (II), where we have shown that for every (C, Q) ∈ R
Q ⇒ Q′ implies C −→∗ C ′, and (C ′, Q′) ∈ R.

Theorem (Reminder) 2. Given an PAP security protocol theory Q. Then
bQc ∼ Q.

Proof. Similar to the proof of Theorem 1, by defining the relation R′ = {(bQc, Q) :
Q0 ⇒∗ Q} and showing that it is a correspondence relation ∼.

42

