
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

The AvaIon/C++ Programming Language (Version 0)

Jeannette M. Wing, Maurice Herlihy, Stewart Clamen,
David Detlefs, Karen Kietzke, Richard Lerner, Su-Tuen Ling

CMU-CS-88-209 2

Please send direct comments, corrections, and questions to wing@csxmu.edu; send bug reports to
avalon@cs.cmu.edu. This document should be informally referred to as "The Avalon Report" since it is more than a
language manual.

This research was sponsored in part by the Defense Advanced Research Projects Agency (DOD), ARPA Order No.
4976 (Amendment 20), under contract F33615-87-C-1499 monitored by the Avionics Laboratory, Air Force Wright
Aeronautical Laboratories, Wright-Patterson AFB. Additional suppport for J. Wing was provided in part by the
National Science Foundation under grant CCR-8620027.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or
the U.S. Government.

mailto:wing@csxmu.edu
mailto:avalon@cs.cmu.edu

T h e A v a l o n / C + + P r o g r a m m i n g L a n g u a g e (V e r s i o n 0)

Jeannette Wing
Maurice Herlihy
Stewart Clamen
David Detlefs
Karen Kietzke

Richard Lerner
Su-Yuen Ling

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213-3890

21 December 1988

Abstract

Avalon/C++ is a language for implementing reliable distributed programs. People who wish to read or write
Avalon/C-H- programs should read this document, though not necessarily all of it. It contains a quick overview of
the terminology of our intended application domain, a tutorial-by-example introduction to the language, a reference
manual for the Avalon extensions to C++, a library of built-in classes, and a list of practical programming
guidelines. The appendices include the language's grammar and the UNIX man pages for acc, the Avalon/C++
preprocessor.

Please send direct comments, corrections, and questions to wing@cs.cmu.edu: send bug reports to
avalon@cs.cmu.edu. This document should be informally referred to as "The Avalon Report" since it is more than
a language manual.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 4976
(Amendment 20), under contract F33615-87-C-1499 monitored by the Avionics Laboratory, Air Force Wright
Aeronautical Laboratories, Wright-Patterson AFB. Additional support for J. Wing was provided in part by the
National Science Foundation under grant CCR-8620027. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of
the Defense Advanced Research Projects Agency or the US Government.

University Librsnri
Carnegie Mellon u?v:u£.

Pittsburgh, Per.n:y!v*M ^ - 1 1

mailto:wing@cs.cmu.edu
mailto:avalon@cs.cmu.edu

i

T a b l e of Content s
1. Overview 1

1.1. Terminology 1
1.2. Avalon/C++ Specifics 1
1.3. A Roadmap to this Document 2

2. A Tutorial Introduction 3
2.1. Array of Atomic Integers 3

2.1.1. Using Jack and Jill 3
2.1.2. The Jill Server Declaration 5
2.1.3. The Jill Server Definition 7

2.1.3.1. Jill's Data Member 7
2.1.3.2. Jill's Operations 8

2.1.4. The Jack Application 9
2.2. FIFO Queue 12

2.2.1. The Queue Representation 13
2.2.2. The Queue Operations 14
2.2.3. Commit and Abort 15
2.2.4. Enq and Deq Synchronization Revisited 16

2.3. Atomic Counters 16
2.3.1. Counter Representation 17
2.3.2. Counter Operations 17
233. Counter's Commit and Abort 21

3. Reference Manual 25
3.1. Lexical Considerations 25
3.2. Servers 25

3.2.1. Defining Servers 25
3.2.2. Using Servers 26

3.3. Base Classes 26
3.3.1. Class Recoverable 27
3 3 . 2 . Class Atomic 27
3 .33 . Class Subatomic 28

3.4. Control Structures 29
3.4.1. Start 29
3.4.2. Costart 30
3.4.3. Leave 30
3.4.4. Return 31
3.4.5. Break and Continue 31
3.4.6. Except Clauses 31
3.4.7. Pinning 31
3.4.8. When 32

3.5. Transmission of Data 32

4. Library 35
4.1. Non-atomic Avalon/C++ Types and Type Generators 35

4.1.1. Bools 35
4.1.2. Transaction Identifiers 35
4.1.3. x_string: Transmissible Strings
4.1.4. Variants v.

4.2. Atomic Types
4.2,1. Atomic Strings \x

4.3. Catalog Server 39

5. Guidelines for Programmers
5.1. Choosing Identifiers
5.2. Using and Implementing Avalon Types

5.2.1. Using a Recoverable Type
5.2.2. Using an Atomic Type
5.2 J . Implementing Recoverable Types
5.2.4. Implementing an Atomic Type

5.3. Constructing an Avalon Program
5 3 . 1 . Server Programs
5 3 . 2 . Client Programs
5 3 3 . Example Templates

5.4. For Experts Only
5.4.1. Undo and Destructors
5.4.2. User-Defined Transmission Functions
5.4.3. Processes
5.4.4. Pragmas

Appendix I. Grammar
1.1. Expressions
1.2. Declarations
1 3 . Statements
1.4. External Definitions
1.5. Preprocessor

Appendix II. UNIX Man Pages for ACC
Index

iii

List of Figures
Figure 2-1: Declaration of Jill Server 6
Figure 2-2: The atomic_int Class 7
Figure 2-3: Definition of the JiU Server 8
Figure 2-4: First Part of the Jack Application 10
Figure 2-5: Beginning of the jill_transaction Function 11
Figure 2-6: End of the ji!l_transaction Function 12
Figure 2-7: Queue Representation 13
Figure 2-8: Queue Operations 14
Figure 2-9: Queue's Commit and Abort 15
Figure 2-10: Atomic Counter Derived from Class Atomic 17
Figure 2-11: Auxiliary Structures for Counter 18
Figure 2-12: Atomic Counter Derived from Class Subatomic 19
Figure 2-13: Counter's Inc and Dec Operations 19
Figure 2-14: Counter's Inc and Dec Auxiliary Operations 20
Figure 2-15: Counter's Is_zero Operation 21
Figure 2-16: Counter's Is_zero_work Operation 22
Figure 2-17: Counter's Commit and Abort 23
Figure 3-1: Transmissible and Non-Transmissible Types 33
Figure 5-1: User-defined Transmission Functions *i

1

1 . Overview

1.1. Terminology
A distributed system consists of multiple computers (called nodes) that communicate through a network.
Distributed systems are typically subject to several kinds of failures: nodes may crash, perhaps destroying local disk
storage, and communications may fail, via lost messages or network partitions. A widely-accepted technique for
preserving consistency in the presence of failures and concurrency is to organize computations as sequential
processes called transactions. Transactions are atomic, that is, serializable, transaction-consistent, and persistent.
Serializability means that transactions appear to execute in a serial order. Transaction-consistency ("all-or-
nothing") means that a transaction either succeeds completely and commits, or aborts and has no effect. Persistence
means that the effects of a committed transaction survive failures.

