
Intersection cuts from multiple rows: a disjunctive

programming approach

Egon Balas∗ Andrea Qualizza∗†

April 2012

Abstract

We address the issue of generating cutting planes for mixed integer programs from
multiple rows of the simplex tableau with the tools of disjunctive programming. A
cut from q rows of the simplex tableau is an intersection cuts from a q-dimensional
parametric cross-polytope, which can also be viewed as a disjunctive cut from a 2q-term
disjunction. We define the disjunctive hull of the q-row problem, describe its relation
to the integer hull, and show how to generate its facets. For the case of binary basic
variables, we derive cuts from the stronger disjunctions whose terms are equations.
We give cut strengthening procedures using the integrality of the nonbasic variables
for both the integer and the binary case. Finally, we discuss some computational
experiments.

1 Introduction: intersection cuts and disjunc-

tive programming

In the last few years a considerable effort has been devoted to generating valid cuts for
mixed integer programs from multiple rows of the simplex tableau, with a focus on cuts
from two rows. This research was pioneered by the 2007 paper of Andersen, Louveaux,
Weismantel and Wolsey [1], followed by Borozan and Cornuéjols [13], Cornuéjols and
Margot [17], Dey and Wolsey [19] and many others ([11, 12, 18, 20]; for a recent survey
see [15]).

All of these papers view and derive the multiple-row cuts as intersection cuts, a
concept introduced in [2], i.e. cuts obtained by intersecting the extreme rays of the
cone defined by a basic linear programming solution with the boundary of a convex
set whose interior contains no feasible integer point. Intersection cuts are equivalent
to disjunctive cuts, and in this paper we apply the tools of disjunctive programming
to the study of cuts from multiple rows of the simplex tableau. Two early versions of

∗Carnegie Mellon University, Tepper School of Business, Pittsburgh, PA 15213. Research supported by
NSF Grant #DMI-352885 and ONR contract #N00014-03-1-0133

†Currently at Amazon.com Research, Seattle, WA.

1

this paper were presented at the 2009 Spring Meeting of the AMS in San Francisco [5]
and at the 20th ISMP in Chicago [6].

The structure of our paper is as follows. In the remainder of this section we out-
line the connection of intersection cuts with disjunctive programming. In section 2 we
introduce the concept of disjunctive hull associated with q rows of the simplex tableau
and examine the relation between the disjunctive hull and the integer hull. We then
give a geometric interpretation of cuts from q rows of the simplex tableau as cuts from
a q-dimensional parametric cross-polytope (section 3), followed by a theorem relating
the facets of the disjunctive hull to those of the integer hull (section 4). In section 5 we
specialize these results to the case of q = 2. The next section (6) discusses the strength-
ening of our cuts when some of the nonbasic variables are integer-constrained. Section 7
deals with the 0-1 case, when the stronger disjunction whose terms are equations can
be used to derive stronger cuts. Finally, section 8 describes some computational ex-
periments.

*

Suppose a Mixed Integer Program is given in the form of q rows of the simplex
tableau

x = x̄+
∑

j∈J

rjsj, x ∈ Z
q
+, s ∈ R

n
+ (1.1)

where x̄ is a basic feasible solution to LP, the linear programming relaxation of a MIP,
and we are interested in generating an inequality that cuts off x̄ but no feasible integer
point.

Theorem 1.1. (Balas [2]). Let T ⊆ R
q be a closed convex set whose interior contains

x̄ but no feasible integer point. For j ∈ J , let s∗j := max{sj : x̄+ rjsj ∈ T}. Then the

inequality αs ≥ 1, where αj =
1
s∗j
, j ∈ J , cuts off x̄ but no feasible integer point.

The inequality αs ≥ 1 is known as an intersection cut. Theorem 1.1 is illustrated

x̄
T

(a)

T

x̄

(b)

Figure 1: Two intersection cuts

by Figure 1. In both cases (a) and (b) the convex set T consists of the intersection
of two halfspaces, but in (b) the two halfspaces are defined by hyperplanes parallel

2

to one of the coordinate axes, and so their intersection defines an infinite strip. The
intersection cut from this latter set T is the Gomory Mixed Integer cut (GMI) [21].

This particular class of intersection cuts, the GMI cuts, has played a crucial role
in making mixed integer programs practically solvable. These cuts are derived from a
convex set of the form ⌊x̄i⌋ ≤ xi ≤ ⌈x̄i⌉, where xi = x̄i +

∑
j∈J r

i
jsj is one of the rows

of an optimal simplex tableau and ⌊x̄i⌋ < x̄i < ⌈x̄i⌉. More generally, cuts obtained
from a convex set of the form π0 ≤ πx ≤ π0 + 1, where (π, π0) is an integer vector
with gcd(π) = 1, are known in the literature as split cuts [16]. It is then natural to ask
the question whether intersection cuts derived simultaneously from several rows of a
simplex tableau have some properties that distinguish them from split cuts. It was this
question that has led to the investigation of intersection cuts from maximal lattice-free
convex sets by [1, 13] and others.

We propose a different approach to the same problem, which promises some com-
putational advantages. The approach is that of Disjunctive Programming, a nat-
ural outgrowth of the study of intersection cuts. To see the connection, consider
an intersection cut from a polyhedral set with the required properties, of the form
T := {x : dix ≤ di0, i = 1, . . . ,m}. Clearly, the requirement that intT should con-
tain no feasible integer point, can be rephrased as the requirement that every feasible
integer point should satisfy at least one of the weak complements of the inequalities
defining T , i.e. should satisfy the disjunction

m∨

i=1

(dix ≥ di0). (1.2)

Therefore an intersection cut from T can be viewed as a disjunctive cut from (1.2).
While these two cuts are essentially the same, the disjunctive point of view opens up
new perspectives. Thus, suppose that in addition to (1.2), all feasible solutions have
to satisfy the inequalities Ax ≥ b. Then one way to proceed is to generate all valid
cutting planes from (1.2) and append these to Ax ≥ b. The resulting system will be

P :=

{
x ∈ R

n : (Ax ≥ b) ∩ conv

(
m∨

i=1

(
dix ≥ di0

)
)}

.

But another way to proceed is to introduce Ax ≥ b into each term of the disjunction
(1.2), i.e. replace (1.2) with

m∨

i=1

(
Ax ≥ b
dix ≥ di0

)
, (1.3)

and take the convex hull of this union of polyhedra:

Q := conv

(
m∨

i=1

(
Ax ≥ b
dix ≥ di0

))

Now it is not hard to see that Q ⊆ P , and in fact Q is in most cases a much tighter
constraint set than P . We illustrate the difference on a 2-term disjunction. Given an
arbitrary Mixed Integer Program, let (π, π0) be an integer vector with a component πj
for every integer-constrained variable. Then the disjunctive cut derived from

πx ≤ π0 ∨ πx ≥ π0 + 1 (1.4)

3

is equivalent to the intersection cut derived from the convex set

π0 ≤ πx ≤ π0 + 1,

illustrated in Figure 1. On the other hand, the disjunction

(
Ax ≥ b
πx ≤ π0

)
∨

(
Ax ≥ b
πx ≥ π0 + 1

)
(1.5)

gives rise to an entire family of cuts, whose members are determined by the multipliers
u, v associated with Ax ≥ b in the two terms of this more general disjunction

(π − uA)x ≤ π0 − ub ∨ (π + vA)x ≥ π0 + vb+ 1 (1.6)

Cuts derived from a disjunction of the form (1.4) are called split cuts, a term that
reflects the fact that (1.4) splits the space into two disjoint half-spaces. Cook, Kannan
and Schrijver [16] who coined this term also extended it to the much larger family of
cuts derived from disjunctions of the form (1.6).

Disjunctive sets of the form (1.3) or (1.5) represent unions of polyhedra, and the
study of optimization over unions of polyhedra is known as Disjunctive Programming.
Its two basic results are a compact representation of the convex hull of a union of poly-
hedra in a higher dimensional space, and the sequential convexifiability of facial dis-
junctive sets [4, 3]. The application of disjunctive programming to mixed 0-1 programs
has become known as the lift-and-project method [7]. Here we apply this approach to
the study of intersection cuts from multiple rows of the simplex tableau.

2 Integer and disjunctive hulls

Consider again a system defined by q rows of the simplex tableau, this time without
the integrality constraints:

x = f +
∑

j∈J

rjsj, sj ≥ 0, j ∈ J, (2.1)

where f , rj ∈ R
q, j ∈ J := {1, . . . , n}, and assume 0 < fi < 1, i ∈ Q := {1, . . . , q}.

This assumption can be made without loss of generality since setting x′i = xi − ⌊fi⌋
and f ′

i = fi − ⌊fi⌋, i ∈ Q, we have that x′i, f
′
i , i ∈ Q satisfy the assumption. The set

PL := {(x, s) ∈ R
q × R

n : (x, s) satisfies (2.1)} (2.2)

is the polyhedral cone with apex at (x, s) = (f, 0) defined by the constraints that are
tight for this particular basic solution. Imposing the integrality constraints on the basic
components we get the mixed integer set

PI := {(x, s) ∈ PL : xi integer, i ∈ Q}, (2.3)

whose convex hull, convPI , is Gomory’s corner polyhedron [22], or the integer hull
of the MIP over the cone PL. The main objective of the papers mentioned in the
introduction was to study the structure of PI for small q, with a view of characterizing
the facets of convPI and minimal valid inequalities for PI .

4

Consider now the following disjunctive relaxation of PI , obtained by replacing the
integrality constraints on xi with the simple disjunctions xi ≤ 0 ∨ xi ≥ 1, i ∈ Q:

PD := {(x, s) ∈ PL : xi ≤ 0 ∨ xi ≥ 1, i ∈ Q}. (2.4)

Like PI , PD is a nonconvex set. Its convex hull, convPD, which we call the simple
disjunctive hull, is a weaker relaxation of PI than convPI , i.e. convPD ⊇ convPI , but
it is easier to handle, since it is the convex hull of the union of 2q polyhedra. Thus one
can apply disjunctive programming and lift-and-project techniques to generate facets
of convPD at a computational cost that for small q seems acceptable. In this context,
the crucial question is of course, how much weaker is the relaxation convPD than
convPI? We will pose this question in a more specific form that will enable us to give
it a practically useful answer: when is it that a facet defining inequality for convPD is
also facet defining for convPI? In other words, which facets of the (simple) disjunctive
hull are also facets of the integer hull? Before addressing this question, however, we will
take a side-step, by introducing a third kind of hull. If we strengthen the disjunctive
relaxation of PI by replacing the inequalities in the disjunctions xi ≤ 0 ∨ xi ≥ 1,
i ∈ Q, with equations, we get the set

P=
D := {(x, s) ∈ PL : xi = 0 ∨ xi = 1, i ∈ Q}, (2.5)

whose convex hull, convP=
D , we call the 0-1 disjunctive hull. For a general mixed

integer program, the 0-1 Disjunctive Hull is not a valid relaxation, in that it may cut
off nonbinary feasible integer points. Indeed, we have

convPD ⊇ convPI ⊇ convP=
D ,

where both inclusions are strict and are valid in the context of mixed integer 0-1
programs only, since all the non-0-1 integer points that it cuts off are infeasible. Hence
convP=

D is equivalent to the convex hull of PI ∩{x : xi ≤ 1, i ∈ Q}, or the integer hull
of PI reinforced with the bounds on the xi. However, as we will see later on, finding
facets of convP=

D requires roughly the same computational effort as finding facets of
convPD.

The upshot of this is that for the important class of mixed integer 0-1 programs,
all facet defining inequalities of convP=

D are facet defining for the integer hull. Fur-
thermore, from the sequential convexification theorem of disjunctive programming, all
such inequalities are of split rank ≤ q, i.e. they can be obtained by applying a split
cut generating procedure at most q times recursively.

