This item is held in Loughborough University’s Institutional Repository (https://dspace.lboro.ac.uk/) and was harvested from the British Library’s EThOS service (http://www.ethos.bl.uk/). It is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/
Synthesis and Characterisation of Potential Ceramic Sulphide Conductors
Abstract

This study investigates the synthesis methods, the thermal and electrochemical characterisation of potential ceramic sulphide ion conductors, namely $AB_2S_4+xB_2S_3$, where A represents calcium or strontium and B represents neodymium or samarium, the excess, x, was varied from 10mol%, to 30mol%. This study also examines other potential sulphides such as $Ba_3Zr_2S_7$ compounds.

In this work, synthesis was carried out using solid-state reactions. The product was analyzed using XRD to determine the compound formed. Temperature Programmed Oxidation (TPO) and Temperature Programmed Reduction (TPR) were employed to determine the thermal stability, the thermal activation energy and where possible, determination of the intermediate oxidation products that are formed during the oxidation reaction. The potential sulphide ion conductors were characterised using electrochemical impedance spectroscopy (EIS), 4-point DC resistivity and electrochemical pumping.

Based on TPO and TPR experiments, the sulphide electrolytes examined were stable up to at least 500°C in both a reducing and an oxidising atmospheres. Detailed mass balance on the oxidation of $CaNd_2S_4+xNd_2S_3$ showed a complex oxidation mechanism, which resulted in the formation of a mixed oxy-sulphate product.

EIS confirmed $CaNd_2S_4+0.1Nd_2S_3$ as an ionic conductor; however all other compounds within this series as well all $SrNd_2S_4$ based compounds were at best mixed conductors. Similarly, EIS shows that $CaSm_2S_4+0.1Sm_2S_3$ is an ionic conductor, but all other compounds within this series were mixed ionic-electronic conducting. EIS of $SrSm_2S_4+xSm_2S_3$ results in confirms ionic conduction. EIS of $Ba_2In_2S_5$, a novel compounds, is ionic conducting, while $Ba_3Zr_2S_7$ exhibits mixed-ionic electronic conduction.

Electrochemical pumping confirmed sulphide ion conduction in $CaNd_2S_4+0.1Nd_2S_3$, $CaSm_2S_4+0.2Sm_2S_3$, $SrSm_2S_4+0.1Sm_2S_3$, $SrSm_2S_4+0.3Sm_2S_3$ and $Ba_2In_2S_5$, $Ba_3Zr_2S_7$

Keywords:
SULPHIDE ELECTROLYTES, $CaSm_2S_4$, $CaNd_2S_4$, $SrSm_2S_4$, $SrNd_2S_4$ series, $Ba_2In_2S_5$, $Ba_2In_2S_5+02ZrS_2$, $Ba_3Zr_2S_7$, EIS, TPO, TPR, ELECTROCHEMICAL PUMPING
Acknowledgment

I would like to express my sincere thanks and appreciation to my supervisor Dr. Klaus Hellgardt for all his support, encouragements, numerous novel ideas, necessary criticisms and humour that he gave throughout the duration of this project. The scope of the project was his creation, and I was just a key player. For this opportunity I must say many, many thanks, not only for the opportunity to work on this very interesting project but also for my reintroduction to the beauty of science, engineering and knowledge. The affair with science has just begun and as such, must continue!

I thank all the suppliers, ESS, Elite Thermal System, the chemical engineering workshop especially Dave, Chris and Chris, the Post Doc’s Dave and Paul, Dr. Sandy Dann, and all other staff members, especially Anna, who have helped along the way.

I must thanks my dearest friends that I made along the way, Stella, Sheryl, Norline, Rachel, Mohamed & Guillaume and last but not least, Luca.

It has been said before, but it is worth repeating, ‘Klaus, you inspire’!
Table of Contents

1. INTRODUCTION .. 1
 1.1. SCOPE OF THESIS ... 4
 1.2 REFERENCES ... 5

2. LITERATURE REVIEW ... 7
 2.1 INTRODUCTION ... 7
 2.2 CRYSTAL STRUCTURES ... 8
 2.2.1 Steric factors .. 8
 2.2.2 Polarisation and Crystal Structure ... 8
 2.3 IONIC CONDUCTION IN SOLIDS ... 10
 2.3.1 Intrinsic Defects .. 11
 2.3.2 Extrinsic Defects ... 11
 2.4 SOLID STATE REACTIONS ... 12
 2.5 APPLICATIONS OF METAL SULPHIDES AND IONIC CONDUCTING SOLIDS 13
 2.5.1 Introduction .. 13
 2.5.2 Fuel Cells ... 13
 2.5.3 Solid Electrolyte Sensors ... 15
 2.5.4 Electrochemical Reactors ... 17
 2.6 MATERIALS: SULPHIDE ELECTROLYTE AND ELECTRODE 18
 2.6.1 Electrical properties of the simple sulphides ... 19
 2.6.2 MLn2S4 - xLn2S3 (where x = 10-30 mol % Ln2S3) systems 19
 2.6.3 Ba2In2S5 and Ba2In2-xZrSx ... 20
 2.6.4 Ba2Zr2S7 ... 21
 2.7 ELECTRODE MATERIALS ... 22
 2.7.1 Platinum ... 23
 2.7.2 Carbon and graphite .. 23
 2.7.3 Gold ... 24
 2.7.4 Titanium Sulphide ... 24
 2.8 THERMAL AND ELECTROCHEMICAL CHARACTERISATION TECHNIQUES 24
 2.8.1 X-ray diffraction ... 25
 2.8.2 Temperature Programmed Techniques ... 26
 2.8.3 Mass Spectrometer ... 27
 2.8.4 Kinetic Model for TP Techniques .. 27
 2.8.5 Activation energy from TP Techniques .. 29
 2.8.6 Application of TP techniques ... 30
 2.9 ELECTROCHEMICAL CHARACTERISATION TECHNIQUES 31
 2.9.1 Four Point DC Resistivity ... 31
 2.9.2 Impedance Spectroscopy .. 32
 2.10 EQUIVALENT CIRCUIT AND PHYSICAL MODELS .. 39
 2.10.1 Empirical Models for Mixed Conductors ... 44
 2.11 ELECTROCHEMICAL REACTORS ... 47
 2.12 OTHER ELECTROCHEMICAL CHARACTERISATION TECHNIQUES 49
 2.12.1 Galvanic Cells .. 49
 2.12.2 Galvanic Cells for Kinetic Investigation .. 49
 2.13 LITERATURE REVIEW SUMMARY .. 50
 2.14 LITERATURE REVIEW REFERENCES .. 51

3 EXPERIMENTAL .. 62
 3.1 MATERIAL SYNTHESIS .. 62
3.1.1 Sulphide Ion Synthesis ... 62
3.2 Sulphide Pellet Synthesis .. 65
3.2.1 Grinding metal sulphides ... 66
2.3 Experimental Methods- Temperature Programmed Techniques 72
3.3.1 TPO-S and TPR-S ... 72
3.3.2 SO2 and H2S Calibration of Mass Spectrometer 75
3.3.3 Determination of degree of oxidation 77
3.3.4 Determination of O2 Consumed .. 78
3.4 Impedance Spectroscopy .. 79
3.4.1 Impedance Atmosphere .. 84
3.4.2 Maximum Temperature .. 85
3.4.3 Electrode Materials and application method 87
3.4.4 Modelling E.I.S Experimental data 93
3.5 Four-Point DC Resistivity Measurement ... 96
3.6 Reactor for Galvanic Cell or Electrochemical Measurements 99
3.7 Experimental References .. 103
4 Characterisation and Electrochemical Application of Cand2S4 and SrNd2S4 Doped with Nd2S3 106
4.1 Temperature Programmed Oxidation and Reduction of CaNd2S4 Series 110
4.2 Temperature Programmed Reduction .. 117
4.3 Electrochemical Impedance Spectroscopy of Nd2S3 Doped CaNd2S4 ... 119
4.3.1 Impedance Spectroscopy of CaNd2S4 series using gold electrodes ... 119
4.3.2 Equivalent circuit modelling for CaNd2S4 with gold electrodes 121
4.3.3 Activation energy ... 123
4.3.4 Bulk conductivities for gold coated CaNd2S4 series 125
4.3.5 Time constant analysis for gold coated CaNd2S4 series 126
4.3.6 Interface phenomena of Gold electrode and CaNd2S4 Electrolyte ... 127
4.3.7 Impedance spectroscopy CaNd2S4 series with graphite electrodes ... 129
4.3.8 Equivalent circuit modelling for CaNd2S4 series with graphite electrodes 132
4.3.9 Activation energy for CaNd2S4 series with graphite electrodes .. 134
4.3.10 Effect of equivalent circuit modelling on derived parameters 137
4.3.11 Effect of electrode material on time constant and bulk conductivity for CaNd2S4 series ... 139
4.4 H2S Concentration Dependence of Bulk Conductivity for CaNd2S4 Series 142
4.5 Electrochemical Pumping of Sulphide Ions in CaNd2S4 147
4.6 Conclusion for the CaNd2S4 Series .. 151
4.7 Neodymium Sulphide Doped with Excess Nd2S3 Series 155
4.7.1 TPO and TPR for SrNd2S4 series ... 156
4.8 EIS of Nd2S3 Doped SrNd2S4 Series .. 159
4.8.1 EIS characterisation for SrNd2S4 series: ionic or mixed conductors ... 160
4.8.2 Activation energy for SrNd2S4 series 167
4.8.3 Conductivity energy for SrNd2S4 series 169
4.8.4 Concentration dependence of SrNd2S4 series bulk conductivity ... 170
4.8.5 Electrochemical pumping of sulphide ions in SrNd2S4 174
4.8.6 Conclusion for the SrNd2S4 series ... 176
4.9 References for Chapter 4 ... 178

5
5 CHARACTERISATION AND ELECTROCHEMICAL APPLICATION
SAMARIIUM SULPHIDE DOPED CASM₂S₄ AND SRSM₂S₄ SERIES................. 180

5.1 TPO AND TPR FOR CASM₂S₄ SERIES.. 183
5.2 ELECTROCHEMICAL CHARACTERISATION OF CASM₂S₄ SERIES............. 186
 5.2.1 Alternative Equivalent circuits for CaSm₂S₄ series Modelling: Diffusion based equivalent circuits......................... 186
 5.2.2 Effect of doping CaSm₂S₄ Series with excess Sm₂S₃ on Impedance Spectroscopy... 191
 5.2.3 Effect of changing the dopant Neodymium sulphide in CaNd₂S₄ to Samarium sulphide in CaSm₂S₄... 193
 5.2.4 Activation energy for CaSm₂S and CaNd₂S₄ series with Lattice parameter.. 195
 5.2.5 Conductivity and Activation energy for CaSm₂S₄ and CaNd₂S₄ series 198
 5.2.6 Time Constant Analysis for CaSm₂S₄ series .. 201
5.3 THE EFFECT OF HYDROGEN SULPHIDE CONCENTRATION ON BULK CONDUCTIVITIES AND ACTIVATION ENERGIES.. 202
5.4 ELECTROCHEMICAL PUMPING OF SELECTED SRSM₂S₄ COMPOUNDS.............. 207
5.6 INTRODUCTION TO THE THERMAL AND ELECTROCHEMICAL CHARACTERISATION OF STRONTIUM SAMARIIUM SULPHIDE DOPED WITH EXCESS SM₂S₃ 211
5.7 TPO AND TPR FOR SRSM₂S₄ SERIES.. 213
5.8 ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY FOR SRSM₂S₄ SERIES....... 216
 5.8.1 Equivalent circuits for modelling SrSm₂S₄ series.............................. 217
 5.8.2 Impedance Spectroscopy: Effect of doping SrSm₂S₄ with excess Sm₂S₃.... 219
 5.8.3 Effect of changing host and dopant cation: CaNd₂S₄, SrNd₂S₄, CaSm₂S₄ and SrSm₂S₄ series... 220
 5.8.4 Activation energy for SrSm₂S₄ considering temperature effect on Bode plot 224
 5.8.5 Conductivity and Activation energy for SrSm₂S₄ series and all analogues... 227
 5.8.6 Time Constant Analysis for SrSm₂S₄ series .. 228
 5.8.7 H₂S Concentration dependence of bulk conductivity for SrSm₂S₄ series 230
5.9 ELECTROCHEMICAL PUMPING OF SELECTED SRSM₂S₄ COMPOUNDS.............. 234
5.10 REFERENCES FOR CHAPTER 5 ... 240

6. THERMAL AND ELECTROCHEMICAL CHARACTERISATION OF BARIUM BASED SULPHIDES ... 243

6.1.2 TPO and TPR for Ba₂In₂S₅ and Ba₂In₂₋ₓZrₓS₅.. 246
6.1.3 Electrochemical characterisation of Ba₂In₂S₅ and Ba₂In₂S₅+0.2ZrS₂........... 248
6.1.4 Alternative Equivalent circuits Modelling for Ba₂In₂S₅ and Ba₂In₂S₅+0.2ZrS₂ 251
6.1.5 Activation energy for Ba₂In₂S₅ and Ba₂In₂S₅+0.2ZrS₂........................... 254
6.1.6 Bulk Conductivity for Ba₂In₂S₅ and Ba₂In₂S₅+0.2ZrS₂........................... 255
6.1.7 Time Constant Analysis for Ba₂In₂S₅ and Ba₂In₂S₅+0.2ZrS₂................... 256
6.1.8 H₂S Concentration dependence of bulk conductivity for Ba₂In₂S₅ and Ba₂In₂S₅+0.2ZrS₂... 257
6.1.9 Electrochemical Pumping of Ba₂In₂S₅... 259
6.2 THE RUDDESDEN-POPPER BAZR₂S₇ ELECTROLYTE 262
 6.2.1 TPO and TPR for Ba₃Zr₂S₇... 264
 6.2.2 Electrochemical Impedance Spectroscopy for Ba₃Zr₂S₇......................... 266
 6.2.3 Activation energy, bulk conductivity and time constant for Ba₃Zr₂S₇, Ba₂In₂S₅, and Ba₂In₂S₅+0.2ZrS₂... 268
 6.2.4 H₂S Concentration dependence of bulk conductivity for Ba₃Zr₂S₇........... 269
6.3 THE FAILED BAB₁₂S₄ ELECTROLYTE .. 270
6.4 CHAPTER 6 REFERENCES .. 275

