

National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

Continuous Toxicological Dose-Response Relationships are Pretty Homogeneous

R. Woodrow Setzer, NCCT/US EPA Wout Slob, RIVM

The views expressed in this presentation are those of the authors and do not necessarily represent the views or policies of the US Environmental Protection Agency

<u>Overview</u>

- –How heterogeneous are continuous dose-responses (from Slob and Setzer, *Critical Reviews in Toxicology* 44(3): 270-297; 2014)?
 - Data
 - Results
 - -Continuous endpoints \leftrightarrow 4-parameter sigmoid models
 - -Shape parameters show regularities
 - Dose-group level variability is non-trivial, and usually ignored.
- Bayesian methods fitting 4-parameter models to 3-dose data sets.

How big a problem is model uncertainty?

- –How heterogeneous are the shapes of dose-response curves?
 - How well can we do with 4-parameter "sigmoid" models, specifically Hill and 4-parameter exponential?

Exponential:
$$y = a \left[c - (c - 1) e^{-bx^d} \right]$$

Hill: $y = a \left[1 + (c - 1) \frac{x^d}{b^d + x^d} \right]$

- –Are there regularities in dose-response shapes we can take advantage of?
- –Are there features of dose-response data, usually ignored, that we need to be aware of?

Dose-Response Scale and Shape

Data Sets

Cluster A: Subchronic	NTP	♂ ¹ rat	우 rat	് mouse	<u>♀mouse</u>
BW		38	34	22	18
Rel. Liver weight		29	26	15	23
Kidney weight		18	15	5	6
Cluster B: OP ester		♂ rat	우 rat		
AChE		16	16		
<u>Cluster C: In vivo micronucleus test</u>					
MN frequency	139				
<u>Cluster D: LLNA test</u>	<u>Rubber</u>	chem.s	Low mo	ol. weight chem.	<u>S</u>
proliferation	15	10			
<u>Cluster E: WEC test</u>	<u>Lab 1</u>	Lab 2	Lab 4		
Crown-rump length	13	13	12		
<u>Cluster F: In vitro micronucleus test</u>					
MN frequency	5				

Extra Variability at the Dose-Group-Level

- Often invisible with just
 3 or 4 doses, but
- Detectable when there are enough doses to visualize a trend
- Confound parameter estimates and goodness of fit tests

Shape is Consistent

a, b vary across chemicals

a, b, d vary across chemicals

Relative liver weight, male mice, subchronic NTP

Shape Parameters Fall in Narrow Ranges

Conclusions:

- For continuous endpoints, standard four-parameter sigmoid models are generally adequate
- Extra variability at the dose-group level is common, and will confound parameter estimates, especially in typical toxicological experimental designs (3 4 dose groups)
- -Model shape parameters appear to be narrowly constrained
- -BUT, what about legacy datasets with only 3 dose groups?

Fitting a 4-Parameter Model to 3-Dose-Group Data

- Model parameters are not identifiable under conventional maximum likelihood estimation with only 3 dose groups
- -Use Bayes with informative priors
 - Is coverage (measured conventionally) adequate?
 - Computationally feasible (effort involved, i.e., time)?
 - A preliminary simulation, with priors:

Hill model:
$$m_g(y) = a \left[1 + (c-1) \frac{x^d}{b^d + x^d} \right]$$

Simulation Provisional Summary

- -Median time/dataset: 1.6 sec; 99% of times < 11.3 sec.
- –Overall coverage of nominal 90% BMD CI: 85%
- Coverage varies considerably over the set of conditions any given BMD CI may be very long, or very short.
 - <u>Hypothesis</u>: nominal overall coverage depends on the priors really characterizing the distribution of parameter values likely in real world applications
- -Some questions:
 - How informative do priors need to be to get answers?
 - Can we better pick priors to reduce the variability in coverage?

Further Thoughts and Future Work:

- Model uncertainty for continuous variables is well characterized by the parameter uncertainty from fitting 4parameter sigmoid models.
- More generally, we should systematically explore the variety of models needed to describe data sets, keeping in mind that we need unusually large studies to do this.
- Future model development should incorporate approaches for handling dose-group-level extra variability and informative priors.
- Future guidance on experimental design for toxicology data should be aimed at better estimating dose-response curves, taking into account the (probably inevitable) presence of dose-group-level extra variation.