Knowledge of peripheral artery disease – what do the public, healthcare practitioners and trainees know?
Bernadeta Bridgwood, Andrew Nickinson, John Houghton, Coral Pepper, Rob Sayers
Published in Vascular Medicine (2020)

Abstract
This systematic review evaluated the knowledge and awareness of peripheral artery disease (PAD) within the general public (including patients with peripheral vascular disease), non-specialist healthcare professionals (nsHCP) and trainees (medical students and trainee doctors). Relevant articles were identified from electronic databases using key search terms: “peripheral artery disease”; “limb ischaemia”; “intermittent claudication”; “knowledge”; “understanding”; “public” “medical professional”. The heterogeneous results were described narratively. A lack of knowledge and understanding of PAD (disease awareness) were identified in all groups. Among nsHCPs, factors which affect knowledge include the level of training, early clinical exposure and the presence of family members with cardiovascular/vascular disease. Within the general public, knowledge and awareness was improved if a family member/friend had a diagnosis or following a patient-centred consultation with any HCP. Public campaigns are proven effective in improving disease knowledge/awareness in conditions such as stroke alongside sustained patient education. These may provide future avenues to improve PAD knowledge and awareness, in order to effectively manage risk factors and minimise delayed or missed diagnosis of PAD. (PROSPERO registration number: CRD42018117304).

Keywords: Peripheral artery disease (PAD); knowledge; awareness; patient education; medical education; public; intermittent claudication, healthcare professional
Introduction

Peripheral artery disease (PAD) describes the impairment of blood flow to the peripheries due to atherosclerotic disease. Although the total number of deaths due to circulatory disease has decreased, they represented 31% of all global deaths in 2016 [1]. PAD is estimated to be present in a fifth of those aged over 60 and carries an increased risk of cardiovascular disease and stroke [2]. In the majority of patients, PAD is asymptomatic. However, when symptoms do arise, they can cause functional impairment and decreased quality of life [3]. A community-doctor working in general practice with an average patient list of 3500 patients would expect to manage approximately 100 patients with PAD [4].

PAD has long been under-diagnosed and it is estimated that up to half of all people with PAD are undetected [5,6]. In order to make a timely diagnosis, a patient must identify they have a medical issue and present themselves to healthcare services. Alternatively, any healthcare professional should appreciate patient risk factors and undertake opportunistic screening [4]. Considering a possible diagnosis, followed by a carefully taken patient history and appropriate examination including an ankle-brachial pressure index (ABI), are all important in the recognition of PAD [2,7].

Several reasons have been postulated for the lack of detection, of which the most common are the high prevalence of asymptomatic disease and the inappropriate use of screening and diagnostic tools [3,8]. Individual studies have recognised poor awareness of PAD within individual populations. However, these findings have not been correlated and compared across multiple study populations. In order to develop interventions to improve knowledge, greater understanding of the determinants of PAD knowledge by non-specialist healthcare professionals is required. These
include multiple disciplinary professionals including general practitioners, nurses and podiatrists, who are often the first contact patients have with healthcare services. Equally, it is also important to determine the current level of patient/public knowledge to evaluate whether the current provision provides adequate education and opportunity to assess their risk of disease. Ultimately, improved knowledge aims to improve health quality outcomes.

The aims of this review are: (1) to identify the current level of knowledge regarding PAD in patients/public, (2) to identify the current level of knowledge regarding PAD in non-specialist healthcare professionals (nsHCPS) and trainees; (3) to evaluate factors determining knowledge levels.

Method

PRISMA guidelines were followed to identify articles where the main focus of the study was knowledge of PAD [9]. A search of electronic databases (MEDLINE, Embase, The Cochrane Library (Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials (CENTRAL), Cochrane Methodology Register, CINAHL, Scopus and Gray literature) of all available articles, was conducted by CP and BB (December 2018), using combinations of the following keywords and thesaurus headings: “peripheral artery disease”; “limb ischaemia”; “intermittent claudication”; “knowledge”; “understanding”; “public” “medical professional”. Bibliographic lists were scanned for additional relevant articles. The search was repeated on 30th April 2019.