The set PD of (2.4) is the collection of those points (x, s) ∈ R
q×R

n satisfying (2.1)
and xi ≤ 0 ∨ xi ≥ 1, i ∈ Q. Put in disjunctive normal form, this last constraint set
becomes 



x1 ≤ 0
x2 ≤ 0

...
xq ≤ 0


 ∨




x1 ≥ 1
x2 ≤ 0

...
xq ≤ 0


 ∨ · · · ∨




x1 ≥ 1
x2 ≥ 1

...
xq ≥ 1


 (2.6)

Each term of (2.6) defines an orthant-cone with apex at a vertex of the q-dimensional
unit cube. These 2q orthant-cones are illustrated for q = 2 in Figure 2.

5

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�

�
��

�
�
�
�
�

�
�
�
�

�
�
�

s

0,1

s

0,0

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�

�
��

�
�
�
�
�

�
�
�
�

�
�
�

s

1,1

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�

�
��

�
�
�
�
�

�
�
�
�

�
�
�

s

1,0

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�

�
��

�
�
�
�
�

�
�
�
�

�
�
�

Figure 2: Orthant-cones for the case q = 2

Using (2.1) to eliminate the x-components and denoting by ri the i-th row of the
q × n matrix R = (rj)nj=1 , (2.6) can be represented in R

n as s ≥ 0 and




−r1s ≥ f1
−r2s ≥ f2

...
−rqs ≥ fq


 ∨




r1s ≥ 1− f1
−r2s ≥ f2

...
−rqs ≥ fq


 ∨ · · · ∨




r1s ≥ 1− f1
r2s ≥ 1− f2

...
rqs ≥ 1− fq


 (2.7)

If P
(n)
i ⊆ R

n denotes the polyhedron defined by the i-th term of this disjunction

plus the constraints s ≥ 0, then PD can be defined in n-space as P
(n)
D = ∪ti=1P

(n)
i

where t = 2q. Furthermore, we have the following:

Theorem 2.1. convP
(n)
D is the set of those s ∈ R

n satisfying s ≥ 0 and all the
inequalities αs ≥ 1 whose coefficient vectors α ∈ R

n satisfy the system

α+ r1u11 + · · ·+ rqu1q ≥ 0

α − r1u21 + · · ·+ rqu2q ≥ 0

.

.

.

.

.

.

.

.

.

α − r1ut1 − · · · − rqutq ≥ 0

f1u11 + · · ·+ fqu1q ≥ 1

(1−f1)u21 + · · ·+ fqu2q ≥ 1

.

.

.

.

.

.

(1−f1)ut1 + · · ·+ (1−fq)utq ≥ 1

(2.8)

for some uik ≥ 0, i = 1, . . . , t = 2q, k = 1, . . . , q.

Proof. Applying the basic theorem of Disjunctive Programming to convP
(n)
D we in-

troduce auxiliary variables si ∈ R
n, zi ∈ R, i = 1, . . . , t = 2q, and obtain the higher-

dimensional representation

6

s − s1 −s2 . . . −st = 0

−r1s1 −f1z1 ≥ 0

−r2s1 −f2z1 ≥ 0

...
...

...

−rqs1 −fqz1 ≥ 0

r1s2 −(1−f1)z2 ≥ 0

−r2s2 −f2z2 ≥ 0

...
...

...

−rqs2 −fqz2 ≥ 0

. . .
. . .

...

−r1st −(1−f1)zt ≥ 0

−r2st −(1−f2)zt ≥ 0

...
...

...

−rqst −(1−fq)zt ≥ 0

z1 +z2 + · · · +zt = 1

si ≥ 0, i = 1, . . . , t; zi ≥ 0, i = 1, . . . , t

(2.9)

Projecting this system onto the s-space with multipliers α; u11, . . . , u1q; u21, . . . , u2q;
. . .; ut1, . . . , utq, we obtain

α + r1u11 + · · ·+ rqu1q ≥ 0

..

.
. . .

..

.

α −r1ut1 − · · · − −rqutq ≥ 0

−β + f1u11 + · · ·+ fqu1q ≥ 0

...
. . .

...

−β +(1−f1)utf1 + · · ·+ (1−fq)utq ≥ 0

uik ≥ 0, i = 1, . . . , t, k = 1, . . . , q

(2.10)

Applying the normalization β = 1 (clearly β = −1 does not yield any cuts since it
makes (2.10) unbounded) we obtain the representation given in the theorem.

In order to restate the system (2.8) in a more concise form, for each i ∈ {1, . . . , t}
we partition the index set Q := {1, . . . , q} into

Q+
i := {k ∈ Q : uik has coefficient vector rk}

Q−
i := {k ∈ Q : uik has coefficient vector −rk},

7

with Q+
i ∪Q−

i = Q, i = 1, . . . , t = 2k. Then (2.8) can be restated as

α +
∑(

rkuik : k ∈ Q+
i

)
−
∑(

rkuik : k ∈ Q−
i

)
≥ 0

∑
(fkuik : k ∈ Q+

i) +
∑

((1 − fk)uik : k ∈ Q−
i) ≥ 1, i = 1, . . . , t

uik ≥ 0, i = 1, . . . , t = 2q, k = 1, . . . , q

(2.8′)

The system (2.8′) has several interesting properties described in the next few propo-
sitions.

Proposition 2.2. For any p ∈ R
n, p > 0, all optimal basic solutions to the cut

generating linear program

min{pα : (α, u) satisfies (2.8′)} (CGLP)Q

are of the form
αj = max{α1

j , . . . , α
t
j}, (2.11)

where
αi
j := −

∑
(rkj uik : k ∈ Q+

i) +
∑

(rkj uik : k ∈ Q−
i), (2.12)

i = 1, . . . , t = 2q, with the uik satisfying (2.8 ′).

Proof. The constraints of (2.8′) require

αj ≥ αi
j , i = 1, . . . , t, j = 1, . . . , n

Suppose there is an optimal solution to (CGLP)Q such that αj∗ > max{αi
j∗

: i =
1, . . . , t} for some j∗ ∈ {1, . . . , n}. Then setting αj∗ equal to the maximum on the
righthand side, and leaving αj unchanged for all j 6= j∗ yields a better solution, contrary
to the assumption.

Proposition 2.3. In any valid inequality αs ≥ 1 for convP
(n)
D , αj ≥ 0, j = 1, . . . , n.

Proof. From (2.11), αj ≥ αi
j for all i = 1, . . . , 2q, and in view of the presence of all

sign patterns of rkj uik in the expressions (2.12), there is always an index i ∈ {i, . . . , 2q}

with αi
j ≥ 0.

Proposition 2.4. For any basic solution (α, u) to (CGLP)Q that satisfies as strict
inequality some of the nonhomogeneous constraints of (2.8 ′), there exists a basic solu-
tion (ᾱ, u), with ᾱ = α, that satisfies at equality all the nonhomogeneous constraints of
(CGLP)Q.

Proof. Let (α, u) be a basic solution to (CGLP)Q that satisfies as strict inequality some
of the nonhomogeneous constraints of (2.8′). W.l.o.g., assume that

f1u11 + · · ·+ fqu1q − θ = 1

is one of those constraints with the surplus variable θ positive in the solution (α, u).
We will show that there exists a solution (ᾱ, ū), with ᾱ = α and ūik = uik for all i 6= 1
and all k, such that

f1ū11 + · · · + fqū1q = 1.

8

Applying this argument recursively then proves the Proposition.
Fix all variables of (CGLP)Q except for u11, . . . , u1q, at their values in the current

solution. The fixing includes all the surplus variables except those in the n + 1 rows
containing u11, . . . , u1q. This leaves the following constraint set in the free variables:

−r1ju11 − · · · − rqju1q + tj = ᾱj j = 1, . . . , n

f1u11 + · · ·+ fqu1q − θ = 1

u11, . . . , u1q ≥ 0, tj ≥ 0, j = 1, . . . , n, θ ≥ 0

(2.13)

Here θ, tj represent the surplus variables of the respective constraints. We claim that
this system has a solution with θ = 0. To see this, consider the linear program

min{θ : uik, tj and θ satisfy (2.13)}

and its dual,

max λ0 +
n∑

j=1

ᾱjλj

subject to

f1λ0 −
n∑

j=1
r1jλj ≤ 0

...
...

fqλ0 −
n∑

j=1
rqjλj ≤ 0

−λ0 ≤ 1

λj ≤ 0, j = 1, . . . , n

Since ᾱj ≥ 0, j = 1, . . . , n, it is not hard to see that the dual linear program has an
optimal solution λ0 = 0, λj = 0, j = 1, . . . , n and hence the primal has an optimal
solution with θ = 0.

The obvious and important consequence of Proposition 2.4 is that for all practical
purposes we can replace all 2q nonhomogeneous inequalities in the constraint set (2.8′)
of (CGLP)Q with equations. In view of Proposition 2.2, it then follows that we may
restrict our attention to basic feasible solutions that satisfy at equality n + 2q out of
the n× 2q + 2q inequalities of (2.8′) other than the nonnegativity constraints.

At this point we introduce the characterization of convP=
D , the 0-1 disjunctive hull

defined by (2.5), closely related to that of convPD. Just as in the case of PD, we denote

by P
=(n)
D the union of polyhedra in R

n representing the disjunction (2.7) in which all
the inequalities have been replaced by equations. The following Theorem is the analog
of Theorem 2.1 for this case.

Theorem 2.5. convP
=(n)
D is the set of those s ∈ R

n satisfying s ≥ 0 and all inequalities

9

αs ≥ β whose coefficients satisfy the system

α+ r1u11 + · · ·+ r1u1q ≥ 0
...

. . .
...

α −r1ut1 − · · · − rqutq ≥ 0
−β + f1u11 + · · ·+ fqu1q = 0

...
. . .

...
−β +(1−f1)ut1 + · · ·+ (1−fq)utq = 0

(2.14)

for some uik, i = 1, . . . , t = 2q, k = 1, . . . , q.

Proof. The proof of Theorem 2.1 goes through with the following modifications. Since
the inequalities in the disjunction (2.7) are all replaced with equations, the inequalities
in the system (2.9), other than the nonnegativity constraints, also become equations.
As a consequence, the variables uik of the projected system (2.10) become unrestricted
in sign. The remaining difference between (2.14) and (2.8) is the fact that in (2.14) the
last 2q constraints are equations rather than inequalities. This is due to the fact that
Proposition 2.4 applies here too. In other words, if we denote by (2.14′′) the system
obtained from (2.14) by replacing the equations containing β with inequalities ≥, then
for any basic solution (α, u) to (CGLP)Q that satisfies as strict inequalities some of
the constraints (2.14′′) containing β, there exists a basic solution (ᾱ, u), with ᾱ = α,
that satisfies at equality all the constraints containing β. The proof is essentially the
same as that of Proposition 2.4.

Thus the two basic differences between the systems describing convP
(n)
D and convP

=(n)
D

are that (a) the latter also contains inequalities of the form αx ≤ 1 (corresponding to
β < 0), and (b) the coefficients αj of the latter can be of any sign.

We now return to the simple disjunctive hull, convPD, and describe its vertices.

Proposition 2.6. Every vertex of convP
(n)
D is a vertex of some P

(n)
i , i ∈ {1, . . . , 2q}.

Proof. Let v be a vertex of convP
(n)
D . If v ∈ P

(n)
i for some i ∈ {1, . . . , t = 2q}, then

v must be a vertex of P
(n)
i , or else it could be expressed as a convex combination of

points in P
(n)
i , hence of P

(n)
D . On the other hand, if v 6∈ ∪P

(n)
i but v ∈ convP

(n)
i , then v

is a convex combination of points in ∪ti=1P
(n)
i , hence of convP

(n)
D , a contradiction.

Next we describe the vertices of P
(n)
i , i ∈ {1, . . . , 2q}. We will call a vertex of

convP
(n)
D (of P

(n)
i) integer if it defines an integer x through (2.1); in other words if

fi + ris is integer for i = 1, . . . , q. All other vertices will be called fractional.
For any particular i∗ ∈ {1, . . . , 2

q},

P
(n)
i∗

:= {s ∈ R
n
+ : rhs ≤ −fh, h ∈ Qi∗ , rhs ≥ 1− fh, h ∈ Q \Qi∗}

where (Qi∗ , Q \Qi∗) is the partition of Q that defines i∗.

