CF-2 Group Proposal
Advancing netCDF-CF for the Geosciences
ESIP Summer 2018 Meeting, Tuscon, AZ
Charlie Zender, UC Irvine
Daniel Lee, EUMETSAT
Motivation for using Groups

• netCDF Classic is “flat”

• Most data is hierarchical

IASI-NG
METimage
MWS
RO
3MI
S5
Other use cases

• Collections of related data
 • Multi-model collections
 • In-situ vs remote sensing
 • Etc.

• Ensembles
 • NWP, climate

• Discrete sampling geometries
 • Ragged arrays of observations
 • Efficient access patterns
Design principles

• Backwards compatibility with CF1

• Support “flattening” through various mechanisms

• Inherit metadata intuitively using widely adopted scoping patterns
• Data in a given group are visible to all members of child groups

• Absolute and relative paths are allowed

• Otherwise unqualified names can be found via search (first ancestor search, then in width-wise fashion down each level of hierarchy)
Best practices

• Use accepted data types

• Don’t use group attributes for variable attributes, even if they apply to all subsequent variables

• Software is not required to interpret group names
Data related by theme alone

:Conventions="CF-1.8 CF2-Group-1.0"

group: model { // Variable attributes omitted for clarity
 dimensions:
 lat=2;
 lon=3;
 time=unlimited;
 variables:
 float temperature(time,lat,lon);
 double time(time);
 double lat(lat);
 double lon(lon);
} // end model

group: measurements_remote_sensing {
 dimensions:
 lat=3;
 lon=4;
 time=unlimited;
 variables:
 float temperature(time,lat,lon);
 double time(time);
 double lat(lat);
 double lon(lon);
} // end measurements_remote_sensing

group: measurements_in_situ {
 dimensions:
 time=unlimited;
 variables:
 float temperature_10m(time);
 double time(time);
} // end measurements_in_situ
Ensembles

:Conventions="CF-1.8 CF2-Group-1.0"
group: cesm_01 {
 :Scenario = "Historical";
 :Model = "CESM";
 :Realization = "1";
 dimensions:
 time=unlimited;
 variables:
 float temperature(time);
 double time(time);
} // cesm_01

group: cesm_02 {
 :Scenario = "Historical";
 :Model = "CESM";
 :Realization = "2";
 dimensions:
 time=unlimited;
 variables:
 float temperature(time);
 double time(time);
} // cesm_02

group: cesm_03 {
 :Scenario = "Historical";
 :Model = "CESM";
 :Realization = "3";
 dimensions:
 time=unlimited;
 variables:
 float temperature(time);
 double time(time);
} // cesm_03
Discrete sampling geometries

:Conventions="CF-1.8 CF2-Group-1.0"
dimensions:
 time = unlimited;
variables:
 double time(time);
 time:standard_name = "time";
 time:units = "days since 1970-01-01 00:00:00";
group: irvine {
 variables:
 float humidity(time);
 humidity:standard_name = "specific humidity";
 humidity:coordinates = "lat lon alt station_name";
 humidity:_FillValue = -999.9f;
 float lon;
 lon:standard_name = "longitude";
 lon:units = "degrees_east";
 float lat;
 lat:standard_name = "latitude";
 lat:units = "degrees_north";
 float alt;
 alt:standard_name = "height";
 alt:units = "m";
 alt:positive = "up";
 alt:axis = "Z";
 string station_name;
 station_name:cf_role = "timeseries_id";
} // irvine

// Variables/dimensions repeated, omitted for clarity
} // boulder
Remote sensing channels with variable resolution

```plaintext
:Conventions="CF-1.8 CF2-Group-1.0"
group: data {
  dimensions:
    index = configured_value;
  variables:
    int mtg_geos_projection;
    mtg_geos_projection: grid_mapping_name = "geostationary";
    // ...
  group: vis_04 {
    variables:
      short x(x); // x coordinate variable
      x:standard_name = "projection_x_coordinate"
      x:unit = "radian"
      x:axis = "X"
      x:coordinates = "y x"
      short y(y); // y coordinate variable
      y:standard_name = "projection_y_coordinate"
      y:unit = "radian"
      y:axis = "Y"
      ushort effective_radiance(x,y);
      effective_radiance:standard_name = "effective_radiance_in_wavenumber"
      effective_radiance:units = "mW.m-2.sr-1.(cm-1)-1"
      effective_radiance:coordinates = "x y"
      effective_radiance:grid_mapping = "mtg_geos_projection"
    } // vis04
    // Other channels. All share mtg_geos_projection but define their own x and y.
  group: ir_105 {
  } // ir_105
} // data
```
9:30 AM Thursday Ventana Room...
Referencing Elements in Other Groups