A study protocol was registered at the International Prospective Register of Systematic Reviews (PROSPERO) (registration number: CRD42018117304).
Eligibility criteria

All quantitative and qualitative studies relating to this topic were included if they presented cognitive PAD knowledge. Articles which related solely to relevant performing practical skills (e.g. ABI) were excluded. For breadth, conference abstracts were also included. Only English language articles were considered.

Types of participants

This study investigated knowledge of PAD in three adult groups (aged 18 years or older).

1. The general public, including individuals who had a presumed or confirmed diagnosis of PAD.

2. Practicing healthcare professionals who are not specialised in managing PAD or its complications: ‘non-specialist’ healthcare professionals (nsHCP). nsHCPs included general practitioners, nurses and podiatrists.

3. Training healthcare professionals, including medical or nursing students.

Definition of PAD

For the purposes of this review, where appropriate, an ABI ratio of less than 0.9, a confirmed diagnosis of PAD within patient records, or a history of previous revascularisation procedure were used to indicate the presence of PAD [2,10].
Data extraction

Search results were imported into EndNote™ X9 (Clarivate Analytics®) and duplicates removed. Titles and abstracts were reviewed independently for potential suitability against the inclusion criteria by investigators BB and AN. The full texts of suitable studies were retrieved and independently assessed for final inclusion by BB and AN, or JH. A standardised data extraction form was created and tabulated into Excel™ 2016 (Microsoft®). Data extraction was performed independently by BB and AN, or JH. Cases of disagreement were resolved by discussion within the team.

Study quality

The quality of these studies was assessed using the complement of critical appraisal tools provided by the Joanne Briggs Institute [11-13. This considered the evidence in each study with relation to our research questions throughout a series of domains. We graded the study quality as high (all domains satisfied), moderate (one domain unsatisfied or unknown) or low (more than one domain unsatisfied). Currently, no tool exists for assessment of conference abstracts.

Evaluation of quality was performed independently by BB and AN, or JH, after data extraction and disagreement was resolved through discussion. All studies were included, irrespective of their quality.

Strategy for data synthesis

A narrative synthesis of results, structured around the knowledge and awareness of PAD, and determining factors for knowledge within the three groups was performed and the data were tabulated where appropriate. Given the anticipated heterogeneity of results, a meta-analysis was not undertaken.
Results

A total of 27 articles were identified as meeting the eligibility criteria (Figure 1). Table 1 summarises the characteristics of the studies. Table 2 gives an overview of the included participants. The quality of the studies focused on nsHCP were deemed high=1, moderate=6 and low=2. For those focused on public/patients, study quality was deemed as high=7, moderate=4, low=7 (Supplementary information).

Figure 1

Table 1

Table 2

Knowledge of PAD – patient/public

Nineteen studies explored PAD knowledge within patients/public [5, 8,14-31], of which six studies focused on risk factor awareness [8,15,18,20,23,25].

Understanding PAD

Awareness of PAD ranged across the studies from 21% [25] to 60.5% [24]. When asked to classify its severity, PAD was considered an innocent condition by 25%, relatively serious by 61% and very serious by 5%. PAD symptoms were described as a ‘pain in the legs that subsides during rest’ and ‘pain during walking’. Willigendael found that participants had ‘heard of’ PAD (50%) but were less familiar with the term intermittent claudication (5%). Gorely and Tomczyk provided terms used by patients which give insight into their understanding of PAD. Descriptions included “a blockage
with plaque or fat”; “hardening of the arteries, where blood just doesn’t flow properly” and “it’s kind of a blockage of the artery” [21,27]. Colloquial terms such as ‘window-shopping legs’ more commonly recognised by the Dutch, are also used, which may add to confusion [29].

Wann-Hansson reported patients/public generally felt they had insufficient knowledge of both cardiovascular and peripheral vascular disease [28]. Even when participants thought that they had good awareness of PAD, they had low overall knowledge of the clinical features of the condition [26]. There was confusion with other diagnoses such as chronic venous diseases and musculoskeletal injuries [14,15,27,29]. Wann-Hansson reported that participants assumed that symptoms would dissipate with time or identified them with ‘expected’ pain with older age [28, 31].