Proposition 2.7. P
(n)
i∗

can have three kinds of vertices, distinguished by the corre-
sponding x-vectors that belong to one of these types:

(a) 0-1 vertices: xh = 0, h ∈ Qi∗ and xh = 1, h ∈ Q \Qi∗.

10

(b) non-binary integer vertices: xh ∈ Z−, h ∈ Qi∗, xh ∈ Z+, h ∈ Q \ Qi∗ (here Z−

and Z+ stand for the nonpositive and nonnegative integers respectively).

(c) fractional vertices: xh ≤ 0, h ∈ Qi∗, xh ≥ 1, h ∈ Q \ Qi∗, with at least one
inequality strict.

Proof. The three cases become exhaustive if the following fourth one is added: (d) frac-
tional vertices with 0 < xh < 1 for some h ∈ Q. But this case clearly violates at least

one of the constraints defining P
(n)
i∗

.

Note that P
(n)
i∗

can have several distinct vertices with the same associated x-vector,
corresponding to basic solutions with the same x-component. Note also that if a
component xh of a vertex is fractional, then xh < 0 or xh > 1.

The next theorem characterizes the facets of the simple disjunctive hull.

Theorem 2.8. The inequality ᾱs ≥ 1 defines a facet of convP
(n)
D if and only if there

exists an objective function of the linear program (CGLP)Q of Proposition 2.2 with
p > 0 such that all optimal solutions (α, u) have α = ᾱ.

Proof outline. This is a special case of Theorem 4.6 of [3]. The inequality ᾱx ≥ 1

defines a facet of convP
(n)
D if and only if ᾱ is a vertex of the polar of convP

(n)
D , which

is the projection of (2.8) onto the α-space. But ᾱ is a vertex of this polar if and only if
there exists an objective function vector p > 0 such that pα attains its unique minimum
at ᾱ. 2

If the system (2.4) defining PL is of full row rank q, then the dimension of convPD

is n, since there are q + n variables and q independent equations. The dimension of

convP
(n)
D is also n, so the facets of convP

(n)
D are of dimension n− 1.

From a computational standpoint, the most important feature of (CGLP)Q is that

the facets of the n-dimensional convP
(n)
D can be generated by solving a smaller CGLP

in a subspace of at most t = 2q variables sj, and lifting the resulting inequality into the
full space. The idea of generating cuts in a subspace of the original higher dimensional
cut generating linear program and then lifting them to the full space goes back to [7, 10],
where lift-and-project cuts were generated from a 2-term disjunction by working in the
subspace of the fractional variables of the LP solution. Here we are working with a 2q-
term disjunction, and are considering a different subspace, suggested by the structure
of the problem at hand, but the lifting procedure is essentially the same as the one
used in [7, 8].

Since our cuts are derived from a disjunction with 2q terms, if we want to create a
subproblem in which all terms are represented, we need 2q out of the n variables αj of
our (CGLP)Q. Furthermore, the 2q vectors rj corresponding to these αj have to span
the subspace R

q of the x-variables. Solving the (CGLP)Q in this subspace yields 2q

values αj and q × 2q associated multipliers uik, i = 1, . . . , 2q, k = 1, . . . , q; and these
multipliers can then be used to compute the remaining components of α, given by the
expressions (2.11) and (2.12). The significance of this is that the computational cost
of generating facets of convPD grows only linearly with n. Of course this cost grows
exponentially with q, but the approach discussed here is being considered for small q.

The choice of the subspace is intimately related to the question of deciding which
facets of the disjunctive hull are also facets of the integer hull. The best way to address

11

this question and that of the subspace to be chosen, is to first interpret the inequalities
defining the disjunctive hull as intersection cuts.

3 Geometric interpretation: Cuts from the q-

dimensional parametric cross-polytope

Consider the q-dimensional unit cube centered at (0, . . . , 0), Kq := {x ∈ R
q : −1

2 ≤
xj ≤

1
2 , j ∈ Q}. Its polar, Ko

q := {x ∈ R
q : xy ≤ 1, ∀x ∈ K}, is known to be the

q-dimensional octahedron or cross-polytope; which, when scaled so as to circumscribe
the unit cube, is the outer polar of Kq:

K∗
q = {x ∈ R

q : |x| ≤ 1
2q},

where |x| =
∑

(|xj | : j = 1, . . . , q}. Equivalently, |x| ≤ 1
2q can be written as the system

−x1 − · · · − xq ≤
1
2q

x1 − · · · − xq ≤
1
2q

...

x1 + · · · + xq ≤
1
2q

(3.1)

of t = 2q inequalities in q variables.
Moving the center of the coordinate system to (12 , · · · ,

1
2) changes the righthand

side coefficient of the i-th inequality in (3.1) from 1
2q to a value equal to the sum of

positive coefficients on the lefthand side of the inequality. Indeed, if q+ and q− denotes
the number of positive and negative coefficients, then 1

2q +
1
2q

+ − 1
2q

− = q+.
Next we introduce the parameters vik, i = 1, . . . , t = 2q, k = 1, . . . , q, to obtain the

system
−v11x1 − · · · − v1qxq ≤ 0

v21x1 − · · · − v2qxq ≤ v21

−v31x1 + · · · − v3qxq ≤ v31

...
...

vt1x1 + · · · + vtqxq ≤ vt1 + . . .+ vtq

vik ≥ 0, i = 1, . . . , t = 2q, k = 1, . . . , q.

(3.2)

Note that the constraints of (3.2) are of the form

∑

k∈Q̃+

i

vikxk −
∑

k∈Q̃−

i

vikxk ≤
∑

k∈Q̃+

i

vik,

where Q̃+
i and Q̃−

i are the sets of indices for which the coefficient of xk is +vik and −vik,
respectively. Note also that all inequalities that have the same number of coefficients
with the plus sign have the same righthand side, equal to the sum of these coefficients.

The system (3.2) is homogeneous in the parameters vik, so every one of its inequal-
ities can be normalized. Since we are looking for a connection with the system (2.8)

12

defining (CGLP)Q, we will use the normalization given by this system and Proposi-
tion 2.4, i.e.

f1v11 + · · · + fqv1q = 1

(1− f1)v21 + · · · + fqv2q = 1

· · · · · ·

(1− f1)vt1 + · · · + (1− fq)vtq = 1

(3.3)

Note that these normalization constraints are of the general form

∑

h∈Q̃+

i

(1− fk)vik +
∑

h∈Q̃−

i

fkvik = 1.

Let K̃∗(v) denote the parametric cross-polytope defined by (3.2) and (3.3). It is not
hard to see that for any fixed set of vik, (3.2) defines a convex polyhedron in x-space
that contains in its boundary all x ∈ R

q such that xk ∈ {0, 1}, k ∈ Q, hence is suitable
for generating intersection cuts. Furthermore, letting K̃∗(n)(v) be the expression for
K̃∗(v) in the space of the s-variables, obtained by substituting f +Rs for x into (3.2),
we have

Theorem 3.1. For any values of the parameters vik satisfying (3.2) and (3.3), the
intersection cut α̃s ≥ 1 from K̃∗(n)(v) has coefficients α̃j =

1
s∗j
, where

s∗j = max{sj : f + rjsj ∈ K∗(n)(v)}. (3.4)

Proof. This is a special case of Theorem 1.1.

In order to compare the intersection cut α̃s ≥ 1 with the cut αs ≥ 1 from the
q-term disjunction (2.7), we have to restate (3.4) in terms of the system of inequalities
defining K̃∗(n)(v). This means that f + rjs∗j has to be expressed as the intersection

point of the ray f + rjsj, sj ≥ 0, with the first facet of K∗(n)(v) encountered. This
yields

s∗j = min{s1j , . . . , s
t
j}, (3.5)

where the sij are obtained by substituting fk +
∑n

h=1 r
k
j sh for xk, k = 1, . . . , q into the

i-th inequality of (3.2), and setting sh = 0 for all h 6= j:

sij = max




sj :



∑

k∈Q̃+

i

vikr
k
j −

∑

k∈Q̃−

i

vikr
k
j


 sj ≤

∑

k∈Q̃+

i

vik(1− fk) +
∑

k∈Q̃−

i

vikfk





,

i = 1, . . . , t = 2q.
Clearly, this maximum is bounded whenever the coefficient of sj is positive, in which

case, if we normalize by setting
∑

k∈Q̃+

i

vik(1− fk) +
∑

k∈Q̃−

i

vikfk = 1, we obtain

sij =



∑

k∈Q̃+

i

vikr
k
j −

∑

k∈Q̃−

i

vikr
k
j




−1

. (3.6)

13

Comparing (3.5) and (3.6) to the expressions (2.11) and (2.12) for the coefficient
αj of the lift-and-project cut αs ≥ 1 of Proposition 2.2, we find that setting vik = uik
for all i, k, as well as Q̃+

i = Q−
i and Q̃−

i = Q+
i , we obtain α̃j = αj.

This proves

Corollary 3.2. The intersection cut α̃s ≥ 1 from the parametric octahedron K̃∗(n)(v)
is the same as the lift-and-project cut αs ≥ 1 corresponding to the (CGLP)Q solution
(α, u), with vik = uik, i = 1, . . . , t, k = 1, . . . , q.

4 Facets of the disjunctive hull and the integer

hull

Consider again the disjunctive relaxation of PI

PD = {(x, s) ∈ R
q ×R

n : x = f +Rs, s ≥ 0, xi ≤ 0 ∨ xi ≥ 1, i ∈ Q}

introduced at the beginning of section 2, where x, f ∈ R
q, R ∈ R

q×n, and Q :=
{1, . . . , q}. For i = 1, . . . , t = 2q, let pi be the vertex of Kq, the q-dimensional unit
cube, defined by pik = 0, i ∈ Q+

i , p
i
k = 1, i ∈ Q−

i .
Next we give a sufficient condition for an inequality αs ≥ 1 valid for PD to define

a facet of convPI , which for small q leads to an efficient procedure for generating
inequalities that are facet defining for convPI .

The dimension of P
(n)
I being n ≥ 2q, αs ≥ 1 defines a facet of convP

(n)
I if there

exists a subspace R2q of Rn such that the restriction of αs ≥ 1 to this subspace defines

a facet of convP
(2q)
I . If this is the case, then the inequality in question can be lifted to

the full space to yield a facet of convP
(n)
I by using the u-components of the solution

(α, u) to the CGLP in the subspace to compute the missing coefficients αj.

Theorem 4.1. Let αs ≥ 1 be a valid inequality for PD corresponding to a basic solution
(α, u) of (CGLP)Q, and let pi, i = 1, . . . , 2q, be the vertices of Kq. Suppose for each
pi, i = 1, . . . , 2q, there exists a subset Ji ⊂ J containing the indices of q linearly
independent rays rj1 , . . . , rjq , and a vector λ ∈ R

q
+, satisfying

pi − f =

jq∑

j=j1

1
αj
rjλj ,

jq∑

j=j1

λj = 1. (4.1)

Then the inequality
∑

j∈J αjsj ≥ 1 defines a facet of convP
(|J |)
I , and its lifting based

on the u-components of the solution (α, u) defines a facet of convP
(n)
I .

Proof. Suppose the subset of 2q rays indexed by J satisfies the requirements of the
Theorem. Then for every i = 1, . . . , 2q, the vertex pi of Kq satisfies

pi =

jq∑

j=j1

(f − 1
αj
rj)λj ,

jq∑

j=j1

λj = 1

for some λj ≥ 0, j = j1, . . . , jq, i.e. p
i can be expressed as a convex combination of the

q points f+ 1
αj
rj, j = j1, . . . , jq. But f+

1
αj
rj = f+rjs∗j is the intersection point of the

14

ray f + rjsj with bd K̃∗
q , hence each of these points satisfies αs = 1 and consequently

so does pi. Since
∑
j∈J

αjsj ≥ 1 is satisfied at equality by 2q integer points of convP
(|J |)
I ,

it defines a facet of the latter. Furthermore, lifting the remaining coefficients αj of
the inequality by using the u-components of (α, u) yields a facet defining inequality for

convP
(n)
I .

