Do acute stroke patients develop hypocapnia? A systematic review and meta-analysis

* Angela S M Salinet, PhD¹,² * Jatinder S Minhas, MD³, Ronney B Panerai, PhD³,⁴, Edson Bor-Seng-Shu, PhD¹; Thompson G Robinson, MD³,⁴

*Joint First Authors

¹ Neurology Department, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
² Biomedical Engineering, Engineering, Modelling and Applied Social Sciences Centre, Federal ABC University, Sao Bernardo do Campo, Brazil
³ Cerebral Haemodynamics in Ageing and Stroke Medicine (CHIASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.
⁴ National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom

Corresponding Author: Dr Jatinder S. Minhas, jm591@le.ac.uk, Room 228, Level 2, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX, +44 116 252 5841.

Conflict of Interest: On behalf of all authors, the corresponding author states that there is no conflict of interest.
Abstract

Purpose: Carbon dioxide (CO₂) is a potent cerebral vasomotor agent. Despite reduction in CO₂ levels (hypocapnia) being described in several acute diseases, there is no clear data on baseline CO₂ values in acute stroke. The aim of the study was to systematically assess CO₂ levels in acute stroke. Material and methods: Four online databases, Web of Science, MEDLINE, EMBASE and CENTRAL, were searched for articles that described either partial pressure of arterial CO₂ (PaCO₂) and end-tidal CO₂ (EtCO₂) in acute stroke. Results: After screening, based on predefined in- and exclusion criteria, 19 studies were retained. There were 5 studies in intracerebral haemorrhage and 14 in ischemic stroke, totalling 614 stroke participants. Acute stroke was associated with a significant decrease in CO₂ levels compared to controls (-1.28 mmHg [95% CI -2.20 to -0.37]; I²= 78%, p=0.006). Cerebral haemodynamic studies using transcranial Doppler ultrasonography have demonstrated a significant reduction in cerebral blood flow velocities and cerebral autoregulation in acute stroke patients. Conclusion: The evidence from this review suggests that acute stroke patients are significantly more likely than controls to be hypocapnic, supporting the value of routine CO₂ assessment in the acute stroke setting. Further studies are required in other to evaluate the clinical impact of these findings.

Keywords: acute stroke, hypocapnia, carbon dioxide, cerebral hemodynamics
Changes in arterial partial pressure of carbon dioxide (PaCO₂) have a potent effect on the cerebral vasculature, demonstrated by a 4% flow change in the middle cerebral artery (MCA) for every 1mmHg increase or decrease in PaCO₂ between the range of 20 to 80mmHg [1,2]. Hypocapnic states, despite reducing cerebral blood flow (CBF), demonstrate the ability to widen the plateau region of the autoregulatory curve, thus improving autoregulatory capacity [3]. Therefore, hypocapnic states, may improve the inherent ability of the cerebrovasculature to keep CBF constant across changes in cerebral perfusion pressure. In disease states, like acute stroke, improving autoregulatory capacity may be clinically beneficial, particularly in the context of extremes of cerebral perfusion pressure from uncontrolled hypertension or rising intracranial pressures.

Despite recent advances in understanding the relationship between peripheral and central hemodynamic variables and PaCO₂ change in healthy volunteers [4], the carbon dioxide changes in acute stroke remain unclear. Observational studies have found lower than normal PaCO₂ in acute stroke patients [5] and no autoregulatory impairment. Could this be the consequence of the physiological effects of lower PaCO₂ on the cerebrovasculature in this population? Crucially, neuroprotective mechanisms in cerebrovascular disease highlight hypocapnia as a key mediator of lower intracranial pressures and restoration of penumbral areas around ischemic tissue [3]. However, these potential protective mechanisms are weighed against the risks of vasoconstriction-induced ischemia, as well as cerebral hyperemia associated with subsequent PaCO₂ normalisation [3].

International guidelines for the delivery of thrombectomy in acute stroke advocate use of capnography in acute ischemic stroke settings [6,7]. Furthermore, capnography has long had a role in several neurologically vulnerable states including cardiac arrest and seizure episodes. Increasingly, through observational [5] and interventional studies [8], we are understanding the relationship between PaCO₂ and CBF in acute stroke. However, there remains no clear data on baseline carbon dioxide values in acute stroke and whether hypocapnia exists post-stroke. End-tidal CO₂ (ETCO₂) is a surrogate measure of PaCO₂ and provides a non-invasive bed-side measurement tool for use in a ward-based setting. This systematic review and meta-analysis aims for the first time to determine if acute stroke
patients tend to be hypocapnic, by assessment of studies incorporating carbon dioxide assessment in the acute stroke setting.