7. CONCLUSIONS .. 277
8. RECOMMENDATIONS AND FUTURE WORK .. 286
9. APPENDIX A ... I
10. APPENDIX B ... II
11. APPENDIX C ... III
12. APPENDIX D ... IV
13. APPENDIX E ... V
Figure 3.17. Schematics of electrical contact to sample...81
Figure 3.18. BNC on removable plate with a ceramic tubes for gas entry and exit..................81
Figure 3.19. (a) Sample holder (empty) and (b) sample holder with removable spring loaded
internals ..82
Figure 3.20. Stainless steel reactor head showing the O-ring seal for BNC plate and shoulder to attach
sample holder ...83
Figure 3.21. Impedance cell - type 2 - : sample holder with removable BNC plate and spring loaded
piston..83
Figure 3.22. Electrochemical Impedance Spectroscopy of CaNd2S4-0.0-0.3Nd2S3 in
10ppmH2/H2S @ 600°C with platinum electrodes and an applied volts of 0.01Vrms 85
Figure 3.23 Electrochemical Impedance Spectroscopy of CaNd2S4-0.0Nd2S3 in argon @ 600°C with
platinum electrodes and an applied volts of 0.01Vrms ..85
Figure 3.24. Stable impedance plot at 50°C using Pt electrodes in H2S/argon......................... 86
Figure 3.25. Stable impedance plots at 250°C using Pt electrodes in H2S/argon..................... 86
Figure 3.26. Unstable impedance plot 300°C using Pt electrodes in H2S/argon 87
Figure 3.27. Pt electrode painted on CaNd2S4, which has a porous structure similar to base
material ..89
Figure 3.28. Gold electrode on samarium based electrolyte after impedance in argon 90
Figure 3.29. SEM image of cross section of samarium sulphide based pellet after EIS measurements
..91
Figure 3.30. SEM image of cross section of samarium sulphide based pellet before EIS measurement
..91
Figure 3.31. SEM image of of gold electrode on neodymium sulphide based electrode after
EIS at 400°C in argon ...92
Figure 3.32. Nyquist plot at 400°C in argon using graphite electrodes 93
Figure 3.33 Actual equipment set up for 4-point DC resistivity measurement at low
temperatures ...96
Figure 3.34 Schematics of spring loaded pin ...97
Figure 3.35. High temperature 4-point DC resistivity measuring cell97
Figure 3.36 Variation in 4-point DC using manual mode ..98
Figure 3.37. DC Resistivity, 4 &2 point, for CaNd2S4-0.3Nd2S3 .. 99
Figure 3.38. Sketch of reactor cell used for pumping sulphide ions ...100
Figure 3.39. Reactor for two phase impedance and Galvanic cell measurements101
Figure 3.40. Internals of two electrochemical phase reactor ..101
Figure 3.41. Quartz two phase reactor for galvanic cell measurements102
Figure 3.42. Electrochemical cell with single sided cementing and reduced electrode surface
area ..103
Figure 4.1. Unit Cell Structure and X-ray pattern of CaNd2S4+0.0-0.3Nd2S3108
Figure 4.2 SEM of CaNd2S4 powders before and after grinding ..109
Figure 4.3. SEM CaNd2S4 sintered pellet made with pre-grounded powder110
Figure 4.4 TPO of CaNd2S4-0.0-0.3Nd2S3 using a heating rate of 10°C/min111
Figure 4.5. Arrhenius plot of thermal activation energy for undoped CaNd2S4112
Figure 4.6. Activation energy trend for the CaNd2S4+0.0-0.3Nd2S3 series113
Figure 4.7. Percent Oxidation of sulphide to form sulphur dioxide ..114
Figure 4.8. TPO showing O2 trace for un-doped CaNd2S4 ..115
Figure 4.9. Oxide and sulphate formation for CaNd2S4 series ..117
Figure 4.10. TPR of CaNd2S4+0.0-0.3Nd2S3 ...118
Figure 4.11. Nyquist plot of CaNd2S4 +10mol%Nd2S3 using gold electrodes at elevated temperatures
..119
Figure 4.12 Bode plot of CaNd2S4 +10mol%Nd2S3 using gold electrodes at elevated temperatures. 120
Figure 4.13. Nyquist plot of impedance of CaNd2S4 and CaNd2S4+0.1Nd2S3 with gold electrodes in
argon at 350°C ...121
Figure 4.14. Alternative equivalent circuits for CaNd2S4 series with gold electrode122
Figure 4.15. Nyquist and Bode plots experimental and modelled result for undoped gold-coated CaNd$_2$S$_4$ at 350°C using R/C and R/CPE models .. 122
Figure 4.16. Nyquist and Bode plots of experimental and modelled data for CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ using gold electrodes in argon at 250°C .. 123
Figure 4.17 Arrhenius plot for ionic mobility for undoped CaNd$_2$S$_4$ with gold electrodes 124
Figure 4.18. Proposed mechanism for low activation with gold electrode 128
Figure 4.19. Nyquist plot CaNd$_2$S$_4$ series at 400°C using graphite electrodes in Argon 130
Figure 4.20. Bode plot CaNd$_2$S$_4$ series at 400°C using graphite electrodes in Argon 131
Figure 4.21. Reproducibility test using graphite electrode with identical cell geometry 131
Figure 4.22. Reproducibility test using graphite electrode with different cell geometry 132
Figure 4.23. Nyquist Modelled and experimental results for CaNd$_2$S$_4$ and CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ using graphite electrodes .. 133
Figure 4.24. Bode plot of modelled and experimental results for CaNd$_2$S$_4$ and CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ using graphite electrodes .. 134
Figure 4.25. Typical Arrhenius plot doped for CaNd$_2$S$_4$ with graphite electrodes using RC/RCPE equivalent circuit .. 135
Figure 4.26. Jamnik model for mixed ionic-electronic conductor .. 136
Figure 4.27 Concentration dependence of bulk conductivity vs. temperature for undoped CaNd$_2$S$_4$.. 143
Figure 4.28. H$_2$S concentration dependence of total conductivity for undoped CaNd$_2$S$_4$ 143
Figure 4.29. H$_2$S concentration dependence of ionic conductivity vs. temperature for CaNd$_2$S$_4$+0.1Nd$_2$S$_3$.. 144
Figure 4.30. H$_2$S concentration dependence of total conductivity for CaNd$_2$S$_4$+0.1Nd$_2$S$_3$... 144
Figure 4.31. H$_2$S concentration dependence of ionic conductivity vs. temperature for CaNd$_2$S$_4$+0.2Nd$_2$S$_3$.. 145
Figure 4.32 Electrochemical pumping of CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ at 600°C with 5V dc 148
Figure 4.33 Electrochemical pumping of CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ at 600°C with 5V dc 149
Figure 4.34 Electrochemical pumping of CaNd$_2$S$_4$+0.2Nd$_2$S$_3$ at 550°C with 2V dc 150
Figure 4.35 Electrochemical pumping of CaNd$_2$S$_4$+0.3Nd$_2$S$_3$ at 750°C with 2V dc 151
Figure 4.36. SrNd$_2$S$_4$ sintered pellet at 1350°C in H$_2$S/Ar mixture with 93% of theoretical density. 156
Figure 4.37. Temperature programmed oxidation of SrNd$_2$S$_4$ series 157
Figure 4.38 Thermal Activation energy for SrNd$_2$S$_4$ and CaNd$_2$S$_4$ series 158
Figure 4.39. Temperature programmed reduction of SrNd$_2$S$_4$ series 159
Figure 4.40 Equivalent circuit for a mixed conductor with ideal selectively blocking electrodes with predominant electronic conductivity 160
Figure 4.41 Equivalent circuit for a mixed conductor with ideal selectively blocking electrodes with predominant ionic conductivity .. 160
Figure 4.42 Equivalent circuit for Lithium ion insertion into a Lithium based mixed conducting electrolyte .. 161
Figure 4.43. Model for mixed conduction electrolyte with partial blocking grain boundaries where all modelling elements are as defined in previous figure with ‘g’ referring to grain conduction and ‘gb’ referring to grain boundary conduction, C$_{gb}$ relates to the parallel discharging of grain chemical capacitance .. 161
Figure 4.44. Typically called the Randles equivalent circuit used to model ionic conduction 161
Figure 4.45. Model result using perfectly blocking boundaries for predominant electronic conductivity for undoped SrNd$_2$S$_4$ at 400°C .. 162
Figure 4.46. Model result using perfectly blocking boundaries for predominant ionic conductivity for undoped SrNd$_2$S$_4$ at 400°C .. 163
Figure 4.47. Model result using partially blocking boundaries with an insertion reaction for undoped SrNd$_2$S$_4$ at 400°C .. 163
Figure 4.48 Model result using Randles circuit for ionic conducting membrane blocking boundaries without a insertion reaction for undoped SrNd$_2$S$_4$ at 400°C .. 164
Figure 4.49. Experimental impedance of SrNd$_2$S$_4$ and CaNd$_2$S$_4$ at 400°C in Argon with graphite electrodes .. 166
Figure 5.28. Electrochemical pumping of CaSm$_2$S$_4$+0.2Sm$_2$S$_3$ at 700°C with 10V. 209
Figure 5.29. Electrochemical pumping of CaSm$_2$S$_4$+0.2Sm$_2$S$_3$ at 825°C with 0.5V. 209
Figure 5.30. Nyquist plot of CaSm$_2$S$_4$+0.2Sm$_2$S$_3$ for before and after pumping experiments, at 450°C. 210
Figure 5.31. SrSm$_2$S$_4$+0.3Sm$_2$S$_3$ sintered pellet at 1350°C in H$_2$S/Ar mixture exhibiting 86% of theoretical density. 213
Figure 5.32. Temperature programmed oxidation of SrSm$_2$S$_4$ series. 214
Figure 5.33. Thermal Activation energy for SrSm$_2$S$_4$ and CaSm$_2$S$_4$ series. 215
Figure 5.34 Temperature programmed reduction of SrSm$_2$S$_4$ series showing onset temperatures. 216
Figure 5.35 Impedance of undoped SrSm$_2$S$_4$, CaSm$_2$S$_4$, and SrNd$_2$S$_4$ at 400°C in argon. 217
Figure 5.36 Bauerle Equivalent circuit. 218
Figure 5.37 McDonald Equivalent circuit. 218
Figure 5.38 Experimental and modelled results for undoped CaSm$_2$S$_4$ 400°C. 218
Figure 5.39 Nyquist plot showing the effect of doping of SrSm$_2$S$_4$ with Sm$_2$S$_3$ at 400°C. 219
Figure 5.40 Bode plot showing the effect of doping of SrSm$_2$S$_4$ with Sm$_2$S$_3$ at 400°C in argon. 220
Figure 5.41 Nyquist for 10mol% doped CaNd$_2$S$_4$, SrNd$_2$S$_4$, CaSm$_2$S$_4$, and SrSm$_2$S$_4$ 400°C. 221
Figure 5.42. Bode plot for 10mol% doped CaNd$_2$S$_4$, SrNd$_2$S$_4$, CaSm$_2$S$_4$, and SrSm$_2$S$_4$ 400°C. 221
Figure 5.43. Nyquist plot of 20mol% doped CaNd$_2$S$_4$, SrNd$_2$S$_4$, CaSm$_2$S$_4$, and SrSm$_2$S$_4$ 400°C. 222
Figure 5.44. Bode plot of 20mol% doped CaNd$_2$S$_4$, SrNd$_2$S$_4$, CaSm$_2$S$_4$, and SrSm$_2$S$_4$ 400°C. 222
Figure 5.45. Nyquist plot of 30mol% doped CaNd$_2$S$_4$, SrNd$_2$S$_4$, CaSm$_2$S$_4$, and SrSm$_2$S$_4$ 400°C. 224
Figure 5.46. Bode plot of 30mol% doped CaNd$_2$S$_4$, SrNd$_2$S$_4$, CaSm$_2$S$_4$, and SrSm$_2$S$_4$ 400°C. 224
Figure 5.47 Arrhenius plot of SrSm$_2$S$_4$ from 175°C to 450°C in argon. 225
Figure 5.48 Phase angle change vs. temperature for undoped SrSm$_2$S$_4$ in argon. 226
Figure 5.49. Bulk conductivities for undoped SrSm$_2$S$_4$ measured in different atmospheres. 230
Figure 5.50. Bulk conductivities for undoped SrSm$_2$S$_4$ measured in different atmospheres. 231
Figure 5.51. Activation energy for undoped SrSm$_2$S$_4$ measured in different atmospheres. 231
Figure 5.52. Bulk conductivities for SrSm$_2$S$_4$+0.1Sm$_2$S$_3$ measured in different atmospheres. 232
Figure 5.53. Activation energy for SrSm$_2$S$_4$+0.1Sm$_2$S$_3$ measured in different atmospheres. 232
Figure 5.54. Bulk conductivities for SrSm$_2$S$_4$+0.2Sm$_2$S$_3$ measured in different atmospheres. 233
Figure 5.55. Variation of conductivity of SrSm$_2$S$_4$+0.3Sm$_2$S$_3$ with sulphur partial pressure. 233
Figure 5.56 Electrochemical pumping SrSm$_2$S$_4$+0.1Sm$_2$S$_3$ at 550°C with applied 1Vdc. 235
Figure 5.57. Electrochemical pumping SrSm$_2$S$_4$+0.3Sm$_2$S$_3$ at 650°C with applied 1Vdc. 236
Figure 5.58. Electrochemical half reactions with the application of a negative potential to H$_2$S compartment. 236
Figure 5.59 Electrochemical half reactions with the application of a positive potential to H$_2$S compartment. 237
Figure 5.60. Bode plot of SrSm$_2$S$_4$+0.1Sm$_2$S$_3$ at 400°C in different H$_2$S concentration. 238
Figure 5.61. Bode plot of SrSm$_2$S$_4$+0.3Sm$_2$S$_3$ at 400°C in different H$_2$S concentration. 239
Figure 6.1 Powder X-RD pattern and unit cell structure for Ba$_2$In$_2$S$_5$. 244
Figure 6.2 Particle size distribution of Ba$_2$In$_2$Zr$_x$S$_5$ and un-doped BaIn$_2$S$_3$. 246
Figure 6.3 SEM of Ba$_2$In$_2$S$_5$ sintered at 1050°C in H$_2$S. 246
Figure 6.4. TPO of BaIn$_2$S$_3$ and Ba$_2$In$_2$Zr$_x$S$_5$ using 10°C/min heating rate. 247
Figure 6.5. TPR of BaIn$_2$S$_3$ and Ba$_2$In$_2$Zr$_x$S$_5$ using 20°C/min heating rate. 248
Figure 6.6. Nyquist plot of BaIn$_2$S$_3$ and Ba$_2$In$_2$Zr$_x$S$_5$ at 350°C in argon. 249
Figure 6.7. Bode plot of temperature effect on phase angle of BaIn$_2$S$_3$. 250
Figure 6.8. Bode plot of temperature effect on phase angle of Ba$_2$In$_2$Zr$_x$S$_5$ in argon. 250
Figure 6.9. R-R//CPE Equivalent circuit used at temperatures lower than 225°C for BaIn$_2$S$_3$. 251
Figure 6.10 Nyquist plot of experimental and modelled result for BaIn$_2$S$_3$ at 200°C. 251
Figure 6.11. Bode plot of experimental and modelled result for BaIn$_2$S$_3$ at 200°C. 252
Figure 6.12. Bauerle Equivalent circuit used for modelling BaIn$_2$S$_3$ and Ba$_2$In$_2$Zr$_x$S$_5$ throughout 200-450°C. 252
Figure 6.13. Fricke equivalent circuit for a matrix of two phases used for modelling BaIn$_2$S$_3$ and Ba$_2$In$_2$Zr$_x$S$_5$ throughout 200-450°C. 252
Figure 6.14 Nyquist plot of experimental and modelled results for BaIn$_2$S$_5$ at 450°C in argon
Figure 6.15 Bode plot of experimental and modelled results for BaIn$_2$S$_5$ at 450°C in argon
Figure 6.16 Activation energy for ionic hoping of BaIn$_2$S$_5$ in argon from 300-450°C
Figure 6.17 Activation energy for Ba$_2$In$_{2-x}$Zr$_x$S$_5$ in argon from 300-450°C
Figure 6.18 Bulk conductivity of Ba$_2$In$_2$S$_5$ measured in different atmospheres
Figure 6.19. Bulk conductivity of Ba$_2$In$_{2-x}$Zr$_x$S$_5$ measured in different atmospheres
Figure 6.20. Electrochemical pumping of Ba$_2$In$_2$S$_5$ at 600°C with applied 1Vdc
Figure 6.21 Electrochemical pumping of Ba$_2$In$_2$S$_5$ at 700°C with applied 1Vdc
Figure 6.22. Ruddlesden-Popper structure of Ba$_3$Zr$_2$S$_7$ (n = 2)
Figure 6.23. Powder X-ray diffraction pattern obtained for the Ba$_3$Zr$_2$S$_7$ material
Figure 6.24. BaZr$_3$S$_7$ sintered pellet at 1080°C in H$_2$/Ar mixture achieving 75% of theoretical density
Figure 6.25 TPO of BaZr$_3$S$_7$ using 10°C/min heating rate
Figure 6.26. TPR of BaZr$_3$S$_7$ using 20°C/min heating rate
Figure 6.27. Nyquist plot of BaZr$_3$S$_7$ in argon at elevated temperatures
Figure 6.28. Bode plot of BaZr$_3$S$_7$ in argon at elevated temperatures
Figure 6.29 Arrhenius plot of ionic hoping activation energy for BaZr$_3$S$_7$
Figure 6.30. Bulk conductivity of BaZr$_3$S$_7$ measured in different atmospheres
Figure 6.31. Temperature programmed oxidation of BaBi$_2$S$_4$ at 10°C/min
Figure 6.32. Temperature programmed oxidation of BaBi$_2$S$_4$ at 10°C/min
Figure 6.33. Proposed ‘R-L’ equivalent circuit for BaBi$_2$S$_4$
Figure 6.34. Bode plot of BaBi$_2$S$_4$ at different temperatures with 25°C increment
Figure 6.35. Bode plot experimental and RL model for BaBi$_2$S$_4$ at 350°C
Figure 6.36. Bulk conductivity of BaBi$_2$S$_4$ measured in different atmospheres
List of Tables

