PFAS Prioritisation for Targeted Testing

Grace Patlewicz
National Center for Computational Toxicology (NCCT), US EPA

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA
Outline

- What are PFAS?
- What is the Landscape of PFAS?
- What are PFAS of potential interest to the Agency?
- How many substances might be procurable?
- What constitutes a representative set of PFAS to propose for targeted testing?
- Structural categories – current and future
- Some next steps
Per- and Polyfluoroalkyl Substances (PFAS)

Thousands of PFAS are associated with the production of industrial and consumer products.

Poly fluorinated = many fluorines

Polyfluorinated carboxylic acid from the production of polyvinylidene fluoride (PVDF) plastic

Per fluorinated = fully fluorinated

Perfluorooctanoic acid (PFOA, C-8)

Perfluorooctanesulfonate (PFOS)
Per- and Polyfluoroalkyl Substances (PFAS)

- A class of man-made chemicals that are ubiquitous due to:
 - Wide variety of industrial and consumer uses
 - Persistence
 - High mobility
- They are a concern due to:
 - Known or suspected toxicity, especially for PFOS and PFOA
 - Bioaccumulation
 - Long half lives (e.g., several years), especially in humans
 - Mobility - shorter chain PFAS tend to be highly mobile, longer chain PFAS less mobile
- Information on PFAS is rapidly evolving
Thousands of Chemicals: More Than Just PFOA and PFOS

- **Perfluoroalkyl acids (PFAAs)**
 - $C_nF_{2n+1}R$
 - Perfluoroalkyl carboxylic acids (PFCAs)
 - Perfluoroalkane sulfonic acids (PFSA)
 - Perfluoroalkyl phosphoric acids (PFPA)

- **Perfluoroalkane sulfon fluoride (PASF)** → **PASF-based derivatives**
 - $C_nF_{2n+1}SO_2F$
 - $C_nF_{2n+1}SO_2R$, $R = \text{NH, NHCH}_3\text{CH}_2\text{OH}$, etc.

- **Perfluoroalkyl iodides (PFAI)** → **Fluorotelomer iodides (FTIs)** → **FT-based derivatives**
 - $C_nF_{2n+1}I$
 - $C_nF_{2n+1}CH_2CH_2I$
 - $C_nF_{2n+1}CH_2CH_2R$, $R = \text{NH, NHCH}_3\text{CH}_2\text{OH}$, etc.

- **Per- and polyfluoroalkyl ethers (PFPEs)-based derivatives**
 - Polyfluoroalkyl ether carboxylic acids

- **Fluoropolymers**
 - Polytetrafluoroethylene (PTFE)
 - Polyvinylidene fluoride (PVDF)
 - Fluorinated ethylene propylene (FEP)
 - Perfluorooalkoxyl polymer (PFA)
 - Others

- **Side-chain fluorinated polymers**
 - Fluorinated (meth)acrylate polymers
 - Fluorinated urethane polymers
 - Fluorinated oxetane polymers

- **Perfluoropolyethers**

Slide from J Lambert
PFAS: EPA Cross-Agency Research List (Late 2017)

https://comptox.epa.gov/dashboard/chemical_lists/epapfasrl

Curation
- Correct misspelled names
- Correct CASRN
- Fix errors in mappings of anions, salts, parents
- Create unique acronym
- Map to unique DTXSID