- Attributes that reference variables include: \texttt{ancillary_variables}, \texttt{bounds}, \texttt{coordinates}, \texttt{cell_measures}, \texttt{formula_terms}, \texttt{grid_mapping}

- In-Group references same as CF1

- Out-of-Group reference options:
 - Ancestor-then-Lateral Search ('lat')
 - Relative Paths ('../../geo/lat')
 - Absolute Paths ('/geo/lat')
:Conventions="CF-1.8 CF2-Group-1.0"
dimensions:
 time=unlimited;
 lat=180;
 lon=360;
group: sci {
 variables:
 time(time);
 lat(lat);
 lon(lon);
 float temperature(time,lat,lon);
 temperature:coordinates="time lat lon";
} // sci
Out-of-Group References I: Absolute Paths

:Conventions="CF-1.8 CF2-Group-1.0"

dimensions:
 time=unlimited;
 lat=180;
 lon=360;

group: geo {
 group: g1 {
 variables:
 time(time);
 lat(lat);
 lon(lon);
 } // geo/g1
} // geo

group: sci {
 group: g1 {
 variables:
 float flux(time, lat, lon);
 flux:coordinates="/geo/g1/time /geo/g1/lat /geo/g1/lon";
 } // sci/g1
} // sci
Out-of-Group References II: Relative Paths

:Conventions="CF-1.8 CF2-Group-1.0"
dimensions:
 time=unlimited;
 lat=180;
 lon=360;
group: geo {
 group: g1 {
 variables:
 time(time);
 lat(lat);
 lon(lon);
 } // geo/g1
} // geo
group: sci {
 group: g1 {
 variables:
 float flux(time, lat, lon);
 flux:coordinates="../../geo/g1/time ../../geo/g1/lat ../../geo/g1/lon";
 } // sci/g1
} // sci
:Conventions="CF-1.8 CF2-Group-1.0"
dimensions:
 time=unlimited;
 lat=180;
 lon=360;

group: geo {
 group: g1 {
 variables:
 time(time);
 lat(lat);
 lon(lon);
 } // geo/g1
} // geo

group: sci {
 group: g1 {
 variables:
 float flux(time, lat, lon);
 flux:coordinates="time lat lon";
 } // sci/g1
} // sci
:Conventions="CF-1.8 CF2-Group-1.0"
dimensions:
 time=unlimited;
 lat=180;
 lon=360;
group: geo {
 group: g1 {
 variables:
 time(time);
 lat(lat);
 lon(lon);
 } // geo/g1
} // geo

group: sci {
 group: g1 {
 variables:
 float flux(time, lat, lon);
 flux:coordinates="time lat lon"; <--Same Syntax as CF1!
 } // sci/g1
} // sci
Search for out-of-group items

1. Search in group
2. Search direct ancestors
3. Search levels width-wise

/geo
/meta
/sci
/other

/geo/g1
/geo/g2
/meta/g1
/sci/g1
/sci/g2

/geo/g1/g1
/meta/g1/g1
/meta/g1/g2
/sci/g1/g1
/sci/g1/g2
The way here and the way forward

The work so far...

- **September 2013:**
 - CF Mail list
 - “Towards recognizing and exploiting hierarchical groups”
 - Discussion leading to creation of guiding principals

- **June 2017:**
 - Google Doc
 - “CF-2 Group: Draft Extension for Files with Groups”
 - Additional contributions from community

- **September 2017:**
 - EarthCube netCDF-CF Workshop 2
 - “CF-2 Group: Hierarchical data and Metadata Extensions to Climate/Forecast Conventions”
 - Presentation garners further input

- **April 2018:**
 - netCDF Operators
 - Support for using CF2-Group proposal implemented as of v4.7.4.

- **May 2018:**
 - Github
 - NASA Dataset Interoperability Working Group Frameworks
 - Iterations through issues and pull requests for greater traceability

...And now?

- **June 2018:**
 - EarthCube netCDF-CF Workshop 3
 - Convergence?
1. CF2-Groups is ready to use

2. Feedback welcome as GitHub issues and/or PRs

3. Will propose to CF this summer