Table 2.1 Influence of Radius Ratio, ρ, on Coordination Number, Greenwood, 1968, pg.45 ...8
Table 2.2 Polarisability of Selected Ions in Various Atmospheres (Greenwood, 1968) ...9
Table 2.3 Ionisation Potential of Cation and Anion of interest Ladd and Lee, 1963 & 1965 ...10
Table 2.4 Selected Sulphides Systems made with Extrinsic Defects ...22
Table 2.5 Examples of Reduction Kinetics Models ...29
Table 3.1 Variance ratio \[\frac{\text{weighted squares}}{\text{new model}} \div \frac{\text{weighted squares}}{\text{old model}} \] and the degrees of freedom v1 and v2 for old and new model respectively (Fisher table) ..95
Table 4.1 Transport numbers for calcium and sulphide ions in CaNd2S4+10mol%Nd2S3, Kalinina et al. 1995..106
Table 4.2 Actual and theoretical densities for CaNd2S4 series ...110
Table 4.3 Oxidation onset and peak temperatures for CaNd2S4 series and lattice parameter ...111
Table 4.4 TPR onset temperatures for the Calcium Neodymium Sulphide series ...118
Table 4.5 Statistical parameters evaluating the goodness of fit for gold coated CaNd2S4 series alternative models ..122
Table 4.6 Activation energies for CaNd2S4 series using gold electrodes ...125
Table 4.7 Equivalent circuits and bulk conductivities calculated at 500°C for CaNd2S4 series with gold electrodes125
Table 4.8 Circuit parameters for Zr2O+6mo%Y2O3, Bauerle 1969 at 240°C ...126
Table 4.9 Time constant analysis for CaNd2S4 series at 250°C using gold electrodes, application of alternative models of R//CPE or R//C-R//CPE ...127
Table 4.10 Activation energy for CaNd2S4 series using graphite or gold electrodes in argon, using alternative equivalent circuit ...136
Table 4.11 Time constant and bulk conductivity derived from R//C-R//CPE, Bauerle and Jamnik equivalent circuits ..138
Table 4.12 Time constant analysis for CaNd2S4 series with gold and graphite electrode with R//C-R//CPE equivalent circuit at 250°C ...140
Table 4.13 Relationship between equivalent circuit and bulk conductivity calculated at 500°C for the CaNd2S4 series with gold and graphite electrodes using Bauerle Equivalent circuit ..141
Table 4.14 Lattice parameter for CaNd2S4 series and SrNd2S4 series, White, 2004 ...155
Table 4.15 Theoretical and actual densities for SrNd2S4 series ...156
Table 4.16 Effect of doping on onset temperatures for SrNd2S4 and CaNd2S4 series ...157
Table 4.17 TPR onset temperature for the SrNd2S4 and CaNd2S4 series ..159
Table 4.18 Statistical parameters evaluating the goodness of fit for alternative models ...165
Table 4.19 Activation energy for SrNd2S4 series using Jamnik or R//C-R//CPE model ..168
Table 4.20 Activation energy of bulk conductivity for SrNd2S4 and CaNd2S4 series at temperatures greater than 350°C using Randles and Jamnik models ..169
Table 4.21 Bulk conductivities at 500°C, energies for CaNd2S4 and SrNd2S4 series using Jamnik or Randles equivalent circuit ..170
Table 5.1. Lattice parameter for CaNd2S4 series and CaSm2S4 series ..181
Table 5.2. Theoretical and actual densities for CaSm2S4 series ..181
Table 5.3 Onset temperatures for CaNd2S4 and CaSm2S4 and unit cell lattice parameter ..183
Table 5.4 Thermal activation energies and XRD-based densities for CaNd2S4 and CaSm2S4 series185
Table 5.5 TPR onset temperature for the SrNd2S4 and CaNd2S4 series ..186
Table 5.6 Statistical parameters evaluating the goodness of fit for alternative models ...190
Table 5.7. Thermal and Bulk Conduction Activation energies and lattice parameter for CaSm2S4 and CaNd2S4 series ...196
Table 5.8. Bulk Conductivity for CaSm2S4 and CaNd2S4 series at 500°C in argon ..199
Table 5.9 Time constant analysis for CaSm2S4 and CaNd2S4 series with graphite electrode ...202
Table 5.10 Lattice parameter for SrSm2S4 series and CaSm2S4 series ...212
Table 5.11 Theoretical and actual densities for SrSm2S4 series212
Table 5.12 Onset temperatures for SrSm2S4 and CaSm2S4 and unit cell lattice parameter ...214
Table 5.12 Onset temperatures for SrSm$_2$S$_4$ and CaSm$_2$S$_4$ and unit cell lattice parameter

Table 5.13 TPR onset temperature for the SrNd$_2$S$_4$ and CaNd$_2$S$_4$ series

Table 5.14 Chi-square and Sum-of-Squares results for alternative models used to model SrSm$_2$S$_4$ at 400°C

Table 5.15 Thermal and Bulk Conduction Activation energies for CaSm$_2$S$_4$, CaNd$_2$S$_4$, CaSm$_2$S$_4$ and CaNd$_2$S$_4$ series

Table 5.16 Thermal and Bulk Conduction Activation energies and lattice parameter for CaSm$_2$S$_4$ and CaNd$_2$S$_4$ series

Table 5.17 Bulk Conductivity and activation energy for SrSm$_2$S$_4$ series and all analogue series at 500°C in argon

Table 6.18 Refined unit cell parameter and theoretical density for orthorhombic Ba$_{2}$In$_2$S$_5$ and Ba$_2$In$_2$$_{x}Zr_{1-x}S_5$

Table 6.19 Theoretical and actual densities for Ba$_2$In$_2$S$_5$ and Ba$_2$In$_2$$_{x}Zr_{1-x}S_5$

Table 6.20 Onset temperatures for Ba$_2$In$_2$S$_5$ and Ba$_2$In$_2$$_{x}Zr_{1-x}S_5$ and unit cell lattice parameter

Table 6.21 Statistical parameters evaluating the goodness of fit for alternative models for BaIn$_2$S$_5$ and Ba$_2$In$_2$$_{x}Zr_{1-x}S_5$

Table 6.22 Activation energy for BaIn$_2$S$_5$ and Ba$_2$In$_2$$_{x}Zr_{1-x}S_5$ using the Fricke and the Bauerle model

Table 6.23 Bulk Conductivity for BaIn$_2$S$_5$ and Ba$_2$In$_2$$_{x}Zr_{1-x}S_5$ measure at 500°C and extrapolated to 900°C in an argon atmosphere

Table 6.24 Time constant analysis for BaIn$_2$S$_5$ and Ba$_2$In$_2$$_{x}Zr_{1-x}S_5$ with graphite electrode

Table 6.25 Circuit parameters for Zr$_2$O+6mol%Y$_2$O$_3$ at 240°C, Bauerle 1969

Table 6.26 Refined Atomic Parameters for Ba$_2$In$_2$S$_5$, Ba$_2$In$_2$$_{x}Zr_{1-x}S_5$ and BaZr$_2$S$_7$

Table 6.27 Theoretical and actual densities for Ba$_2$In$_2$S$_5$, Ba$_2$In$_2$$_{x}Zr_{1-x}S_5$, and BaZr$_2S_7$

Table 6.28 Onset temperatures and Unit Cell Lattice Parameters for Ba$_2$In$_2$S$_5$, Ba$_2$In$_2$$_{x}Zr_{1-x}S_5$, and BaZr$_2S_7$

Table 6.29 Activation energy, bulk conductivity and time constant for BaZr$_2$S$_7$, BaIn$_2$S$_5$ and Ba$_2$In$_2$$_{x}Zr_{1-x}S_5$ at 500°C in argon

Table 6.30 Statistical parameters for alternative models
Chapter 1

1. Introduction

Solid electrolytes have two traditional uses, namely as chemical sensors and as electrolytes for fuel cells and batteries. The technology of fuel cells involves creating electrical potential (energy) from a chemical reaction. With the application of an electrical potential on the solid electrolyte, a transfer of ions can be induced. Solid oxide fuel cells (SOFC’s), similar to other fuel cells convert chemical energies to electrical energies utilising an appropriate anionic oxide ion conductor and can use cheap fuel such as air, CO₂ or CO. Anion conducting solid electrolytes have found use in high temperature (greater than 300°C) applications such as solid oxide fuel cells, sensor or membrane separators. The disadvantage of many oxide ion-conducting material is their high electrical resistance (this restricts use to high temperatures) which causes internal ohmic losses. While SOFC’s are still being researched and optimised, high temperature sensors employing oxide ion conducting electrolytes are now commercial products, which are, for example installed, in most automobile engines.

New uses of ionic conducting electrolytes include promotion of reactions using ‘pumped’ ions or production of ultra-pure gases such as oxygen, Dyer, et. al. 2000. Potentially, sulphide ionic conductors could lead to new methods of scrubbing exhaust gases containing sulphur compounds such as SOₓ or H₂S, i.e. an electrochemical reactor for sulphur removal could be created. It is also possible that, once there is a concentration gradient of sulphide ions across the electrolyte, this will induce the flow of ions across the electrolyte, thus causing a potential difference. The potential difference can then be correlated to the concentration or activity of sulphur or sulphide ions at the surface of the electrodes; therefore the creation of an in-situ sulphur sensor is possible.

Solid electrolytes which conduct O²⁻ such as Yttria Stabilized Zirconia (YSZ) have been studied extensively for SOFC’s applications because of its high thermal stability (1000°C); but it is this high temperature requirement for significant oxide ion conduction which limits the use and application of YSZ in SOFC’s. However YSZ has been investigated as a selective membrane material in pumping O²⁻ in order to facilitate the oxidation of propane and propene, Vernoux et. al., 2002. Other compounds such as zirconium phosphate, sodium aluminates and lithium phosphate are examples of intercalation compounds, which are
proton, sodium or lithium ion conductors, respectively, have also been studied; De and De, 2005, Simkim, 1991, and Zhang et. at., 2005, respectively.

Sulphur rich fuels limit the use of oxide ion conducting electrolytes in fuel cells, sensors or ion ‘pumping’ membrane due to the likely sulphidation of the oxide, Matsuzaki and Yasuda, et. al., 2000. From an engineering point of view, in situ solid state sensors that directly measure sulphur potential are the preferred device. A galvanic sensor is advantageous since the output is an electrical potential, which can be used for accurate control. Such galvanic cells for measuring sulphur potentials could utilise a pure sulphide ion conductor as the electrolyte and mixed ionic-electronic conductor sulphide as the electrode.

Low temperature H2S sensors with very promising characteristics such as a quick and reproducible response were achieved using three electrodes (Pt as working electrode, Teflon-bonded Pt black as counter and reference electrode) and a polymer based electrolyte, (acid treated Nafion©), Yourong et. al. 2001.

Measuring sulphur concentration at elevated temperatures (600°C), was address initially by Worrel et. al., 1967 using calcium sulphide electrolyte, later modified by Nagata and Goto, 1974, with the characterisation of doped calcium based sulphide system (CaS+1wt%Y2S3 calcium ion conductor). Their proposed electrolyte could be used to measure sulphur pressures less than 10^-4 atm at temperatures greater than 700°C: lower temperatures and higher partial pressure caused positive hole conduction.

Jacob (1982) measured sulphur partial pressures in the presence of low concentrations of oxygen using an electrolyte composed of a mixture of calcia stabilised zirconia and calcium sulphide. This sensor was not useful at high concentrations of oxygen due to oxidation of calcium sulphide: at very low sulphur concentration (10^-4 Pa), electronic conduction interfered. Therefore acid treated Nafion and calcium sulphide electrolytes have been made to measure in situ sulphur concentrations at different temperatures. However there have been no attempts at measuring sulphur potentials employing a sulphide ion conducting membrane.
Similarly the successful removal of sulphur from gaseous or liquid streams using a sulphide ion conductor has not been reported. The established method of sulphur removal uses a complicated process of aqueous scrubbing with regenerative scrubbing liquids yielding a concentrated H_2S liquid stream, which can then be converted to elemental sulphur using the Claus process. An electrochemical membrane method, proposed by Lim and Winnick, 1984, operated at high temperatures (700-1000°C). In this electrochemical concentration cell there is no is overall reaction but rather a transfer of mass from a high concentration region to a low concentration. Using a molten mixture of Na_2S and Li_2S encased in inert magnesium oxide as the electrolyte a removal efficiency of H_2S of 98.8% was achieved. Even though this electrochemical concentration cell is simpler than the traditional scrubbing, regenerating and concentrating process, an even simpler process, in terms of a reduction of environmental, health and safety impact, could be achieved if a solid sulphide ion conducting membrane was available. This highlights the potential application of a solid sulphide ion conducting membrane.

The research to date supports the theory that ionic conduction is based on defects in the crystal lattice; therefore cationic conduction is easier than anionic conduction based only on the difference in size of the ions. For example Sodium, Lithium and Silver ions are more likely to occur because of their small size, in so much that materials, which conduct these cations, can do so at room temperature. However anionic conduction normally takes place at elevated temperatures, for example stabilised zirconia requires a minimum temperature of 600°C before it can be used as an oxide-ion conductor. Therefore to syntheses sulphide ion ceramic appears to be an insurmountable task since the sulphide is larger than the oxide ion. However recently, oxide ion conductor analogues (sulphides) have been synthesised, e.g. calcium–doped zirconium sulphide, where it is believed that most of the conduction occurs via the sulphide ion, and to a lesser extent the calcium ions, Kalinina, et. al., 1995.
1.1. Scope of Thesis

The first objective of this research is to synthesis sulphide compounds identified by XRD and establish their thermal stability in different atmospheres (reducing or oxidising). Temperature programmed techniques such as temperature programmed reduction (TPR) and temperature programmed oxidation (TPO) will be employed for this purpose. This evaluation is necessary to establish the temperature stability range of the sulphide material for further studies such as impedance spectroscopy and four point-probe resistivity measurements.

The second objective of this research is to establish that electronic conductivity of the prepared sulphides is very low (avoid short-circuiting of the electrolyte). A four-point probe resistivity meter or a two-point resistivity meter will be initially used to measure the total ohmic resistance. The four point resistance meter was chosen because it gives both the surface resistivity as well as the bulk ohmic resistance. Both XRD and TPO/R will be carried out with synthesised materials. Four-point DC resistance and two-point DC resistance measurements, both requires a geometric factor (area and length), therefore pellets will be made.

The third objective is the confirmation of the mode of conduction, and the subsequent use as a sensor material. This task will employ impedance spectroscopy, which is a non-destructive technique that can accurately quantify both ionic and electronic conductivity. Impedance spectroscopy not only quantifies the total ionic conductivity (cation and anionic), it gives other information such as grain boundary conduction and intra-grain conduction, relaxation frequency and time constants of the materials. Recent research has shown that the phase angle (or phase shift) associated with ionic conduction is related to the ionic species conducted, therefore it possible that impedance can qualitatively identify a conducting species. Galvanic cells with a concentration gradient produced by varying the H₂S-H₂ gas composition will be constructed to confirm the ion conducting species, (i.e. to differentiate between cationic from anionic conduction.

This research is a joint venture between the departments of Chemical Engineering and Chemistry, to synthesis and characterise these prospective sulphide ion conducting species. Figure 1.1 shows the workflow diagram for the combined effort research effort.
1.2 References

1. De, S., and De S., K., "Humidity Effect of electrical properties of layered α-zirconium phosphate", *Solid State Communications*, 134(8), 553, 2005

Chapter 2

2. Literature Review

2.1 Introduction

This chapter is divided into three main sections. Initially the relevant theories are examined to facilitate a better understanding of solid-state reactions and ionic conduction. Secondly, justifications of materials that will be characterised for sulphide ion conduction (electrolytes) along with suitability electrode materials are considered. Finally the theories and experimental methods needed to identify ionic conduction and differentiating anion from cation and electronic conduction are discussed.

The first section of this chapter looks at the basic crystal structures and their defects, which are typical for ionic conducting materials (mainly oxides). The literature is proliferated with information on oxide ion conducting electrolytes (but not sulphides) hence will act as a reference point in understanding potential sulphide electrochemical properties.

The second section of this chapter looks at the main applications of ionic conducting solids such as fuel cells (creation of electrical energy from a chemical source) and direct measurement of gaseous concentration (partial pressures) using sensors. Electrochemical reactors used to generate on-site ultra pure gasses as well as electro-catalyst pumps ions, which in turn catalyses the desired reactions are examples of novel application of ionic conducting membranes.

The last section of this chapter addressed the theories, applications and limitations of selected thermal and electrochemical characterisation techniques. Assessment of thermal stability in oxidizing and reducing atmospheres will be carried out using temperature programmed (TP) techniques. Quantifying and identifying ionic conductivity will be assessed using impedance spectroscopy technique and electrochemical reactors respectively.

2.2. Crystal Structures

Introduction

A basic knowledge of crystal structures is necessary since ionic conduction is a function of crystal structure and their defects, which can be thermally or chemically created in these structures. Crystals generally consist of cation and anions arranged in such a manner that charge neutrality is maintained. Three major forces affect the crystal geometry, Greenwood, 1968:
• Electrostatic forces of oppositely charged adjacent ions, to preserve macroscopic electroneutrality, which is self-explanatory, and calls for little comment.

• Steric factor, packing of different size ions to maximise binding energy.

• Polarisation forces, deviation from ideal crystal structures that arises from the assumption that ions are solid undistorted spheres.

2.2.1 Steric factors

Cations are typically smaller than anions; therefore the number of anions that can possibly be packed around the smaller cation usually determines the crystal structure. This can be expressed in terms of radius ratio, ρ, where

$$\rho = \frac{r_{\text{cation}}}{r_{\text{anion}}}$$

For very small cations only two anions can be placed around it, if anion-cation contact is to be retained (ρ is less than 0.155). Table 2.1 gives a guideline between coordination numbers and ρ.

<table>
<thead>
<tr>
<th>$\rho = r_{\text{cation}}/r_{\text{anion}}$</th>
<th>Symmetry of Anions around Cations</th>
<th>Coordination Number of Cations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000-0.732</td>
<td>Corners of a cube</td>
<td>8</td>
</tr>
<tr>
<td>0.732-0.414</td>
<td>Corners of a regular octahedron / square</td>
<td>6 or 4</td>
</tr>
<tr>
<td>0.414-0.225</td>
<td>Corners of a regular tetrahedron</td>
<td>4</td>
</tr>
<tr>
<td>0.225-0.155</td>
<td>Corners of a regular triangle</td>
<td>3</td>
</tr>
<tr>
<td>0.155-0.000</td>
<td>Linear</td>
<td>2</td>
</tr>
</tbody>
</table>

2.2.2 Polarisation and Crystal Structure

Polarisation can be viewed as a distortion of electronic charge density around an ion and it can arise from a variety of interrelated causes. Extreme Polarisation results in the effective removal of an electron from an anion towards the cation and the formation of a covalent bond; polarisability is greatest for large ions. Therefore polarisation can thus be considered as the link between purely ionic interaction on the one hand and purely covalent bonding on the other, Greenwood, 1968. One effect of polarisation is that the ionic structure always decreases in interatomic distance and increases in lattice energy as the polarisability of the ion is increased.