Muthu reported improved knowledge following a consultation with a specialist healthcare professional; although 4% remained unaware of their vascular diagnosis [25]. Chang reported 90% of patients treated at a vascular clinic knew their diagnosis, where 88% of these identified the correct diagnosis and 78% were aware of the importance of secondary prevention [18]. In the same study, 68% of participants reported they had never discussed PAD or risk reduction. When a relative or friend had PAD, 10% more participants were able to describe universally recognised PAD symptoms [29]. Hirsch noted participants gained knowledge regarding PAD mostly from non-medical sources including from family and friends, the internet and books [5].

Risk factors
Knowledge regarding PAD risk factors varied between the studies (Table 3). There was a general lack of knowledge regarding causes of PAD, despite the presence of multiple risk factors [14,17,22]. Although specialist assessment improved awareness of some risk factors such as smoking (73% vs 90% p = 0.028) and diabetes (23% vs 66% p = 0.028), Muthu did not report an increased awareness of any other PAD associated risk factor [25]. Hirsch highlighted that reduced risk factor recognition was associated with older age, lower educational level and income [5], something which was corroborated by Coughlin [19]. Some ex-smokers continually denied a correlation between smoking and PAD, or needed confirmation and encouragement to continue their non-smoking status [28,31].

Knowledge of PAD Consequences

Two studies investigated the awareness of the associations between PAD and other medical conditions with results varying hugely. Between 28% [23] and 94% [8] of respondents recognised an association with stroke disease; 25% recognised an association with myocardial infarction [5] and 78% with coronary heart disease [8]. The highest level of recognition was seen with diabetes at 98% [8]. Awareness of the association between PAD and amputation varied between 14% [5] and 60% [8] and only 14% associated PAD with an increased risk of death [5]. Cronin did not find any increased awareness of PAD in those patients who had previously suffered any of the above conditions [8].

Knowledge of PAD management

Although participants had a general awareness of self-management which included smoking cessation, weight loss and regular exercise, these were often without
substance or active implementation plans [23]. Uncertainty and lack of motivation was repeatedly noted by participants as a barrier for implementation of self-management, particularly activity-induced pain. One participant in this study stated “[E]xercises causes pain which you’re trying to get rid of”. However, knowledge was increased and retained when individuals received tailored management on a regular basis [5,16]. For example, Hirsch reported a 14% improvement in management knowledge between a first and second visit, with further knowledge improvement during subsequent visits [5].

Knowledge of PAD – non-specialist healthcare professionals

Knowledge of non-specialist healthcare professionals (nsHCP) was evaluated within three studies. Knowledge of PAD was classified into disease awareness, adherence to evidence based guidance and risk factor recognition [5,32-33].

Screening a population of patient’s with PAD, Hirsch reported that only 49% of patients screening positive for the condition had been diagnosed by their usual primary care doctor [5]. Haigh’s survey reported just 6% of GP respondents were aware of PAD guidance where 61% of these GPs screened patients for PAD. These GPs were prompted to screen by the presence of risk factors such as smoking and type II diabetes [32]. Screening mainly took the form of history and examination, followed less often by ABI (54%) or duplex ultrasound scanning (42%) [32]. Barriers to screening included lack of knowledge, equipment, training and skills [32].

Normahani surveyed UK podiatrists and found a correlation between level of vascular education, clinical-training and confidence in recognising vascular foot problems and appropriate referrals [33]. Awareness and recognition was generally
improved if nsHCP had increased clinical exposure to PAD, received training to perform ABI and if patients displayed classic symptoms such as leg claudication [5].

Knowledge of PAD - trainees and students

PAD knowledge of medical students and trainee doctors was tested using questionnaires and during formal examinations within six studies [14,34,-38]. Overall knowledge was rated at modest to poor for data gathering and its interpretation during practical exams. It was improved if there was a personal or family history of cardiac disease. Although Chaudru reported 21% of students were familiar with ABI guidance; only 11% were able to perform an ABI [34].

Godshall introduced an educational programme for second year medical students, containing didactic lectures and a problem based-learning session. Here, knowledge scores were comparable with third year medical students unexposed to this module [38]. This suggests increased level of training and early clinical exposure vascular disease training may be as valuable as teaching to improve knowledge.

An overview of the recommendations to improve PAD knowledge in all groups is presented in Figure 2.