An Avalon/C-H- program consists of a set of servers, each of which encapsulates a set of objects and exports a set of
operations and a set of constructors. A server resides at a single physical node, but each node may be home to
multiple servers. An application program may explicidy create a server at a specified node by calling one of its
constructors. Rather than sharing data direcdy, servers communicate by calling one another's operations. An
operation call is a remote procedure call with call-by-value transmission of arguments and results. Objects may be
stable or volatile, stable objects survive crashes, while volatile objects do not. Avalon/C-H- includes a variety of
primitives for creating transactions in sequence or in parallel, and for aborting and committing transactions. Each
transaction is identified with a process, and is the execution of a sequence of operations.

Transactions in Avalon/C+f may be nested. A subtransaction's commit is dependent on that of its parent; aborting a
parent will cause a committed child's effects to be rolled back. A transaction's effects become permanent only
when it commits at the top level. We use standard tree terminology when discussing nested transactions: a
transaction T has a unique parent, a (possibly empty) set of siblings, and sets of ancestors and descendants. A
transaction is considered its own ancestor or descendant. If transaction B is an ancestor of A, then A is committed
with respect to B if every transaction that is both an ancestor of A and a proper descendant of B has committed. If B
is not an ancestor of A, then A is committed with respect to B if A is committed with respect to the least common
ancestor of A and B in the transaction tree.

Avalon/C-H- provides transaction semantics via atomic objects. All objects accessed by transactions must be atomic
to ensure their serializability, transaction-consistency, and persistence. Avalon/C-H- provides a collection of built-in
atomic types, and users may define their own atomic types by inheriting from the built-in ones.

Sometimes it may be too expensive to guarantee atomicity at all levels of a system. Instead it is often useful to
implement atomic objects from non-atomic components, called recoverable objects in Avalon; they satisfy certain
weak consistency properties in the presence of crashes. Users who define their own atomic types from non-atomic
components are responsible for ensuring that their types are indeed atomic.

1.2. Avalon/C++ Specifics
Avalon/C-H- is a superset of C++ [14], itself an extension of C [7]. C++ is designed to combine advantages of C,
such as concise syntax, efficient object code, and portability, with important features of object-oriented
programming, such as abstract data types, inheritance, and generic functions. We assume the reader has some
knowledge of C++- and freely use its terminology; see [14] for more information on C++.

Avalon's run-time environment relies on the Camelot system [13, 12] to handle operating-system level details of

2

transaction management, inter-node communication, commit protocols, and automatic crash recovery. We benefited
extensively from the Camelot Library [1], which provides a clean interface between the Avalon and Camelot
implementors. Some of Avalon's design was influenced by Camelot, in particular those aspects that Camelot
implementors worked hard to make efficient; however, the reader is not expected to know Camelot nor use it
directly.

Much of Avalon's design has been inspired by Argus [11] and we owe the descriptions of some of Avalon's control
structures to the Argus Reference Manual [10]. For other papers on Avalon/C++, please see [2, 5, 6 ,16] .

1.3. A Road map to this Document
The rest of this document is divided as follows:

Chapter 2 A tutorial introduction to the language. Detailed walkthroughs of three simple examples.

Chapter 3 A reference manual for the Avalon extensions to C++. Note that it is only about nine pages
long.

Chapter 4 A library of Avalon built-in classes and the catalog server.

Chapter 5 A list of practical guidelines for novice and expert programmers.

Appendix I The full grammar for Avalon/C++.

Appendix II The Unix man pages for running acc, the Avalon/C++ preprocessor.

A Note on Specifications
In writing the descriptions of the meanings of operations, in particular a class's member functions, we use the
following clauses:

• modifies: A list of objects whose values may possibly change as a result of executing the operation.

• requires: A pre-condition on any invocation state of the operation. The caller is responsible for
ensuring it holds; the implementor may assume it holds at the point of invocation.

• when: A condition on the state of the system that must hold before the operation proceeds. This
condition is often necessary to give since the state of the system may change between the point of
invocation and the actual point of execution of an operation.

• ensures: A post-condition on the returning state. The implementor must ensure that it holds; the caller
may assume it holds upon return.

In C++, a pointer to the object for which a member function is invoked is a hidden argument to the function. As
C++ does, we refer to this implicit argument as this in our specifications.

The absence of a requires (when) clause is the same as the predicate being TRUE. The absence of a modifies
clause indicates that no changes are made to the values of any object. This specification style and notational
conventions are borrowed from Larch [4],

3

2 . A Tutorial Introduction
An Avalon/C++ system consists of a set of programs, each of which is an application or a sewer. Applications
invoke operations on servers, which may, in turn, invoke operations on other servers.

An Avalon server is very much like a C++ class. Just like a class, a server encapsulates some data, and defines the
operations that can be used to manipulate that data. A client invokes an operation on a server object using the same
syntax it would use to invoke an operation on a class object. There are two main differences between classes and
servers. First, a server supports concurrency: more than one client may invoke operations on a server at the same
time. These concurrent operations execute as concurrent threads (or lightweight processes) within the server. The
server must be implemented so that this concurrency makes sense. Second, a server's data (if the server is
implemented correctly) is persistent, i.e., it will survive crashes in a consistent state.

This chapter describes at length three examples, illustrating all the basic features of Avalon/C++. The first example
shows how to create, commit, and abort transactions; to invoke operations on servers; and to define and use a simple
atomic type derived from the built-in Avalon class atomic. The second and third examples illustrate the use of
two other built-in classes, trans_id and subatomic, to show another way Avalon users can define atomic
types, and to show what makes Avalon especially different from other (fault-tolerant) distributed programming
languages. We hope the reader will see that programming in Avalon/C++ is not much different from ordinary C+f
programming.

2 . 1 . Array of Atomic Integers
In this section, we walk through the use and implementation of a simple Avalon server, called " J i l l , " and client,
called " J a c k , " (so named for historical reasons). The Jill server encapsulates an array of atomic integers. From the
client's viewpoint, each of these integers is atomic; they arc recovered after a crash to the state observed by the last
committed transaction, and they ensure the serializability of the transactions that access them. Since each of the
elements of the array is atomic, the array as a whole is also atomic. The elements of the Jill array are initially given
the value -1 to represent an uninitialized state, after which the Jill server permits only non-negative values to be
written in the array.