Crystal structures are determined mainly by the value of the cation:anion ratio. However, if the anion is significantly more polarising than the cation, the crystal structure may be altered to balance this polarisation difference. Consider the schematic below, which shows a planar
view of a 4:2 coordination lattice which changes to a cadmium iodide lattice (layered lattice of 6:3 coordination) then to a molecular lattice, as the polarising power of the anion is increased, Greenwood, 1968.

Figure 2-1 Effect of Polarisation on Crystal Lattice

Table 2.2 shows the polarisability of selected ions; of particular interest is S^{2-} versus O^{2-}, where the polarisability has more than doubled. This means that the structure of the metal sulphide analogue of the metal oxide is likely to have smaller interatomic distances, making ionic conductivity of sulphide ions even more difficult than for oxide ion conduction. If conduction still occurs, it is likely that it will be significantly smaller, based only on the high polarisability of S^{2-}. Iodide which has polarisability similar to S^{2-}, shows ionic conductivity in PbI for example, therefore a high polarisability does not eliminate ionic conduction. Lingras and Simkovich, 1983, have reported iodide conduction in PbI. Later, Kuiry et al., 1999 and Unagami, 1999 showed that at temperatures between 190 and 245°C the conduction is via iodide ions through iodide ion vacant points while at higher temperatures conduction is by the lead ions.

Table 2.2 Polarisability of Selected Ions in Various Atmospheres (Greenwood, 1968)

<table>
<thead>
<tr>
<th>Electron con-Formation</th>
<th>Polarisability (in arbitrary units, F=1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helium</td>
<td>Li$^+$ 0.08 B$^{3+}$ 0.01</td>
</tr>
<tr>
<td>Neon</td>
<td>O^{2-} 3.1 F^{1-} 1.0 Al^{3+} 0.07</td>
</tr>
<tr>
<td>Argon</td>
<td>S^{2-} 7.3 Cl^{-} 3.1 Ca^{2+} 0.6</td>
</tr>
<tr>
<td>Kryton</td>
<td>Se^{2-} 7.5 Br^{-} 4.2 Sr^{2+} 1.4</td>
</tr>
<tr>
<td>Xenon</td>
<td>Te^{2-} 9.6 I^{-} 6.3 Ba^{2+} 2.1</td>
</tr>
</tbody>
</table>

The energy required to remove an electron from an atom is called the ionisation potential, I_M. The production of a cation, expressed in terms of ionisation potentials is, $^0M \rightarrow M^+ + e^-; \text{ with } \Delta H = I_M$. Similarly, to produce an anion is expressed by
\[X + e^- \rightarrow X^-; \text{ where } \Delta H = -E_x. \] This parameter may be useful in understanding ionic conduction, in cases where the ions are created thermally. With a high ionisation potential then it is likely that oxidation would occur at very high temperatures. From Table 2.3 it can be seen that the ionisation potential of S\(^2^-\) is almost half that of O\(^2-\), suggesting that if this parameter affects ionic conduction, it is more likely to have sulphide ion conduction rather than oxide ion conduction for thermally created ions.

Table 2.3 Ionisation Potential of Cation and Anion of interest Ladd and Lee, 1963 & 1965

<table>
<thead>
<tr>
<th>Cation Formation Exkcal/g-Atom</th>
<th>Anion formation Exkcal/g-atom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na(^+) 118.5</td>
<td>Mg(^{2+}) 523.0</td>
</tr>
<tr>
<td>Cu(^+) 178.15</td>
<td>Ca(^{2+}) 424.4</td>
</tr>
<tr>
<td>Ag(^+) 212.7</td>
<td>Sr(^{2+}) 385.6</td>
</tr>
<tr>
<td></td>
<td>Ba(^{2+}) 250.8</td>
</tr>
<tr>
<td></td>
<td>Al(^{3+}) 1228.1</td>
</tr>
<tr>
<td></td>
<td>Y(^{3+}) 902.3</td>
</tr>
<tr>
<td></td>
<td>La(^{3+}) 835.2</td>
</tr>
<tr>
<td></td>
<td>In(^{3+}) 1214.9</td>
</tr>
</tbody>
</table>

2.3. Ionic Conduction in Solids

The primary way in which solid materials conduct ions is via crystal defects. Crystal defects are generally classified into two groups - intrinsic, where charge neutrality is maintained throughout the crystal, and extrinsic defects where charge neutrality is not maintained. The intrinsic defects, both Frenkel defects and Schottky defects, do not affect the chemical stoichiometry of a compound nor the long-range crystal lattice electroneutrallity, Wold and Dwight, 1993. Wagner and Schottky, 1930, introduced the concept of extrinsic lattice defects and their interactions. An example is Iron oxide, FeO, where the actual stoichiometry varies from FeO\(_{0.94}\), to FeO\(_{0.86}\) by leaving some Fe\(^{2+}\) sites vacant and raising the charge on twice this number of remaining cations from Fe\(^{2+}\) to Fe\(^{3+}\). A second type of composition defect or change may arise by substitution of one element by another. The maintenance of a particular structure is often dependent more on the relative size of an ion (in Å) than on its charge. For example Na\(^+\) (0.95Å) can substitute for Ca\(^{2+}\) (0.99Å); Li\(^+\) (0.60Å) can substitute for Mg\(^{2+}\) (0.65Å) but not for Na\(^+\) (0.95Å). Where there is a change in ionic charge, there must be a corresponding compensation elsewhere in the crystal. For example, (Fe\(^{3+}\) + Na\(^+\)) can replace (Mg\(^{2+}\) + Ca\(^{2+}\)).
2.3.1 *Intrinsic Defects*

A Frenkel defect is a point defect in a crystal, see Figure 2-2, where an ion occupies an interstitial site leaving a vacancy, hence it consists of both the vacancy created and the interstitial site. Vacancies can be seen as charge carriers in analogy to holes in semiconductors where the missing electron - a hole - is carrying the opposite charge of the electron. This type of defect normally occurs for large ions, e.g. Silver Iodide, AgI,

![Figure 2-2. Frenkel Defect in Crystal, Negative and Positive Frenkel Defect in Crystal](image)

A Schottky defect is a pair of nearby cation and anion vacancies, therefore it consists of at least two vacancies and electro-neutrality is maintained, Figure 2.3. This kind of defect is found in highly ordered crystals such as Sodium Chloride.

![Figure 2-3 Schottky Defect](image)

2.3.2 *Extrinsic Defects*

An extrinsic defect results in changes both in the stoichiometry and the chemical formula of the compound. Extrinsic defects can be created by adding dopants or impurities to the system, reducing or oxidizing the metal cation. For example, adding Fe$^{3+}$ to a Fe$^{2+}$ crystal lattice will create Fe$^{2+}$ vacancies to maintain electroneutrality, Figure 2.4.

![Figure 2-4 Extrinsic Defect in Iron Oxide System](image)
2.4 Solid State Reactions

Most of the compounds investigated were synthesised in the Chemistry Department using solid-state reactions. Therefore it is necessary to consider the factors that affect this process. The reactivity between solids is complicated and the conditions are poorly defined so repeatability is challenging. To-date solid-state reactions are still considered to be empirical methods, which are developed specifically for each reaction. Solid-solid reaction processes are thermodynamic controlled, thus once a high enough temperature is reached, the reaction should occur.

Reactivity increases with decreasing grain size because smaller particles have a higher contact area and the product layers formed are thinner. Therefore surface reactions become more important with respect to the slower diffusion process. Wold, and Dwight, 1993, found that reaction rates increase with mechanical pressure, which was attributed to the increase in contact area. Increased reactivity is also seen near a transition point of one of the reactants called the Hedvall effect, Hedvall, 1952. This effect is generally related to a change in surface mobility.

The atmosphere under which the reaction takes place may affect the rate of reaction as noted by West, 1984. For example Co₂TiO₂ and CoCr₂O₄ synthesised from CoO, TiO₂ or Cr₂O₃ have a rate constant four times larger in air than in pure nitrogen. It is theorised that the air could transport Co²⁺ ions and electrons while nitrogen could not. The sulphide electrolytes were synthesised primarily under an argon (inert) atmosphere using the metal and sulphur as the starting materials. This was to ensure that a single stoichiometry was achieved. The use of an inert atmosphere for the solid state reactions lead to long reaction times, of the order of 30hrs.
2.5 Applications of Metal Sulphides and Ionic Conducting Solids

2.5.1 Introduction

Metal sulphides are used extensively in the elimination of sulphur from petroleum feedstock before refining, in the Hydrodesulphurization (HDS) reaction. Catalysts such as MoS₂ and WS₂ are catalytically active for HDS reactions Gates, 1992. This reaction involves the removal of organic sulphur compounds from petroleum by reaction with hydrogen to form H₂S, (HDS process), making the product suitable for catalytic reformers which employ sulphur sensitive catalysts such as Re-Pt/Al₂O₃, Browne et. al., 1991. Even though metal sulphides are significantly less active than their pure metal equivalent, their advantage lies in the fact that they cannot be poisoned by sulphur containing feed stocks, Weisser and Landa, 1973. Supported metal sulphides have also found use in hydrogenation reactions where the residual sulphur concentration is very high. This represents the most significant use of metal sulphides as catalysts.

Metal sulphides have also been applied as semi-conductors and refractory materials because of their thermal stability, or thermoelectric devices. Examples are highlighted below:

- Cadmium sulphides are used in cathode ray tubes, Khiew, et. al., 2005.
- Doped Strontium sulphide is used in the conversion of infrared light to visible light, Kravets, 2001.
- Many sulphides are being considered for use as battery materials because they form very stable sulphides in multiple oxidation states, examples include Lithium, Cobalt, Iron and Nickel, Ritchie et. al., 2004.

2.5.2 Fuel Cells

The principle of fuel cells involves creating electrical potential (energy) from a chemical reaction. Many high temperature SOFC use zirconia (ZrO₂)₅ stabilized with the addition of Yttria (Y₂O₃) as the electrolyte, Larminie and Dicks, 1992. The anode of the SOFC is typically a mixture of zirconia and Nickel because it has high electronic conductivity and has good thermally stability in both oxidizing and reducing atmospheres. The cathode can be made from either electronically conducting oxides or mixed ionic-electronic conductors.

Zirconia electrolytes are very stable in both oxidizing and reducing atmospheres, both of which are present in SOFC. Their ability to conduct oxygen ions is attributed to the defect fluorite crystal structure of the material. When Zr⁴⁺ is doped with Y³⁺, a number of oxide-ion sites become vacant because four O²⁻ ions are replaced by three O²⁻. The oxide ion transport
occurs between vacancies. Zirconia-based electrolytes are very suitable for SOFC because they are known to be pure anionic conductors. Materials such as CeO$_2$ and Bi$_2$O$_3$ show even higher oxide ion conductivities compared with Zirconia stabilized with Yttria, YSZ, but are less stable at low oxygen partial pressures, Takahashi and Iwahara, 1978.

SOFC show an enhanced performance as the pressure is increased. This improvement is due mainly to the increased Nernst Potential, where the voltage change, ΔV, for an increase in pressure from P_1 to P_2 follows, approximately, the equation

$$\Delta V = 0.027 \ln \left(\frac{P_1}{P_2} \right)$$

(1)

The predominant effect of an increase in temperature is an increase in conductivities of the materials, and this leads to a reduction of ohmic losses within the cell.

Hydrogen Sulphide Concentration Cell

Figure 2-5 Schematics of H$_2$S Concentration Cell

Thomas and Winnick, 1993, 1984 proposed a hydrogen sulphide electrochemical cell of composition, H$_2$S/Pt/NaS/Li$_2$S/Pt,Ar Figure 2.5. In principle, the gas with a high concentration of hydrogen sulphide is feed to the cathode, and elemental sulphur is emitted from the anodes, according to equations 2 and 3 below.

$$S^{2-} \rightarrow \frac{1}{2} S_2 + 2e^-$$

(2)

The cathodic reaction is

$$\frac{1}{2} S_2 + 2e^- \rightarrow H_2 + O^{2-}$$

(4)
2.5.3 Solid Electrolyte Sensors

Great efforts have been made to develop sensors for the detection of environmentally unfriendly gases such as SO₂, NOₓ, and CO₂. However, the most common sensor is the O₂ sensor.

O₂ sensors: Oxygen sensors using yttria stabilised zirconia (YSZ) are now a common feature in many industrial processes where knowing the oxygen partial pressure is most important, examples include automobile engine (700°C) or glass making furnaces (operating temperature 1200-1600°C), Rodrigues et. al. 2000. High temperature oxygen sensors may take the form, Pt, air/YSZ/SiO₂, Pt, where the resistance of cell/sensor is a function of temperature and oxygen partial pressure. Sun et. al. 1998 established a response time of such a O₂ sensor to be less than 2.5s at temperatures greater than 1000°C. Combustion reactions typically occur at 500-700°C therefore YSZ oxygen sensors need to be conducting oxide ions at much lower temperature therefore thin film YSZ sensors are required. Magnetron sputtering of YSZ has been used to create the oxygen sensor cell SiO₂/Ni-NiO/Pt/YSZ/Pt which was useful in the lower temperature range of 400-500°C, Matsui et. al. , 2005. Other materials such as cerium oxide, Jasinski et. al., 2003, TiO₂, Ruiz et. al., 2005 and Ga₂O₃, Ogita et. al. 2001 are feasible electrolytes for oxygen sensors.

SO₂ sensors: Knowing the concentration of sulphur dioxide is pertinent since this is a carcinogenic gas without a characteristic smell, and is a bi-product of some high temperature petroleum based reactions. Therefore several efforts to develop a high temperature in-situ sensor resulted. One example is the SO₂ sensor represented as; Air, Pt (reference electrode) /MSZ (O²⁻ conductor) / Li₂SO₄ auxiliary phase (Li⁺ conductor) / Pt, SO₂ in air / (sensing electrode), Yamazoe and Miura, 1994,1996. This SO₂ sensor consists of a magnesium stabilised zirconia tube, MSZ, with a Li₂SO₄ auxiliary phase. The MSZ is an oxide ion conductor while the Li₂SO₄ is a Li⁺ ion conductor. This sensor operates on the reaction of SO₂ being oxidized in air to form SO₃ over the sensing electrode (Pt mesh). Equilibrium between SO₂ and SO₃ is assumed; hence the concentration of the gases can be calculated from the equilibrium constant for the reaction:

\[\text{SO}_2 + \frac{1}{2} \text{O}_2 \rightleftharpoons \text{SO}_3 \]

(5)

The sensing-electrode and the Li⁺ conductor forms a SO₃ sensitive half cell as expressed by the following reaction:

\[2\text{Li}^{2+} + \text{SO}_3 + \frac{1}{2} \text{O}_2 + 2e^- \rightleftharpoons \text{Li}_2\text{SO}_4, \]

(6)
The reference electrode reaction is
\[
\frac{1}{2} O_2 + 2e^- \rightarrow O^{2-}
\] (7)

The cell was stable and unaffected by the presence of other gases such as CO₂, NO or NO₂, Yan et. al, 1996. When the \(P_{SO_{2\text{,air}}} \) is much less than the \(P_O \), the EMF of the cell is

\[
E = E_o + \frac{RT}{2F} \ln P_{SO_{2\text{,air}}},
\] (8)

Where
- \(E \) - electromotive force at temperature, \(T \)
- \(R \) - Universal Gas constant
- \(F \) - Faraday constant
- \(T \) - Temperature (K)
- \(P \) - Partial pressure.

Therefore this SO₂ sensor consists of two gas/half cells (O₂ and SO₃). The EMF of the cell was sensitive to SO₃ and O₂, but to a lesser degree than that reported for metal sulphate based SO₂ sensors, Yan et al., 1996

The semiconductor, WO₃, was tested as a SO₂ sensor for a concentration range of 0-800ppm and a temperature range of 200-800°C. Shimizu et. al., 2001 observed that sensitivity increased with temperature until 500°C, where the sensitivity began to decline. WO₃ was doped with 1% Ag and this sensor showed a decrease in resistance as the SO₂ concentration increased. Both electrolytes were sensitive to the presence of NO and NO₂.

Another material, Na₂SO₄-Li₂SO₄-Y₂(SO₄)₃-SiO₂ was evaluated as a SO₂ sensor with a NiSO₄-NiO solid reference electrode. SO₂ concentration was varied from 200ppm to 1vol%, at a temperature of 700°C, and a linear relationship between the EMF and the SO₂ concentration was observed, Imanaka et. al., 1987. In summary the SO₂ sensor utilises oxygen ion conductors as the conducting electrolyte, which is measuring the amount of oxygen needed to make sulphur trioxide from the sulphur dioxide (see equations 5 and 7).