Material and Methods

Study identification

The protocol implemented as part of this systematic review and meta-analysis was constructed using combined recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) and the Cochrane Handbook for Systematic Reviews.

Literature Search Strategy

Studies were identified with a search strategy across four English language databases (Web of Science, MEDLINE, EMBASE and CENTRAL), between 1966 and February 2019, accommodating different medical Subject Headings (MeSH) terms or subcategories available on each database (supplemental material Table I). Bibliographies of selected articles were screened for additional relevant articles.

Inclusion and Exclusion Criteria

Only studies in acute stroke that have monitored carbon dioxide levels were included. Eligibility was assessed by reading abstracts, and, if necessary, whole articles. The effects of carbon dioxide, CBF velocity (CBFV) changes (if applicable), cerebral autoregulation status (if applicable) and neurological outcome were assessed. Excluded were case reports, non-English language articles, posterior territory stroke studies, and studies with ultrasound contrast agent injection. The rationale for exclusion of studies focusing on posterior circulatory strokes was largely due to prior work demonstrating an inability to reliably assess the posterior territory as compared to the anterior territory in dynamic haemodynamic studies [9]. Studies using US contrast agents were excluded as there are concerns around the validity of indices associated with this procedure with issues raised including the low resolution and nonlinear relationship with blood pressure [10].

Data Extraction
The following data were extracted: (1) stroke type; (2) stroke classification; (3) stroke severity on admission and assessment (NIHSS); (4) number of patients and controls; (5) breakdown of numbers by sex; (6) acute (<48 hours) vs. sub-acute (>48 hours) assessment; (7) method of data analysis: technique and signal processing method; (8) neurological outcome; (9) presence, timing and conclusion of follow-up studies; (10) length of protocol; (11) status of cerebral autoregulation contralateral and ipsilateral; (12) CBFV values; (13) CO2 values; (14) respiratory rate; (15) heart rate; (16) blood pressure (BP) values, and (17) main conclusions and results. The methodological quality of the selected studies was assessed by the Newcastle–Ottawa scale (NOS) for observational studies. This scoring system evaluates the quality of an article based on 3 broad perspectives: the cohort selection (0–4 points), comparability (0–2 points), and assessment of outcomes (0–3 points). A score of ≥7 points was suggestive of a high-quality study. Two independent reviewers (ASM S and JSM) undertook the methodological quality screening and data extraction of the included studies. Any discrepancies were settled by consensus.

Statistical Analysis

All studies assessing ETCO2 in acute strokes were included, however only those that also recruited controls were included in the meta-analysis (as opposed to descriptive review). The outcomes of interest were all continuous variables, so the weighted mean difference (wMD) with its corresponding 95% confidence interval (CI) for each parameter was computed in acute stroke and healthy controls. The software used was Review Manager 5.3 (RevMan 5) provided by the Cochrane Library. The heterogeneity assumption was checked by the χ2-based Q test. An I^2 value of >50% or a P value of <0.05 for the Q statistic indicated significant heterogeneity. In the presence of statistical heterogeneity, random-effects model was chosen for the computation of wMD with its corresponding 95%CI. Otherwise, no obvious heterogeneity was considered to have occurred in the included studies, and the fixed-effects model was selected to generate the wMD with its corresponding 95%CI. A wMD >1 indicates that acute stroke is associated with higher parameters levels, whereas a wMD <1 indicates that stroke is associated with a lower levels as compared to controls. The forest plot for each parameter was constructed to illustrate the weight ratio of each incorporated study.
Results

Summary of included studies

A detailed flow diagram of study selection is shown in Figure 1. Eighteen thousand, seven hundred and eighty publications met the search criteria and were evaluated. The commonest reasons for exclusion were animal studies and subarachnoid or neonatal hemorrhage patients. Overall, the eligibility criteria were met by 19 studies (Table 1). Two studies used the same dataset [11,12], but both were included due to the different methods adopted for assessment of CA. However, 11 studies were included in the quantitative analysis comparing ETCO₂ levels in acute stroke and controls groups.

Risk of bias in included studies

According to the results of the NOS, 12 out of the 19 studies scored 8 to 9 points indicating high methodological quality. Supplemental material Table II provides the risk of bias indicators of the included studies.