An atomic array of integers might be useful as a representation for a conference room reservation system. The
elements of the array could represent blocks of time, and writing a value into an element could represent reserving
the conference room at that time for the person represented by that value. Or, the array could be used to represent a
set of bank accounts, indexed by account numbers. Applications that wished to transfer money from one account to
another could do so within a transaction, so that no partial transfers would ever happen. These examples are only
meant to be suggestive; in both cases, other representations might be more convenient and/or efficient. Still, they
show that even a very simple server such as Jill is not too far removed from real-world applications.

2.1.1. Using Jack and Jill
Before we show any Avalon code, let us first see how a user might interact with Jack and Jill. We begin by
assuming that the Jill server has been started. To start up Jack on a Unix system (after making sure that the directory
containing the av_jack executable is on your search path), type:

% avjack
The Jack application starts a transaction and responds with:

Typ* ? for a list of commands.
Jack[l]

Jack[l] is the prompt. The " 1 " indicates the current transaction nesting level. If we type " ? " , we get the

4

following list of commands:
Command* are:

r Raad array alamant.
w Write array alamant.
b Bagin nested transaction.
c Commit innermost transaction.
a Abort innermost transaction.
A Abort top level transaction.
q Abort top laval transaction and quit program.

Jack(l]
Let's say we want to read what is stored at location 7 of the array:

JacJc[l] r
Location to raad: 7
Location 7 is uninitialised.
Jack[l]

As we can see, we have not yet given location 7 a value. Let 's do so:
Jack[l] w
Location to writa: 7
Value to writa: 7
Writa succeeded.
Jack[l] r
Location to raad: 7
Value at location 7 is 7.
Jack[l]

Now we can begin a subtransaction, using the " b " command. In this transaction, we first read the value in location

7, and then give it a new value:
Jack[l] b
Jack[2] r
Location to raad: 7
Value at location 7 is 7.
Jack[2] w
Location to writa: 7
Value to writa: 27
Write succeeded.
Jack [2] r
Location to read: 7
Value at location 7 is 27.
Jack[2]

Note that the prompt has changed to indicate the transaction nesting level. Let 's continue with another nested

transaction:
Jack[2] b
Jack[3] r
Location to read: 7
Value at location 7 is 27.
Jack[3] w
Location to write: 7
Value to write: 37
Write succeeded.
Jack[3] r
Location to read: 7
Value at location 7 is 37.
Jack[3]

If we commit this subtransaction, then we return to its parent, with its effects visible:

Jack[3] c
Transaction committed.
Jack[2] r
Location to read: 7
Value at location 7 is 37.
Jack[2]

Now, however, if we abort the second-level transaction, we return to the top-level transaction, but none of the

effects of the aborted transaction (or its children) are visible.

5

Jack[2] a
Transaction abortad as par request.
Jack[l] r
Location to read: 7
Value at location 7 is 7.
Jack[l]

Now, suppose we start up another instance of av_jack (in another window, perhaps). In this Jack, we start a
transaction, and write into location 10. Then we attempt to read the value we have written into location 7.

% avjack
Type ? for a list of commands.
Jack[l] w
Location to write: 10
Value to write: 10
Write succeeded.
Jack[l] r
Location to read: 7

The other Jack ("Jack B ") does not immediately return an answer. This is because the first Jack ("Jack A ")
obtained a write lock on location 7. This lock excludes all other transactions from observing the value written there.
This is needed to ensure serializability: Jack A 's transaction may either commit or abort. If it commits, then Jack
B 's query should return 7; if it aborts, then Jack B should inform the user that location 7 is still uninitialized. Thus,
Jack B cannot return anything until Jack A 's top-level transaction terminates. Let's commit Jack A 's transaction:

Jackfl] c
Transaction committed.
(Transaction was top level.) Value at location 7 is 7.
Jack[l] Jack[l]

Committing Jack A ' s transaction allowed Jack B 's transaction to proceed with the completion of the read operation.
Now let Jack A start a new transaction. If we attempt to write a new value into location 7 in this transaction, we are
also suspended, for similar reasons:

Jack[l] w
Location to write: 7
Value to write: 70

Jack A cannot write into location 7, because Jack B ' s transaction has already observed a value there. Jack A must
wait for Jack B ' s transaction to terminate before it can invalidate this observation. Let 's terminate Jack B's
transaction with an abort:

Jack[l] a
Transaction aborted as per request.

Write succeeded. (Transaction was top level.)
Jack[l] r Jack[l]
Location to read: 7
Value at location 7 is 70.
Jack[l]

Note that in this particular situation, even if Jack B had committed, Jack A still reads a 70 at location 7 since Jack
A ' s write would still be serialized after Jack B ' s read. This scenario has shown how the Jack application can
manipulate the atomic integers contained in a Jill server. In doing so, it has demonstrated some of the properties of
transactions, nested transactions, and atomic objects.

The next two sections describe the declaration and definition of the Jill server, all the way down to the level of the
Avalon built-in atomic_int type; then the following section describes the Jack application program.

2.1.2. The Jill Server Declaration
A C+f class has a declaration and a definition. A class declaration is generally put in an include file, so that all files
that need to use the class can have access to the necessary information. The class definition (the bodies of the class
operations) is put in one or more files, each of which includes the declaration. An Avalon server should be written

6

avj i l l .h :
#include <avalon.h>

// Error return codas from operation procedures.
const int INDEX__OUT_OF_BOUNDS = 1; // Attempt to access a location out of bounds,
const int ILLEGAL_VALUE » 2; // Attempt to Insert a negative number.

// System Constants.
const int ARRAYJ9XZE » 1000; // Number of cells in the array.

server jill {
stable atomic_int data[ARRAY_SIZE];

public:
int read(int index);
void write(int index, int value);
jill (xjstring cmdline, x_string host) : (cmdline, host);
void main () ;

>;

Figure 2-1 : Declaration of Jill Server

using the same conventions. Thus, we will first examine Figure 2-1 , the include file that declares the Jill server.

The first line of this file includes the file avalon. h . All Avalon programs must include this file before all others.
The next three statements in the file declare and initialize constants used in the program. We follow the C++
recommendation against using preprocessor macros whenever possible. The first two constants,
INDEX_Otrr_OF_BOUNDS and ILLEGAL_VALUE, are used as error codes. The third, ARRAY_SIZE, determines
the size of the array.

Next, we come to the declaration of the Jill server. This is textually identical to a C++ class declaration, with the
keyword server substituted for class. A Jill server contains one data member, data, and four operations,
which are the only means of accessing the server's data. A server differs slightly from a class in that all data
members of a server must be private. Here, data is also declared to be stable, which asserts that it is persistent,
i.e., will survive crashes. Avalon guarantees persistence of the built-in atomic data type, atamic_int; in general,
the programmer must correctly implement any user-defined type of stable variables to ensure their persistence.
Though the Jill server does not, a server could also have data members that are volatile, that is, not stable. Volatile
data are often useful for efficiency, but care should be taken to ensure that all important data is stable. For example,
a server might represent a database as set of records, and maintain a volatile index that allows operations to look up
records based on different fields of the record. The index would speed up the server during normal operation, but
could always be reconstructed after a crash.