NO₂ sensor: The detection of NO₂ is important for environmental reasons since it is the dominant component of NOₓ, even though the concentration may be in the ppb range. Miura et. al., 1993 proposed a NOₓ sensor, that is sensitive to NO as well as NO₂. The electrolyte tested was Na₃Zr₂Si₃PO₁₂ known as NASCION with a NaN₂O₁₂ auxiliary electrode. The Pt counter/reference electrode was kept in static air.
Sensing electrode (cathodic reaction): \(\text{Na}^+ + \text{NO} + \frac{1}{2}\text{O}_2 = \text{NaNO}_2 \)

(9)

Counter electrode (anodic reaction): \(\text{Na}^+ + \frac{1}{4}\text{O}_2 = \frac{1}{2}\text{Na}_2\text{O} \)

(10)

Overall cell reaction: \(\frac{1}{2}\text{Na}_2\text{O} + \text{NO} + \frac{1}{4}\text{O}_2 = \text{NaNO}_2 \)

(11)

Miura et al., 1993 noted that the response to NO and \(\text{NO}_2 \) at 150\(^\circ\)C was in the order of 8s, and the EMF followed the Nernst equation with a slope of 1, when the gas concentration was above 10ppm. The limitation of the sensor lies in the stability of the auxiliary electrode; in that trace amount of \(\text{NaNO}_3 \) was formed when \(\text{NaNO}_2 \) was heated to above 270\(^\circ\)C in air for 30mins, thus making the sensor unstable at 240\(^\circ\)C and above. This type of NO\(_x\) detector utilises a \(\text{Na}^+ \) ion conductor, NASION. The EMF resulting from \(\text{Na}^+ \) ion conduction is proportional to NO partial pressure (see equations 9-11). This makes this sensor similar to \(\text{SO}_2 \) the type sensors.

CO\(_2\) Sensor: Imanaka et al. 2000 reported that the most effective CO\(_2\) sensor consisted of a \(M^{3+} \) oxide ion conductor and platinum electrodes. The electrochemical cell was tested in the temperature range of 300-600\(^\circ\)C with 1-5%CO\(_2\) concentration. The sensor can be described as identical to that of the \(\text{SO}_2 \) sensor in equations 5-7 above, the only change is \(\text{Li}_2\text{CO}_3 \) was used rather then \(\text{Li}_2\text{SO}_4 \). Imanaka et al., 2000, found that the sensor gave reproducible EMF signals to \(\text{CO}_2 \) concentration. They also observed that the sensor was independent of changes in \(\text{O}_2 \), NO, \(\text{NO}_2 \) and H\(_2\)O. The sensor was stable up to a period of 150 days, when the trivalent cation, \(M^{3+} \) was Sc\(^{3+}\) but not Al\(^{3+}\).

2.5.4 Electrochemical Reactors

Recent research on the applications of solid ion conducting electrolytes is concerned with the separation of gases using an electrochemical reactor. The demand for high purity gases such as oxygen has lead to the development of this technology, employing ion-transporting membranes (ITM) because it has the potential to provide pure gases on site, Dyer, 2000. ITM use dense ceramic membranes such as an oxide ion conducting materials as shown in Figure 2.26. Another application of ITM is the conversion of methane to syngas where a dense oxygen ion or mixed ion conducting membrane is used to supply pure oxygen to convert methane to carbon monoxide and hydrogen. Mixed ion conductors imply that no external electrodes are needed, however an externally applied voltage is still required. Mixed conductors, Sr-Fe-Co-O system were reported to have CO selectivity of 98% up to 1000h and methane conversion efficiency of 99% Balachandran et. al., 1995, 1997, 1998. The use of
ITM in the production of oxygen is the most developed of the technologies and is assumed to be very close to a commercial stage, Dyer, 2000.

![Diagram of solid state oxygen generating device]

Figure 2-6 Schematic Operation of a Solid State Oxygen Generating Device

Another application of solid ion conducting electrolytes is the electrochemical activation of electrode-electrolyte-gas interface reactions. The rate of these surface reactions which are catalysed by the electrode can increase by several orders of magnitude, Bebelis et al., 2000. This effect is called nonfaradaic electrochemical promotion (NEMCA). NEMCA is also present in mixed conductors such as TiO$_2$, or CeO$_2$, Petrolekas et al., 1998. Pt/Ti$_2$O was found to have electrochemical promotional behaviour at temperatures close to 500°C for ethylene oxidation even though Kofstad, 1972 determined TiO$_2$ to be only 3-15% ionic (O$^{2-}$) conductive with the remainder being electronic, Pliangos, 1995. There is an observed reduction in NEMCA effect for mixed ionic-electronic conductors when compared to pure ionic conductors.

Most of the work done recently involves the oxidation of light hydrocarbons on precious metals such as platinum, gold or silver that is deposited on an ion-conducting electrolyte. YSZ was investigated in the electrochemical oxidation of propane and propene oxidation, Vernoux et al., 1998. The reaction rates increased over 100 fold when current or voltage was applied compared to open circuit conditions, Vernoux et al., 1998. CaF$_2$, a fluoride ion conductor, was used to electrochemically catalyse the oxidation of CO, Alcock, 1992.

2.6 Materials: Sulphide Electrolyte and Electrode

The electrical properties of starting sulphides, single cation compounds such as CaS, SrS, PbS, are discussed, since these inherent properties may influence the complex sulphides, defined as compounds with more than one cation, such as CaNd$_2$S$_4$. Included also, is a discussion of complex sulphides as well as the oxide analogues.
This section also addresses the use of various electrode materials in terms of their suitability with sulphide electrolyte in an H₂S environment.

2.6.1 Electrical properties of the simple sulphides

Alkaline earth metal sulphides: The cations of the group II A elements of the periodic table (alkaline earth metals) consists of the elements Beryllium, Magnesium, Calcium, Strontium, Barium and Radium; however this research used compounds consisting of Calcium through to Barium. The sulphides of this group tend to adopt the NaCl-type 6:6 structure. The sulphides of these alkaline earth metals (valency 2+) doped with ternary sulphides (valency 3+) form the largest number of sulphides investigated. Doping group II metal sulphides creates ternary systems with extrinsic defects. Flauhaut et al., 1965. The resultant structure was a Th₃P₄ type structure exhibiting non-stoichiometric phases.

The atomic weight of the lanthanides increase across the series, where as the atomic radius decreases. This effect is called the ‘lanthanide contraction’, which occurs because the nuclear charge is balanced by an increase in electronic charge. Thus each unit increase in nuclear charge produces a net increase in attraction for the whole extra-nuclear electron cloud and each atom shrinks slightly relative to its predecessor. Therefore to expand the crystal structure to increase the cell volume, the larger lanthanides were selected, e.g. Neodymium sulphide or Samarium sulphide.

2.6.2 MLₙ₂S₄₋ₓLn₂S₃ (where x = 10-30 mol % Ln₂S₃) systems

Recently a group of complex sulphide materials have been investigated as potential sulphide-ion conductors, the materials being based on a high symmetry cubic sulphide lattice structure, which has been found to develop intrinsic sulphide vacancies on heating. Kalinina, et. al., 1995, 2000. A range of ion conducting chalcogenides have been prepared in the system MLₙ₂S₄₋ₓLn₂S₃, where M = group II metals (Ca, Ba) and Ln = a range of lanthanides (Pr, Nd, Sm). The mode of conduction is believed to be mainly by sulphide ions with minor cationic (M) conduction present.
The disorder generated within the MLn_2S_4 systems, caused by the addition of the Ln_2S_3 dopant gives rise to both anion and cation disorder and associated vacancies in both the anion and cation sub-lattices. It was reported by Kalinina et. al., 1995 that data collected at 500°C suggests that the systems have an intrinsic level of anion disorder created by the introduction of the Ln_2S_3 dopant, and also that the materials conduct ions via Schottky defects generated vacancies in the host lattice. Kalinina et. al., 1995, found that there was no indication of a major organised structural transition within the system leading to the observed ionic conductivity. It was suggested that at elevated temperature, the already disordered system allows the motion of sulphide ions via Schottky defects in the lattice and the ion transport ratio for calcium and sulphide ions was determined by galvanic cell measurements Kalinina et. al., 1995.

Kalinina and co-workers reported compounds in the system CaNd_2S_4-xNd_2S_3 showing sulphide ion conducting behaviour, using galvanic cells of varying concentration. The highest level of conductivity reported in the literature for the barium or calcium MLn_2S_4-xLn_2S_3 systems studied was $\sigma_{500^\circ C} = 1.51 \times 10^{-6} \, \text{S cm}^{-1}$. Kalinina et. al., 1995.

Investigation of the structure and properties of the MLn_2S_4 type sulphide materials have to date been very limited and is certainly worthy of further work. Research into the characterisation of solid solution based materials in the doped MLn_2S_4-xLn_2S_3 systems and in particular the strontium analogues is absent from the literature.

2.6.3 Ba_2In_2S_5 and Ba_2In_2-xZr_xS_5

Zhen and Goodenough, 1990 showed that the compound Ba_2In_2O_5 displays fast oxide-ion conduction above 925°C. Since then barium oxide materials have been investigated as possible fast oxide-ion conductors for use in oxygen sensors, solid oxide fuel cells and other electrochemical devices, Ryu and Haile, 1999. These types of oxide compounds have been synthesised with the aim of developing fast oxygen ion conducting materials, superior to commercially available yttria-stabilised zirconia (YSZ).

There has been considerable research on the Ba_2In_2O_5 structure, properties, reaction with water at 300°C, Goodenough et. al. 1992, as well as applications as a proton and oxide-ion conductor Wang and Virkar, 2005. The work by Speakman et. al., 2002, describes the results of in-situ neutron and X-ray diffraction experiments, used to determine the crystal structure of Ba_2In_2O_5 as a function of temperature. The ambient temperature structure of Ba_2In_2O_5 was found to adopt a orthorhombic symmetry, with lattice parameters $a = 6.086\text{Å}$, $b = 16.790\text{Å}$.
and $c = 5.969\AA$. This structure was stable up to a temperature of 900°C, at which point oxygen vacancies began to disorder. The oxygen vacancy order–disorder transition is associated with a structural transition to a fast oxide-ion conducting state. At 1040°C, Ba$_2$In$_2$O$_5$ becomes a cubic oxygen-deficient perovskite, and lattice parameter 4.274Å. Attempts to stabilise the high temperature cubic defect perovskite phase of Ba$_2$In$_2$O$_5$ at lower temperatures by doping the compound on the indium site with other trivalent cations, such as gallium, to give compounds of the form Ba$_{2-x}$In$_x$M$_x$O$_5$ where M is the added cation dopant have been done, Kendall et al., 1995. Doping the indium site in the Ba$_2$In$_2$O$_5$ compound with trivalent cations of various radii, altered the order-disorder transition temperature relative to the parent compound. For example doping with ions larger than the host In$^{3+}$ ion, such as Y$^{3+}$ and Yb$^{3+}$ was found to cause an increase in the transition temperature, while doping with smaller ions like Sc$^{3+}$ and Ga$^{3+}$ was found to decrease the transition temperature of the material Yao, et al., 2000. Successful doping with zirconium on the indium sites increased the level of ionic conduction. The increase in zirconium content in the structure was also accompanied by a decrease in unit cell volume, attributed to the radius ratio for the In$^{3+}$ and Zr$^{4+}$ ions, also in agreement with previous work.

While extensive research has been done on the Ba$_2$In$_2$O$_5$, investigations into the sulphide analogue materials Ba$_2$In$_2$S$_5$ and Ba$_2$In$_{2-x}$Zr$_x$S$_5$ is non-existent in the open literature. Therefore the structure and properties Ba$_2$In$_2$S$_5$ and Ba$_2$In$_{2-x}$Zr$_x$S$_5$ novel compounds were investigated.

2.6.4 Ba$_3$Zr$_2$S$_7$

The perovskite structure tolerates a wide range of relative size and charge of the A and B cations. Incorporation of the dopant normally results in distortion of the ideal cubic structure. A variety of doped and undoped Ruddlesden-Popper strontium, titanium oxide compounds have been previously prepared, Hungria, et al. 2004, which have the ability to conduct oxide anions. There has also been considerable work on other oxide-ion conducting Ruddlesden-Popper phases together with the ionic conduction of layered perovskite oxides Norton, 2004. The conduction of M cations in Ruddlesden-Popper oxide phases has been strongly linked to the degree of covalency in the M-O bonding of the compound, Zvereva, et al. 2003. Synthesis methods for the Ba$_3$Zr$_2$S$_7$ compound were described previously by Chen et al., 1994. The material was found to be a member of the Ruddlesden-Popper series of compounds, having an ($n = 2$) doubled perovskite layer. A BaCl$_2$ flux was used in the preparation and compounds were reacted from the appropriate metallic sulphides at 1323K (1050°C). The investigation of oxygen stoichiometry in the system Sr$_3$M$_2$O$_7$ and the
subsequent modification of the M cation site to create oxygen non-stoichiometry and disorder giving rise to high temperature anionic mobility have both been studied, Mogni, et. al., 2005. Therefore doping modification of the B site in A₃B₂S₇ materials could potentially yield analogous sulphide-ion conductivity.

Table 2.4. Selected Sulphides Systems made with Extrinsic Defects

<table>
<thead>
<tr>
<th>Sulphides</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zirconia based sulphides</td>
<td>(Ca_4Zr_{1-x}S_{2-4}) & (Ca_4Zr_{2-x}S_{4-x} (x=0-4%\text{mol})) [Andrievskaya, et. al., 1995]</td>
</tr>
<tr>
<td></td>
<td>(ZrS_2 - xNd_2S_3 (x=2-10%\text{mol})) [Kalinina, et. al., 1994]</td>
</tr>
<tr>
<td></td>
<td>(ZrS_2 - xNd_2S_3 - xLn_2S_3 (x=2-10%\text{mol})) [Ono, et. al. 1981]</td>
</tr>
<tr>
<td>Calcia based sulphides</td>
<td>(CaS - ZrS_2 - Ln_2S_3, Ln = Y, Sm, Nd, Pr, x=2%\text{mol}) [Sammes, 1994]</td>
</tr>
<tr>
<td>Bismuth based sulphides</td>
<td>(Bi_2S_3 - xLn_2S_3 (x=22-57%\text{mol})) [Aurivillius, 1987]</td>
</tr>
<tr>
<td>Barium based sulphides</td>
<td>(BaBi_2S_4) [Fisher, W, 1999], (Ba_2In_2S_4) [Chen, 1997], (Ba_3Zr_2S_7) [Kalinina, 2000]</td>
</tr>
<tr>
<td>Samarium based sulphide</td>
<td>((Sm_{1-x}Gd_x)S_4) [Sato, 1981]</td>
</tr>
<tr>
<td>Doped Lanthanide based sulphides</td>
<td>(CaLn_2S_4 - xLn_2S_3, x=2-30%\text{mol}, Ln = Pr, Nd, Sm)</td>
</tr>
<tr>
<td></td>
<td>(BaLn_2S_4 - xLn_2S_3, x=2-30%\text{mol}, Ln = Pr, Nd, Sm)</td>
</tr>
<tr>
<td></td>
<td>(CaNd_2S_4 - xNd_2S_3, x=10-30%\text{mol})</td>
</tr>
<tr>
<td></td>
<td>(SrNd_2S_4 - xNd_2S_3, x=10-30%\text{mol})</td>
</tr>
</tbody>
</table>

2.7. Electrode Materials

Electrodes are needed on the pellet for current collection when making impedance spectroscopy and electrochemical pumping measurements. However electrochemical pumping of sulphur across the electrolyte requires the electrodes to perform a secondary function, which is to catalyse the conversion of H₂S to sulphide ions. For both types of experiments the prerequisites for electrodes are low resistance, i.e. a good electronic conductor, as well as being un-reactive towards electrolytes. The open literature has used platinum, gold, silver, TiS, and carbon, as electrode materials; therefore each material will be discussed.
2.7.1 *Platinum*

Platinum was used by He *et. al.*, 2002, as the anode material in a H₂S-O₂ solid fuel cell which operated at 5%H₂S and 700-900°C, however corruption of the anode was recorded due to the reversible formation and decomposition of PtS on the Pt-YSZ interface. This led to instability at the electrochemical interface between Pt and YSZ. The stability of Pt electrode in an H₂S environment was improved by adding a layer of TiO₂. Electrochemical pumping experiments of sulphide electrolyte with Pt electrodes may also result in the conversion of Pt to PtS. The life of the electrode may be extended by coating with TiS₂ or by using TiS on the side of the pellet surface that is exposed to H₂S-H₂ atmosphere. Similarly, the degradation of Pt in H₂S at the anode was also observed by Liu *et. al.*, 2001 where PtS was formed when their solid oxide fuel cell was operated at 5%H₂S at 750-800°C.

Furthermore detailed studies, by Loucka 1972 showed that Pt not only reacts with H₂S, but it can adsorb more than one layer of sulphur on its surface. This property is useful, since a three phase boundary between sulphur from H₂S, electrode and electrolyte is needed to make a good sensor and electrochemical reactor. Platinum stability in the presence of hydrogen sulphide was significantly improved with the addition of tin, which essentially blocks the sites that S²⁻, HS and S would attack, Rodriguez, 1998.

2.7.2 *Carbon and graphite*

Both carbon and graphite are used extensively in commercial electrochemical applications including battery electrodes, industrial electrolytic processes and as a counter electrode for corrosion studies or in cyclic voltammetry, Stafford *et. al.*, 1991. The microstructure of carbon varies widely in so much that there are hundreds of grades of carbon or graphite. The properties of each grade of carbon/graphite may differ significantly, for example Tasaka *et. al.*, 1987 showed that the activation energies of graphite, carbon, amorphous carbon are 6.5, 8.4, and 5.5 kcal.mol⁻¹ respectively.

Carbon has been used in applications where noble metals could not be considered. For example carbon has been used as the anode material for applications involving molten fluoride (HF, KF), even though at high current densities, the carbon may degenerate.