Main findings of included studies

The acute stroke patients recruited in five studies had intracerebral hemorrhage (ICH) and in fourteen studies had acute ischemic stroke (AIS). NIHSS varied between 7.4 ±5.0 and 12 ±7.0 in the ICH patients, and 3.5 ±3.3 and 20 [IQR not informed] in the AIS patients, with one study not reporting stroke severity in ICH [13] and two studies in AIS [14,15]. The total number of participants was significantly higher in the stroke group (n=614) than the control group (n=384); most of the included participants being male (n=401, 65%). Six studies did not include controls [13,16-20]. CA assessment was performed in 17 studies and the method used to calculate was transfer function analysis (TFA) in 10 studies [11,12,14,17,18,21-25], and the autoregulation index (ARI) in four studies [5,16,26-28]; with rate of regulation (RoR) [15], flow values [13] and cerebral perfusion pressure-oxygen reactivity index (COR) [20] being used in one study each. All studies, except those previously stated as lacking control data, included CO₂ (mmHg) data for acute stroke patients and controls. Main findings of the included studies are presented in Table 1. The lowest EtCO₂ values
were 31.4 ±3.8 within the AIS population [25] and the highest values were those derived 43.2±5.4 in those with benign MCA AIS [20].

Meta-analysis of outcomes

All studies detailed carbon dioxide values (ETCO2 or PaCO2) for acute stroke patients, whereas two studies did not present ETCO2 data from controls [11,12], and six studies recruited no controls [13,16-20]. Therefore, only 11 studies were eligible for carbon dioxide meta-analysis. Pooled analysis showed statistically significant hypocapnia in acute stroke compared to healthy control subjects with high heterogeneity between studies (-1.28 mmHg [95% CI -2.20 to -0.37], p=0.006; I²= 78%), as presented in Figure 2. The meta-analysis also indicated significant decrease in CBFV bilaterally in acute stroke compared to healthy controls; pooled mean difference of -8.72 cm.s⁻¹ [95% CI -12.04 to -5.39, p<0.00001 (Figure 3)] and -6.98 cm.s⁻¹ [95% CI -8.83 to -5.13, p<0.00001 (Figure 4)], for affected and unaffected hemispheres, respectively. Due to different methods used to assess CA, only analysis of the differences in phase between acute stroke and controls could be performed. The meta-analysis of 5 studies indicated bilateral CA impairment in acute stroke, pooled significant mean difference of -24.76 degrees of phase [95% CI -35.09 to -14.44, p<0.00001 (Figure 5)] and -24.60 [95% CI -34.28 to -14.91, p<0.00001 (Figure 6)], for affected and unaffected hemispheres, respectively. ARI was assessed in five studies [5,16,26,27,29].

Discussion

This study demonstrates, for the first time, that acute stroke patients are significantly more likely than controls to be hypocapnic. Furthermore, both affected and unaffected hemispheres in acute stroke patients display convincingly lower CBFV than control subjects and impairment of CA, as evidenced by reduced TFA phase in comparison with control subjects. This review incorporates significant numbers of acute stroke patients (>500), with detailed physiological measurement assessments, using highly comparable methodological approaches. Importantly, the volume of data on CO₂ levels in acute stroke provides an evolution on previous reviews [30], which states “interpretation of measurements can be severely confounded in situations in which significant changes in CO₂ go
undetected.” Despite this study providing further confirmatory evidence of the bilateral impairment of CA, the processes governing change from impairment to improvement remain unclear. Nevertheless, impairment of CA has recently been correlated with stroke severity and functional outcome [27]. The information afforded by continuous monitoring of PaCO₂ (capnography), blood pressure (beat-to-beat) and CBFV (TCD), as is often the case in autoregulatory studies, provides a wealth of data on potential physiological and pathological mechanisms during acute stroke.

PaCO₂ change has a strong influence on cardio- and cerebro-vascular variables. Key studies in stroke populations, designed to assess impairment of dynamic CA in acute stroke, have often been hampered by the inability to adjust for perceived lower levels of PaCO₂ post stroke [5,31]. In non-neurological disease states two important studies exist to provide some perspective on cardio-respiratory disease and haemodynamics [32] and chronic kidney disease (associated with increased cardiorespiratory morbidity) [33]. These two studies both demonstrated impaired dynamic cerebral autoregulation and provide evidence to support an underlying mechanism for the increased stroke risk we see in these two populations. To date, our understanding of the relationship between PaCO₂ and CBF is largely informed by healthy volunteer studies using protocols designed to assess blood flow across the physiological range of PaCO₂ [4,34,35]. Despite such studies offering a potential opportunity to “correct” for PaCO₂ variation post-stroke, there has been a lack of confirmatory evidence to support the hypothesis that acute stroke patients are indeed hypocapnic. Furthermore, there are no comparative studies to date assessing both ICH and AIS patients in this context.