The four operations of the Jill server come in two categories: user operations and sewer operations. Read,
write, and the constructor, jill, are user operations, the ones that clients can invoke. R e a d returns the integer
stored at the given index, and write writes the given value at the given index. The intent of these should be fairly
clear, we will go over their implementations shortly. The constructor is a special user operation invoked to initialize
the Jill server. A server will not accept any calls to other user operations until it has received a constructor call, and
it will not accept any constructor calls once it has started accepting calls to other user operations. The remaining
operation, main, is invoked automatically by the server. For implementation reasons, every server must have a
main operation, even if it has no body. (The definition of main serves as a marker, so the Avalon preprocessor can
decide where to put the C++ main procedure for the server.) If the main operation does have a body, it is executed
in the background, concurrently with user operations. Another kind of server operation (not shown here), invoked

7

automatically by the system, is an optional recover operation. If defined, it is executed whenever the
started after any crash. A typical recover operation might reinitialize volatile data.

2.1.3. The Jill Server Definition

2.1.3.1. Jill's Data Member

Jill 's data member, data, is a stable array of ARRAY_SXZE atom±c__±nt's. An atomic^int is an atomic
integer, an integer specially implemented so that it ensures the serializability of transactions that access it, and is
recovered after a crash with the value observed by the last committed transaction that accessed it. These properties
are quite easy to achieve in Avalon. Figure 2-2 shows the declaration and definition of the atomi c_int class.

a t o m i c j n t h :

// Declare* the atomic integer class.

#include <avalon.h>

class atomlc__int: public atomic {
int val;

public:
int operator-(int rhs);
operator int();

>;

atomic_int.av:

// Defines the atomic integer class.

#include <avalon.h>

int atomic_JLnt: : operators < int rhs) {
write_lock() ;
pinning () return val = rhs;

>

atomic_int::operator int() {
read__lock () ;
return val;

>

Figure 2-2: The a tomic jn t Class

The file atomicjLnt. h declares the atomic_int class. This is derived from the class atomic, which
provides operations that are used to make integers appear atomic. In particular, class atomic has two operations,
read_lock and write_lock, which can be used in implementing operations of derived classes.

The class atomic_int has one data member, an integer called val, which holds the value of the atomic integer.
We show two operations of atomic_int's, both of which are C++ overloaded operators. One is the assignment
operator, and the other is the coercion operator that converts an atomic_int into an int. The assignment
operator is the only way to change the value of an atomic_int, and the coercion to int is the only way of using
that value in a program. Thus, these operators mediate all access to the atomic integer.

In the file atomic_int. av, we see that the implementations of these operations are quite simple. Taking them in
reverse order, we see that the operator int () simply calls read_lock and returns the current value. The
assignment operator gets a write lock on the atomic_int, and then, within a pinning block, it sets the value to

g

a new value, and returns the new value. The pinning block informs the Camelot system that the change must be
logged permanently (i.e., to stable storage) so that in the event of crash recovery, the value of an atomic integer is
consistent. Modifications to any atomic object should always be made from within a pinning block. The use of read
and write locks guarantees that if a transaction observes the value of an atomic integer, then no other transaction
may change it until the observer terminates. (Note that data type induction is needed to really make tliis guarantee;
we can prove that this is true only if these two operators are the only ways of accessing atomic_int's.)

2.1.3.2. JilPs Operations
Now that we understand atomic integers, we can consider the implementation of the operations of the Jill server.
Figure 2-3 shows the contents of the file av_ jill. av, which contains the definitions.

avJilLav:
// The body of the wav_jill" server.

fincludt Mav_jill.h"

int jill::raad(int indax) {
// Zf indax is out of bounds, return an error code.
if (index < 0 | | index >« AKRAY_SZZE) undo (HTOEX_OUT_OFJBOUNDS) leave;
return data[index];

>

void jill::write(int index, int value) {
// If index is out of bounds, return an error code.
if (index < 0 | | index >- ARXUVY_SZZE) undo (INDEX_OUT_OF_BOUNDS) leave;

// Zf value is negative, return an error code,
if (value < 0) undo (ILLEGAL_VALUE) leave;

data[index] « value;
}

jill::jill(x_string cmdline, x_string host) {
for (int i * 0; i < ARBAY__SIZE; i++) datati] » -1;

}

void jill::main() {}
Figure 2-3: Definition of the Jill Server

Read takes an index, and returns the value at that index. Read assumes that it is being invoked by a client that is
executing within a transaction. If the index is not within the array bounds, read executes the statement:

undo (INDEX__OUT_OF_BOUNDS) leave;
This aborts the client's transaction. The abort code INDEX_OUT_OF_BOUNDS can be used in an except clause,
as we will see when we examine the Jack application. If the index passes this test, then we simply return the value
in the data array at the index. Actually this is a little more subtle than that: the elements of d a t a arc
atomiClint's, and read returns an int. Thus, the C+f automatic coercion mechanisms call the coercion
operator on the indexed element before returning it. The coercion operator gets a read lock on the element before
returning its value. Write is very similar. It checks that the index is within the proper range, and that the value to
be written is not negative; if so, it assigns the new value to the element. Again, the overloaded assignment operator
of atamic_int takes care of getting the write lock on the atomic integer and logging its new value. The
important lesson to learn from the Jill server is how the right implementation of atomic_int made it possible to
treat atamic_int's almost as if they were regular int's within the bodies of the server's operations.

9

The constructor, jill, sets all the elements of data to -1 , as we specified in the description of Jill. Since all
servers implicitly inherit from the server_root class, the colon syntax tells the server_root constructor where to
find the server executable (first argument) and what machine to start it on (second argument). Finally, the server
operation main has no body but, as we have explained, every server must have a main operation.

2 . 1 A . The Jack Application
This section shows the code for the Avalon application, " J ack , " which uses a Jill server. Most Avalon applications
look very similar to Jack so in subsequent examples, we will omit the application-side code. When Jack starts, it
enters a transaction. It then executes user commands until the user enters the command to exit the program. The
user may read or write array elements, start nested transactions, and commit or abort transactions. Figure 2-4 shows
the first part of the code in av_ jack. av.

Like all Avalon programs, av_jack.av starts by including avalon.h. It also includes stream.h and
ctype.h from the C++ library, and av_jill.h to get the declaration of the Jill server. After the includes,
av_jack.av declares two more constants used as abort codes within this file and declares the two functions
defined in this file so that they can be used before they are defined. The next statement declares a global variable of
the Jill server type. The client program can invoke operations on this server object just as if it were a class object.