The limitation of carbon is that it is difficult to improve the characteristic of the carbon electrode, Tasaka *et. al.*, 1987. Interestingly though Hart & Bass, 1997 made a carbon electrode modified with cobalt phthalocyanine which catalyses hydrogen sulphide by the following mechanism:
\[H_2S \leftrightarrow HS^- + H^+ \]
\[2HS^- + Co^{2+} \rightleftharpoons Co^+ + H_2S_2 \]
\[Co^+ \rightleftharpoons Co^{2+} + e^- \]

Therefore it seems possible that carbon could be modified to catalyse the formation of a sulphide ion \((S^{2-})\). Carbon has also been modified with platinum to oxidise sulphite \((SO_3^-)\), which is used as a preservative in the food industry, Casella and Marchese, 1995. Pulsing with a positive voltage of 1.35V removed the adsorbed spices thereby cleaning the fouled electrode. Highly porous (80%) carbon can become fouled with elemental sulphur Zhang & Cha, 1992.

2.7.3 Gold

Ding and Seyfried, 1996 used gold as the electrode in the cell, \(\text{Au|YSZ|Hg-HgO}\) at temperature 375-400°C, in a reducing atmosphere of hydrogen. The results, in terms of electrode stability, were similar to that expected with platinum. The experiments were done in liquid conditions, however the information would also be applicable in a gaseous atmosphere. Elnakat et. al., 1993 noted that, both platinum and gold formed \(M(H_2S)_2\) complexes where \(M = \text{Au} \text{ or Pt}\).

2.7.4 Titanium Sulphide

Titanium sulphide is one of the chalcogenides, which are sometimes referred to as two-dimensional solids, because of the strong covalent/ionic bonds holding the layered structure together, Martinez et. al., 1998. Resistivity measurements of the layered \(\text{TiS}_2\) made by Logothesis et. al., 1980 observed only metallic behaviour. Saidi, 1992 prepared cubic titanium sulphide by synthesising a copper titanium thiospinel followed by room temperature extraction of copper, to be used as a cathode material. However graphite was added to improve electronic conductivity. Scrosati, 1995 and Armstrong and Bruce, 1996 exploited \(\text{TiS}_2\) as a positive electrode in rechargeable lithium batteries. However titanium sulphide has a strong tendency to form non-stoichiometric compound with excess of titanium, which can then behave either as a semi-metal or as a semiconductor as reported by Chen et. al., 1980.

2.8 Thermal and Electrochemical Characterisation Techniques

Several techniques will be used to characterise the sulphides prepared by the Chemistry department: namely X-ray diffraction for compound identification; Temperature Programmed
Oxidation of sulphides (TPO-S) and Temperature Programmed Reduction of sulphides (TPR-S) to determine the thermal stability in oxidising and reducing atmospheres, four-point-DC-resistivity measurement and two point DC-resistance measurements to determine the ohmic resistance of the material. Impedance spectroscopy and electro-chemical pumping will allow the deduction of the mode and degree of ionic conduction.

XRD, TPO-S and TPR-S characterisation techniques will be done on the material in a powdered form while DC, impedance spectroscopy and electrochemical pumping cell measurements will be done on materials in the form of a pellet. Therefore pellet making which involves determining sintering conditions such as reaction time and atmosphere will be addressed. To determine the effectiveness of the sintering process, SEM images will be used to observe the size of pores in pellets.

2.8.1 X-ray diffraction

The basic components of an X-Ray diffractometer are an X-ray source, a specimen holder and an X-ray detector. X-rays are generated by bombarding a metal anode with a high power electron beam inside a vacuum X-ray tube copper being the most frequent material used as the target. This experimental method measures the diffraction angle of incident X-rays, because of the sample.

A thin layer of homogeneous crystalline powder (the specimen) is spread onto a planar non-diffracting material such as glass (the specimen holder); quantities as small as 1mg can be sufficient. Suryanarayana 1998, Musi, 2004 amongst others noted that an XRD sample should be made up of many small randomly oriented grains of size less than 1μm, because larger particle sizes broaden the peaks.

The XRD trace generated from the metal sulphides made by White, 2003 is compared to a library of patterns, and if a complete overlap of all reflections (peaks) occurs, then this indicates the desired compound is produced. This method is therefore a qualitative means of compound identification. If the compound is novel, that is no pattern exist in the library, then the compound is identified by comparing the novel compound to its analogue, if all the reflections are present, all shifted by the same degree, then this is used as a positive means of identification.
2.8.2 Temperature Programmed Techniques

Temperature programmed (TP) techniques involve the heating, linear heating rate, of a sample, under a controller atmosphere and measuring the composition of the exhaust. The method allows for determining the thermal stability of compounds under various atmospheres. Also, the thermal activation energy, and reaction kinetics can be determined from this technique. TP techniques are useful techniques for the characterisation of metal oxides (traditionally, but can be applied to other metal compounds) Zupanc, et. al., 2002. The technique is quantitative and can be related to the reaction kinetics of the material. Decomposition temperatures; extent of reaction (stoichiometry) and thermal activation energy can also be deduced from temperature programmed techniques Cortés, 1976, Park 2004. TP techniques do not give much information on the compound structure, which is typically given by most spectroscopic methods; therefore these techniques (X-ray diffraction and TP techniques) complement each other in terms of the information gathered. The suite of temperature programmed techniques include

- Temperature programmed reduction (TPR),
- Temperature programmed oxidation (TPO),
- Temperature programmed sulphidation (TPS),
- Temperature programmed desorption (TPD) (not discussed).

The typical experimental set-up for TPR\O\S includes a reactor, mass spectrometer (MS) or a thermal conductivity detector (TCD) to measure hydrogen, oxygen, and sulphur content liberated or consumed during a TPR, TPO or TPS experiments.

Typical reactions analysed by TPR techniques include:

\[\text{CuO} + \text{H}_2 \rightarrow \text{Cu} + \text{H}_2\text{O} \] \hspace{1cm} (16)

\[\text{Bi}_2\text{S}_3 + 3\text{H}_2 \rightarrow 2\text{Bi} + 3\text{H}_2\text{S} \] \hspace{1cm} (17)

Temperature programmed techniques use a reactor, which is heated at a constant rate as, determined by a temperature programmable controller. The effluent from the reactor is analysed by a Mass Spectrometer. The gas mixture used in TP techniques should be considered carefully. For example, when performing a TPR experiment, using a gas mixture of \text{H}_2/\text{Ar} rather than \text{H}_2/\text{N}_2 is better, because at elevated temperatures the hydrogen and nitrogen could react. TPO studies are analogous to TPR experiments with the gas mixture of \text{Air}/\text{Ar}.

2.8.3 Mass Spectrometer

A mass spectrometer, MS, is an instrument where atoms or molecules are ionised and separated based on their mass to charge ratio (m/z). MS is therefore a destructive method of analysis. A mass spectrometer has two major components, the ionisation chamber and the mass analyser.

Ionisation Chamber: The gas to be measured enters the ionisation chamber where it is bombarded, at a right angle with a beam of electrons, generated from a rhenium filament held at -60V, Barker, 1999. The stray electrons are collected in a source cage held at 5V. The ionisation chamber converts atoms and molecules from the source gas into ions and accelerates/injects the positively charged ions into the mass analyser.

Mass Analyser: The mass analyser is a quadrupole type. Quadrupole mass analyzers and quadrupole ion traps [QIT] use electrical fields to selectively stabilize or destabilize ions falling within a narrow window of m/z values. The analyzer changes the direction ions are flying through the mass analyzer.

The entire measurement system is kept at a low pressure (1x 10⁻⁵bar) in order to:

1. Prolong the life of the ion-source filament, (reduce the oxidation of the filament).
2. Prevents ions from colliding with atmospheric gas molecules and hence lose the charge, and by extension not reach the detector.
3. Low vacuum reduces the memory effect, that is, the mass spectrometer atmosphere returns quickly to the background conditions when operated under a good vacuum.

2.8.4 Kinetic Model for TP Techniques

The thermal activation energy of a compound can be calculated from a series of TP experiments in which the heating rate is varied. It is assumed that the solid-gas reaction can be described mathematically by considering two factors, the temperature and concentrations, Barker, 1999.
\[
\frac{dX}{dt} = K(T).f(X).f'(P_{c1}P_{c2})
\] \hspace{1cm} (18)

Where

\(X\) - Degree of conversion of solid reactant

\(K\) – Equilibrium constant

\(P_{c1}, P_{c2}\) – partial pressure of gases \(c_1\) and \(c_2\)

Assume that the gas concentration is constant and is incorporated into \(K(T)\) (equilibrium constant), thus equation 18 reduces to

\[
\frac{d(X)}{dt} = K(T).f(X)
\] \hspace{1cm} (19)

For a heating program with a constant heating rate, \(\beta\), the temperature is given by:

\[T = \beta t + T_o\] \hspace{1cm} (20)

Where

\(T_o\) - Starting temperature, K

\(t\) - Time, min

\(\beta\) - Heating rate, K/min

\(T\) - Temperature, K

The temperature dependence of the rate equation is assumed to follow the Arrhenius equation:

\[K(T) = A_0 \exp\left(-\frac{E}{RT}\right)\] \hspace{1cm} (21)

Where

\(E\) - Activation energy

\(R\) – Universal gas constant

\(T\) - Temperature

Combining equations (19), (21) and the differential of (20)

\[
\frac{d(X)}{dT} = \frac{A_0}{\beta} \exp\left(-\frac{E}{RT}\right)f(X)
\] \hspace{1cm} (22)

Equation (22) can be solved by separating the variables
\[g(X) = \int_{0}^{X} \frac{dX}{f(X)} = \int_{T_{a}}^{T} A_{0} \frac{\exp\left(-\frac{E}{RT}\right)}{\beta} dT \quad (23) \]

The functions \(g(x) \) and \(f(x) \) are given Table 2.5.

Table 2.5. Examples of Reduction Kinetics Models

<table>
<thead>
<tr>
<th>Model</th>
<th>(f(X)) - differential form</th>
<th>(g(X)) - integral form</th>
</tr>
</thead>
<tbody>
<tr>
<td>nth order</td>
<td>(X^n)</td>
<td>(X^{n+1}/(n+1))</td>
</tr>
<tr>
<td>Random nucleation</td>
<td>((1 - X))</td>
<td>(-\ln(1 - X))</td>
</tr>
<tr>
<td>Phase boundary area controlled</td>
<td>((1 - X)^{1/2})</td>
<td>(2(1 - (1 - X)^{1/2}))</td>
</tr>
<tr>
<td>Phase boundary volume controlled</td>
<td>((1 - X)^{2/3})</td>
<td>(3(1 - (1 - X)^{1/3}))</td>
</tr>
</tbody>
</table>

2.8.5 Activation energy from TP Techniques

The maximum of any polynomial is defined as, that point on the curve where the gradient is zero. Therefore the maximum of TPR peak, the following equation holds

\[
\frac{d}{dT} \left(\frac{dX}{dT} \right)_{T=T_{\text{max}}} = 0 \quad (24)
\]

Combining equation (22) and (24)

\[
\frac{d}{dT} \left(\frac{A_{0}}{\beta} \exp\left(-\frac{E}{RT}\right)f(X) \right)_{T=T_{\text{max}}} = 0 \quad (25)
\]

This equation reduces to

\[
\frac{dX}{dT} \left[\frac{E}{RT^2} + \left(\frac{A_{0}}{\beta} \exp\left(-\frac{E}{RT_{\text{max}}}\right) \right) \left(\frac{df(X)}{dX} \right)_{T=T_{\text{max}}} \right] = 0 \quad (26)
\]

Assuming that \(f(x) \) and \(x \) are independent of heating rate and that \(d(X)/dT \) is not equal to zero, equation 26 can be written as:

\[
\ln \left(\frac{\beta}{T_{\text{max}}^{2}} \right) + \ln \left(\frac{E}{RA_{0}} \right) = -\frac{E}{RT_{\text{max}}} + \ln \left(\frac{df(X)}{dX} \right)_{T=T_{\text{max}}} \quad (27)
\]

Therefore plotting \(\ln \left(\frac{\beta}{T_{\text{max}}^{2}} \right) \) vs \(\frac{1}{T_{\text{max}}} \) should give straight lines with a slope \(-E/R\). These plots are sometimes called ‘Arrhenius plots’, Barker, 1999.
2.8.6 Application of TP techniques

TPO: TPO has found application in determining the thermal stability of catalysts with varying compositions. For example, automotive exhaust catalyst used for both the oxidation of CO, C₆H₆ and the reduction of NOₓ, such as 14.5%CeO₂/Al₂O₃ reacts with H₂ at 500°C, while 0.52%-13.3%CeO₂Al₂O₃ reacts at 350°C, Serre et. al. 1991. This TPO can be used, study, to establish varying compositions of catalysts. This also implies that if the TPO onset temperature remains independent of the batch of sample used, then material consistency can be assumed.

TPR: This is normally carried out using hydrogen as the reducing gas; however CO can be used when surface reactions are being studied. The peaks associated with TPR typically span a temperature range of over 300°C with heating rate of 10°C/min, Lööf et. al., 1989, 1991. The total amount of hydrogen consumed, (moles of H₂/moles of compound) in a TPR of an oxide can be determined by integrating the area under the H₂O trace logged by a Mass Spectrometer. This can be roughly correlated to the number of electrons transferred in the reduction reaction. For example, CeO₂ uses 020-0.27μmol H₂/μmol CeO₂, which correlates to one-electron transfer per CeO₂. Yao, 1987, Yao, 1984 From their TPR data, they determined that the reduction reaction was from Ce⁴⁺ to Ce²⁺, and complete reduction to Ce was not achievable even at 900°C.

TPS and TPR-S: These techniques became useful when metal sulphides were found to have catalytic activity towards removing organic and inorganic sulphides from petrochemical feedstock. TPS has been used to formulate the best sulphiding conditions needed to produce the most effective catalyst, while TPR-S may give an insight into the reaction mechanism of the catalyst in the sulphide reactions. The use of both TPS and TPR-S can also yield the extent of sulphiding of a catalyst. For example, Bonne et. al., 1995, used a mixture of 3Vol%H₂S and 28Vol%H₂/Ar, as the feed gas for TPS while TPR-S feed gas was 15Vol%H₂S/67Vol%H₂/Ar, to understand the sulphiding mechanism of V₂O₅. They observed that up to four types of sulphur were present on sulphided catalyst; namely adsorbed H₂S, non-stoichiometric sulphur (Sₓ), stoichiometric sulphur and S-H groups. The presence of adsorbed H₂S on the catalyst can be identified by the liberation of H₂S without any consumption of H₂; non-stoichiometric sulphur is typically removed at low temperature with the consumption of hydrogen. They observe that H₂S was the reactive gas in the TPS
experiments and the mechanism of vanadium substitution starting from V$_2$O$_5$ to V$_2$O$_3$; V$_2$O$_5$ \rightarrow V$_2$O$_3$ \rightarrow V$_2$S$_3$, Janssens, 1999. A three stage reduction process of V$_2$O$_5$ based TPR data was also proposed by Wang et. al., 2003, the reduction mechanism (assuming that V is constant) of 3V$_2$O$_5$ \rightarrow V$_6$O$_{13}$ \rightarrow 3V$_2$O$_4$ \rightarrow 3V$_2$O$_3$ was proposed. TPR-S of MoS$_2$/Al$_2$O$_3$ has two peaks; the low temperature peak was attributed to the presence of over-stoichiometric S$_{\text{ss}}$, and the second to S$^{2-}$ ions at the surface or edge, Loos et. al., 1990.

2.9 Electrochemical Characterisation Techniques

2.9.1 Four Point DC Resistivity

Measurement of the bulk resistivity using a 4-point resistance meter was not successful. However a brief mention of the theory is included to understand the technique. The bulk resistivity, Ohms-cm (Ω) of a semi-infinite wafer with equal probe spacing (s) is given by the equation 28, (Figure 2.7).

\[\Omega = 2\pi s V I \] \hspace{1cm} (28)

\[R_s = \frac{\Omega}{t} \] \hspace{1cm} (29)

L. Valdes reported that once the edge of the nearest boundary is at least 5 times the probe spacing, equation 28 is valid without any correction (thin film resistance). Equation 29
requires a correction factor. Once the samples thickness is less than at least 5 times the probe spacing, equation (28) becomes (30), Smits, 1958.

\[\Omega = a \times 2 \times \pi \times s \times \frac{V}{I} \]

(30)

Where \(a = 0.72 \, t/s \), for \((t/s) \geq 0.5\), Figure 2.7

2.9.2 Impedance Spectroscopy

Electrical Impedance spectroscopy, EIS, is a non-destructive tool that can be used for analysing the electrochemical properties of ceramic materials. EIS has been utilized to provide information on practical issues such as corrosion rates, efficiency of protective coatings, testing of batteries, surface treatments, conduction mechanism for ceramics etc. The advantages of EIS include short measuring time, high accuracy and capability of continuous measurement. While the disadvantage of EIS is that the process being investigated is perturbed from its normal state by an external signal, which can change or alter the properties of the system. The perturbation is typically an alternating current (a.c) because smaller perturbations are used when compared to direct current (d.c.); this allows materials with lower conductivity to be investigated as well as introducing less interface problems.

