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Abstract 

Extensive research has been performed for on-board hydrogen generation, such as pyrolysis of 

metal hydrides (e.g. LiH, MgH2), hydrogen storages in adsorption materials (e.g. carbon nanotubes 

and graphites), compressed hydrogen tanks and the hydrolysis of chemical hydrides. Among these 

methods, the hydrolysis of NaBH4 has attracted great attention due to the high stability of its alkaline 

solution and the relatively high energy density, with further advantages such as moderate 

temperature range (from –5oC to 100oC) requirement, non-flammable, no side reactions or other 

volatile products, high purity H2 output. The H2 energy density contained by the system is fully 

depend on the solubility of the complicated solution contains reactant, product and the solution 

stabiliser. In this work, an approach based on thermodynamic equilibrium was proposed to model the 

relationship between the solubility of an electrolyte and temperature, and the effect of another 

component on its solubility. The relationship was then applied to NaBH4 and NaBO2 aqueous 

solutions, and the effect of introduction of NaOH on their solubility after deriving their solubility from 

phase diagrams. The data has been shown in good agreement with the proposed model.  
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1. Introduction 

With the increasing concern about air pollution and oil depletion, hydrogen, H2, has been intensively 

studied as an alternative energy source. The main problem with hydrogen application is that it is not 

readily transported in bulk. In order to use hydrogen widely, especially for mobile applications, a 

compact and safe method for storage is needed. Various methods have been developed for H2 

storage, such as high-pressure gas [1], liquefied hydrogen [2, 3], adsorption on materials with high 

specific surface area [4], reforming of natural gas, alcohols and hydrocarbons[5, 6], catalytic 

reduction of water with metals [7], and slush hydrogen [8] etc. Each of these technologies has its 

inherited advantages as well as drawbacks, but the still poor stored energy density remains. One 

alternative solution which has potential to store more H2 safely for mobile applications is to utilize the 

catalytic reduction of water with hydrides [9-11]. There are many different types of hydrides which 

has the potential to react with water and produce hydrogen gas. To use such materials for H2 

production for mobile applications, the energy density and the system operation safety are the major 

concerns. Table 1 listed the energy release during the hydrolysis reaction from a number of typical 

hydrides. It can be seen that most reactions between metal hydrides and water are vigorous. The 

large amount of heat can be released during the reaction which may cause explosion. Table 2 listed 

the density of these potential hydrides. Apart from LiH which clearly shows the safety concern, the 

sodium borohydride, NaBH4, has the least weight density. In comparison, it is clear that NaBH4 

produces the least heat energy during the hydrolysis reaction while has a low weight density. It has 

therefore the potential to be a successful candidate as an alternative hydrogen storage technology 

for mobile application in particular. 

Table 1 Heat released for 1gram hydrogen with different hydrides [12] 

Hydrides NaBH4 LiH LiAlH4 NaAlH4 CaH2 

∆H°(kJmol
-1

) -27.1 -54.3 -62.5 -56.2 -58.0 

 

Table 2 Weight of reductants necessary for 1 gram of hydrogen 

Hydrides NaBH4 LiH LiAlH4 NaAlH4 CaH2 

Weight(g)  4.73 4.00 12.2 14.3 10.5 

 

The generation of hydrogen from NaBH4 in aqueous solution is shown in Eq.(1). It can be seen that 

one mole of NaBH4 in a water solution reacts with 2 moles of the water and produces 4 moles of H2 

and one mole of sodium metaborate (NaBO2) as a by-product. Half of the produced H2 is extracted 

from the water.  

2224 NaBO4HO2HNaBH +→+                  (1) 

As a by-product, NaBO2 has to be removed during the hydrolysis reaction to avoid clogging the 

catalyst which will significantly reduce the system reaction efficiency [13, 14]. A practical way to 



 3 

remove the NaBO2 from the catalytic reaction bed is to dissolve it into the water left from the 

hydrolysis reaction and bring the solution into a exhaust system. Clearly, the water contained in the 

NaBH4 hydrolysis reaction system has to not only cover the hydrolysis reaction but also to dissolve 

and remove the by-product. Too much water will reduce the hydrogen generation density of the 

system [15, 16], while insufficient water may results in catalyst clogging and reduce the system 

reaction efficiency. This necessitates the optimisation of the NaBH4 concentration. In order to identify 

the optimised concentration, a semi-empirical simulation method based on dissolution equilibrium 

principles has been developed and reported in this paper 

 

2. Theoretical Solubility Model  

When a solid solute is left in contact with a solvent, it dissolves until the solution is saturated, i.e. an 

equilibrium between undissolved and dissolved solutes is reached. This dissolution equilibrium can 

be expressed in a general term: 

OHBAOHAB 2

-

2 nn
K ++→←⋅ +

                 (2a) 

where n  is number of water crystallized with the solute AB, and K is the equilibrium constant.  