EPAPFASRL
19 lists collapsed to single list of 194 unique DTXSID substances

<table>
<thead>
<tr>
<th>DTXSID</th>
<th>Substance Name</th>
<th>Substance _CASRN</th>
<th>Source_Name (incorrect or ambiguous)</th>
<th>Source_CASRN (incorrect or invalid)</th>
<th>Source_Acronym (incorrect or ambiguous)</th>
<th>Unique_Acronym</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTXSID20874028</td>
<td>2H,2H,3H,3H-Perfluorooctanoic acid</td>
<td>914637-49-3</td>
<td>5:3 Polyfluorinated acid</td>
<td>914637-49-3</td>
<td>5:3 acid</td>
<td>5:3 PFOA</td>
</tr>
<tr>
<td>DTXSID7027831</td>
<td>N-Methyl-N-[2-hydroxyethyl]perfluorooctanesulfonamide</td>
<td>24448-09-7</td>
<td>N-Methyl perfluorooctanesulfonamide</td>
<td>NMeFOSE, MeFOSE</td>
<td>NMeFOSE</td>
<td>NMeFOSE</td>
</tr>
<tr>
<td>DTXSID10892352</td>
<td>Perfluoro-2-((perfluoro-3-(perfluoroethoxy)-2-propanyl)oxy)ethanesulfonic acid</td>
<td>749836-20-2</td>
<td>Perfluoro-2-((perfluoro-3-(perfluoroethoxy)-2-propanyl)oxy)ethanesulfonic acid</td>
<td>749836-20-2</td>
<td>PFESA Byproduct 2</td>
<td>PFESA Byproduct 2</td>
</tr>
<tr>
<td>DTXSID70892479</td>
<td>Perfluoropentanesulfonate</td>
<td>175905-36-9</td>
<td>Perfluoropentanesulfonate</td>
<td>2706-91-4</td>
<td>PFPeS</td>
<td>PFPeS_i_on</td>
</tr>
<tr>
<td>DTXSID8071354</td>
<td>Ammonium perfluoropentanesulfonate</td>
<td>68259-09-6</td>
<td>Ammonium perfluoropentanesulfonate</td>
<td>68259-09-6</td>
<td>APFPeS</td>
<td>APFPeS</td>
</tr>
<tr>
<td>DTXSID40881350</td>
<td>4,8-Dioxa-3H-perfluorononanoic acid</td>
<td>919005-14-4</td>
<td>2,2,3-Trifluoro-3-(1,1,2,2,3,3-hexafluoro-3-(trifluoromethoxy)propano)perfluorononanoic acid</td>
<td>919005-14-4</td>
<td>ADONA</td>
<td>ADONA parent acid</td>
</tr>
<tr>
<td>DTXSID00874026</td>
<td>Ammonium 4,8-dioxa-3H-perfluorononanoate</td>
<td>958445-44-4</td>
<td>Ammonium 4,8-dioxa-3H-perfluorononanoate</td>
<td>958445-44-8</td>
<td>ADONA</td>
<td>ADONA</td>
</tr>
<tr>
<td>DTXSID3037707</td>
<td>Potassium perfluorobutanesulfonate</td>
<td>29420-49-3</td>
<td>Potassium perfluorobutanesulfonate</td>
<td>PFBS</td>
<td>PFBS-K</td>
<td>PFBS-K</td>
</tr>
<tr>
<td>DTXSID5030030</td>
<td>Perfluorobutanesulfonic acid</td>
<td>375-73-5</td>
<td>Perfluorobutanesulfonic acid</td>
<td>PFBS</td>
<td>PFBS</td>
<td>PFBS</td>
</tr>
</tbody>
</table>
PFAS Library and Chemical Selection

EPA DSSTox Database: > 758K chemicals

- Chemical structures, downloadable files
- Predicted phys-chem properties
- External links & list overlaps

PFAS Chemical Landscape:

- DSSTox-registered: >5000 PFAS substances
 - (>3 F, alkyl)
- ~2000
 - Attempt to procure (chemicals w/ structures)
- ~450
 - PFAS Standards library
- ~200
 - EPA’s prioritized list for PFAS research
 - (exposure, occurrence, health data)
- ~75
 - PFAS Reference subset (Phase 1)
 - (tiered toxicity & toxicokinetic testing)

Per(poly)-fluorinated substances (PFAS)

- PFAS chemical names, acronyms, synonyms
- PFAS chemical structure categories

https://comptox.epa.gov/dashboard
Workflow to prioritise structural categories to inform the PFAS for targeted testing

Step 0: Characterising the PFAS library
- Data collection: Pre-defined structural categories

Step 1: Select substances from categories of greatest interest to the Agency
- On Wkgp-31 list: Availability of in vivo data
- On EPA-PFAS list: Availability of in vivo data

Step 2: Select substances from categories of interest to the Agency
- Availability of in vivo data

Step 3: Select substances from remaining categories with in vivo data
- EPA interest in vivo data lacking