Impedance Spectroscopy Theory

The electronic properties of a system can generally be defined in terms of its ability to store and transfer an electric charge (i.e. its capacitance and conductance). EIS records the response of a system to an applied sinusoidal perturbation, over a selected frequency range. The applied ac voltage \(V \) and the resultant ac current \(I \) are measured and the impedance \(Z \) is calculated \(Z = V/I \). The material being measured is perturbed with a sinusoidal voltage through electrodes using a frequency response analyser (FRA). The result is a current having the same frequency but a different phase and amplitude. The system response can be separated into real and imaginary terms (i.e. conductance- real and capacitance -imaginary).

Complex impedance is expressed as,

\[Z^* = V/I = \frac{V \sin(\omega \tau)}{I \sin(\omega \tau + \theta)} \]

(30)

Where \(\omega=2\pi f \), and

\[Z^* = a \cos \theta + b \sin \theta = Z' + Z'' \]

(31)
Impedance Magnitude = \[|Z| = \sqrt{a^2 + b^2} \] \hspace{1cm} (32)

Impedance Phase Angle = \[\theta = \arctan \left(\frac{Z'}{I} \right) = \arctan \left(\frac{b}{a} \right) \] \hspace{1cm} (33)

Armstrong et. al., 1977, 1968 and Gabrielle, 1981 amongst other showed that frequency response analysers, FRA, can determine the impedance by correlating the cell response \(S(t) \) with two synchronous reference signals, one of which is in phase with the sine wave perturbation, \(P(t) \) and the other shifted 90° in phase. Macdonald, 1987. The sine wave perturbation function \(P(t) \) is applied to the cell;

\[
P(t) = P^o \sin(\omega t)
\] \hspace{1cm} (34)

Where

\(P^o \) is the amplitude; \(\omega \) is the frequency

The cell response maybe written as

\[
S(t) = P^o |Z(\omega)| \sin[\omega t + \phi_0] + \sum A_n \sin[m \omega t - \phi_n] + N(t)
\] \hspace{1cm} (35)

The first term in equation (35) is the transfer function, the second and third terms represent the harmonics and noise respectively, and both harmonics and noise are rejected due to high integration periods.

1.5 Experimental Requirements

1. Measuring the electrochemical behaviour of an electrolyte requires two identical electrodes to be applied on either side of the sample; the electrode maybe sputtered, painted, thermally evaporated or mechanically contacted.

2. The atmosphere under which the electrochemical measurement is made should remain constant, for example a homogenous oxidizing environment.

3. Constant temperature is required during the measurement of the system impedance, remembering impedance is a type of resistance, and that impedance for ceramic materials decreases as temperature increases.
Capabilities and Limitations

Impedance spectroscopy can be used to study intrinsic properties of materials that affect conductivity of the electrode-material interface, Ramzan and Brydson, 2005. These parameters can be divided into two groups: (1) Those that are material dependent such as dielectric constant, conductivity, equilibrium of charged species; and (2) Those that are related to the electrode-material interface, for example capacitance of the interface, diffusion coefficient at the interface and adsorption/reaction rates. E.I.S has also found use in predicting the performance of sensors, Ménil *et al*., 2005, and fuel cells Andreaus *et al*., 2002; determining ionic conductivity, Tiwari and Shahi, 2005, grain boundary effects, Song, *et al*., 2005; determining diffusion coefficients for systems such as membranes or thin oxide films etc, Santiago *et al*., 2005; determining the kinetics of the ionic/electronic conduction interfaces, Makhlouf and Khalil, 2003.

Apparatus Effect on Impedance Spectroscopy Data

A given material phenomenon e.g. bulk response, grain boundary conduction, interfacial barrier transport of the considered to have resistive and capacitive components, operating in parallel. The time constant for this system is the corresponding resistance-capacitance or RC product, and this is related to frequency at maximum impedance, \(f \), using equation 36, (Figure 2-8).

![Figure 2-8 Nyquist Plot for a Resistor and Capacitor in parallel](image)

\[
RC = \frac{1}{2\pi f} \tag{36}
\]

Where,

- \(R \)- resistance, \(\Omega \);
- \(C \)- capacitance F;
- \(f \)- frequency, Hz.
In an ideal Nyquist plot, imaginary vs real impedance, the frequency corresponding to the top of the arc gives the numerical value of ‘f’ in the equation above as shown in Figure 2-8. However apparatus inductance can distort the E.I.S. data particularly at high frequency. Distortion can occur at high frequencies when the impedance of the apparatus is comparable to or larger than the sample impedance, Campestrini et. al., 2002. Ultimately, equivalent circuit simulations are the best test of whether or not a reliable sample response is being obtained. The appropriate equivalent circuit consisting of resistors, inductors and capacitors, which replicate as closely as possible the impedance behaviour of the actual specimen, should be selected.

Effect of Mechanical Force on Impedance Spectroscopy Data

Increasing the mechanical loading on the electrode-electrolyte system may result in a decline in the overall resistance as the pressure increases, Figure 2-9.

This significant reduction of the low frequency arc is due to the ‘air-gap’ between the mechanically contacted electrode and the electrolyte. In this case the true sample resistance was not obtained at the highest mechanical pressure. Hsieh, et. al. 1996.

![Figure 2-9. Example of the effect of Mechanical Pressure on Impedance indicating Poor Electrical Contact](image)

O₂ partial Pressure on I.S. Spectrum

The geometry of the sample is constant and the geometry of the contacts, a, does not vary, if the distance between the contacts is larger than the radii of the contacts. Assuming perfect electrode-electrolyte contact, then only the bulk arc is observed (assuming also not grain boundary effect). If two arcs are observed; both vary with the O₂ partial pressure, see Figure
2-10. Jiang et. al., 2002 plotted the slope of the inverse resistance of the high frequency arc vs partial pressure, which gave an indication to the point defect mechanism.

![Figure 2-10. Effect of O₂ Partial Pressure on Impedance Nyquist Plot](image1)

Grain Boundary Effect on I.S. Spectra

In large grained electroceramics, it is possible to achieve substantially larger sample capacitances compared with small grained electroceramics because of grain boundary effects, Figure 2-11. This arises when thin continuous, more resistive grain boundary layers isolate each grain, commonly referred to as a ‘brick layer model’, Abrantes et. al., 2000.

![Figure 2-11. Effect of Grain Boundaries on Impedance Nyquist Plot](image2)

The large low frequency arc has the resistance and capacitance of the grain boundaries, \((R_{gb}, C_{gb})\), the smaller high frequency arc indicated the resistance and capacitance of the grain interiors \((R_{gi}, C_{gi})\). These would look like those seen in Figure 2-11, that a small high
frequency arc and a large low frequency arc. However these arcs should not vary upon changing oxygen partial pressure, only with a change in temperature.

In summary the effect of electrode contact, proposed by Hsieh et. al., 1996, on EIS measurements are:

1. Two-electrode I.S. measurements can be used to separate bulk response from electrode contributions, only if there is no spreading resistance effect (contact resistance), i.e. good electrode-electrolyte contact.

2. Spreading resistance effect can affect the bulk resistance arc and bulk time constants as well. Also the low frequency intercept no longer represents the true resistance of the sample. An additional arc due to the ‘gap’ capacitance is also possible. In certain cases, the resulting two arcs behaviour can be mistaken for grain interior and bulk contributions.

3. Making simultaneous 4-point DC resistivity measurement on every specimen best eliminates spreading resistance effect. If the low frequency intercept of the bulk features agrees with the true DC resistance, spreading resistance can be neglected.

4. Careful attention to polishing and electroding is the best means to avoid spreading resistance contributions. Good contact was achieved only when samples were finely polished and adequately plated.

E.I.S Advantages and Limitations for Three Electrode Systems

Three-electrode impedance measurement allows for just the response of the working electrode to be examined. This is an advantage over two-point IS measurement which has an unavoidable convolution/complication of the counter electrode responses, Hsieh et. al. 1996. However three-electrode I.S was shown to have inherent distortions. These occur when the reference electrode impedance is no longer insignificant compared to the instrument input impedance, causing a voltage drop across the reference electrode impedance, which cannot be ignored, known as the voltage divider effect. Fiaud et. al., 1986 reported that electrochemical impedance is strongly dependent on the reference electrode position. Both the apparent electrolyte resistance and the shape of the electrode arc change with reference electrode placement. Despite this fact many cell geometries are used, see Figure 2-12 where arrangement (1) and (2) are typical.

Electrode configurations with high aspect ratios (the separation between the reference and working electrode is at least 30 times the thickness of the electrolyte) were suggested to
eliminate the geometry effect on measurements, Hsieh et al., 1996. The best means to establish the presence of spreading resistance effects for a two-point I.S measurement is to perform simultaneous four point DC resistivity measurements. The DC measurement should agree with R_s (specimen resistance) while the apparent bulk resistance in two point E.I.S. is the sum of the R_s and R_c (contact resistance).

![Various Configurations of Electrode Placement for 3-Point Impedance](image)

Figure 2-12. Various Configurations of Electrode Placement for 3-Point Impedance

* Configuration 3 is the solid electrolyte analogue of the Luggin capillary reference used in aqueous systems.

A distorted spectrum is possible for asymmetric electrode arrangements such as phase shifts, inaccurate electrode resistances, and artificial features. No simple relationship between electrolyte resistance and the geometry of the cell was observed for surface mounted reference electrode, Hsieh et al. 1996.

In summary experimental I.S data rarely produce arcs of full semicircles with the centre on the real axis of the complex plane. There are three explanations that could yield only a fraction of the semicircle, which are:

1. The presence of other arcs at high frequencies could cause the experimental arc not to pass through the origin.
2. The presence of distributed elements at the electrode-material interface can shift the centre of the experimental arc below the real axis.
3. The experimental arc can be distorted significantly by the presence of other relaxations with time constants smaller by two orders of magnitude relative to the experimental relaxation time.

2.10 Equivalent Circuit and Physical Models

Any electrode–electrolyte system in a measuring cell is assumed to have a geometrical capacitance and a bulk resistance in parallel with it. The product of these elements gives the time constant, also called the dielectric relaxation time of the electrolyte. It is often so small, that it is not seen in an impedance plot. However lowering the temperature will increase the time constant, so that this arc representing the bulk measurements will be seen, Figure 2-13.

![Figure 2-13. Typical Nyquist Plot and Equivalent Circuit](image)

A typical Impedance Plot for a Two-Phase Microstructure and (b) a Possible Equivalent Circuit (b) is shown in Figure 2-13. Equivalent circuit uses ideal lumped parameters such as resistors and capacitors, even though most electrochemical cells are distributed in space. Thus equivalent impedance $Z_{ee}(\omega)$ may need more than the ideal capacitance and resistances to approach the experimental impedance, $Z_e(\omega)$. This misalignment can be accounted for by using distributed impedance elements, for example constant-phase elements (CPE’s). $Z_{ee}(\omega)$ has a further possible ambiguity because any circuit that has three or more elements can be arranged differently all of which gives the same $Z_e(\omega)$. This problem can only be solved by applying chemical and physical principles (an educated guess) or by varying parameters in $Z_e(\omega)$ to validate which of the $Z_{ee}(\omega)$ is correct.

The layer models (parallel, series or brick model) relate the impedance of material to the microstructure. The series layer model assumes that the grain are stacked parallel to the
electrode, Figure 2-14(a); McDonald, 1987 described the model of the impedance by a linear mixing rule the complex resistivity of \(\rho_i = x_i \rho_1 + x_2 \rho_2 \), where \(\rho_i \)-complex resistivity and \(x_i \)-volume fraction of a phase \(i \). However the parallel model shown in Figure 2-14(b), assumes the grains are stacked perpendicular to the electrode; showed that in this case the complex conductivities followed a linear mixing rule of \(\psi_i = x_i \psi_1 + x_2 \psi_2 \), where \(\psi_i \) is the complex conductivity and \(x \) is the volume fraction of phase \(i \). If the phases differ significantly in their complex resistivity, two well-defined arcs would be in the complex plot as shown in Figure 2-13 above.

![Figure 2-14](image)

Figure 2-14. Two Phase Micro-Structure Described by (a) Series Layer, (b) Parallel Layer, (c) Brick Layer

The bricklayer model, treats the microstructure as an array of cubic shaped grains which are separated by grain boundaries, Figure 2-14(c). In this model conduction may occur through the grains and across the grain boundaries or along the grain boundaries therefore the extreme cases are when the grain boundaries are blocking (little conduction) or dominant (major conduction).

Generally the experimental impedance \(Z_e(\omega) \) is approximated to a, \(Z_e(\omega) \), equivalent circuit made up of real resistors, capacitors inductances and distributed elements, Figure 2-15. In such a circuit, the resistance represents a conductive pathway thus it can be used to indicate for example bulk conductivity or a chemical reaction occurring at the electrode interface. Capacitances and inductances normally indicate some sort of space charge polarisation of an absorption process or electro-crystalization process.
The electrode–material system in a measuring cell has a geometrical capacitance C_1 and a bulk resistance R_1 in parallel with it. These two elements lead to a time constant $\tau_D = R_1C_1$, or the dielectric relaxation time of the basic material, Figure 2-15. This time constant is normally the smallest in the E.I.S experiment ($<10^{-7}s$), which occurs at the highest angular frequency, Macdonald, 1987.

2.10.1 Impedance Spectroscopy Modelling Elements

Constant Phase Element

Interpreting distributed elements in equivalent circuits can be divided into two types that are related to the spatial arrangement of the real system. The first type relates to non-local processes such as diffusion. The other type of constant-phase element (CPE) is associated with the microscopic properties of the material that is a distributed parameter. For example, the solid electrolyte interface on a microscopic level is not smooth nor uniform, which is the normal assumption, used in modelling solid electrolyte and solid-solid interfaces as shown by Almond et. al, 1982, 1983, 1984 and Jonscher, 1977 and 1980. Constant phase elements (CPE) are used to model impedance in the Nyquist plane when arcs centres do not lie on the real axis, Figure 2-16.

![Figure 2-15. (a)Typical RC Circuit, (b) Equivalent Impedance Plot and (c) The Admittance Plot](image)

![Figure 2-16. Nyquist Plot of Circuit with CPE](image)
It is worth mentioning that the microscopically smooth liquid metal aqueous electrolyte interfaces apparently do not show frequency dispersion of the capacitance if the systems are pure, that is these systems do not use a CPE in modelling the impedance data. Jonscher et al., 1980 attributed the frequency dependence of the conductivity to the relaxation of the ionic atmosphere after the movement of the ion. It is assumed that immediately after an ion hops to a new site it is displaced from the true minimum potential energy, which includes a contribution from other mobile defects. After long time, the defect cloud relaxes; a true minimum coincides with lattice site. Whenever reaction resistance and capacitive components differ with electrode location it is best modelled by CPE element. Macdonald, 1987 noted that conduction processes, either interface or bulk, which are thermally activated with a distribution of activation energies, is also best modelled by a CPE rather than the just a capacitor-resistor combination. Franceschetti and Shipe, 1984 proposed a model describing the motion of the defect species as several distinguishable jump processes, each governed by a different activation energy. The interpretation of the relaxation branches in the circuit is that they describe a polarisation arising from the inequalities in jump probabilities

Raistrick et al., 1976 studied dense polycrystalline alumino silicates, and noted that except for the densest of materials, the polycrystalline samples always showed some frequency dependence. Here, again, the experimental data was fitted best by the use of a CPE. Adham and Hammou, 1985 studied single crystal of CaO-doped CeO₂, and found two arcs present, depending on the presence or absence of CaO enrichment at the grain boundary. It is also possible that close to the grain boundary, the transport properties of the crystal are controlled by imperfections, expected to be present there in higher concentration then in the centre of a grain, leading to an additional contribution to the inter-grain impedance. This idea is very close to the observation of conductivity enhancement due to the heterogeneous doping of solid electrolytes. Here a second phase insoluble non-conducting phase is introduced into the solid electrolyte as finely dispersed particles. The internal space charge created at the phase boundaries may lead to a significant increase in the concentration of mobile defects.
Charge Transfer Resistance and Capacitance

A single semi-circle displaced from the origin is characteristic of kinetic control by an electrochemical charge transfer step at the electrode-electrolyte interface, as represented in the Z plot, Figure 2-17.

![Diagram showing Charge Transfer Resistance and Polarisation Resistance]

Figure 2-17. Nyquist Plot Showing Charge Transfer Resistance, Polarisation Resistance

Polarisation Resistance

In the case of reactive surfaces, the polarisation resistance is taken as the difference between the impedance measured at low and high frequencies respectively, see Figure 2-17. To measure impedance at low frequencies 3-10 Hz range, a low sinusoidal perturbation, low voltage scan rate is needed. This resistance is normally associated with reactive surfaces such as corrosion.