The main procedure prints out an initial message and locates the jill server. If it cannot find it, it calls the jill
constructor with the names of the executable (" a v j i l l ") and local host as arguments. It then repeatedly calls
jill_transaction until the value of quit_f lag indicates that the user wants to exit the program. Finally,
the print_help procedure prints out a help message.

Now we consider the heart of the Jack application, the jill_transaction function. jill_transaction
begins (Figure 2-5) by s t a r t i n g a transaction. It then enters a command loop, in which it remains until the
user decides to quit the program, or terminate (commit or abort) the current top-level transaction. It prints out a
prompt (which contains the current transaction nesting level, which it is given as an input.) Next, it gets an input
command, and enters a switch statement that processes that input. The V and 'w ' commands should be fairly
self-explanatory. Note that the read and write operations are invoked on the object denoted by the jill_srv
variable exacdy as if it were a normal class object. The V command uses the leave statement to commit and exit
the current transaction. The ' a ' command aborts the innermost transaction, using the undo leave statement. We
pass an abort code that indicates that the user aborted the transaction. The ' A ' command aborts the current top-level
transaction. This is implemented by first aborting the innermost transaction, using a special abort code. We will see
in a moment how this code is processed. The 'q ' command exits the program. To do this, we set the quit_f lag,
and exit jill_transaction. We use the special undo return statement to indicate that we not only want
to return from the current procedure, but also to abort any transactions started by that procedure. The *b' command
starts a nested transaction by making a recursive call to jill_transaction (with level incremented by one.)
An input of '?* causes the help message to be printed, and if the input command is none of these, a message to that
effect is printed.

The rest of jill_transaction is shown in Figure 2-6. The first statement in this figure is just after the body of
the loop that waited for the quit_f lag to be set (by a nested transaction.) If we reach here, we do the same thing
we did when the user entered a 'q ' : undo return. The next scope we leave is that of the transaction. This
transaction block has an except clause appended to it. An except clause allows access to the abort codes
provided in undo leave statements. If a transaction with an except clause aborts, the abort code, if there is one,
is assigned to the variable named after the except. The rest of the except statement is exactly like a switch on
this value. In jill_transaction, the first two cases handle user-requested aborts. In either case, we print out

10

av_jack.av:
#include <avalon.h>
#include <stream.h>
#include <ctype.h>
#include "avjill.h"

// Abort codes.
const int USER_JU5QUESTED_ABORT = 100;
const int TGPJLEVEL_ABORT = 101;

// Forward declarations.
void jlll_transaction(lnt, int*);
void print_help () ;

// Global server variable.
jill *jill_srv;

void main() {
int quit_flag = 0;

cout « "Looking for jill...\n";
jill_srv - (jill*) &locata_server ("jill");
if (jill_srv — NULL) {
cout « "Couldn't find jill. Starting a new jill...\n";
jill_srv m new jill ("avjill", "localhost");

}else cout « "Found jill\n";

cout « "Type ? for a list of commands.\n";
while (quit_flag < 2) {

quit_flag • 0;
jill_tranaaction(1, &quit_flag);
cout « "(Transaction was top level.)\n";

>

exit(0);
}

// prlnt__help — Prints the commands.

void print__help () {
cout « "\n\

Commands are: \n\
r Read array element.\n\
w Write array element.\n\
b Begin nested transaction.\n\
c Commit Innermost transaction.\n\
a Abort innermost transaction.\n\
A Abort top level transaction.\n\
q Abort top level transaction and quit program.\n\n";

>

Figure 2-4: First Part of the Jack Application

a message and return. If a top-level abort has been requested, then we set the q u i t _ f l a g to exit all enclosing
j i l l _ t r a n s a c t i o n calls. The third and fourth cases handle transactions that were aborted by server operations
because of improper inputs. They both print an appropriate message and return from j i l l _ t r a n s a c t i o n .
Finally, if the transaction aborted but the code is none of the above, then the abort must have been caused by the
underlying system. We can find out why by calling the routine a v a l o n _ a b o 2 r t _ c o d e _ t o _ s t r i n g , which
takes an integer argument (Section 3.4.6). All arms of the e x c e p t statement return from j i l l _ t r a n s a c t i o n ,
so if we exit the transaction and reach the last line of the procedure, the transaction must have committed. We print
a message to that effect.

// Interactively construct and perform a transaction utilizing tha jill
// server. Can ba callad recursively to construct nested transaction*.

void jill_transaction(int level, int* quit_flag_ptr) {
start transaction {
char cmd;

whila (! *quit_f lagjptr) {
int indax « 0;
int value = 0;

cout « "Jack[" « level « "] ";
while (is space (cmd =» getchar()));

switch (cmd) {
case ' r' : // Read an array element
cout « "Location to read: ";
cin » indax;
value = j i 1 l__s rv. read (index) ;
if (value = -1)
cout « "Location " « index « " is uninitialized.\n";

else
cout « "Value at location " « index « " is " « value « " . \n

break;

:ase ,w': // Write an array element
cout « "Location to write: ";
cin » index;
cout « "Value to write: ";
cin » value;
jill_srv.write(index, value);
cout « "Write succeeded.\n";
break;

;ase ' c' : // Commit this transaction
leave;

case ' a' : // Abort this transaction
undo (USER__REQUE S TED_ABORT) leave;

case 'A' : // Abort top-level transaction
undo (TOP_LEVEL_ABORT) leave;

case 'q' : // Abort to top level transaction and quit.
*quit_flag_ptr = 2;
undo return;

case 'b': // Begin a subtransaction
jill_transaction (level+1, quit_f lag_ptr) ;
continue;

case : // Print short help message
print_help();

breaks-

default :
cout « "Unknown command. Type ? for a list of commands.\n";

>

} // ...continued...
Figure 2-5: Beginning of the jill_transaction Function

12

// ...rest of transaction...
// Quit_flag from nastad transaction is non-zero, so we must undo return.
undo return;

} except (trans__status) {
case TOP_LEVEL_ABORT:
*quit_flag_ptr = 1;

case USER__REQUESTED__ABORT:
cout « "Transaction aborted as per request.\n";
return;

case ZMDEXjOOTjOF^BOUNDS:
cout « "Transaction aborted: Array index out of bounds.\n";
return;

case ILLEGAL__VALUE:
cout « "Transaction aborted: Attempt to write a negative value.\n";
return;

default:
cout « avalon_abort_code_to_string(trans__status) « "\n";
return;

>

// Otherwise, we committed.
cout « "Transaction committed.\n";

>

Figure 2-6: End of the jill_transaction Function

2 . 2 . FIFO Queue
Let us consider how one would implement an atomic first-in-first-out (FIFO) queue. The easiest way to define such
a queue is to inherit from atomic. A limitation of this approach is that enq and deq operations would both be
classified as writers, permitting litde concurrency. Instead, we show how a highly concurrent atomic FIFO queue
can be implemented by inheriting from subatomic. Our implementation is interesting for two reasons. First, it
supports more concurrency than commutativity-based concurrency control schemes such as two-phase locking. For
example, it permits concurrent enq operations, even though enq's do not commute. Second, it supports more
concurrency than any locking-based protocol, because it takes advantage of state information. For example, it
permits concurrent enq and deq operations while the queue is non-empty.