Step 4: Select substances from categories of interest to the Agency
- Characterising the PFAS Landscape

Step 5: Select substances from remaining categories

- 53 structural categories
- +2 structural categories
- +5 structural categories
- +6 structural categories*

 *chemical, so were not included

- 53 substances: 12 categories
- 9 substances: 6 categories
- 13 substances: 10 categories

Agency interest

Availability of in vivo data

53 structural categories

EPA interest

Characterising the PFAS Landscape

Maximising Read-across

Capturing Structural Diversity
Step 0: Characterising the PFAS library

Structural Categories

- Manually annotated the ‘procurable’ substances into structural categories
- Categories built upon those defined by Buck et al (2011)
- Characterised on the standard nomenclature – fluorotelomers, perfluorinated substances etc.
- Identified 53 unique structural categories
- These represent a generalised description of a category
- In some cases these can be subcategorised into greater detail – e.g. n:2 fluorotelomer alcohol vs fluorotelomer alcohols
Step 0: Characterising the PFAS library

Workflow Step:
1. Wkgrp-31
2. EPA-PFAS
3. PFAS-Landscape Categories

(a) **Total Chemical Count**
- Wkgrp-31
- EPA-PFAS

(b) **ToxVal Record Count**

(c) **Final Chemical Count**

- Availability of *in vivo* toxicity information in the context of the pre-defined structural categories
- Representation of PFAS of interest to the Agency in the context of the pre-defined structural categories
Workflow to prioritise structural categories to inform the PFAS for targeted testing

Step 0:
Characterising the PFAS library

- Data collection:
 - Pre-defined structural categories
- On Wkgrp-31 list:
 - Availability of in vivo data
- Availability of in vivo data

Step 1: Select substances from categories of greatest interest to the Agency

- Agency interest
- Availability of in vivo data

- 5 structural categories
- 53 structural categories

Step 2: Select substances from categories of interest to the Agency

- 53 substances: 12 categories

Step 3: Select substances from remaining categories with in vivo data

- +2 structural categories
- +5 structural categories

Step 4: Select substances from categories of interest to the Agency

- +6 structural categories
- +2 structural categories* (chemical, so were not included)

Step 5: Select substances from remaining categories

- +10 structural categories

Characterising the PFAS Landscape

- EPA interest in vivo data lacking
- EPA-PFAS list:
 - +5 structural categories

- Agency interest
- Availability of in vivo data

- 9 substances: 6 categories
- 13 substances: 10 categories
Steps 1-3: Maximising read-across

Known information on the property of a substance (source chemical) is used to make a prediction of the same property for another substance (target chemical) that is considered “similar” i.e. Endpoint & often study specific

<table>
<thead>
<tr>
<th>Property</th>
<th>Source chemical</th>
<th>Target chemical</th>
</tr>
</thead>
</table>

- Use of information for “PFAS source substances” is used to infer (read-across) missing information for a related similar PFAS target
- Similarity context as a pragmatic starting point is “structural similarity” using the structural categories that have been defined
- Requirement is in vivo toxicity information
- Depending on the structural diversity within the structural category - opportunities may exist to explore trends in activity - impact of chain length C4 vs C6 vs C8; impact of n:H in fluorotelomer alcohols n:3 vs n:3 vs n:1; impact of position of ether linkage etc.
Workflow to prioritise structural categories to inform the PFAS for targeted testing

Step 0: Characterising the PFAS library
- On Wkgrp-31 list:
 - Pre-defined structural categories
- On EPA-PFAS list:
 - Availability of in vivo data
- Availability of in vivo data

Maximising Read-across
- Agency interest
- 53 structural categories
- Availability of in vivo data
- 53 substances: 12 categories

Step 1: Select substances from categories of greatest interest to the Agency
- 5 structural categories
- 2 structural categories

Step 2: Select substances from categories of interest to the Agency
- 2 structural categories

Step 3: Select substances from remaining categories with in vivo data
- 5 structural categories

Step 4: Select substances from categories of interest to the Agency
- 6 structural categories
- Chemical, so were not included
- 10 structural categories

Step 5: Select substances from remaining categories
- 9 structural categories
- 13 substances: 10 categories