Due to the interaction among the dissolved substances and the solvent, the performances of the 

dissolved substances in a real solution differ from that in the ideal-dilute one. Such differences are 

represented by the activities of the substances in the solution. Hence, the equilibrium constant of the 

dissolution can be expressed as 
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                       (2b) 

where 
i

a  is the activity, and the subscript i  denotes the substances. 

Activity coefficient of a substance is defined as the ratio between activity and ideal-dilute 

concentration, 

0
/

ii

i

i

mm

a
=γ                         (3) 

where 
i

m  is the molarity of substance i  in the solution, which is the moles of substance contained 

by 1000g of solvent in the solution, and 
0

i
m  is the molarity of the substance at standard conditions.  

The activity of a solid material is unity. Since the water is the bulk phase in the solution, its activity is 

assumed to be a constant. Substitute Eq.(3) into (2b), the equilibrium constant can then be obtained 

as 

−+−+−+ ==
BABABAOH2

mmKmmaK
n

γγγ                 (4) 
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If the molarity of substance 
+

A  equal to that of 
−

B  and the solute AB  in the solution, 

ABBA
mmm == −+  then the equilibrium constant Eq.(4) can be further simplified as 

2

AB
mKK γ=                         (5) 

The equilibrium constant changes with temperature. This can be expressed using the van’t Hoff 

equation [17]  

2
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=
)/1(

ln
                  (6) 

where T  is temperature, ∆H° is the change of enthalpy of the dissolution process which equals to 

the molar heat of solution and R is the universal gas constant. 

Integration of the van’t Hoff equation and substitute the equilibrium constant with Eq.(6), gives 

C
RT

H
m +

∆
−=

o

AB
AB

ln2                      (7) 

where C  is an integration constant, which includes all the activity coefficients.  

Rearrange Eq.(7) then gives the molality of the solute AB  in the saturated solution, 

RTH
Aem

2/

AB

0
AB∆−=                       (8) 

For sodium borohydride, NaBH4, two potential crystalline states, NaBH4⋅2H2O and NaBH4, may exist 

as the undissolved solid in its saturated solution depending upon the temperature of the solution as 

shown in Eq.(9a,b) [18]. When the temperature is lower than 309.4K, the undissolved part is in the 

form of NaBH4⋅2H2O. Above this temperature, the undissolved part is in the form of pure NaBH4. 

309.4K)(T   O2HBHNaO2HNaBH 2

-

424
1 <++→←⋅ +K

         (9a) 

309.4K)(T   BHNaNaBH
-

44
2 >+→← +K

              (9b) 

For sodium metaborate, NaBO2, there are three crystalline states in the saturated sodium metaborate 

solution NaBO2⋅4H2O, NaBO2⋅2H2O, and NaBO2⋅1/2H2O, as shown in Eq.(10a,b,c). Again, the 

solubility of each states depends on the temperature of the solution [19]. 

 ( ) 326.6K)T(273   O2HOHBNaO4HNaBO 2

-

422 <<++→←⋅ +
      (10a) 

 ( ) 378K)T(326.6   OHBNaO2HNaBO
-

422 <<+→←⋅ +
         (10b) 

( ) 378K)(T   OHBNaO3/2HO2H/1NaBO
-

4222 >+→←+⋅ +
        (10c) 

Using Eq.(7) and (8), the solubility of both NaBH4 and NaBO2 in terms of molality can be obtained as  
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which gives  
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Aem
2/

NaBH

0

4NaBH

4

∆−
=                      (13) 
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where, 
o

4NaBH
H∆  and 

o

2NaBO
H∆  is the standard enthalpy change of sodium metaborate solution, 

which equals to the molar heat of solution. C  is an integral constant, which is related to the overall 

activity coefficient, and R is the universal gas constant. 