The sufficient condition of Theorem 4.1 is not necessary. There are two kinds of
situations not satisfying the above condition, in which a valid inequality αs ≥ 1 for PD

may define a facet of convPI . The first one involves an inequality αs ≥ 1 such that
although (4.1) is not satisfied for all 2q vertices pi of Kq, nevertheless convPD has 2q

vertices whose x-components pi satisfy (4.1), i.e. convPD has multiple vertices with
the same x-component. The second situation involves facet defining split cuts.

5 The two-row case

We now restrict our attention to the case q = 2, i.e. we consider two rows from a
simplex tableau of a MIP problem with the variables x1, x2 and sj, j ∈ J :

PL = {(x, s) ∈ R
2+|J | : x1 = f1 +

∑
j∈J r

1
j sj

x2 = f2 +
∑

j∈J r
2
j sj

sj ≥ 0 j ∈ J }.

(5.1)

where x1, x2 are basic variables required to be integers and sj, j ∈ J are non-basic.
This is the case studied by Anderson, Louveaux, Weismantel and Wolsey [1]. Let
PI = {(x, s) ∈ Z

2 × R
|J | : (x, s) ∈ PL}, and 0 < f1, f2 < 1. The column vectors

rj, j ∈ J , represent the extreme rays of the cone in R
|J | with apex at (f1, f2).

We will say that a ray rj in (5.1) hits an orthant-cone Qi, i ∈ {1, . . . , 4} if there
exists λ0 > 0 such that f + λrj ∈ Qi for all λ ≥ λ0.

For the case of 2 rows the disjunction (2.7) becomes

(
−r1s ≥ f1
−r2s ≥ f2

)
∨

(
r1s ≥ 1− f1
−r2s ≥ f2

)
∨

(
r1s ≥ 1− f1
r2s ≥ 1− f2

)
∨

(
−r1s ≥ f1
r2s ≥ 1− f2

)
(5.2)

with s ≥ 0, and the system (2.8) of Theorem 2.1 becomes

α +r1v1 +r2w1 ≥ 0
α −r1v2 +r2w2 ≥ 0
α −r1v3 −r2w3 ≥ 0
α +r1v4 −r2w4 ≥ 0

+f1v1 +f2w1 = 1
+(1− f1)v2 +f2w2 = 1
+(1− f1)v3 +(1− f2)w3 = 1
+f1v4 +(1− f2)w4 = 1

vi, wi ≥ 0 i ∈ {1 . . . 4}.

(5.3)

where vi, wi, i = 1, . . . , 4 stand for ui1, ui2, i = 1, . . . , t = 2q (since q = 2, t = 2q = 4).

15

By Proposition 2.2 the cuts generated by the CGLP with constraint set (5.3) and
objective function min pα for some p > 0 have the form αs ≥ 1, where

αj = max{α1
j , α

2
j , α

3
j , α

4
j}

with
α1
j = −r1jv1 −r2jw1

α2
j = +r1jv2 −r2jw2

α3
j = +r1jv3 +r2jw3

α4
j = −r1jv4 +r2jw4.

(5.4)

As discussed in Section 3, a cut produced by the CGLP can be viewed as an
intersection cut derived from a parametric cross-polytope or octahedron. For given
v,w, we call the polyhedron

Pocta(v,w) = {(x1, x2) ∈ R
2 : −v1x1 − w1x2 ≤ 0 ;

+v2x1 − w2x2 ≤ v2 ;
+v3x1 + w3x2 ≤ v3 + w3 ;
−v4x1 + w4x2 ≤ w4 }

the (v,w)-parametric octahedron.
If vi = 0 or wi = 0 for some i ∈ {1, . . . , 4} the i-th facet of Pocta is parallel to one of

the coordinate axes. If vi, wi > 0 then the i-th facet of Pocta is tilted (note that since
we use the normalization β = 1, vi and wi cannot both be 0). Varying the parameters
v,w, the (v,w)-parametric octahedron produces different configurations according to
the non-zero components of v,w. Depending on the values taken by the parameters,
Pocta(v,w) may be a quadrilateral (i.e. a full-fledged octahedron in R

2), a triangle,
or an infinite strip. In the rest of the section we refer to these configurations using
the short reference indicated in parenthesis. It can easily be verified that the value-
configurations of the parameters vi, wi which give rise to maximal convex sets are the
following:

• (S) If exactly 4 components of (v,w) are positive, Pocta is the vertical strip {x ∈
R
2 : 0 ≤ x1 ≤ 1} if vi > 0, i = 1, . . . , 4; or the horizontal strip {x ∈ R

2 : 0 ≤ x2 ≤
1} if wi > 0, i = 1, . . . , 4 (see figure 3(a), 3(b)).

• (TA) If exactly 5 components of (v,w) are positive, Pocta is a triangle with 1 tilted
face (type A) (by “tilted” we mean a face that is not parallel to any of the two
axes). Figure 3(c) illustrates the case with v1, w2, v3, w3, v4 > 0;w1, v2, w4 = 0.
When in addition vi = wi for some i ∈ {1, . . . , 4} Pocta becomes a triangle with
vertices (0, 0); (2, 0); (0, 2) or one of the other three configurations symmetric to
this one. This corresponds to what is called a triangle of type 1 in [19]. In the
general case TA corresponds to a triangle of type 2 in [19].

• (TB) If exactly 6 components of (v,w) are positive, Pocta is a triangle with 2
tilted faces (type B). Figure 3(d) illustrates the case with v1, w1, v2, w2, w3, w4 >
0; v3, v4 = 0. This configuration corresponds to a triangle of type 2 in [19].

• (Q) If all 8 components of (v,w) are positive, Pocta is a quadrilateral. See Figure
3(e).

16

The case with 7 components of (v,w) positive does not correspond to a maximal
parametric octahedron, therefore we do not need to consider it. Suppose all the com-
ponents are positive except for v1 which is 0. The facet of Pocta corresponding to (0, 0)
is horizontal and goes through the point (1, 0). Is not hard to see that setting v2 = 0
we enlarge the set defined by the parametric octahedron.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

x
1

x
2

(a) 4 non-zeros - vertical strip

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

x
1

x
2

(b) 4 non-zeros - horizontal strip

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

x
1

x
2

(c) 5 non-zeros - triangle of type A

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

x
1

x
2

(d) 6 non-zeros - triangle of type B

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

x
1

x
2

(e) 8 non-zeros - quadrilateral

Figure 3: Configurations of the parametric octahedron for the MIP case

For a cut
∑

j∈J αjsj ≥ 1 Andersen et al. [1] introduce the set

Lα =



x ∈ R

2 : (x, s) ∈ PL ∧
∑

j∈J

αjsj ≤ 1



 . (5.5)

Clearly, Lα ⊆ Pocta(v,w), and the inclusion is often strict.
Example.

In [1], Andersen et al. considered the two rows instance

x1 = 1
4 +2s1 +1s2 −3s3 +1s5

x2 = 1
2 +1s1 +1s2 +2s3 −1s4 −2s5,

x1, x2 ∈ Z, s ≥ 0

(5.6)

We present the complete description of the disjunctive hull for (5.6). In order to do
so we generated the CGLP of (5.6) using the normalization constraint β = 1 and we

17

considered all feasible bases. The CGLP produces 5 different facets. For each of these
we show the configuration of the parametric octahedron that yields the corresponding
cut in terms of the v,w variables:

1. Cut (TB): 2s1 + 2s2 + 4s3 + s4 +
12
7 s5 ≥ 1

v1 = 2; v2 =
8
7 ; v3 = 0; v4 = 0

w1 = 1; w2 =
2
7 ; w3 = 2; w4 = 2

2. Cut (TB):
8
3s1 +

4
3s2 +

44
9 s3 +

8
9s4 +

4
3s5 ≥ 1

v1 =
20
9 ; v2 =

4
3 ; v3 =

4
3 ; v4 =

4
9

w1 =
8
9 ; w2 = 0; w3 = 0; w4 =

16
9

3. Cut (TA):
8
3s1 + 2s2 + 4s3 + s4 +

4
3s5 ≥ 1

v1 = 2; v2 =
4
3 ; v3 = 0; v4 = 0

w1 = 1; w2 = 0; w3 = 2; w4 = 2

4. Cut (S): 8
3s1 +

4
3s2 + 12s3 +

4
3s5 ≥ 1

v1 = 4; v2 =
4
3 ; v3 =

4
3 ; v4 = 4

w1 = 0; w2 = 0; w3 = 0; w4 = 0

5. Cut (TB): 2s1 + 2s2 +
68
7 s3 +

2
7s4 +

12
7 s5 ≥ 1

v1 =
24
7 ; v2 =

8
7 ; v3 = 0; v4 = 0

w1 =
2
7 ; w2 =

2
7 ; w3 = 2; w4 = 2

Of the 5 facets of PD, 3 are facets for PI : cuts 1, 2 and 4. Note that cut 4 is a split
cut and can be derived using only the tableau row corresponding to the variable x2.
Cut 3 and 5 are facets of PD by Theorem 2.8.

The condition given in Theorem 4.1 for an inequality αx ≥ 1, facet defining for the
disjunctive hull, to also define a facet of the integer hull specializes for the case q = 2
to the following. For each of the four vertices pi of K, pi must lie on the line segment
between two intersection points of rays rj with the boundary of Pocta. As discussed in
Section 3, the inequalities αx ≥ 1 can be generated in a subspace of ≤ 2q = 4 variables,
and then lifted into the full space by using the multipliers (vi, wi), i = 1, . . . , 4. In [25]
two algorithms were implemented for generating facets of the integer hull from Pocta,
one for the case of a quadrilateral, the other for the case of triangles, both of them
linear in |J |, the number of rays.

Recently Dash et al. [18] have generalized the approach of [5, 6], by considering
more general 4-term disjunctions that give rise to what they call cross cuts and crooked
cross cuts. They relate the closures of their cuts with the split closure and show, among
others, that any 2 dimensional lattice free cut can be obtained as a crooked cross cut.

6 Cut Strengthening

Given a facet αs ≥ 1 of the disjunctive hull, if some non-basic variable sj is required
to be integral in the original problem formulation, then the cut can be strengthened.
Let J1 be the index set of the integer-constrained variables sj, and let J2 = J \ J1.

Lemma 6.1. If the disjunction

(
−r1s ≥ f1

−r2s ≥ f2

)
∨

(
r1s ≥ 1− f1

−r2s ≥ f2

)
∨

(
r1s ≥ 1− f1

r2s ≥ 1− f2

)
∨

(
−r1s ≥ f1

r2s ≥ 1− f2

)
(6.1)

18

where s ≥ 0 and sj ∈ Z, j ∈ J1 ⊆ J , is valid for PI , then so is the disjunction obtained
from (6.1) by replacing some or all rij, i = 1, 2, j ∈ J1, with rij −mi

j, for any mi
j ∈ Z,

i = 1, 2, j ∈ J1.

Proof. Suppose there exists i∗ ∈ {1, 2} and j∗ ∈ J1 such that replacing ri∗j∗ with ri∗j∗ −

m̄i∗
j∗
, where m̄i∗

j∗
∈ Z, violates (6.1). Then there exists a solution (x, s) ∈ PI with x ∈ Z

2

such that

(−(ri∗j∗ − m̄i∗
j∗
)sj∗ −

∑

j∈J\{j∗}

ri∗j sj < fi∗) ∧ ((ri∗j∗ − m̄i∗
j∗
)sj∗ +

∑

j∈J\{j∗}

ri∗j sj < 1− fi∗)

holds. Rewriting this expression so as to bring together the terms in m̄i∗
j∗

we get

∑

j∈J

ri∗j sj + fi∗ − 1 < m̄i∗
j∗
sj∗ <

∑

j∈J

ri∗j sj + fi∗

or
−1 < m̄i∗

j∗
< 0

contrary to the fact that both m̄i∗
j∗

and sj∗ are integer.