Discussion

This systematic review examined 27 articles which focused on PAD knowledge in order to evaluate the level and determinants of PAD knowledge in patients/public,
non-specialist healthcare professionals and respective trainees. Knowledge of PAD, its risk factors, consequences and management varied across the studies, with clearly recognised knowledge inadequacy alongside uncertainty of its potential seriousness. These findings are consistent across the studies despite the varying levels of the quality of the studies.

Delays in the presentation and appropriate management of PAD may lead to complications such as ischemia, amputation and death [39]. To initiate timely treatment, patients must first recognise their symptoms and seek medical attention. Following this, nsHCPs need to suspect the potential for PAD to refer, investigate or initiate secondary prevention. It is therefore important to identify the knowledge of nsHCPs, who are often the first-line in consulting patients, in order to offer insight into the problem of PAD under-recognition and delays in presentation from both sides of the consulting room. Several determinants of knowledge have been identified for nsHCPs and patients/public which give opportunities to focus efforts to improve PAD knowledge, recognition and subsequent management.

Patient/public and PAD

There appears to be misconceptions in the differences between PAD and other common conditions, such as musculoskeletal disorders and what should be considered normal within the aging process. This is compounded by poor understanding of the basic pathophysiology of PAD by patients/public which may reduce the ability to correlate risk factors. PAD is often referred to by numerous terms by patients/public and nsHCPs, which may add further uncertainty.
Public understanding of PAD and personal risk was often translated through knowledge and experience of friends/relatives, social media and public opinion and campaigns [34]. The Act Fast campaign in the United Kingdom pursued TV adverts with national media coverage, in order to improve stroke knowledge and recognition. Dombrowski identified the campaign results in high levels of stroke awareness amongst the public [40]. Flynn also noted increased information seeking behaviour with increased presentation to medical services [41]. The National Heart Lung and Blood Institute (NHLBI) within the USA, had co-implemented a national PAD awareness campaign for the public and healthcare providers, which offer education events and resources to improve PAD knowledge. Here, there are opportunities to re-invigorate and utilise increasingly popular methods of patient education particularly online and social media [42,43]. In the UK, the Putting Feet First campaign led by Diabetes UK provides a further opportunity to raise awareness of PAD [44].

For individual patients, knowledge was improved when they received individually tailored management. When practitioners have an understanding of their patient’s knowledge of PAD, this provides an opportunity for a patient-centred consultation using terminology a patient can clearly understand. Despite this, Hirsch identified that only a small number of individuals received PAD information from a non-specialist or specialist practitioner [23]. A meta-analysis of educational and behavioural interventions to improve stroke risk factors did not show any effect on several risk parameters within stroke management, although some improvements were observed when these were delivered by MDT’s [45].
Diabetes literature provides examples of effective patient therapeutic education, particularly when performed by a MDT, facilitating the opportunity for several specialties to be involved in the patient care – and multiple opportunities for patient education [45-47]. These may reflect the ability to spend time with a patient and provide effective communication. Heiler found that this positively correlated with greater self management regardless of confounders including sociodemographic and health variables [48]. However, evidence suggests that tailored education should be sustained and intensive from specialist and non-specialist multi-disciplinary team members to ensure ongoing patient engagement [49,50].

Health care professionals

All health professionals – specialist and non-specialist, should be aware that a large proportion of patients with PAD are asymptomatic and patients may progress to a point of irreversible damage, including higher mortality rates, before diagnosis [51].

For front-line and community-based nsHCPs, which include doctors, nurses and podiatrists, demands for the recognition of disease within a single consultation are often complicated by multi-morbidity, quality outcomes assessment and patient demands. This may lead to missed opportunities for disease recognition and diagnosis. This has been seen within cancer diagnosis whereby a patient presents with complex symptomology which can complicate the exploration and recognition of signs and symptoms: the so called ‘competing demands theory’ [52].

Alternatively, health-professionals may incorrectly attribute symptoms to existing conditions, for example osteoarthritis (OA) [53]. The cognitive assessment of disease
by nsHCPs has been the subject of a recent study involving functional magnetic resonance imaging [54]. Here, decision making was related to a reduction of uncertainty about a diagnosis [54]. How nsHCPs determine whether a symptom may be attributed to PAD and uncertainty surrounding this decision would provide important insights into PAD recognition and stimulate the development of strategies to increase disease recognition.