From equation (13) and (14), it can be seen that the solubility is related to the heat of solution and 

the temperature at which the dissolving process takes place. When the dissolving process is 

endothermic, i.e. 
0

H∆ >0, a higher temperature results in a larger solubility. When the dissolving 

process is exothermic, i.e. 
0

H∆ <0, a higher temperature gives smaller solubility. 

 

3 Semi-empirical Solubility Model  

Equation (11) and (12) shows that there is potentially a linear relationship between mln 2  and 1/T. If 

such relationships can be identified, we may then be able to use these equations to analyse the 

solubility of both reactant and by-product of the NaBH4 hydrolysis system and to develop a model to 

simulate and optimise the solution for the NaBH4 hydrolysis system.  

Figure 1 shows the measured solubility data of NaBH4 at varying temperature [16, 18]. It can be seen 

that the solubility of sodium borohydride increases as the temperature increases. Below 36.4°C 

(309.4K), the crystalline state in the dissolution equilibrium is NaBH4⋅2H2O, and above this 

temperature the crystalline state in the dissolving equilibrium is NaBH4. At 36.4°C (309.4K), two kinds 

of crystalline, NaBH4⋅2H2O and NaBH4, coexist in the saturated solution, which is regarded as the 

invariant point. 
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Fig.1 Measured solubility of NaBH4 [16, 18] 

Figure 2 shows the measured solubility of NaBO2 at varying temperature [19]. There are two 

invariable points at 53.6°C and 105°C, respectively. These correspond to the transition temperatures 

of the sodium metaborate between its three crystalline states, NaBO2⋅4H2O, NaBO2⋅2H2O, and 

NaBO2⋅1/2H2O. Overall, its solubility increases as the temperature increases up to the level of 105°C. 

This indicates that the enthalpy change of the dissolution is positive when the crystalline state is 

NaBO2⋅4H2O or NaBO2⋅2H2O. If the solution temperature further increases, the solubility of sodium 

metaborate starts to decline.  

 

Fig.2 Measured solubility of NaBO2 [19] 

The solubility data cited in Figure 1 and 2 are in percentage by mass (
wt%

S ). In order to obtain the 

parameters in the models, this needs to be converted into molality defined as 

MS

S
m

wt%

wt%

)100(

1000

−
=                       (15) 
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where M is the molecular weight of NaBH4 (equals to 37.83 g/mol) or NaBO2 (equals to 65.8 g/mol).  

Figure 3 and 4 shows the rearranged solubility data cited in Figure 1 and 2 by converting the mass 

solubility into molality in the form of mln 2 vs. 1/T for NaBH4. It can be seen that a reasonable 

linearity exists at each temperature range. There are some differences between the measured data 

and the linear fit. This is probably mainly due to the fact that the water activity in the solution has 

been assumed to be constant at various NaBH4 concentration and temperature. Further work in the 

area is undertaking. 

 

Fig.3 Temperature effect on NaBH4 solubility 

 

Fig.4 Temperature effect on NaBO2 solubility 

Comparing the linearity with the dissolution equilibrium theory, Eq.(11) and (12), both H∆  and 

constant C can be obtained. These are listed in Table 3. The positive value of the heat of solution 

suggests that the dissolving process is endothermic. Increasing temperature is favourable for the 



 8 

dissolution. On the other hand, the negative heat value indicates that the dissolution process is 

exothermic and increase in temperature will decrease the solubility of the solute. 

Table 3 Semi-empirical parameters H∆ and C 

Species 

Parameters 

∆H
0

 (kJ/mol) Pre-exponential factor 

(Mol/kg water) 

NaBH4 

 

NaBH4.2H2O (<309.4K) 26.0 2980 

NaBH4 ( ≥ 309.4K) 43.7 10400 

NaBO2 

 

 

NaBO2.4H2O (<326.6K) 31.9 2750 

NaBO2.2H2O (326.6-378K) 26.8 1180 

NaBO2.1/2H2O ( ≥ 378K) -4.6 9.25 

 

Substitute the heat and the constant into Eq. (15) and (16), the solubility of NaBH4 and NaBO2 in the 

form of percentage by mass at various temperature can then be obtained as 

TF

i

TF

i

i
i

i

eE

eE
S

/

/

1000

100

−

−

+
=                      (16) 

where 
i

E  and 
i

F  are semi-empirical parameters listed in Table 4. 