Theorem 6.2. Given (v̄, w̄) ≥ 0 defining a parametric octahedron, the cut αs ≥ 1 can
be strengthened to ᾱs ≥ 1 with coefficients ᾱj , j ∈ J1 given by the 3-variable mixed
integer program

min αj

αj −v̄1m
1
j − w̄1m

2
j ≥ −r1j v̄1 − r2j w̄1

αj +v̄2m
1
j − w̄2m

2
j ≥ +r1j v̄2 − r2j w̄2

αj +v̄3m
1
j + w̄3m

2
j ≥ +r1j v̄3 + r2j w̄3

αj −v̄4m
1
j + w̄4m

2
j ≥ −r1j v̄4 + r2j w̄4

m1
j ,m

2
j ∈ Z.

(6.2)

The coefficients for j ∈ J2 remain unchanged at ᾱj = αj as in Proposition 2.2.

Proof. Validity of ᾱs ≥ 1 follows from Lemma 6.1.

Theorem 6.3. The mixed integer program (6.2) has an optimal solution (ᾱj , m̄
1
j , m̄

2
j)

satisfying m̄i
j ∈ {⌊r̄

i
j⌋, ⌈r̄

i
j⌉}, i = 1, 2.

Proof. Let (α̃j , m̃
i
j , m̃

2
j) be an optimal solution to the problem obtained from (6.2) by

adding the constraint mi
j ∈ {⌊r̄

i
j⌋, ⌈r̄

i
j⌉}. We will show that this solution cannot be

improved by replacing m̃1
j , m̃

2
j with any other pair of integers.

Consider the linear programming relaxation of (6.2), which asks for minimizing the
maximum of four linear functions. This is a piece-wise linear convex programming
problem whose minimum is attained for mi

j = rij, i = 1, 2, yielding αj = α1
j = =

α4
j = 0. From the convexity of the objective function α(m1

j ,m
2
j) it follows that the

integer optimum occurs at one of the points (m1
j ,m

2
j) ∈ {(⌊r

1
j ⌋, ⌊r

2
j ⌋), (⌊r1j ⌋, ⌈r

2
j ⌉),

19

(⌈r1j ⌉, ⌊r
2
j ⌋), (⌈r

1
j ⌉, ⌈r

2
j ⌉)}. For suppose the optimum were to occur at some other point,

say (m̂1
j , m̂

2
j), where m̂1

j = ⌈r
1
j ⌉ and m̂2

j = ⌈r
2
j ⌉+ dj for some dj > 0. Then

α(⌈r 1
j ⌉, ⌈r

2
j ⌉+ dj) < α(⌈r 1

j ⌉, ⌈r
2
j ⌉),

α(⌈r 1
j ⌉, r

2
j) < α(⌈r 1

j ⌉, ⌈r
2
j ⌉),

hence
α(⌈r 1

j ⌉, ⌈r
2
j ⌉) > λα(⌈r 1

j ⌉, r
2
j) + (1− λ)α(⌈r 1

j ⌉, ⌈r
2
j ⌉+ dj) for 0 ≤ λ ≤ 1,

i.e. the value of the minimum at a point which lies on the line between (⌈r 1
j ⌉, r

2
j) and

(⌈r 1
j ⌉, ⌈r

2
j ⌉ + dj) is larger than a convex combination of the values of the minimum

at the endpoints of the line, contrary to the assumption that α(m1
j ,m

2
j) is a convex

function.

The operation of replacing rij by rij−m
i
j for some mi

j ∈ Z, i = 1, 2, in the expression

for α, is called the modularization of rij, or more generally, the modularization of the

cut αx ≥ 1. Using mi
j ∈ {⌊r

i
j⌋, ⌈r

i
j⌉} is called the standard modularization. It can

be shown (see below) that the mixed integer program (6.2) attains its optimum for a
standard modularization.

Lemma 6.4. There exists a standard modularization r̄ of the ray r such that

0 ≤ fi + r̄i ≤ 1, i ∈ {1, 2} (6.3)

i.e. the point (f + r̄) belongs to K.

Proof. If fi+ri−⌊ri⌋ ≤ 1 then let mi = ⌊ri⌋. Note that the condition fi+ri−⌊ri⌋ ≥ 0
follows since 0 ≤ fi ≤ 1 and ri − ⌊ri⌋ ≥ 0. Otherwise (fi + ri− ⌊ri⌋ > 1) let mi = ⌈ri⌉
and from fi ≤ 1 and ri − ⌊ri⌋ ≤ 1 we get 0 ≤ fi + ri − ⌊ri⌋ − 1 = fi + ri − ⌈ri⌉ ≤ 1.

For k = 1, . . . , 4, let ᾱk
j be obtained from αk

j of (5.4) by substituting r̄ i
j for rij ,

i = 1, 2. One can show that each ᾱk
j is the convex combination of one of the expressions

−r̄ 1
j

f1
or

r̄ 1
j

1−f1
with one of the expressions

−r̄ 2
j

f2
or

r̄ 2
j

1−f2
. To be specific, we have

Lemma 6.5.

ᾱ1
j = λ1

−r̄ 1
j

f1
+ (1− λ1)

−r̄ 2
j

f2
, with λ1 = v̄1f1

ᾱ2
j = λ2

r̄ 1
j

1−f1
+ (1− λ2)

−r̄ 2
j

f2
, with λ2 = v̄2(1− f1)

ᾱ3
j = λ3

r̄ 1
j

1−f1
+ (1− λ3)

r̄ 2
j

1−f2
, with λ3 = v̄3(1− f1)

ᾱ4
j = λ4

−r̄ 1
j

f1
+ (1− λ4)

r̄ 2
j

1−f2
, with λ4 = v̄4f1

Proof. By substituting for the λk, k = 1, . . . , 4, we get the corresponding expressions
for ᾱk

j .

Theorem 6.6. The strengthened cut ᾱs ≥ 1 satisfies 0 ≤ ᾱj ≤ 1, j ∈ J1.

20

Proof. Since v̄k, w̄k ≥ 0 for all k, we have ᾱk
j ≥ 0 for at least one of the four k, hence

ᾱj ≥ 0. Let (ᾱ, m̄1, m̄2) be an optimal solution to (6.2). Let r̄i = ri − m̄i, i = 1, 2,
where m̄i ∈ {⌊ri⌋, ⌈ri⌉} i = 1, 2. There are four cases:
Case 1. m̄i = ⌊ri⌋, i = 1, 2. Then r̄i = ri − m̄i ≥ 0, i = 1, 2, and

ᾱ1 = −r̄1v̄1 − r̄2w̄1 ≤ 0.

ᾱ2 = r̄1v̄2 − r̄2w̄2 ≤ r̄1/(1 − f1) (from (5.3)). From (6.3), r̄1/(1− f1) ≤ 1, hence ᾱ2 ≤ 1.

ᾱ3 = r̄1v̄3 + r̄2w̄3 = λ3 r̄1/(1− f1)+ (1−λ3)r̄
2/(1− f2), with λ3 = v̄3(1− f1) (from Lemma 6.5).

But from Lemma 6.4, r̄i/(1 − fi) ≤ 1, i = 1, 2, hence ᾱ3 ≤ 1.

ᾱ4 = −r̄1v̄4 + r̄2w̄4 ≤ r̄2/(1 − f2) ≤ 1 (from 6.3), hence ᾱ4 ≤ 1.

The remaining three cases, namely (m̄1, m̄2) = (⌈r̄1⌉, ⌊r̄2⌋), (m̄1, m̄2) = (⌊r̄1⌋, ⌈r̄2⌉),
and m̄i = (⌈r̄1⌉, ⌈r̄2⌉), i = 1, 2, are similar.

A way to further strengthen these cuts consists in the following three-step proce-
dure:

1. Apply standard modularization to each of the two rows from which the cut is
generated (i.e. replace the ray rij by rij −⌊r

i
j⌋ if r

i
j > 0 and by rij − ⌈r

i
j⌉ if r

i
j < 0,

i = 1, 2, j ∈ J1).

2. Generate a cut αx ≥ 1 from the two modularized rows.

3. Modularize the resulting cut to obtain the strengthened cut ᾱx ≥ 1.

Yet another way to use the integrality of the variables sj, j ∈ J1, is to apply the
monoidal cut strengthening procedure of [9]. For cuts generated from a disjunction
of the form (6.1), this procedure involves the use of lower bounds on the expressions
on the lefthand side of each inequality. While these bounds are readily available and
quite tight in the case when x1, x2 ∈ {0, 1}, they can be weak in the general case of
x1, x2 ∈ Z. We therefore defer the dicussion of this procedure until the section on the
0-1 disjunctive hull.

7 The 0-1 Disjunctive Hull

We now consider the 0-1 disjunctive hull P=
D for q = 2, i.e. we work with P01 =

{(x, s) ∈ {0, 1}2 × R
|J | : (x, s) ∈ PL} where PL is given in (5.1). The CGLP that

produces the facets of P=
D is the linear program with the constraint set of Theorem 2.5.

In addition to the four configurations of the parametric octahedron for the MIP CGLP
given in Section 5, when v,w are unrestricted in sign some additional configurations
are possible: (a) triangles with each face containing exactly one vertex of K, which we
call triangles of type C (TC); and (b) cones, designated as (C).

Note that our triangles of type C are similar to the class of triangles of type 3 for
cuts for mixed integer programs described in [19]. The difference between these classes
is that on the one hand, the three integer points contained in the faces of triangles of
type 3 defined in [19] need not be vertices of K; on the other hand, our triangles of type
C may also contain (non-0-1) integer points, positive or negative, in their interior. The
presence among the parametric octahedra of unbounded ones, namely cones, implies
that the cuts αs ≥ 1 of this class may have coefficients αj < 0.

21

As we did in Section 5, we give a classification of the parametric cross-polytopes
that correspond to disjunctive hull facets for the 0-1 case (i.e. facets of P=

D). Let k1 ∈
{1, . . . , 4} be the index of any vertex of K. We denote by k2, k3, k4 the indices of the
vertices of K that follow k1 in counter-clockwise order. The following configurations,
in addition to those for facets of PD, are exhaustive when considering every value for
k1 ∈ {1, . . . , 4} (mod 4) and swapping vi with wi. In each case, the shape of Pocta

is determined by a strict subset of the four pairs (vi, wi), the remaining pairs being
inactive.

• (TC1) vk1 > 0, wk1 < 0; vk2 , wk2 > 0; vk3 > 0, wk3 > 0, (vk4 , wk4 > 0). Pocta is a
triangle of type C with all its vertices outside the cubeK. The face corresponding
to k4 is inactive. See Figure 4(a).

• (TC2) vk1 > 0, wk1 < 0; vk2 , wk2 > 0; vk3 < 0, wk3 > 0, (vk4 , wk4 > 0). Pocta is a
triangle of type C with one vertex in the cube K. The face corresponding to k4
is inactive. See Figure 4(b).

• (CA) vk2 , vk3 > 0; wk2 = wk3 = 0, vk4 > 0, wk4 < 0, (vk1 , wk1 > 0). Pocta is a cone
with one face containing two adjacent vertices of K, the other face containing one
vertex of K. The face corresponding to k1 is inactive. See Figure 4(c).

• (CB) vk1 < 0, wk1 > 0; vk3 > 0, wk3 < 0, vk4 , wk4 > 0, (vk2 , wk2 > 0). Pocta is
a cone with one face containing two nonadjacent vertices of K, the other face
containing one vertex of K. The face corresponding to k2 is inactive. See Figure
4(d).

• (CC) vk1 > 0, wk1 < 0; vk2 , wk2 > 0; (vk3 < 0, wk3 > 0), (vk4 , wk4 > 0). Pocta is
a cone with each face containing one vertex of K. The faces corresponding to k3
and k4 are inactive. See Figure 4(e).