Trainees and students

Increased knowledge of PAD was observed when nsHCPs/trainees were exposed to early vascular clinical experience, had a greater level of training or experience of cardiovascular disease [55]. Adult learning theory holds that people learn new knowledge and skills most effectively when they are presented in the context of the application of new knowledge within real-life situations [56]. Teaching methods for trainees could include early patient contact/clinical experience, multi-media and utilise smart phones for teaching [57,58]. These may be with virtual or real patients – both are documented to promote meaningful theory learned using visual, audio and verbal experiences and acquire complex skills and knowledge [58].

Early clinical experience provides context to theoretical learning and improves the understanding to apply new knowledge [59,60]. This includes how patients describe symptoms and how practitioners may recognise disease. For example, with the knowledge that PAD often presents with similar features to other diseases, such as OA, trainees may be taught to screen for PAD alongside OA. Future research aims to provide an insight into exposure and training of PAD within medical schools correlated with trainee awareness, knowledge and confidence in its recognition. Using quantitative methods including direct knowledge testing and qualitatively
exploring student knowledge would provide an understanding of how educational curriculum provides future nsHCPs with the tools to recognise and prevent diseases. Equally if there are additional educational resources required to improve PAD knowledge.

While practitioners are expected to engage in continuing professional development to update their knowledge, there is a rapidly expanding landscape of medical information, provision of guidelines and more conditions to diagnose. There is a plethora of platforms to provide educational material for nsHCPs including web-based learning, interactive group discussion, individual learning and group learning [60,61]. Although there are more resources available online, group learning which would allow for essential practical skills training which would be most suitable for PAD [61,62]. Future research should evaluate the knowledge of health-professional at different stages of training, including the associated clinical reasoning, to identify effective education interventions to improve PAD knowledge.

Strengths and Limitations

This is the first review of publications concerned with knowledge of PAD to identify the levels of knowledge with insight into its determinants within the patients/public, health-professionals and their trainees. The studies consistently report low levels of knowledge within the groups which highlights an opportunity to improve knowledge and hence management of this important disease. There are, however, limitations which impact the quality of the review. The heterogeneous nature of the studies did not enable direct comparisons of the methods, settings and knowledge measure nor could a meta-analysis be undertaken. The results gathered were presented for
trainee doctors, GPs, nurses and podiatrists. Despite a broad search strategy, no information is known about the knowledge of other specialities such as general-internal medicine, emergency medicine, cardiovascular and endocrine medicine within the available literature. It is recognised that within different countries, patients may first encounter these specialists. However, the information gained provided both qualitative and quantitative outcomes.

A number of studies included in this review (70%) were of low or moderate quality. Studies were particularly at risk of selection and reporting bias, and many had relatively small sample sizes. While results were relatively consistent across all studies, they should be interpreted with this risk of bias in mind which limits the strength of the conclusions of this review. Inclusion of a conference abstract raises contention as vital study details may not be provided and there may be little peer review before publication. Although removing this study would have increased the overall study quality, it would have limited the scope of this deliberately broad study.

Conclusion

Knowledge of PAD is lacking in both patients/public and nsHCPs. Knowledge levels could be improved through educational interventions such individually tailored patient education or greater clinical exposure to increase patient and nsHCP knowledge and recognition for earlier PAD treatment. We contend that education is both a critical component of an individual’s health and a contributing cause of other elements of the individual’s concurrent and future health. When PAD awareness gaps are improved
by access to knowledge, an informed patient is best positioned to diminish risk in collaboration with an informed clinical provider.

Disclosures

Nil

Funding

Andrew Nickinson and John Houghton are funded and Bernadeta Bridgwood and Rob Sayers are partially funded through the George Davies Charitable Trust. The trust had no role in the study design, analysis, manuscript preparation or any publication decisions. All researchers acted independently with no conflicts of interest. (Registered Charity Number: 1024818).

Acknowledgements

The authors would like to thank George Davies and the George Davies Charitable Trust for the generous charitable donation that funded this work.

References

34. Chaudru S, de Müllenheim P. Knowledge about ankle-brachial index procedure among residents: being experienced is beneficial but is not enough. Vasa. 2016;45(1):37 – 41.

57. Mughal N, Atkins E. Smartphone learning as an adjunct to vascular teaching – a pilot project. BMC Med Educ. 2018;18:37
Figures

Figure 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram of information through the different phases of the systematic review

Figure 2 Overview of the recommendations to improve peripheral arterial disease (PAD) knowledge within healthcare professionals and patients/public.