In order to permit such concurrency it is necessary to provide:
1. A way to compare whether one transaction has committed with respect to another. In particular,

suppose A and B are concurrent transactions:
• If it is known that A has committed with respect to transaction B, then B should be allowed to

observe the effects of A ' s operations. Thus, B need not wait and may proceed.

• If it is not known that A has committed with respect to B, then B must not do anything that
depends on A 's effects, since A may still commit or abort. B should also not invalidate any
results that A may have observed, since B may commit before A. Thus, B might have to wait till
A completes.

2. Exclusive access to an object per operation. That is. while transactions may go on concurrendy, we
need to prevent individual operations from interfering with each other.

Fortunately, Avalon provides the first capability with the class t r a n s_id. which gives us a way to test transaction-
commit order, and the second with the class subatomic, which gives us a way to provide mutual exclusion per
object.

In Avalon when a transaction commits, the run-time system assigns it a timestamp generated by a logical clock [8].
Atomic objects are expected to ensure that all transactions are serializable in the order of their commit timestamps, a
property called hybrid atomicity [15]. This property is automatically ensured by two-phase locking protocols [3],

13

such as that used for the a tomic jn t ' s in Jill's array. However, additional concurrency can be achieved by taking the
timestamp ordering explicitly into account. The trans_id class provides operations that permit run-time testing
of transaction-commit order, and thus of serialization order. In particular, trans_id provides a partial-ordering
function <: for transactions with trans_id's t l and t2, if t l < t2 evaluates to true, then if both transactions commit, t l
is serialized before t2. Note that < induces a partial order on trans_id's; as transactions commit they become
comparable. Section 4.1.2 describes this type in more detail.

Class subatomic provides operations that give transactions exclusive access to objects. Each subatomic object
has a short-term lock, similar to a monitor lock, used to ensure that concurrent operations do not interfere. Avalon's
special control construct, the when statement, is used as a kind of conditional critical region:

when (<TEST>) {
<...BODT. ..>

}

The calling process atomically acquires the object's short-term lock, blocks until the condition becomes true
(releasing the lock if it is not), and then executes the body. The lock is released after the body is executed. Any
changes made to the object while the lock is held will not be backed up to stable storage until sometime after the
lock is released. A transaction's changes are guaranteed to be backed up before it commits.

2.2.1. The Queue Representation
Figure 2-7 shows that information about enq invocations is recorded in a struct. The item component is the
enqueued item, the enqr component is a trans_id generated by the enqueuing transaction, and the last component
defines a constructor operation for initializing the struct. Information about deq invocations is recorded similarly in
decree ' s .

struct enq_rec {
int item; // Item enqueued.
trans__id anqr; // Who enqueued it.
enq_rec(int i. trana__idfi t) { it am = i; anqr = t; }

> ;

struct deq_rec {
int item; // Item dequeued.
trans__id enqr; // Who enqueued it.
trans_id deqr; // Who dequeued it.
deq_rec(int itmr trans_id& en, trans_id& da);
{ item = itm; enqr = en; deqr = da; }

>;

class atomlc__int__queue : public subatomic {
deq_stack deqd; // Stack of deq records.
enqjheap enqd; // Heap of enq records.

public:
atomic_int__quaue() <}; // Create empty queue,
void enq(int item); // Enqueue an item,
int deq(); // Dequeue an item,
void commit (trans__id&) ;
void abort(trans_id&);
~atomlc__int__queue () ;

>;

Figure 2-7: Queue Representation

The queue is represented as follows: The deqd component is a stack of decree ' s used to undo aborted deq

14

operations. The enqd component is a partially ordered heap of enq_rec's, ordered by their enc^_tid fields. A
partially ordered heap provides operations to enqueue an enq_rec, to test whether there exists a unique oldest
enqjrec, to dequeue it if it exists, and to keep and discard all enq_rec's committed with respect to a particular
transaction identifier.

Our implementation satisfies the following representation invariant: First, assuming all enqueued items are distinct,
an item is either "enqueued' or "dequeued," but not both: if an enq_rec containing [item, enqr] is in the
enqd component, then there is no deq_rec containing [item, enqr, deqr] in the deqd component, and
vice-versa. Second, the stack order of two items mirrors both their enqueuing order and their dequeuing order: if
dl is below d 2 in the deqd stack, then dl->enqr < d2->enqr and dl->deqr < d2->deqr. Finally, any
dequeued item must previously have been enqueued: for all decree ' s d, d->enqr < d->deqr.

2.2.2, The Queue Operations
Enq and deq operations (Figure 2-8) may proceed under the following conditions: A transaction A may dequeue
an item if (1) the most recent dequeuing transaction is committed with respect to A, and (2) there exists a unique
oldest element in the queue whose enqueuing transaction is committed with respect to A. The first condition ensures
that A will not have dequeued the wrong item if the earlier dequeuer aborts, and the second condition ensures that
there is something element for A to dequeue. Similarly, A may enqueue an item if the last item dequeued was
enqueued by a transaction B committed with respect to A. This condition ensures that A will not be serialized before
B, violating the FIFO ordering.

void atoraic_int_queue: :enq(int ltam) {
trana_id tid = trans_id();
whan (daqd.ia_ampty<) || (deqd. top () ->anqr < tid))

enqd.Insert(item, tid);
>

int atomlc__int__queue: :deq() {
trana_id tid = trana_id<);
when ((deqd.is_empty() || deqd. top ()->deqr < tid)

£& enqd.mln_exists () &£ (enqd.get_min() ->enqr < tid)) {
enq_rec* min__er = enqd.delete_min () ;
deq_rec dr (*min__er, tid);
deqd.push (dr);
return mln__er->item;

}
>

Figure 2-8: Queue Operations

Both enq and deq first obtain a new, unique trans_id for the calling transaction. The constructor creates and
commits a " d u m m y " subtransaction, returning the subtransaction s trans_id to the calling transaction (i.e.. parent).
Since this constructor call returns a unique trans_id, a parent transaction can thus generate multiple t r ans jc l s
ordered in the serialization order of their creation events. We exploit this property here by using this trans_id to tag
the current enq (deq) operation.