Hypocapnia is considered a common component of several acute disease states including cardiopulmonary diseases, such as early asthma and pulmonary oedema [3]. Furthermore, assessment of acid-base disturbance has long formed part of the acute work-up of a deteriorating patient. Furthermore, assessment of acid-base disturbance has long formed part of the acute work-up of a deteriorating patient. Our understanding of the clinical profile of hypocapnia in the critically ill patient is limited [36]. The potential benefits of hypocapnia in critical illness include prevention of brainstem herniation and prevention of hypertensive crises in neonates [36]. However, potential risks are associated primarily with the impact on respiratory physiology with hypocapnia often manifesting in
acute respiratory distress syndrome [36]. This is associated with increased airway resistance and worsened ventilation/perfusion matching [36]. Interestingly, hyperventilation and hypocapnia have been identified as independent determinants of long-term pulmonary dysfunction in patients with underlying lung disease [36]. By understanding the relationship between hypocapnia and acute stroke, there exists direction of research to identify a biomarker of evolving lung pathology post-stroke (pneumonia for example) or indeed an exacerbation of existing chronic lung disease. However, aside from head injury and certain ‘brain at risk’ states like epilepsy and cardiac arrest, no guidelines exist encouraging assessment of hypocapnia specifically in acute stroke. The neurologic effects of hypocapnia include lowering of intracranial pressure (by hypocapnic alkalosis decreasing CBFV by vasoconstriction) and deleterious effects including risk of reperfusion injury by cerebral hyperemia, post normalisation, post hypocapnia [3]. However, no studies to date have clarified whether hypocapnia is a neuroprotective mechanism or a consequence of disease pathology. Studies are ongoing to assess the potential for manipulation of CO₂ levels via hyperventilation in acute ICH [8] with a hope that improved autoregulation associated with lower levels of PaCO₂ may potentiate improved outcome by expanding the plateau region of the autoregulatory curve and keeping CBFV constant over a wider range of perfusion pressures as seen in the neurologically vulnerable acute ICH patient cohort.

Hypocapnia generated by hyperventilation is associated with improvement in cerebral autoregulation across both healthy and diseased states [4,37,38], and provides clinically preferential benefits on circumstances associated with raised ICP [39,40]. However, with this study demonstrating that CA remains impaired despite the existence of a mild but consistently apparent hypocapnic state, is this considered a physiological response designed to precipitate neuroprotection? If the baseline hypocapnic state were accentuated post stroke, would CA improve or would we see a u-shaped curve worsening of CA as hypocapnia accentuated. Furthermore, to what extent does vasoconstriction associated with hypocapnia become a concern in acute stroke? This remains unclear and future studies are required to answer these specific questions associated with reasoning for hypocapnia existing post stroke.
Acknowledgements: JSM is Dunhill Medical Trust Clinical Research Training Fellow (RTF97/0117) at the Department of Cardiovascular Sciences, University of Leicester. Professor TG Robinson is a National Institute for Health Research Senior Investigator. The authors would like to thank Pip Divall for kindly providing input into the planning of the original search strategy.

Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
References

Figures Captions

Figure 1: Flowchart of article inclusion

Figure 2: Forest plot with random effects for differences in EtCO$_2$ levels between acute stroke and healthy controls.

Figure 3: Forest plot with random effects for differences in the affected hemisphere CBFV between acute stroke and healthy controls.

Figure 4: Forest plot with fixed effects for differences in the unaffected hemisphere CBFV between acute stroke and healthy controls.

Figure 5: Forest plot with fixed effects for differences in the affected hemisphere CA (phase difference) between acute stroke and healthy controls.