Table 1 Overview of the characteristics of the studies.

Shading in column two denotes full paper; no shading denotes abstract only (Crisan). Non-specialist healthcare professional (nSHCP); years (y); female (F); male (M); peripheral artery disease (PAD). Study quality assessed by critical appraisal tools provided by the Joanne Briggs Institute [11-13].

Table 2 Characteristics of the study participants.

General patients included general/vascular/orthopaedic surgical patients, general medical /nephrology/endocrine patients. Veterans included 6 with peripheral artery disease (PAD). Number of individual GPs unknown from the practice numbers. Speciality unknown of general interns.

Table 3 Risk factors identified by members of the public and patients segregated into those correctly reported, those unrecognised and those incorrectly reported.
Records identified through database searching \((n = 10559)\)

Additional records identified through other sources \((n = 19)\)

Records after duplicates removed \((n = 9229)\)

Records excluded \((n = 9182)\) Does not consider cognitive PAD knowledge

Records screened \((n = 9229)\)

Full-text articles assessed for eligibility \((n = 46)\)

Full-text articles excluded, with reasons: \((n = 16\) not specific to PAD) \((n = 2\) did not assess cognitive PAD knowledge) \((n = 1\) considered practical only knowledge)

Studies included in qualitative synthesis \((n = 27)\)
 - Full papers = 26
 - Conference abstracts = 1

Figure 1

Table 1
<table>
<thead>
<tr>
<th>Study overview</th>
<th>Baseline characteristics</th>
<th>Study quality</th>
<th>Study Findings</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants Design</td>
<td>Population Age Sex (%)</td>
<td>High Moderate Low Knowledge Level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interview survey questionnaire knowledge test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study overview</td>
<td>Baseline characteristics</td>
<td>Study quality</td>
<td>Study Findings</td>
<td>Ref</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-----</td>
</tr>
<tr>
<td>Participants</td>
<td>Design</td>
<td>Population</td>
<td>Age (years)</td>
<td>Sex (%)</td>
</tr>
<tr>
<td>2019 AlHamzah</td>
<td>▼</td>
<td>Trainee nsHCP</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2018 Normahani</td>
<td>□</td>
<td>nsHCP</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2017 Martinaza</td>
<td>◘</td>
<td>Patients</td>
<td>Mean 72y</td>
<td>F M</td>
</tr>
<tr>
<td>2017 Morr</td>
<td>□</td>
<td>Patients</td>
<td>-</td>
<td>F M</td>
</tr>
<tr>
<td>2016 Wann-</td>
<td>▼</td>
<td>Patients</td>
<td>Mean 70y</td>
<td>F M</td>
</tr>
<tr>
<td>Hansson</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016 Chaubru</td>
<td></td>
<td>Trainee nsHCP</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2015 Cronin</td>
<td>◘</td>
<td>Patients/</td>
<td>Mean 65.7y</td>
<td>F M</td>
</tr>
<tr>
<td>2015 Gorely</td>
<td>▼</td>
<td>Public</td>
<td>Mean 65.7y</td>
<td>F M</td>
</tr>
<tr>
<td>2013 Haigh</td>
<td>□</td>
<td>nsHCP</td>
<td>Median 50-59y</td>
<td>F M</td>
</tr>
<tr>
<td>2012 Chang</td>
<td>◘</td>
<td>Patients</td>
<td>Mean 65.7y</td>
<td>F M</td>
</tr>
<tr>
<td>2012 Schawrtz</td>
<td>▼</td>
<td>Trainee nsHCP</td>
<td>Mean 27.5y</td>
<td>F M</td>
</tr>
<tr>
<td>2010 Crisan</td>
<td>▼</td>
<td>Patients</td>
<td>Median 65y</td>
<td>F M</td>
</tr>
<tr>
<td>2010 Godshall</td>
<td>□</td>
<td>Trainee nsHCP</td>
<td>-</td>
<td>F M</td>
</tr>
<tr>
<td>2009 Zhuge</td>
<td>◘</td>
<td>Patients</td>
<td>-</td>
<td>F M</td>
</tr>
<tr>
<td>2009 Lovell</td>
<td>□</td>
<td>Public</td>
<td>Mean 64.4y</td>
<td>F M</td>
</tr>
<tr>
<td>2008 Aboyans</td>
<td>▼</td>
<td>Patients</td>
<td>Mean 63.35y</td>
<td>F M</td>
</tr>
<tr>
<td>2008 Bush</td>
<td>□</td>
<td>Public</td>
<td>Mean 54.8y</td>
<td>F M</td>
</tr>
<tr>
<td>2007 Coughlin</td>
<td>▼</td>
<td>Patients</td>
<td>Median 72y</td>
<td>F M</td>
</tr>
<tr>
<td>2007 Hirsch</td>
<td>□</td>
<td>Public</td>
<td>Mean 67.2y</td>
<td>F M</td>
</tr>
<tr>
<td>2007 Muthu</td>
<td>▼</td>
<td>Patients</td>
<td>Median 75y</td>
<td>F M</td>
</tr>
<tr>
<td>2005 Batista</td>
<td>□</td>
<td>Patients</td>
<td>Mean 61y</td>
<td>F M</td>
</tr>
<tr>
<td>2004 Willigendael</td>
<td>□</td>
<td>Public/patient</td>
<td>Median >65y</td>
<td>F M</td>
</tr>
<tr>
<td>2002 Treat -</td>
<td>▼</td>
<td>Patients</td>
<td>Mean 65y</td>
<td>F M</td>
</tr>
<tr>
<td>Jacobson</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001 Hirsch</td>
<td>▼</td>
<td>nsHCP/Publi c</td>
<td>Mean 68.9y</td>
<td>F M</td>
</tr>
<tr>
<td>1994</td>
<td>Endean</td>
<td>50</td>
<td>Trainee nsHCP</td>
<td>-</td>
</tr>
<tr>
<td>Members of the public</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General public</td>
<td>11959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients with PAD</td>
<td>612</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veterans (3.7% had PAD)</td>
<td>162</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General patients</td>
<td>893</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-specialist healthcare professionals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General practitioners (GP)</td>
<td>232</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP practices</td>
<td>356</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podiatrist</td>
<td>283</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training nsHCP’s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vascular trainees</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General trainees (speciality unknown)</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3