• (CCT) vk1 > 0, wk1 < 0; vk2 , wk2 > 0; vk3 , wk3 > 0; (vk4 , wk4 > 0). Pocta is a
truncated cone with each face containing one vertex of K. The face corresponding
to k4 is inactive.

• (S) vk1 < 0, wk1 > 0; vk3 > 0, wk3 < 0, (vk2 , wk2 > 0, vk4 , wk4 > 0). Pocta is a
tilted strip, each side of which contains one vertex of K. The faces corresponding
to the remaining two vertices are inactive. See Figure 4(g).

• (ST) vk1 , wk1 > 0; vk2 , wk2 > 0; vk3 > 0, wk3 < 0; (vk4 , wk4 > 0). Pocta is a
truncated (tilted) strip, each side of which contains a vertex of K. The face
corresponding to k4 is inactive.

Example Consider the Andersen et al. [1] instance, amended with the condition
xi ∈ {0, 1}, i ∈ {1, 2}:

x1 = 1
4 +2s1 +1s2 −3s3 +1s5

x2 = 1
2 +1s1 +1s2 +2s3 −1s4 −2s5

x1, x2 ∈ {0, 1}, s ≥ 0.

(7.1)

In section 5 we listed the 5 cuts defining the facets of the disjunctive hull for this
example, without the 0-1 condition. Using the stronger disjunction expressing the 0-1
condition we obtain the following 12 cuts that define the facets of convP=

D .

22

f

(a) triangle of type C with
all vertices outside K

f

(b) triangle of type C with
one vertex inside K

f

(c) cone with one face con-
taining two adjacent ver-
tices of K

f

(d) cone with one face con-
taining two nonadjacent
vertices of K

f

(e) cone with each face
containing one vertex of K

f

(f) truncated cone with
each face containing one
vertex of K

f

(g) tilted strip

f

(h) truncated tilted strip

Figure 4: Additional configurations of the parametric octahedron for the 0-1 case

23

1. Cut (type S): 2.667s1 + 1.333s2 + 12s3 + 0s4 + 1.333s5 ≥ 1
v1 = 4; v2 = 1.333; v3 = 1.333; v4 = 4
w1 = 0; w2 = 0; w3 = 0; w4 = 0

2. Cut (type TB): 2.667s1 + 1.333s2 + 4.889s3 + 0.8889s4 + 1.333s5 ≥ 1
v1 = 2.222; v2 = 1.333; v3 = 1.333; v4 = 0.4444
w1 = 0.8889; w2 = 0; w3 = 0; w4 = 1.778

3. Cut (type TB): 2s1 + 2s2 + 4s3 + 1s4 + 1.714s5 ≥ 1
v1 = 2; v2 = 1.143; v3 = 0; v4 = 0
w1 = 1; w2 = 0.2857; w3 = 2; w4 = 2

4. Cut (type TC1): 2.947s1 + 1.053s2 + 5.263s3 + 0.8421s4 + 3.579s5 ≥ 1
v1 = 2.316; v2 = 0.7719; v3 = 1.895; v4 = 0.6316
w1 = 0.8421; w2 = 0.8421; w3 = −0.8421; w4 = 1.684

5. Cut (type TC1): 1.63s1 + 2.37s2 + 8.444s3 + 0.4444s4 + 1.926s5 ≥ 1
v1 = 3.111; v2 = 1.037; v3 = −0.7407; v4 = 2.222
w1 = 0.4444; w2 = 0.4444; w3 = 3.111; w4 = 0.8889

6. Cut (type TC2): 4.364s1 + 2.545s2 + 3.273s3 + 1.091s4 + 0.3636s5 ≥ 1
v1 = 1.818; v2 = 1.818; v3 = 1.818; v4 = −0.3636
w1 = 1.091; w2 = −0.7273; w3 = 0.7273; w4 = 2.182

7. Cut (type TC2): 3.765s1 + 3.059s2 + 2.588s3 + 1.176s4 + 0.7059s5 ≥ 1
v1 = 1.647; v2 = 1.647; v3 = 0.7059; v4 = −0.7059
w1 = 1.176; w2 = −0.4706; w3 = 2.353; w4 = 2.353

8. Cut (type CA): 12s1 + 8s2 + 12s3 + 0s4 − 4s5 ≥ 1
v1 = 4; v2 = 4; v3 = 4; v4 = 4
w1 = 0; w2 = −4; w3 = 4; w4 = 0

9. Cut (type CB): 32s1 + 20s2 − 20s3 + 4s4 + 12s5 ≥ 1
v1 = −4; v2 = 4; v3 = 4; v4 = −12
w1 = 4; w2 = 4; w3 = −4; w4 = 8

10. Cut (type CB): 12s1 + 8s2 + 44s3 − 4s4 − 4s5 ≥ 1
v1 = 12; v2 = 4; v3 = 4; v4 = −4
w1 = −4; w2 = −4; w3 = 4; w4 = 4

11. Cut (type CC): −2s1 + 6s2 + 52s3 + 2s4 + 4s5 ≥ 1
v1 = 0; v2 = 0; v3 = −8; v4 = 8
w1 = 2; w2 = 2; w3 = 14; w4 = −2

12. Cut (type CB): 8s1 − 4s2 + 12s3 + 16s4 + 44s5 ≥ 1
v1 = 4; v2 = −9.333; v3 = 12; v4 = 4
w1 = 0; w2 = 16; w3 = −16; w4 = 0

The above list of 12 cuts includes 3 of the 5 cuts defining facets of convPD, namely
1, 2 and 4, which appear on our list in position 3, 2 and 1, respectively. The remaining
2 facets of convPD, given by cuts 3 and 5, are redundant for convP=

D ; namely, cut
3 is a convex combination of cuts 2, 3, 6 and 7 on our list, while cut 5 is a convex
combination of cuts 1 and 5 on our list.

The number of facets of convP=
D substantially exceeds the number of facets of

convPD. In order to assess the impact of the two sets of cuts, we computed the

24

average integrality gap for 1,000 randomly generated objective functions. Adding the
5 cuts valid for the 2-row MIP reduces this gap by 77%; while adding the additional
cuts valid for the 0-1 case reduces 100% of the gap.

Next we discuss the strengthening of valid cuts for P=
D when some variables sj are

integer-constrained. Let J1 be the index set of such variables.
First of all, we observe that the standard modularization procedure described in

Theorem 6.2 for strengthening cuts for PD is not valid in the case of cuts for P=
D .

Indeed, Lemma 6.1 which underlies the correctness of the procedure in the case of PD,
is no longer valid in the case of P=

D : if the disjunction (6.1) is modified by replacing
every inequality with equality, then it is no longer equivalent to the disjunction obtained
by replacing rij with rij −mi

j. Instead, we will use a different modularization, known
in the literature under the name of monoidal strengthening [9].

Consider a disjunction of the form
∨

k∈Q

(Akx ≥ ak0), Ak = (akj), j ∈ J, akj ∈ R
m, j ∈ J ∪ {0}, (7.2)

and the valid cut αx ≥ 1, where

αj = max
k∈Q
{θkakj /θ

kak0} (7.3)

for some θk ∈ R
m
+ , k ∈ Q.

Suppose now that for each Akx, k ∈ Q, a lower bound bk0 ≤ ak0 is known, i.e.
Akx ≥ bk0 , k ∈ Q.

Theorem 7.1. Let M := {m ∈ Z
|Q| :

∑
k∈Qmk ≥ 0}. If xj ∈ Z, j ∈ J1, then the cut

αx ≥ 1 can be strengthened to ᾱx ≥ 1, where

ᾱj = min
m∈M

max
k∈Q

{(
θkakj +mk

j θ
k(ak0 − bk0)

)
/θkak0

}
j ∈ J1 (7.4)

and ᾱj = αj for j ∈ J \ J1.

Proof. See [9] or [4].

We will now apply this Theorem to our case, first with the disjunction (6.1), then
with the stronger disjunction defining P=

D . Let αx ≥ 1 be an inequality implied by
the disjunction (6.1), i.e. a valid inequality for PD, and let’s assume that xi ∈ {0, 1},
i = 1, 2. It is not hard to see that a lower bound on the lefthand side of each of
the 8 inequalities that occur in (6.1) is obtained by subtracting 1 from the righthand
side. This means that if ak0 denotes the righthand side and bk0 the lower bound on the
lefthand side of the k-th term, then ak0 − bk0 =

(1
1

)
.

Now the cut from the disjunction (6.1) is αs ≥ 1, where

αj = max
k∈{1,...,4}

{αk
j },

and
α1
j = −r 1

j v̄1 − r2j w̄1,

α2
j = r 1

j v̄2 − r2j w̄2,

α3
j = r 1

j v̄3 + r2j w̄3,

α4
j = −r 1

j v̄4 + r2j w̄4.

(7.5)

25

To apply the theorem to this case, notice that θk = (v̄k, w̄k) and θkakj = αk
j , θ

kak0 = 1
for k = 1, . . . , 4.

Corollary 7.2. Let x1, x2 ∈ {0, 1}, and M = {m ∈ Z
4 :
∑4

k=1m
k ≥ 0}. Then ᾱs ≥ 1

is a valid cut for PD, with ᾱj = maxk∈{1,...,r}{ᾱ
k
j }, and

ᾱk
j =





min
mk

j∈M
max

k∈{1,...,4}
{αk

j +mk
j (v̄k + w̄k)} j ∈ J1

αk
j j ∈ J \ J1

Proof. Denoting

a10 =

(
f1
f2

)
, a20 =

(
1− f1
f2

)
, a30 =

(
1− f1
1− f2

)
, a40 =

(
f1

1− f2

)
,

b10 =

(
f1 − 1

f2 − 1

)
, b20 =

(
−f1
f2 − 1

)
, b30 =

(
−f1
−f2

)
, b40 =

(
f1 − 1

−f2

)
,

(7.6)

it is easy to see that for k = 1, . . . , 4,

(v̄k, w̄k)(a
k
0 − bk0) = v̄k + w̄k.

We now turn to strengthening a valid inequality for P=
D , the set defined by the

disjunction (6.1=), obtained from (6.1) by replacing each inequality with equality. In
this case the cut from (6.1=) is α̃x ≥ 1, where α̃j = maxk∈{1,...,4} α̃

k
j and the α̃k

j are given

by the same expressions (7.5) as αk
j , with the important difference that the parameters

(v̄k, w̄k) are unrestricted in sign. However, from the normalization constraints (5.3) it
follows that for any k ∈ {1, . . . , 4}, at most one member of the pair (v̄k, w̄k) can be
negative.

In order to derive the lower bounds bk0 required by Theorem 7.1, the best way is to
represent each equation of (6.1=) as a pair of inequalities; i.e. the first term of (6.1=)
is restated as 



−r1s ≥ f1

r1s ≥ −f1

−r2s ≥ f2

r2s ≥ −f2




(7.7)

and so on. Denoting the corresponding parameters or multipliers by v′k, v
′′
k , w

′
k, w

′′
k for

k = 1, . . . , 4, we see that since at most one of the pairs of inequalities corresponding
to an equation can be active in any given solution, at most one member of each pair
(v′k, v

′′
k) can be positive, and the same holds for each pair (w′

k, w
′′
k). Furthermore, it

becomes clear that if in the equality formulation (6.1=) a parameter, say v1, takes on
a negative value v̄1 < 0 in a solution, this corresponds to the fact that the member of
the pair of inequalities corresponding to the equation associated with v1 that is active,
is the one with ≤, i.e. with the inequality reversed.

26

Corollary 7.3. Let M = {m ∈ Z
4 :
∑4

k=1m
k ≥ 0}. Then α̂s ≥ 1 is a valid cut for

P=
D , with α̂j = maxk∈{1,...,4}{α̂

k
j }, and

α̂k
j =





min
mk

j∈M
max

k∈{1,...,r}
{α̃k

j +mk
j (v̄

+
k + w̄+

k)}, j ∈ J1

α̃k
j j ∈ J \ J1

where v̄+k = max{v̄k, 0} and w̄+
k = max{w̄k, 0}.