As for the atomic_int example, the modifications done by enq and deq must be wrapped in a pinning construct
to ensure persistence (that is, changes are made to stable storage).

We use the when statement to guard against simultaneous access to the queue object itself. Enq checks whether the
item most recendy dequeued was enqueued by a transaction committed with respect to die caller. If so, the new

15

trans_id and the new item are inserted in enqd. Otherwise, the transaction releases the short-term lock and tries
again later. Deq tests whether the most recent dequeuing transaction has committed with respect to the caller, and
whether enqd has a unique oldest item. If the transaction that enqueued this item has committed with respect to the
caller, it removes the item from enqd and records it in deqd. Otherwise, the caller releases the short-term lock,
suspends execution, and tries again later.

2.2.3. Commit and Abort
Avalon lets programmers define type-specific commit and abort operations for atomic data types inheriting from
class subatomic. They each take a trans_id as an argument. The Avalon run-time system automatically calls
an object's abort operation whenever a transaction that may have modified the object aborts. Whenever a
top-level transaction commits, the system calls the commit operation on all subatomic (and atomic) objects that the
transaction (or any of its descendants) may have modified. We make no guarantee about the arrival times of commit
operations, i.e., when the run-time system is informed of a transaction's commit. In particular, if T l commits before
T2, the run-time might execute T2 's commit before T l ' s . In addition, the order in which commit (abort) operations
for a given transaction are applied to multiple objects is left unspecified.

Figure 2-9 gives the code for the queue's commit and abort operations. When a top-level transaction commits, it
discards decree ' s no longer needed for recovery. The representation invariant ensures that all deqjrec's
below the top are also superfluous (they have all committed with respect to the top), and can be discarded. Abort
has more work to do. It undoes every operation executed by a transaction committed with respect to the aborting
transaction. It interprets deqd as an undo log, popping records for aborted operations, and inserting the items back
in enqd. Abort then flushes all items enqueued by the aborted transaction and its descendants.

void atomic_int_queue: : commit (trana__id& commit tar) {
whan (TRUE)

if (!daqd.is__empty() && descendant(deqd.top()->deqr, committer)) {
deqd.clear() ;

>

>

void atomic__int__queue: : abort (trans_idfi aborter) {
when (TRUE) {

while (!deqd. is_empty () && descendant (deqd. top () ->deqr, aborter)) (
deq_rec* d = deqd. pop () ;
enqd. insert (d->item, d->enqr) ;

>

enqd.discard(aborter);
}

>

Figure 2-9: Queue's Commit and Abort

Notice that commit and abort for the queue example use the descendant operation of trans_id's rather
than the < operation. For example, when we are aborting, we want to remove all items enqueued by transactions
that we know are aborting, i.e., the aborting transaction (abort's argument) and all of its descendants. If we were
to use <, an item enqueued by a separate top-level transaction that committed before the aborting transaction would
be incorrectly deleted.

16

2.2.4. Enq and Deq Synchronization Revisited
Let us look more carefully at the synchronization conditions on enq and deq. Consider why enq must wait for the
enqueuer of the last dequeued item to commit. If it does not wait, then it is possible that a dequeuer may get the
wrong head of the queue as a result of the commit of some concurrent enqueue. For example, suppose a transaction
A starts two subtransactions A l and A2. A l enqueues 5 and commits. A2 does a dequeue (A2 can proceed because
A l has committed with respect to A2), gets a 5, but does not yet commit. Now suppose another top-level
transaction B starts and tries to enqueue 7. (B and A2 are both concurrent.) If B does not wait then it proceeds to
put 7 at the head of the queue (A2 has temporarily claimed the 5). If B commits before A (the parent transaction of
A l and A2), then B is serialized before A, implying that A2 should get a 7, not a 5. In short, the FIFO behavior of
the queue is violated because B did not wait for A to commit.

The condition on enq is sufficient as well. In particular, an enqueuing transaction does not need to wait for the
dequeuer of the last dequeued item to commit because in some circumstances it can proceed even if the dequeuer
has not finished. For example, suppose transactions A, B, and C are top-level transactions. A enqueues 5 and
commits. B dequeues 5, but remains active. If C wants to enqueue, it should be allowed to proceed even though B
(die dequeuer of the last dequeued item) has not completed. Here, if B commits, it does not matter whether B
commits before or after C; B will correctly see 5 as the head of the queue and C will correctly place 7 as the new
head. If B aborts, then C will correctly place 7 after 5, which remains at the head of the queue. Thus, C can proceed
without waiting for B to complete because there is no way C can be serialized before A and it does not matter in
which order B and C are serialized.

It is easier to see why a dequeueing transaction, B, must wait for the dequeuer, A, of the last dequeued item to be
committed with respect B. If B proceeds to dequeue without waiting for A to complete, then it will have dequeued
the wrong item if A aborts.

2.3. Atomic Counters
As our final example, suppose we wish to implement an atomic counter with operations to increment (inc),
decrement (dec), and test for zero (is_zero). This counter could be used to represent a joint checking account:
One party might be depositing money at one branch, another party may be withdrawing money from somewhere
else, and a third party, perhaps an auditor, may be searching for depleted accounts. This is not quite realistic since
one could not find out the exact balance of the account (there is no read operation), but adding that function would
complicate our example.

By deriving from class atomic, we can easily implement the atomic counter as shown in Figure 2-10. (Recall that
class atomic provides read_lock and write_lock operations.) The counter is represented by a
nonnegative_int, a class supporting all the usual arithmetic operations on integers, with the property that a
non-negative integer can have a value only greater than or equal to zero. (The overloaded subtraction operation is a
" m o n u s " operation.) Again, one can see that building a new atomic class from class atomic is fairly
straightforward: Before performing its real work, an accessing operation ("reader") should first obtain a rend lock:
a modifying operation ("wri ters") should first obtain a write lock and then pin the object.

This implementation, however, does not realize the greatest possible concurrency. From the abstract viewpoint of
our atomic counter, incrementing and decrementing transactions can go on concurrendy (inc and dec are "b l ind"
writes since they do not return any results); moreover, under certain conditions, it should be possible to return a
result to is_zero even before all incrementing and decrementing transactions have completed. The
implementation in Figure 2-10 does not support this degree of concurrency since it is based on standard two-phase
read/write locking.