<table>
<thead>
<tr>
<th>Patient reported PAD risk factor</th>
<th>Unrecognised risk factors for PAD</th>
<th>Other perceived risk factors</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking (86%)</td>
<td>Diabetes, cardiovascular disease, past history of PAD</td>
<td>Obesity, lack of exercise, Amputation</td>
<td>8</td>
</tr>
<tr>
<td>Hypercholesterolaemia (24%)</td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Hypertension (10%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes (83%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increasing age (63.6%)</td>
<td></td>
<td>Standing for long periods, Cold baths</td>
<td>20</td>
</tr>
<tr>
<td>Hypertension (66.2%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tobacco use (59.7%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atherosclerosis (51.%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking (39%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypercholesterolaemia (2%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol (23%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension (8%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes (2%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cigarette smoking (44%)</td>
<td>Hypertension, Hypercholesterolaemia, Cardiovascular disease</td>
<td>Obesity and lack of exercise</td>
<td>23</td>
</tr>
<tr>
<td>Diabetes (50%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking (81%)</td>
<td></td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>
Figure 2

Patient pathway

Patient groups with high risk of PAD (e.g., diabetes, smokers)
- Awareness of PAD symptoms
- Awareness of PAD risk factors
- Seeks nSHCP opinion

nSHCP assessing patient with undiagnosed PAD
- Recognition of PAD signs/symptoms
- Appropriate screening and/or diagnosis
- Appropriate referral and/or secondary prevention

Patient with diagnosed PAD
- Awareness of lifestyle modifications
- Awareness of secondary prevention
- Awareness of symptoms of worsening PAD

Opportunities for education interventions

Awareness campaigns
- General public
- Patient groups with high risk (e.g., diabetes, smokers)

Tailored group training to specialties (e.g., podiatrist, general practitioners)
- Improved PAD teaching whilst training
- General training including online and face-to-face

Patient education
- Group teaching (e.g., as part of supervised exercise program)

HCP education
- Improved delivery of patient information
- Strategies for encouraging risk factor modification