Proof. If, using the inequality formulation (7.7) of the disjunction (6.1=), we denote
the righthand sides of the four terms by

ã10 =




f1
−f1
f2
−f2


 , ã20 =




1− f1
f1 − 1

f2
−f2


 , ã30 =




1− f1
f1 − 1
1− f2
f2 − 1


 , ã40 =




f1
−f2
1− f2
f2 − 1


 ,

(7.8)
then the lower bounds on the expressions on the lefthand sides of the inequalities are
no longer equal to the righthand side minus 1. Instead, we have the following situation:

b̃10 =




f1 − 1
−f1
f2 − 1
−f2


 , b̃20 =




−f1
f1 − 1
f2 − 1
−f2


 , b̃30 =




−f1
f1 − 1
−f2
f2 − 1


 , b̃40 =




f1 − 1
−f1
−f2
f2 − 1


 .

(7.9)
As a consequence,

ãk0 − b̃k0 =




1
0
1
0


 for k = 1, . . . , 4

Thus, if we denote v̄+k := max{v̄k, 0}, w̄
+
k = max{w̄k, 0}, we have (v̄+k , w̄

+
k)(a

k
0 , b

k
0) =

(v̄+k , w̄
+
k), k = 1, . . . , 4, and the expression for α̂k

j follows.

Finding the optimal mk
j ∈M requires a small (single digit) number of comparisons.

While [9] and [4] give simple procedures for the case of a general disjunction, the
optimal mk

j of Corollary 7.3 for a given j ∈ J1 can be found as follows:

• Start with mk
j = 0 for all k and apply the

Iterative Step.

• Find αmax
j = maxk α

k
j , αmin

j = mink α
k
j and let mmax

j ,mmin
j be the corre-

sponding values of mk
j .

• Set mmax
j = mmax

j − t, mmin
j = mmin

j + t, where t is the smallest positive
integer for which the identity of αmax

j changes.

• If the value of maxk α
k
j has not been reduced, stop with mmax

j = mmax
j −t+1,

mmin
j = mmin

j +t−1, and mk
j unchanged for k 6= max,min. Otherwise repeat.

27

In the case where Pocta is a triangle with each face containing exactly one vertex of
K, the term of the disjunction (6.1=) corresponding to the vertex of K left outside the
triangle plays no role in defining the cut, hence it can be dropped and the strengthening
becomes simpler. This is even more true of the case of a cone, where only two terms
of the disjunction are active. A particularly simple case is that of a “fixed shape”
cone with apex at a vertex of K, and one face containing a side of K, the other
face containing the diagonal of K. There are eight such cones, and every fractional
(f1, f2) 6= (12 ,

1
2) (i.e. not lying on the diagonal of K) is strictly contained in four of

them (see figure 6 in the next section).
We will illustrate the monoidal strengthening procedure on the conic cuts obtainable

from these disjunctions. Here is a couple of them:

1. (−x2 ≥ 0) ∨ (−x1 + x2 ≥ 0)

2. (x2 ≥ 1) ∨ (−x1 − x2 ≥ −1)

or, after substituting fi + ris for xi, i = 1, 2,

1. (−r2s ≥ f2) ∨ ((−r1 + r2)s ≥ f1 − f2)

2. (r2s ≥ 1− f2) ∨ ((−r1 − r2)s ≥ f1 + f2 − 1).

Each disjunction violated by the point (f1, f2) has positive righthand sides and gives rise
to a valid cut αs ≥ 1, with coefficients αj shown below, obtained by using multipliers
normalized to yield a cut with a righthand side of 1:

1. max

{
−r2j
f2

,
−r1j+r2j
f1−f2

}

2. max

{
r2j

1−f2
,

−r1j−r2j
f1+f2−1

}

To apply the strengthening procedure, we note that for each of the 16 terms of
the above 8 disjunctions, the lower bound on the lefthand side of the inequality is just
1 unit less than the righthand side, hence the difference between the latter and the
former is exactly 1. Further, the weights (v̄k, w̄k) are normalized so that v̄k + w̄k = 1,
k = 1, 2. The resulting strengthened coefficients for the above illustration are

1. minmk
j∈M

max

{
−r1j+m1

j

f2
,
r1j−r2j+m2

j

f1−f2

}

2. minmk
j∈M

max

{
r2j+m1

j

1−f2
,
−r1j−r2j+m2

j

f1+f2−1

}

8 Computational Experiments

In this section we present computational experiments with cuts derived from fixed
configurations of the parametric octahedron. We assess the strength of the cuts by
analyzing the gap closed on instances from MIPLIB3 C V2 [23] when used in com-
bination with standard Gomory cuts. MIPLIB3 C V2 is a collection of 68 instances
by Margot which are slight variations of the standard MIPLIB3 [24] and for which
the validity of a candidate solution can be checked in finite precision arithmetic. We
restricted the collection to a subset of 41 instances. The considered instances are such

28

that they contain at least 2 binary variables fractional in the optimal LP solution and
the cut generation procedure on each round takes less than 3600 seconds.

We generated the following two families of cuts

• Cuts from 4 Triangles TA (shown in Figure 5) whose vertices, expressed in terms
of their x1, x2 coordinates, are:

– (0, 0); (2, 0); (0, 2)

– (−1, 0); (1, 0); (1, 2)

– (0,−1); (2, 1); (0, 1)

– (1,−1); (1, 1); (−1, 1)

• Cuts from 4 of the 8 cones of type CA (shown in Figure 6):

– apex at (0, 0) and rays (1, 0), (1, 1)

– apex at (0, 0) and rays (0, 1), (1, 1)

– apex at (0, 1) and rays (1, 0), (1,−1)

– apex at (0, 1) and rays (0,−1), (1,−1)

– apex at (1, 1) and rays (−1, 0), (−1,−1)

– apex at (1, 1) and rays (0,−1), (−1,−1)

– apex at (1, 0) and rays (−1, 0), (−1, 1)

– apex at (1, 0) and rays (0, 1), (−1, 1)

The reason we only used 4 of these 8 cones is that every (f1, f2)-pair is contained in 4
of these 8 cones.

−1 0 1 2 3
−1

0

1

2

3
1

−2 −1 0 1 2
−1

0

1

2

3
2

−1 0 1 2 3
−2

−1

0

1

2
3

−2 −1 0 1 2
−2

−1

0

1

2
4

Figure 5: Fixed shape Triangles TA

For each instance, we first solved the linear programming relaxation and generated
a round of Gomory mixed integer (GMI) cuts, a round being one cut from every row of
the optimal simplex tableau associated with a binary basic variable with a fractional

29

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

1

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

3

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

4

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

5

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

6

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

7

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

8

Figure 6: Fixed shape cones CA

value. We then generated from each pair of rows with at least one fractional binary
basic variable either (a) all cuts from the 4 triangles TA, or (b) all cuts from 4 of the
8 cones CA or both, and strengthened them via standard modularization (in case (a))
or monoidal strengthening (in case (b)).

We call this cut generating cycle a round. At the end of each round, we reoptimized
the resulting linear program and removed all cuts that were not tight at the optimum.
We generated up to 5 rounds of cuts for each instance. A statement of our routine
follows.

30

Cut Generating Procedure(r, f)

1 Solve LP relaxation P
2 for k ← 1 up to 5
3 do

4 Initialize cut collection C ← empty
5 for each binary basic xi fractional in the

current solution
6 do

7 Compute Gomory cut Gi

8 C ← C ∪Gi

9 for each binary basic pair xi, xj with at
least one fractional in the current solution

10 do

11 if GenerateTriangles==true
12 then generate the cuts T 1

ij , . . . , T
4
ij from each of the 4 triangles of

TA that contain the fractional solution in their interior
13 if StrengthenCuts==true
14 then strengthen the cuts T 1

ij, . . . , T
4
ij via standard modularization

15 C ← C ∪ T 1
ij, . . . , T

4
ij

16 if GenerateCones==true
17 then generate the cuts K1

ij , . . . ,K
8
ij from each of the 8 cones CA that

contain the fractional solution in their interior
18 if StrengthenCuts==true
19 then strengthen the cuts K1

ij , . . . ,K
8
ij via monoidal cut

strengthening
20 C ← C ∪K1, . . . ,K

8
ij

21 Resolve P and get new solution x̄k with value opt
k

22 Remove from P the cuts in C that are not tight at x̄k

The Gomory mixed integer (GMI) cut generator we used is the CglGomory routine
of the Cgl package of COIN-OR [14]. Tables 8.1–8.4 summarize the results of our
experiments with these cuts. Table 8.1 shows the outcome of applying all three types
of cuts in the above described manner, with strengthening, for one round. Column
1 lists the 41 test instances mentioned above. Column 2 shows the percentage of the
integrality gap closed by one round of GMI cuts, while the next two columns show the
number of cuts generated and added to the LP relaxation, along with the number of
cuts deleted after reoptimization as nonbinding. The next three columns show the same
data (i.e. percentage of gap closed and number of cuts added, respectively deleted)
after generating a cut from each of the 4 triangles TA associated with every pair of
basic 0-1 variables with at least one fractional member, and a cut from each of the 8
cones associated with every such pair, provided the cone contains such a pair in its
interior. Finally, the last column shows the percentage improvement in the integrality
gap closed by all three types of cuts versus the GMI cuts alone.

As the table shows, the integrality gap closed, which is 19.49% in the case of the
GMI cuts, reaches 29.06% when the two remaining types of cuts are added, an increase
of 49.14%. The number of triangle cuts and conical cuts generated is of course much
larger than that of GMI cuts. While the latter is bounded by the number of basic

31

0-1 variables fractional at the optimum, in case of the other two types of cuts this
number gets multiplied by 8 times the number of basic 0-1 variables, fractional or not.
From the table it is clear that after reoptimization few of the added cuts remain active
(about 2%), while the rest get removed. The table also reveals marked differences in
the impact of the 2-row cuts on different instances, from 0 impact in about 40% of the
instances, to a more than 7-fold increase of the gap closed in the highest-impact case.

Tables 8.2–8.3 show the effect of using only triangle cuts or only conic cuts on top
of the GMI cuts. Clearly, the joint effect of using both types of cuts is substantially
stronger than is the case with a single type.

Finally, Table 8.4 shows the effect of generating both types of 2-row cuts on top of
GMI cuts, as in Table 8.1, but this time for 5 rounds instead of just 1. The improvement
in gap closing keeps growing after every round. At the end of the 5 rounds, the gap
closed is 38.78%, roughly twice as large as the 19.49% gap closure obtained by 1 round
of GMI cuts.