17

class atomlc__counter: public atomic {
nonnegative_int count;

public:
atomlc__counter() {pinning() count =s 0;} // initialize counter
void inc <);
void dec();
bool is_zero();

>

void atomic__counter: : inc () {
write_lock() ;
pinning () count +* 1;

}

void atomic__counter:: dec() {
write_lock();
pinning () count -= 1; // will return max of count-1 and 0

}

bool is_zero(); {
read__lock() ;
return (count = 0);

>

Figure 2-10: Atomic Counter Derived from Class Atomic

Thus, as for the queue example, we will use trans_id's and subatomic objects as an alternative way to build atomic
objects.

2.3.1. Counter Representation
Let us walk through the representation of the atomic counter by beginning with some auxiliary structures shown in
Figure 2-11. A counter_range will keep track of the range of possible values of the counter in order to permit
is_zero to return possibly before transactions have completed. We will record in a log information about each
transaction's sequence (op_seq) of inc and dec operations. Each log_entry consists of a transaction's
trans_id and the sequence of its operations. Assume we have defined elsewhere (recoy_sorted_alist . h)
types for a recoverable sorted association list (recov_sorted_alist), parameterized over the tag type (e.g.,
trans_id) and value type (e.g., pointer to log_entry's) of the pairs to be inserted in the list, an equality function (e.g.,
on trans_id's) used for list insertion, lookup, and removal, and a comparison function (e.g., < on transjid's) used for
ordering the elements in the list. Its iterative version, (recov_sorted_alist_ittr), similar to that used in the
C++ Manual (p. 183 of [14]), provides a method for looping over all elements in the list, guaranteeing that elements
are yielded in sorted order. Our (recoverable sorted association) list will be sorted by transjid 's partial order < so
that we can iterate over transactions in commit-time order.

Finally, we represent the counter by a non-negative integer (count) and a transaction log (log_t) (Figure 2 - 1 2) .

The value of the non-negative integer will be determined by operations of only top-level committing transactions

2.3.2. Counter Operations
Implementations of the inc and dec operations are shown in Figure 2-13. They use the internal auxiliary functions
shown in Figure 2-14. Inc and dec attempt to record themselves in the log. Add_op_to_log first calls the
trans_id constructor with the value CURRENT to obtain the trans J d of the calling transaction (compare this to a
different call with no argument in the enq operation of Figure 2-8). If the addition of the operation would not

18

#include <nonnegative_int.h>

struct counter_range {
nonnegative_int lo;
nonnegative_int hi;
counter__range (counter_range&, op_seq*);
counter_range(counter_range£ cr) { lo = cr.lo, hi • cr.hi; }
counter_range (int 1, int h) { lo » 1; hi = h; }
counter_range(int i) { lo • hi • i;)
counter__range () { init (); }
void init() { lo * 1; hi - 0; }
bool unsat() { return (lo && !hi); }

counter__range£ operator-** (int i) { lo = lo + i; hi = hi + i;
return *this; }

counter_rangefi operators (countarjrange* cr)
{ lo a cr.lo; hi =• cr.hi; return *this; }

> ;

struct op__seq : public recoverable {
bool to_inc;
op_seq* ops;

op_seq(bool b);
~op__seq() (delete ops; }
op__seq£ operatox« (op__seq*) ;

In­

struct log__entry :public recoverable {
trans_id common_id;
count er__range query__range;
op_aeq* ops;

log_entry(trana_id£);
log__entry (trans__idfi, bool);
log__entry (trans__id&, counter_rangefi

~log__entry ()

bool operator< (log__entry& la)
bool operator>(log_entry& le)
log__entry& operators* (log__entry£ le)

{ delete ops; }

{ return (common__id < le. coramon_id) ; }
{ return (coonon^id > le. common_id) ; }

// Load recoverable list from library
#include "recov_sorted_alist.h"
recov_sorted_alistdaclare(trans_id, Plog_entry, tid_eq, tidbit) ;
recov__sorted_alistlttrdacl (trana_id, Plog_entry, tid_eq, tid_lt) ;

typedef recov_sorted_aliat (trans_id, Plog_entry, tid_*q, tidbit) log_t;
typedef recov_sorted_alist_ittr (trans_id, Plog_entry, tid_eq, tid_lt) logittr;

Figure 2-11: Auxiliary Structures for Counter

19

class atomic_counter : public subatomic {
nonnegative_int count;
log_t log;
// internal functions
counter_range* is_zero_work(trans__id&) ;
boo 1 is__zero_in_range (count er__range&);
bool is_zero__value (counter_range&) ;
void add_op_to__log (bool) ;
bool add_op__to_log_w©rk(trans_idfi, bool, log_entry*&) ;

public:
void inc();
void dac();
bool is_zero();
atomic_counter() (count =» 0; }
void commit(trans_id& t);
void abort(trans_id& t);

> ;

Figure 2-12: Atomic Counter Derived from Class Subatomic

// Add increment operation to log

void atomic_counter: : inc () { add_op_to_log (TRUE) ; }

// Add decrement operation to log
void atomic_counter: :dec() { add_op_to_log(FALSE) ; }

Figure 2-13: Counter's Inc and Dec Operations

change the possible view of the counter as seen by other active transactions, the operation proceeds. Otherwise, the
operation is forced to wait until all interfering transactions terminate (by either committing or aborting).

An example of a blocked case is as follows: Assume a transaction tests for the zero state of the counter and receives
a positive (i.e., TRUE) result. Until that transaction commits (or aborts) no other transaction can increment the
counter, since that would change its state from zero to non-zero. Other transactions are free to decrement the
counter, however, as this does not alter the visible state of the counter.

The add_op_to_log routine uses a when construct to ensure exclusive access to the log during the operation
insertion. Prior to that, however, it verifies that the insertion of the operation record is possible by calling
add_op_to_log_work, which examines the counter from views by all active transactions whose entries are
present in the log. The add_op_to_log_work returns FALSE if the operation cannot be added at this time,
causing the when construct to pause and be reactivated at a later time when the situation changes. When the
condition in the when statement succeeds, add_op_to_log adds the operation to an existing log record (indexed
by the current trans_id) if possible, creating a new record otherwise.

Much of the work for the is_zero predicate (Figure 2-15) is done by the auxiliary function i s _ z e r o _ " ' o r k
(Figure 2-16), which constructs a range of possible values for the counter, given the committed value and the log.
Is_zero first obtains the trans_id of the calling transaction. Then is_zero_work iterates over all log entries,
constructing the range of counter values. For each log entry, the logged operations are added together to determine
what the net effect of committing the transaction represented by the trans_id would be. Then, the net value is added
to the high bound or subtracted from the low bound, as appropriate. Operations of uncommitted transactions enlarge
the range of possible values. If the low end of the range is bounded below by a positive integer, is_zero returns
- 1 . If the range starts and ends at zero, then it returns 1. In all other cases (the range starts at zero and ends at a
non-zero integer), it returns 0.