Capturing Structural Diversity
- EPA interest
 - In vivo data lacking
 - Characterising the PFAS Landscape
Steps 4-5: Capturing Structural Diversity

• Characterising the biological activity of the PFAS landscape that comprises substances of current interest to the Agency
• Characterising the biological activity of the PFAS landscape beyond substances of current interest to the Agency
• Testing broad PFAS landscape may enable detection of hotspots in activity that could help in prioritising future PFAS research and anticipating future problem areas
Considerations for PFAS selection

<table>
<thead>
<tr>
<th>Aspect Name</th>
<th>Scoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Structural diversity within a category</td>
<td>Approximated by category size, with score ranging from 1 (20 or more members) to 0 (1 member)</td>
</tr>
<tr>
<td>2) Data availability</td>
<td>Availability of in vitro ToxCast data (score=0.5) or ToxVal in vivo data (score=0.75) or both (score=1)</td>
</tr>
<tr>
<td>3) Data quantity</td>
<td>Number of ToxVal records for a substance indicating a stronger source-analogue for read-across, with scores ranging from 0.15 (for 1 record) to 1 (for 20 or more records)</td>
</tr>
<tr>
<td>4) Read-across category-level weight</td>
<td>Value of substance for anchoring read-across trends within a category (e.g., chain length etc.), serving as a source analog (score=0.5) or target analog (score=0.25), or as a target analog for capturing structural diversity (score=0.15)</td>
</tr>
<tr>
<td>5) Numerical indicator of EPA interest</td>
<td>Wkgrp-31 (score=1), other EPA-PFAS (score=0.75), only in PFAS-Landscape (score=0.5)</td>
</tr>
<tr>
<td>6) Phys-chem indicators of testability</td>
<td>Both LogKow and Vapor Pressure favorable (score=0.75), one favorable (score=0.5), both unfavorable (score=0). E.g. LogKow < 4.5, Vapor Pressure < 10^3 mmHg considered favorable.</td>
</tr>
<tr>
<td>7) Figure 1 Workflow Step</td>
<td>Step 1 (score=1), Step 2 (score=0.75), Step 3 (score=0.5), Step 4 (score =0.25), Step 5 (score=0)</td>
</tr>
<tr>
<td>Total Score</td>
<td>Summation of scores from the preceding considerations used to rank each PFAS substance</td>
</tr>
<tr>
<td>List Account</td>
<td>List Name</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>EAPFASF7SS1</td>
<td>PFAS/EPA: List of 75 Test Samples (Set 1)</td>
</tr>
<tr>
<td>EAPFASF7SS2</td>
<td>PFAS/EPA: List of 75 Test Samples (Set 2)</td>
</tr>
<tr>
<td>EAPFASCAT</td>
<td>PFAS/EPA Structure-based Categories</td>
</tr>
<tr>
<td>EAPFASDW</td>
<td>PFAS/EPA: New EPA Method Drinking Water</td>
</tr>
<tr>
<td>EAPFASDWS37</td>
<td>PFAS/EPA: Existing EPA DW Method 537.1</td>
</tr>
<tr>
<td>EAPFASDTREAT</td>
<td>PFAS/EPA: Drinking Water Treatment Technology</td>
</tr>
<tr>
<td>EAPFASINSOL</td>
<td>PFAS/EPA: Chemical Inventory Insoluble in DMSO</td>
</tr>
<tr>
<td>EAPFASINV</td>
<td>PFAS/EPA: ToxCast Chemical Inventory</td>
</tr>
<tr>
<td>EAPFASINVIVO</td>
<td>PFAS/EPA: In Vivo Studies Available</td>
</tr>
<tr>
<td>EAPFASLITSEARCH</td>
<td>PFAS/EPA: Literature Search Completed</td>
</tr>
</tbody>
</table>