32

Table 8.1: GMI cuts + Triangle cuts + Conic cuts, all strengthened, 1 round

GMI GMI+ TA + CA, strengthened
Gap Cuts Cuts Gap Cuts Cuts
closed added deleted closed added deleted Improvement

Instance % # # % # # %
air03 100 36 10 100 12744 12667 0.00
cap6000 41.65 2 1 41.65 1360 1359 0.00
danoint 0.26 24 13 0.26 24 13 0.00
dcmulti 45.75 49 12 45.86 392 362 0.24
egout 21.84 16 0 60.91 3461 3423 178.89
enigma 100 6 5 100 341 340 0.00
fiber 53.32 39 24 64.97 22944 22881 21.85
fixnet3 6.62 6 0 56.19 2925 2827 748.79
fixnet4 4.79 6 0 13.02 2829 2731 171.82
fixnet6 3.98 6 0 13.03 2502 2388 227.39
khb05250 74.91 19 0 84.21 1435 1408 12.41
l152lav 0 0 0 26.68 16774 16684 0.00
lseu 55.94 12 7 56.59 567 562 1.16
markshare1 0 6 3 0 124 110 0.00
markshare2 0 7 3 0 173 147 0.00
mas74 6.52 9 0 7.57 511 485 16.10
mas76 6.36 9 1 7.7 433 412 21.07
misc03 8.62 20 17 8.62 2239 2231 0.00
misc06 26.17 8 0 26.17 8 0 0.00
misc07 0 28 25 0.72 4177 4171 0.00
mod008 20.1 4 1 20.27 96 90 0.85
mod010 0 0 0 99.26 14211 14070 0.00
mod011 11.44 8 1 32.81 855 171 186.80
modglob 13.32 16 2 16.26 137 40 22.07
p0033 12.6 5 1 57.04 174 168 352.70
p0201 16.89 20 13 19.31 1933 1929 14.33
p0282 3.47 24 17 6.2 2837 2829 78.67
p0548 3.06 19 2 18.53 5584 5521 505.56
p2756 0.21 7 1 0.56 908 884 166.67
pk1 0 15 5 0 22 12 0.00
pp08a 54.3 50 0 65.29 7825 7732 20.24
pp08aCUTS 32.83 40 0 41.18 2579 2513 25.43
qiu 0.33 36 24 0.33 36 24 0.00
rentacar 0 2 0 0 7 5 0.00
rgn 3.15 17 9 3.15 1341 1331 0.00
set1ch 30.36 125 1 44.51 28347 28111 46.61
stein27 0 21 17 0 1257 1254 0.00
stein45 0 35 28 0 3584 3575 0.00
swath 8.18 10 0 11.79 6917 6895 44.13
vpm1 20.73 12 0 23.94 1073 1047 15.48
vpm2 11.25 27 6 16.96 4345 4296 50.76
Average 19.49 19.54 6.07 29.06 3903.2 3846.29 49.14

33

Table 8.2: GMI cuts + Triangle cuts, strengthened, 1 round

GMI GMI + TA, strengthened
Gap Cuts Cuts Gap Cuts Cuts
closed added deleted closed added deleted Improvement

Instance % # # % # # %
air03 100 36 10 100 5646 5569 0.00
cap6000 41.65 2 1 41.65 364 363 0.00
danoint 0.26 24 13 0.26 24 13 0.00
dcmulti 45.75 49 12 45.75 119 86 0.00
egout 21.84 16 0 60.9 2026 1990 178.85
enigma 100 6 5 100 143 142 0.00
fiber 53.32 39 24 59.77 9927 9877 12.10
fixnet3 6.62 6 0 47.01 1571 1479 610.12
fixnet4 4.79 6 0 12.49 1523 1426 160.75
fixnet6 3.98 6 0 12.03 1352 1240 202.26
khb05250 74.91 19 0 84.21 722 698 12.41
l152lav 0 0 0 13.42 7568 7483 0.00
lseu 55.94 12 7 55.94 291 286 0.00
markshare1 0 6 3 0 66 56 0.00
markshare2 0 7 3 0 91 69 0.00
mas74 6.52 9 0 7.44 261 236 14.11
mas76 6.36 9 1 7.12 225 203 11.95
misc03 8.62 20 17 8.62 1031 1028 0.00
misc06 26.17 8 0 26.17 8 0 0.00
misc07 0 28 25 0 1933 1930 0.00
mod008 20.1 4 1 20.11 48 43 0.05
mod010 0 0 0 93.23 5873 5735 0.00
mod011 11.44 8 1 32.53 464 103 184.35
modglob 13.32 16 2 15.75 107 12 18.24
p0033 12.6 5 1 57.04 85 80 352.70
p0201 16.89 20 13 19.31 1235 1230 14.33
p0282 3.47 24 17 5.38 1416 1409 55.04
p0548 3.06 19 2 17.37 2958 2917 467.65
p2756 0.21 7 1 0.56 546 523 166.67
pk1 0 15 5 0 18 8 0.00
pp08a 54.3 50 0 64.89 3862 3774 19.50
pp08aCUTS 32.83 40 0 40.9 1132 1058 24.58
qiu 0.33 36 24 0.33 36 24 0.00
rentacar 0 2 0 0 4 2 0.00
rgn 3.15 17 9 3.15 697 689 0.00
set1ch 30.36 125 1 44.3 12412 12154 45.92
stein27 0 21 17 0 846 843 0.00
stein45 0 35 28 0 2395 2386 0.00
swath 8.18 10 0 11.79 3358 3338 44.13
vpm1 20.73 12 0 21.94 480 457 5.84
vpm2 11.25 27 6 16.02 2133 2094 42.40
Average 19.49 19.54 6.07 27.98 1829.17 1781.78 43.61

34

Table 8.3: GMI cuts + Conic cuts, strengthened, 1 round

GMI GMI + CA, strengthened
Gap Cuts Cuts Gap Cuts Cuts
closed added deleted closed added deleted Improvement

Instance % # # % # # %
air03 100 36 10 100 7134 7057 0.00
cap6000 41.65 2 1 41.65 998 997 0.00
danoint 0.26 24 13 0.26 24 13 0.00
dcmulti 45.75 49 12 45.86 322 292 0.24
egout 21.84 16 0 35.15 1451 1422 60.94
enigma 100 6 5 100 204 203 0.00
fiber 53.32 39 24 62.94 13056 12970 18.04
fixnet3 6.62 6 0 49.3 1360 1257 644.71
fixnet4 4.79 6 0 10.41 1312 1210 117.33
fixnet6 3.98 6 0 11.5 1156 1050 188.94
khb05250 74.91 19 0 77.59 732 704 3.58
l152lav 0 0 0 26.68 9206 9118 0.00
lseu 55.94 12 7 56.59 288 283 1.16
markshare1 0 6 3 0 64 55 0.00
markshare2 0 7 3 0 89 73 0.00
mas74 6.52 9 0 7.15 259 237 9.66
mas76 6.36 9 1 7.62 217 190 19.81
misc03 8.62 20 17 8.62 1228 1220 0.00
misc06 26.17 8 0 26.17 8 0 0.00
misc07 0 28 25 0.72 2272 2266 0.00
mod008 20.1 4 1 20.27 52 46 0.85
mod010 0 0 0 97.91 8338 8198 0.00
mod011 11.44 8 1 27.3 399 99 138.64
modglob 13.32 16 2 13.94 46 2 4.65
p0033 12.6 5 1 24.59 94 89 95.16
p0201 16.89 20 13 16.89 718 711 0.00
p0282 3.47 24 17 5.4 1445 1436 55.62
p0548 3.06 19 2 6.53 2645 2599 113.40
p2756 0.21 7 1 0.21 369 358 0.00
pk1 0 15 5 0 19 9 0.00
pp08a 54.3 50 0 57.01 4013 3927 4.99
pp08aCUTS 32.83 40 0 34.23 1487 1409 4.26
qiu 0.33 36 24 0.33 36 24 0.00
rentacar 0 2 0 0 5 3 0.00
rgn 3.15 17 9 3.15 661 650 0.00
set1ch 30.36 125 1 37.43 16060 15780 23.29
stein27 0 21 17 0 432 428 0.00
stein45 0 35 28 0 1224 1214 0.00
swath 8.18 10 0 9.89 3569 3537 20.90
vpm1 20.73 12 0 22.73 605 575 9.65
vpm2 11.25 27 6 15.25 2239 2199 35.56
Average 19.49 19.54 6.07 25.88 2093.56 2046.59 32.83

35

Table 8.4: GMI cuts + Triangle cuts + Conic cuts, all strengthened, 5 rounds

GMI GMI + TA + CA, strengthened
Gap Gap
Closed Closed Improvement

round % % %
1 19.49 29.06 49.14
2 24.94 34.01 36.38
3 27.87 36.70 31.67
4 29.57 37.95 28.31
5 30.48 38.78 27.24

36

References

[1] Andersen, K., Louveaux, Q., Weismantel, R., Wolsey, L.A., Cutting planes from
two rows of a simplex tableau. IPCO 12, Lecture Notes in Computer Science, 4513,
Springer, 2007, 1-15.

[2] Balas, E., Intersection cuts – a new type of cutting planes for integer programming.
Operations Research 19, 1971, 19-39.

[3] Balas, E., Disjunctive programming: properties of the convex hull of feasible
points. Discrete Applied Mathematics 89, 1998, 3-44.

[4] Balas, E., Disjunctive Programming. Annals of Discrete Mathematics 5, 1979,
3-51.

[5] Balas, E., Intersection cuts from maximal lattice-free convex sets and lift-and-
project cuts from multiple-term disjunctions. American Mathematical Society
Western Section Spring Meeting, San Francisco, April 25-27, 2009.

[6] Balas, E., Multiple-term disjunctive cuts and intersection cuts from multiple rows
of the simplex tableau. 20th International Symposium on Mathematical Program-
ming, Chicago, August 23-28, 2009.

[7] Balas, E., Ceria, S., Cornuéjols, G., A lift-and-project cutting plane algorithm for
mixed 0-1 programs. Mathematical Programming 58, 1993, 295-324.

[8] Balas, E., Ceria, S., Cornuéjols, G., Mixed 0-1 Programming by Lift-and-Project
in a Branch-and-Cut Framework. Management Science 42, 1996, 1229-1246.

[9] Balas, E., Jeroslow, R., Strengthening cuts for mixed integer programs. European
Journal of Operations Research, 4, 1980, 224-234.

[10] Balas, E., Perregaard, M., A precise correspondence between lift-and-project cuts,
simple disjunctive cuts, and mixed integer Gomory cuts for 0-1 programming.
Mathematical Programming 94, 2003, 221-245.

[11] Basu, A., Bonami, P., Cornuéjols, G., Margot, F., On the Relative Strength of
Split, Triangle and Quadrilateral Cuts. Mathematical Programming 126, 2009,
1220-1229.

[12] Basu, A., Bonami, P., Cornuéjols, G., Margot, F., Experiments with Two-Row
Cuts from Degenerate Tableaux. INFORMS Journal on Computing, 2010.

[13] Borozan, V., Cornuéjols, G., Minimal valid inequalities for integer constraints.
Mathematics of Operations Research, 34, 2009, 538-546.

[14] COmputational INfrastructure for Operations Research (COIN-OR).
http://www.coin-or.org

[15] Conforti, M., Cornuéjols, G. and Zambelli, G., Corner polyhedron and intersection
cuts. Surveys in Operations Research and Management Science, 16, 2011, 105-120.

[16] Cook, W., Kannan, R., Schrijver,A., Chvatal Closures for Mixed Integer Pro-
gramming Problems. Mathematical Programming, 47, 1990, 155-174.

[17] Cornuéjols, G., Margot, F., On the Facets of Mixed Integer Programs with Two
Integer Variables and Two Constraints. Mathematical Programming A, 120, 2009,
429-456.

37

[18] Dash, S., Dey, S., Gunluk, O., Two dimensional lattice-free cuts and asymmetric
disjunctions for mixed-integer polyhedra. Mathematical Programming A, 2010,
DOI: 10.1007/s/0/07-011-0455-1.

[19] Dey, S., Wolsey, L.A., Two Row Mixed-Integer Cuts Via Lifting. Mathematical
Programming B, 124, 2010, 143-174.

[20] Dey, S., Lodi, A., Tramontani, A. and Wolsey, L., Experiments with two-row
tableau cuts. IPCO 14, Lecture Notes in Computer Science, 6080, Springer, 2010,
424-437, DOI:10.1007/978-3-642-13036-6_32.

[21] Gomory, R.E., An algorithm for the mixed integer problem. RM-2597. The Rand
Corporation, 1960.

[22] Gomory, R.E., Some polyhedra related to combinatorial problems. Journal of
Linear Algebra and Its Applications, 2, 1969, 451-458.

[23] Margot, F, MIPLIB3 C V2. Available at
http://wpweb2.tepper.cmu.edu/fmargot/MPS/miplib3 c v2.tar.gz

[24] MIPLIB 3. Available at
http://www.caam.rice.edu/~bixby/miplib/miplib3.html

[25] Qualizza, A., Cutting Planes for Mixed Integer Programming. Dissertation, Tep-
per School of Business, Carnegie Mellon University, 2011.

38