Figure 6: Forest plot with fixed effects for differences in the unaffected hemisphere CA (phase difference) between acute stroke and healthy controls.
<table>
<thead>
<tr>
<th>Study</th>
<th>Stroke Type</th>
<th>Stroke Severity</th>
<th>Number Patients (Controls)</th>
<th>Sex M:F Patients (Controls)</th>
<th>Age Patients (Controls)</th>
<th>CBFV (cm.s⁻¹)</th>
<th>Cerebral Autoregulation</th>
<th>Carbon dioxide (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castro et al., 2017a</td>
<td>AIS</td>
<td>18.2±10.5</td>
<td>46 (NC)</td>
<td>25:21</td>
<td>73.0±12.0 (NC)</td>
<td>D1: 51.0±18.0</td>
<td>D1: 53.0±16.0</td>
<td>NC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castro et al., 2017b</td>
<td>AIS</td>
<td>11.9± 9.0</td>
<td>30 (NC)</td>
<td>16:14</td>
<td>69.0±13.0 (NC)</td>
<td>D1: 42.0±15.0</td>
<td>D1: 50.0±18.0</td>
<td>NC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dohmen et al., 2007</td>
<td>AIS (malignant MCA)</td>
<td>20 (NS)</td>
<td>8 (NC)</td>
<td>5:3</td>
<td>55.0±6.0 (NC)</td>
<td>NS</td>
<td>NS</td>
<td>NC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guo et al., 2014</td>
<td>AIS</td>
<td>7.1±4.7</td>
<td>15(20)</td>
<td>12:03</td>
<td>44.7±13.1 (42.2 ±13.7)</td>
<td>NS</td>
<td>NS</td>
<td>TFA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guo et al., 2015</td>
<td>AIS</td>
<td>3.8±2.8</td>
<td>26 (20)</td>
<td>21:05</td>
<td>54.1±9.7 (42.2 ±13.7)</td>
<td>NS</td>
<td>NS</td>
<td>TFA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lam et al., 2018</td>
<td>AIS</td>
<td>4.8±4.2</td>
<td>15 (16)</td>
<td>39:26</td>
<td>66.0±12.0 (NC)</td>
<td>41.0±13.0</td>
<td>45.0±14.0</td>
<td>NC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liwyd et al., 2018</td>
<td>AIS</td>
<td>≤ 5</td>
<td>65 (NC)</td>
<td>32:24</td>
<td>64.0±14.0 (NC)</td>
<td>43.0±17.0</td>
<td>51.0±18.0</td>
<td>NC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ma et al., 2016</td>
<td>ICH</td>
<td>7.4±5.0</td>
<td>43 (30)</td>
<td>30:13</td>
<td>53.7±10.0 (52.3±8.1)</td>
<td>D1-2: 49.6±19.1</td>
<td>D4-6: 56.0±17.2</td>
<td>34.3±3.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D10-12: 60.0±14.5</td>
<td>D4-6: 58.4±16.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D30: 59.3±14.1</td>
<td>D10-12: 62.4±13.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D30: 62.9±13.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34.3±3.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34.8±2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35.2±2.4</td>
</tr>
<tr>
<td>Ma et al., 2017</td>
<td>ICH</td>
<td>7.6 ± 5.1</td>
<td>53 (30)</td>
<td>40:13</td>
<td>54.3±11.1 (52.3±8.1)</td>
<td>53.6±17.1</td>
<td>57.2±14.5</td>
<td>TFA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34.7±3.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35.1±2.5</td>
</tr>
</tbody>
</table>