List Description:
- **EAPFASF7SS1**: PFAS list corresponds to 75 samples (Set 1) submitted for initial testing screens conducted by EPA researchers in collaboration with researchers at the National Toxicology Program.
- **EAPFASF7SS2**: PFAS list corresponds to a second set of 75 samples (Set 2) submitted for testing screens conducted by EPA researchers in collaboration with researchers at the National Toxicology Program.
- **EAPFASCAT**: List of registered DisTox “category substances” representing PFAS categories created using ChemAxon’s Markush structure-based query representations.
- **EAPFASDW**: EPA is developing and validating a new method for detecting these PFAS in drinking water sources.
- **EAPFASDWS37**: EPA has recently revised method 537.1 for the PFAS on this list to detect them in drinking water.
- **EAPFASDTREAT**: EPA is gathering and evaluating treatment effectiveness and cost data for removing these PFAS from drinking water systems.
- **EAPFASINSOL**: PFAS chemicals included in EPA’s expanded ToxCast chemical inventory found to be insoluble in DMSO above 5mM.
- **EAPFASINV**: PFAS chemicals included in EPA’s expanded ToxCast chemical inventory and available for testing.
- **EAPFASINVIVO**: These PFAS have published animal toxicity studies available in the online HERO database.
- **EAPFASLITSEARCH**: A literature review of published toxicity studies for these PFAS.

Lists of PFAS on the Dashboard
https://comptox.epa.gov/dashboard/chemical_lists/?search=PFAS
Manual Structural categories: examples used

- Fluorotelomer acrylates 6 members
 - Methacrylate & acrylates
 - $n = 2$, $n_{CF2} = 6-10$

- Fluorotelomer alcohols 21 members
 - $n = 1-4$, $n_{CF2} = 2-11$

- Fluorotelomer amines 7 members
 - $n = 1$, $n_{CF2} = 2-6$

- Fluorotelomer carboxylates 5 members
 - $n = 2$, $n_{CF2} = 3-5$
Structural Categories

- Pragmatic approach for the initial PFAS library but...
- Subjective, manual..
- How to efficiently chart the PFAS landscape that is being tested against other PFAS inventories/libraries of interest e.g. OECD?
PFAS “Categories”: Per & Poly-fluorinated alkyl substances

• “Expert”-assigned PFAS categories – manual, subjective
 – Buck et al. (DuPont), based on chemical & series informed by synthetic pathways (e.g., fluorotelomers)
 – data-gathering, occurrence reports, ecotox
 – OECD PFAS listing (>4500 chemicals) – manually assigned groupings

<table>
<thead>
<tr>
<th>Class</th>
<th>Category_Name1</th>
<th>Category_Name2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td>Fluorotelomer alcohols</td>
<td>Fluorotelomer (linear) n:2 alcohols</td>
</tr>
<tr>
<td>Sulfonic Acid</td>
<td>Perfluoroalkyl sulfonic acids</td>
<td>Perfluoroalkyl (linear C4-C10) sulfonic acids</td>
</tr>
<tr>
<td>Polyfluoroalkyl carboxylates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfluoroalkyl ethers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluorotelomer phosphates</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OECD Database of PFAS

- Released May 2018
- Substance Count: 4729
- Category Count: 173

http://www.oecd.org/chemicalsafety/portal-perfluorinated-chemicals/
"Expert-assigned" OECD PFAS Categories, e.g.

- 4730 PFAS in list
- 173 expert-assigned categories under 8 general headings (bold)
- Broad “catch-all” terms (in red)
- Structural elements, but NOT structure-based
- Requires expert to assign new chemicals to categories