Table 4 Semi-empirical parameters
i

E  and 
i

F  

Species 
Parameters 

Ei Fi 

NaBH4 

 

NaBH4.2H2O (<309.4K) 1.13×10
5
 1561 

NaBH4 ( ≥ 309.4K) 3.93×10
6
 2629 

NaBO2 

 

 

NaBO2.4H2O (<326.6K) 1.81×10
5
 1921 

NaBO2.2H2O (326.6-378K) 7.76×10
4
 1613 

NaBO2.1/2H2O ( ≥ 378K) 6.09×10
2
 -277 

 

Figure 5 and 6 show the comparison between calculated solubility using Eq.(18) and the measured 

value. It can be seen that a good agreements are obtained at all temperature ranges.  
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Fig.5 Comparison of calculated and measured solubility of NaBH4 

 

 

Fig.6 Comparison of calculated and measured solubility of NaBO2 

 

4. System Optimisation 

In order to obtain the maximum possible hydrogen production density, the water contained in the 

NaBH4 hydrolysis system needs to be optimised. There are three parts of water involve in the 

hydrolysis reactions: water used to produce a saturated NaBH4 solution, 
1w , water consumed by the 

hydrolysis reaction, 2w , and the water needed to dissolve and remove the by-product, 
3

w . 

Table 5 listed the minimum amount of water required by each part of the requirement of the 

hydrolysis system at varying temperature ranges as shown.  
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Table 5 Water needed for NaBH4 hydrolysis system 

Temperature 

range (K) 

Water in 

saturated NaBH4 

solution 

w1 (g) 

Water 

required for 

hydrolysis, 

w2 (g) 

Water required 

for dissolving 

NaBO2, 

w3 (g) 

Water required 

by the system 

(w2+w3) (g) 

273-309.4 102.0 36.0 180.0 216.0 

309.4-326.6 47.0 36.0 130.0 166.0 

326.6-378 30.0 36.0 60.0 96.0 

>378 10.0 36.0 50 86.0 

 

It can be seen that the amount of water needed to react with NaBH4 and to solve the NaBO2 is 

significantly larger than the amount of water contained in the saturated NaBH4 solution. In other 

words, it is the water required to hydrolysis the NaBH4 and dissolve the by-product NaBO2 decides 

the optimised water content in the hydrolysis system. The optimised concentration of the system can 

thus be calculated by 

4

4

4

NaBH32

NaBH

)%(NaBH

100
C

www

w

wt

++
=                              (17) 

where 
4NaBHw is the weight of NaBH4. 

Figure 7 shows both calculated maximum optimised NaBH4 concentration in the hydrolysis system 

and the concentration of saturated NaBH4 solution at various temperatures. Two interesting 

phenomenon need to be addressed. First, the optimised concentration of NaBH4 for the hydrolysis 

system is about half the level of saturated solution of NaBH4. By simply looking at the concentration 

of the NaBH4 to design the hydrolysis reaction system is clearly insufficient. Second, the optimised 

concentration increases as the solution temperature increases. This clearly increases the hydrogen 

production density. However, such benefit only exists when the solution temperature is lower than 

378K. Further increase in temperature would decrease the optimised concentration, so reduces the 

hydrogen production density of the system. This is due to the fact that the dissolution of NaBO2 at 

temperatures above 378K becomes exothermic and high temperature will reduce its solubility.  
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Fig.7 Calculated NaBH4 solubility and its maximum concentration in the hydrolysis system 

 

5. Conclusions 

Based on the van Hoff’s equation, a thermodynamic dissolution equilibrium model has been 

developed. 

Using existing measured solubility data, a group of semi-empirical parameters required by the 

thermodynamic dissolution equilibrium model for NaBH4 and NaBO2 were obtained. 

Using these semi-empirical parameters, the solubility of both NaBH4 and NaBO2 was predicted by 

the thermodynamic dissolution equilibrium model agrees well with the measured data. 

The calculated results showed that the optimum concentration of the NaBH4 solution used for the 

hydrolysis reaction is about half the level of its saturated solution. It increases as the solution 

temperature increases but only up to 378K. further increase in temperature will results in decrease in 

optimised concentration. 
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