Table 1: Characteristics of included studies.
<table>
<thead>
<tr>
<th>Study</th>
<th>Stroke Type</th>
<th>Stroke Severity</th>
<th>Number of Patients (Controls)</th>
<th>Sex M:F Patients (Control)</th>
<th>Age Patients (Controls)</th>
<th>CBFV (cm.s⁻¹)</th>
<th>Cerebral Autoregulation</th>
<th>Carbon dioxide (mm Hg)</th>
<th>Result</th>
<th>Stroke</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocinck et al., 2013</td>
<td>ICH</td>
<td>12.0 ± 7.0</td>
<td>26 (55)</td>
<td>21:05 (44:11)</td>
<td>65.0±11.0 (64.0±8.0)</td>
<td>D1: 43.6 (SE = 3.4)</td>
<td>Preserved PD but impaired gain bilaterally</td>
<td>D1: 34.9 (SE=0.9)</td>
<td>D3: 34.3 (SE=0.9)</td>
<td>D5:35.1 (SE=0.9)</td>
<td>NS</td>
</tr>
<tr>
<td>Panerai et al., 2016</td>
<td>AIS</td>
<td>NS</td>
<td>11 (9)</td>
<td>8:3 (7:2)</td>
<td>69.9±39.9 (60.0±24.4)</td>
<td>D0-3: 45.2±8.9</td>
<td>Impaired bilaterally</td>
<td>35.5±3.1</td>
<td>39.6±2.6*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reinhard et al., 2010</td>
<td>ICH</td>
<td>12.0 ± 7.0</td>
<td>26 (55)</td>
<td>21:05 (44:11)</td>
<td>65.0±11.0 (64.0±8.0)</td>
<td>D1: 43.6 (SE = 3.4)</td>
<td>Preserved with secondary decline in AH</td>
<td>D1: 34.9 (SE=0.9)</td>
<td>D3: 34.3 (SE=0.9)</td>
<td>D5:35.1 (SE=0.9)</td>
<td>NS</td>
</tr>
<tr>
<td>Salinet et al., 2014</td>
<td>AIS</td>
<td>7.8 ± 4.8</td>
<td>15 (22)</td>
<td>12:03 (16:6)</td>
<td>62.4±9.0 (62.2±7.5)</td>
<td>D0-3: 45.4±6.9</td>
<td>Impaired CA and NVC initially but improved over time</td>
<td>D1:3; 35.1±2.6</td>
<td>D14: 35.6±5.3</td>
<td>D30: 34.9±2.1</td>
<td>D90: 35.4±2.1</td>
</tr>
<tr>
<td>Salinet et al., 2015</td>
<td>AIS</td>
<td>3.5 ± 3.3</td>
<td>27 (27)</td>
<td>16:11 (15:12)</td>
<td>63.0±11.7 (61.4±6.0)</td>
<td>D0-2: 43.5±19.0</td>
<td>Preserved CA</td>
<td>34.4±3.4</td>
<td>38.9±4.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salinet et al., 2018</td>
<td>AIS</td>
<td>14.9 ± 7.1</td>
<td>55 (32)</td>
<td>27:28 (10:22)</td>
<td>62.8±12.0 (63.6±10.4)</td>
<td>D0-2: 42.4±10.0</td>
<td>Impaired with increasing severity</td>
<td>38.4±1.3</td>
<td>38.9±1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Takahashi et al., 2014</td>
<td>AIS (favorable outcome)</td>
<td>Median 18 [NS]</td>
<td>NS</td>
<td>NS</td>
<td>61.8±NS (NC)</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>Impaired UH (lower PD)</td>
<td>31.4±3.8</td>
<td>32.1±1.7</td>
</tr>
<tr>
<td></td>
<td>AIS (unfavorable outcome)</td>
<td>Median 20 [NS]</td>
<td>NS</td>
<td>NS</td>
<td>69.4±NS (NC)</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>Impaired bilaterally (lower PD bilaterally and gain UH)</td>
<td>35.5±2.6</td>
<td>35.5±2.1</td>
</tr>
<tr>
<td>Tutaj et al., 2014</td>
<td>AIS</td>
<td>5.3 ± 2.8</td>
<td>6 (14)</td>
<td>4:2 (7:7)</td>
<td>65.5±9.2 (61.8±9.7)</td>
<td>D0-2: 27.7±5.9</td>
<td>Impaired PI</td>
<td>40.1±5.5*</td>
<td>NC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang et al., 2015</td>
<td>AIS</td>
<td>NS</td>
<td>8 (24)</td>
<td>7:1 (12:12)</td>
<td>49.3±4.3 (48.3±7.2)</td>
<td>D0-2: 26.9±2.9</td>
<td>Impaired PI</td>
<td>35.5±2.6</td>
<td>35.5±2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ye and Su, 2013</td>
<td>ICH</td>
<td>NS</td>
<td>30 (NC)</td>
<td>23:07 (NC)</td>
<td>58.0±13.0 (NC)</td>
<td>52.0± 15.0</td>
<td>NC</td>
<td>PI</td>
<td>Impaired PI</td>
<td>40.1±5.5*</td>
<td>NC</td>
</tr>
</tbody>
</table>
AH, affected hemisphere; ARI, autoregulatory index; CA, cerebral autoregulation; CBFV, cerebral blood flow velocity; COR, cerebral perfusion pressure-oxygen reactivity index; D, day; HT, haemorrhagic transformation; MCA, middle cerebral artery; Mx, mean flow index; NA, not applicable; NS, not stated; NC, no controls included in the study; NVC, neurovascular coupling; PD, phase difference; PI, pulsatility index; SE, standard error; TFA, transfer function analysis; UH, unaffected hemisphere;

* PaCO₂ (not ETCO₂ like others)

* statistical difference between controls and stroke