<table>
<thead>
<tr>
<th>Perfluorooalkyl Carbonyl Compounds</th>
<th>CnF2n+1_C(O)_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfluorooalkyl carbonyl halides</td>
<td>R = F/Cl/Br/I</td>
</tr>
<tr>
<td>Perfluorooalkyl carboxylic acids (PFCAs), their salts and esters</td>
<td>R = OH, ONa, OCH3, etc.</td>
</tr>
<tr>
<td>Other perfluorooalkyl carbonyl-based nonpolymers</td>
<td>to be refined</td>
</tr>
<tr>
<td>Perfluorooalkyl carbonyl amides / amidoethanols and other alcohols</td>
<td>R = NH2, NH(OH), etc.</td>
</tr>
<tr>
<td>Perfluorooalkyl carbonyl (meth)acrylate</td>
<td>polymers</td>
</tr>
<tr>
<td>Perfluorooalkyl carbonyl (meth)acrylate polymers</td>
<td>R = R’_OC(O)CH=CH2</td>
</tr>
<tr>
<td>1-H perfluorooalkyl carboxylic acids</td>
<td>H(CF2)nCOOH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Perfluorooalkane Sulfonfyl Compounds</th>
<th>CnF2n+1_S(O)(O)_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfluorooalkane sulfonfyl halides</td>
<td>R = F/Cl/Br/I</td>
</tr>
<tr>
<td>Perfluorooalkane sulfonic acids (PFSAs), their salts and esters</td>
<td>R = OH, ONa, OCH3, etc.</td>
</tr>
<tr>
<td>Perfluorooalkane sulfonfyl-based nonpolymers</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Per- and Polyfluorooalkyl Ether-Based Compounds</th>
<th>CnF2n+1_O_CmF2m+1_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per- and polyfluorooalkyl ether sulfonic acids (PFESAs), their salts and esters, as well as derivatives</td>
<td>CnF2n+1_O_CmF2m+1_SO3H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fluorotelomer-Related Compounds</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfluorooalkyl iodides (PFAIs)</td>
<td>CnF2n+1_I</td>
</tr>
<tr>
<td>n:2 fluorotelomer-based non-polymers</td>
<td>CnF2n+1_C2H4_R, to be refined</td>
</tr>
</tbody>
</table>
Markush Record Creation

- Fluorotelomer (linear) sulfonic acids
 - DTXSID: DTXSID30892558
 - CASRN: NOCAS_892558
 - TOXCAST: -

- Fluorotelomer (linear) alcohols
 - DTXSID: DTXSID10893581
 - CASRN: NOCAS_893581
 - TOXCAST: -

- Fluorotelomer (linear) n2 acrylates
 - DTXSID: DTXSID70893582
 - CASRN: NOCAS_893582
 - TOXCAST: -

- Fluorotelomer (linear) n2 methacrylates
 - DTXSID: DTXSID30893583
 - CASRN: NOCAS_892558
 - TOXCAST: -

- Fluorotelomer symmetric diols
 - DTXSID: DTXSID90893584
 - CASRN: NOCAS_893584
 - TOXCAST: -

- Fluorotelomer (linear) amines (secondary)
 - DTXSID: DTXSID50893585
 - CASRN: NOCAS_893585
 - TOXCAST: -

- Fluorotelomer (linear) carboxylic acids
 - DTXSID: DTXSID10893586
 - CASRN: NOCAS_893586
 - TOXCAST: -

- Fluorotelomer (linear) phosphate esters...
 - DTXSID: DTXSID30893588
 - CASRN: NOCAS_893588
 - TOXCAST: -
Translating Expert Categories to Markush

Expert category
Fluorotelomer acrylates
Fluorotelomer alcohols
Polyfluorinated alcohols
Fluorotelomer sulfonates
N-alkyl perfluoroalkyl sulfonamidoacetic acids
N-alkyl perfluoroalkyl sulfonamidoethanols
Perfluoroalkyl aldehydes
Perfluoroalkyl amides
Perfluoroalkyl carboxylates
Perfluoroalkyl acyl fluorides
Perfluoro vinyl esters
Perfluoroalkyl ketones
Semi-fluorinated alkenes
Perfluoroalkyl vinyl ethers
Perfluoroalkyl alkyl ethers
Fluorotelomer amines
Perfluoroalkyl sulfonamides
Semi-fluorinated alkanes
Perfluoroalkyl sulfonates
Perfluoroalkyl sulfonamidoamines
Polyfluoroalkyl carboxylates
Perfluoroalkyl ethers
Fluorotelomer phosphates
Example of Markush representation
PFASMASTER Markush Category Coverage

https://comptox.epa.gov/dashboard/chemical_lists/PFASMASTER
Next steps

• Complete targeted testing

• Data analysis per NAM technology and integrated across technologies to inform both read-across efforts and structural categories

• Work to extend objective structural categories to facilitate harmonisation across different inventories
Acknowledgements

• Too many to name but include:
 • Ann Richard
 • Reeder Sams
 • Rusty Thomas
 • Chris Grulke
 • Brian Meyer
 • Tony Williams
 • Jason Lambert