Capacitance- Diffuse double layer

This refers to the use of a capacitive component to model space charge double layer near the electrode surface. Contacting of the electrolyte and electrode results in a small charge flow and a field is created on the electrolyte side of contact. The mobile charge carriers in the electrolyte distribute themselves over this field; charge density of the metal is confined to its surface leading to the concept of diffuse double layer capacitance. Under these conditions, the diffuse double layer behaves like an ideal capacitor.
Warburg Impedance

Warburg impedance is used to model diffusion related systems. When the Warburg impedance is plotted in the complex plane, a semicircle combined with a straight line at an angle of 45° to the real axis is seen, McDonald, 1987. The Warburg impedance is obtained from the solution of Fick’s second law, the diffusion equation, for one-dimensional diffusion of a particle in a semi-infinite space. Diffusion of atomic oxygen in an infinitely thick electrode might be described by this type of impedance., McDonald, 1987

General Warburg impedance for charge motion in a finite-length region of an electrolyte was discussed by McDonald, 1987. The Warburg impedance effect is seen primarily at the low frequency regions where the more mobile or more abundant charged species have time in a half-cycle to rearrange positions so as to screen the less mobile or less abundant charges from the electric field, thus leaving diffusion as the primary conduction method for such low frequencies. Since this diffusion process occurs in the bulk electrolyte, the Warburg impedance is normally placed in series with the bulk resistance, Figure 2-18.

![Figure 2-18 . Nyquist Plot and Equivalent Circuit Showing Warburg Impedance](image)

2.10.2 *Empirical Models for Mixed Conductors*

Mixed conductors have at least two mobile charge carriers, usually ionic and electronic defect. Impedance of mixed conductors was modelled by. Jamnik et. al., 1999, 2003. Comparing the results to the exact solutions of Nernst-Planck-Poisson set of equations validated the models.

At high frequencies (short times), the measured impedance is the parallel sum of ionic and electronic species. At low frequencies, only the resistance of the unblocked species (electronic) is detected.

Two equivalent circuits were developed to address situations where ionic transport exceeds electronic and vice-versa. The models assumed perfectly contacted samples and any space
charge layer adjacent to the electrodes were ignored (that is the models do not address electrode effects). The equivalent circuits are shown in Figure 2-19.

Figure 2-19. Jamnik Equivalent Circuits for Significant Electronic(a) Contribution and Predominant Ionic Conductors (b)

The typical response of the low frequency part of the Nyquist plot for an electrolyte with equal amount of conducting species, ionic and electronic, is shown in Figure 2-20. The characteristic shape of a predominantly mixed ionic-electronic conductor is the asymmetric arc at the high frequencies. As the ionic component increases, the low frequency arc approaches a perfect semi-circle and vertical line at lowest frequencies in the Nyquist plot, Figure 2-21.

Figure 2-20. Jamnik Equivalent Circuit for Equal Ionic and Electronic Conductivity at Low Frequencies using Equivalent Circuit in Figure 2.21(a).

Jamnik, 2003 also proposed models for poly-crystals with blocking grain boundaries for both ions and electrons, Figure 2-22. All modelling element are as defined as R-resistance, C-capacitance, with ‘ion’ referring to ionic conduction and ‘ele’ referring to electronic conduction, C‘diel’ relates to the discharging of electrode capacitance. The results of his models, an example in Figure 2-23 shows that Warburg-type impedance can occur because of blocking grain boundaries, not just blocking electrodes.
Figure 2-21. Jamnik Equivalent Circuit Low Equal Ionic Electronic Conductivity at High Frequencies using Equivalent Circuit in Figure 2.21(b).

Figure 2-22. Model for Mixed Conduction Electrolyte with Partial Blocking Grain Boundaries

Figure 2-23. Nyquist Plot for Mixed Conduction Electrolyte with Partial Blocking Grain Boundaries

The first two semi-circles in the Nyquist plot relate to bulk and grain boundary conduction (relaxation), which are similar to Nyquist plot of pure ionic conductors, Figure 2-23. The third 'distorted' arc is characteristic for mixed conductors and for this type of electrolyte; it
arises from the polarisation by the selectively blocking grain boundaries rather than blocking electrodes

2.11 Electrochemical Reactors

Balachandran et. al., 1998 used (OCV) methods to measure the transport number for the different conducting species, for example \(H^+ \) and \(O^{2-} \) transport in \(\text{BaCe}_{0.95}\text{Y}_{0.05}\text{O}_{3-x} \). Therefore this technique has the potential to identify anionic conductivity of electrolytes such as \(\text{CaNd}_{2}\text{S}_3 \) doped with \(\text{Nd}_{2}\text{S}_3 \) by forming an electrochemical cell of the form \(\text{H}_2\text{S}, \text{Ar//AB}_2\text{S}_4//\text{H}_2, \text{Ar} \); measuring the open circuit voltage (OCV). The relationship between the open circuit voltage and the transport number is

\[
V_{oc} = \frac{RT}{4F} \left[t_{ion} \ln \left(\frac{p_{e}^{\nu}}{p_{e}^{\iota}} \right) \right]
\] \((40) \)

Where, \(V_{oc} \) - open circuit voltage,

\(t_{ion} \) - transport number for ion ‘i’

\(p \) -is the partial pressure of the conducting species on either side of the electrolyte.

This equation has also been expanded to account for oxide electrolytes with significant electronic conductivity. Considering the example of an oxide ion conductor where the partial pressure \(p_{o_i} \) does not differ very much from \(p_{o_0} \), the following equation is obtained

\[
E = \left(1 - \frac{\eta}{n} \right) \frac{RT}{4F} \ln \left(\frac{p_{o_0}}{p_{o_1}} \right)
\] \((41) \)

If the chemical potential of oxygen in the surrounding gas atmosphere is decreased, oxygen is removed from the lattice of the oxide. By this reaction, the vacancies \(V_{o}^{**} \) and excess electrons, \(e' \), maybe formed:

\[
O_{o} \leftrightarrow V_{o}^{**} + 2e' + \frac{1}{2} O_2(p_{o_0})
\] \((42) \)

At equilibrium \((\eta) = K_1(V_{o}^{**})^{\frac{1}{2}} p_{o_1}^{\frac{1}{2}} \) (where () indicates concentration) \((43) \)

Based on equation, the number of oxygen vacancies in (42), is determined by the oxygen partial pressure, only. Therefore the concentration of electrons in equation 43 reduces to equation (44)

\[
(\epsilon') = K_1 p_{o_1}^{\frac{1}{2}}
\] \((44) \)
If the oxygen vacancy is fixed, for example by making a solid solution, the conduction is then predominantly ionic. Only at very small oxygen pressures do electrons also contribute to the electrical conduction, the equation therefore reduces to

\[(e') = K_1 p_{O_2}^{1/4}. \]

(45)

The other limiting case occurs when there is large oxygen potential in the gas phase, which then leads to accommodation of oxygen into the crystal lattice. The defects produced are interstitial oxygen ions or cationic vacancies. To maintain electrical neutrality, holes are produced.

The transport number can be determined experimentally by measuring the molar flow of conduction gas (using a Mass Spectrometer) as a function of applied voltage to a concentration cell, Figure 2-24. If the measured molar flow is equal to the theoretical molar flow of the conduction species, equation 46, caused by the applied voltage, the transport number is 1, Hladik, 1972. In addition, the transport number can be determined by this method, equation 47.

![Figure 2-24 Concentration Cell used for Transport Number Measurement](image)

Alternatively a sulphide concentration cell, \(AB_2S_4, AS/AB_2S_4/B_2S_3-AB_2S_4 \) may be set up with a homogeneous electrolyte \(AB_2S_4 \) to establish the conduction of sulphide ions. If the application of a voltage results in a certain amount of electrical charge being passed through the cell, the double sulphide, \(AB_2S_4 \), will partially decompose into its constituent \(AS \) and \(B_2S_3 \). To evaluate the e.m.f, the following cell is given in Hladik, 1972, as;

\[
Pt - p_{S_2}^{\ +} \left| AB_2S_4 \right| AS \left| AB_2S_4 \right| B_2S_3 \left| p_{S_2}^{\ +} - Pt \right.
\]
It is assumed that the left hand side of the electrolyte contains isolated particles of pure sulphide AS and the right hand side has particles B$_2$S$_3$ and that consequently there are oppositely directed activity gradients of AS and B$_2$S$_3$ across with the intermediate layer of homogeneous oxide AB$_2$S$_4$, Alcock, 1968. The transport of four faradays of current in a pure sulphide ion conductor as given in Hladik, 1972 as;

$$E = \frac{RT}{4F} \ln \frac{p_{S_2^n}}{p_{S_2}} + \frac{1}{4} \left(\frac{1}{2} F \bar{r}_{B^{2+}} - 2F \bar{r}_{A^{3+}} \right) \Delta F_{AB_2S_4}^o$$ \hspace{1cm} (46)

Deviation of the measured EMF to that calculated from equation (46) infers electronic contribution.

2.12 Other Electrochemical Characterisation Techniques

2.12.1 Galvanic Cells

The typical galvanic cell consists of a solid electrolyte located between two electrodes. The electrodes are connected and hence the EMF can be measured. The galvanic cell can also be used to make thermodynamic measurements, however these are made under open circuit conditions, that is, the electrodes should not be polarised and equilibrium should be established within the electrode/electrolytes phase boundaries.

The measured EMF of a galvanic cell can be related to the Gibbs free energies by considering the virtual cell reaction, one assumption is that a known amount of faradays will pass through the cell as an electric current.

2.12.2 Galvanic Cells for Kinetic Investigation

Galvanic cells with solid electrolytes can be used to measure

1. Reaction rates as a function of current
2. Electromotive forces give thermodynamic information for chemical potentials or activities

The galvanic cells can be operated in four mains ways, Hladik, 1972

- Potentiometric measurements: These are carried out at zero potential therefore the cells are used as potential probes for measuring chemical potentials, thermodynamic properties, activities or partial pressures
- Steady state measurements: currents and corresponding potentials are measured under steady state conditions. These measurements are independent of whether the
potentials or the currents are controlled. It is preferable to separate potential probes so that the reference electrode is not polarised by a current.

- **Measurements with controlled potentials:** These measurements are normally potentiostatic, i.e. constant potential is applied to the galvanic cell and the current is measured as a function of time.
- **Measurements with a controlled current:** These are normally galvanostatic. A current is applied to the cell and the potential is measured as a function of time. This technique has been applied to mixed ionic-electronic conductor, $\text{La}_{0.4}\text{Sr}_{0.6}\text{CoO}_3-a$, Bucher *et al.*, 2003.

2.13 Literature Review Summary

Based on the available literature, solid state reactions is a viable method to produce solid state solutions. Using the correct conditions, solid solutions with defect structures can be successfully synthesised.

Characterising these solid solutions for thermal properties using temperature programmed technique is an easy and reliable method of determining the thermal stability and activation energies and electrochemical properties.

Using impedance spectroscopy, as the main electrochemical characterisation methods allows for the application of other characterisation methods, since this method is non-destructive. The bulk conductivity, activation energy for bulk conduction and time constants are outputs from EIS. This method is susceptible to errors introduced in the selection of the appropriate equivalent circuit. To reduce errors in modelling, several statistical parameters should be minimised. Another limitation of EIS is that, explicit identification of the conducting species is not possible. Therefore identification of the conducting species is best done by concentration or galvanic cell.
2.14 Literature Review References

121. Wang, W., and Virkar, A., V., “Ionic and electron–hole conduction in BaZr0.95Y0.05O3-δ by 4-probe dc measurements”, Journal of Power Science, 142, 1, (2005)
Chapter 3

3 Experimental

This chapter describes the procedures and techniques used to synthesis and characterise metal sulphides investigated during this research project. It is divided into three sections: The first section deals with the preparation of the possible sulphide ion conductors. The second section describes the set-up of experiments used to evaluate the material thermal stability in different atmospheres. The third section describes the electro-chemical techniques to assess the materials ionic conductivity and electronic conductivity.

3.1 Material Synthesis

3.1.1 Sulphide Ion Synthesis

The most commonly used method of preparing ceramics is by high temperature, solid-state reaction. The sulphides were prepared by combining the metal sulphide starting materials, in the correct molar proportions, grinding, in a glove box (under an argon atmosphere avoiding oxidation of the compounds) to a particle size <50µm in a agate mortar and pestle. The mixture was reacted in sealed silica tubes, and heated to a maximum temperature of 1300°C for up to 24 hours. Once cooled the compound was transferred to XRD mounting discs for X-ray analysis where the new compound and its structure was identified.

Some metals do not react with elemental sulphur to form the corresponding metal sulphide. Typically, the sulphide can be made from the oxide, carbonate or chloride by heating under sulphur containing atmospheres (CS₂ or H₂S) where the starting material was placed in an inert high temperature boat made from typically alumina or carbon, Figure 3-1. The reactor is initially purged to remove trace oxygen and then heated under the sulphur, containing atmosphere up to the required temperature. Exit gas is scrubbed with sodium hydroxide to remove sulphur before releasing to the atmosphere in a fume cupboard. For example, Yan et. al., 1995 showed that combining stoichiometric amounts of BaS, Zr and S at 1350°C was not successful in producing a pure phase of Ba₂ZrS₄. However when a mixture of BaS, BaCl, Zr and S was used, the required phase was the major product, however the use of chloride as the starting material led to the requirement of a washing stage after reaction.

Similarly, Tsay et. al., 1999 synthesised CaLa₂S₄ from calcium methoxide and lanthanum methoxide at 1000°C in pure H₂S after 20 mins. The methoxide was used to lower the sintering temperature, thereby producing smaller particles, which tend to give denser pellets that were made at 1350°C (350°C above reaction temperature). An alternative synthesis route,
for this material was made by Tsai et al., 1994 using La(OH)₃ and CaCO₃ with nitric acid after washing with alcohol and sintering at a maximum temperature of 1150°C for 30mins in pure CS₂.

In this project metal sulphide synthesis was carried out using reactions from the starting sulphides using the stoichiometric amounts. For example calcium neodymium sulphide was prepared from equal molar amounts of calcium sulphide and neodymium sulphide according to the following reaction;

\[\text{CaS} + \text{Nd}_2\text{S}_3 \rightarrow \text{CaNd}_2\text{S}_4 \quad 1200^\circ\text{C} @ 8\text{hrs} \]

Generally, the sulphides for the group two metals are readily available, for e.g. calcium sulphide and barium sulphide. However if the starting sulphide is not available directly from suppliers, as is the case for neodymium sulphide, the starting sulphide (Nd₂S₃) can be created from the metal and sulphur or by reacting the metal with hydrogen sulphide.

Neodymium and Samarium Sulphide Synthesis

The following procedure was used to make starting sulphides from metals, which react directly with elemental sulphur

1st Step: Drying of Sulphur
- A known amount of sulphur was placed in an evacuated schlenk flask
- The schlenk tube was placed in an oil bath (70-80°C) and connected to vacuum pump
- Water was removed from the sulphur for 36hrs
- The schlenk tube was closed under vacuum and disconnected from the vacuum pump

2nd Step: Solid State Reaction Sulphide Synthesis
- Dried sulphur was combined with the appropriate pure metal under argon (glove box apparatus)
- Metal and sulphur were mixed until homogeneous and placed in a silica tube
- The silica tubes were sealed and heated to 900°C at a heating rate of 2.5°C/min, and held as this temperature for 36hrs.

The product from this process was pure neodymium sulphide provided that the small particle sizes of neodymium were used. If neodymium chips, approximately 1mmx1mmx1mm, was used, a mixture of neodymium sulphide, neodymium and sulphur was formed, see X-ray patterns in Appendix A. This process yielded approximately 50% output, based on mass, which is a low yield. The main reason for this low yield was due to explosion of the sealed silica tubes caused by water contamination or possibly faulty silica tubes.
The process was modified to react neodymium with hydrogen sulphide at 100°C below its melting point of 950°C in an open silica boat for 8hrs, Figure 3-1. The XRD result was the neodymium oxi-sulphide Nd$_2$S$_3$ with Nd$_2$O$_3$, Appendix A. The reaction conditions were changed to 1200°C in graphite capped cylinder and monoclinic Nd$_2$S$_3$ was formed, see X-ray pattern in Appendix A. The source of oxygen to form the oxi-sulphide was not known since the inlet gas flow rate was equal to the outlet but it is possible that oxygen could have entered the reaction chamber by decomposition of the silica boats or diffusion of oxygen through the reactor walls, which was made from 99.97% dense alumina.

Cerium Sulphide Synthesis

Cerium sulphide is not readily available, unlike cerium oxide. Cerium is one of those metals which react only very slowly with hydrogen sulphide, in so much so that improving the corrosion resistance of steel by adding cerium was investigated by Niu *et. al.*, 1997. The results were not promising due to the low solubility of cerium in steel.

Cerium sulphide was made from cerium oxide, CeO$_2$ and carbon using hydrogen sulphide at 1200-1400°C for 2 to 3 hours in a graphite reactor, (Figure 3-1) Eastman, *et al.*, 1950. The reaction temperature can be lowered to 600°C by using was CS$_2$ rather than H$_2$S, Hirai, 1998.

![Figure 3-1 Sulphide Synthesis Experimental Set-up](image-url)
3.2 Sulphide Pellet Synthesis

Powders of metal sulphides synthesised in the Chemistry Department according to the methods described previously were compressed into pellets (20cm diameter) using a maximum pressure of 12t at temperatures from room temperature up to 100°C. It was observed that lower pressures (4t) would yield good pellets, i.e. pellets free from visible cracks. Perfect pellets could be achieved at room temperature provided only a small volume of binder was used. Therefore the maximum pressure and elevated temperature were not the main parameters, which determined the quality of the pellets.

The important stages of pressing pellets are, (i) Rotation by 30° at the lower pressures, 0.5, (ii) Dwell time of 10sec at each pressure was used, Figure 3-2. In the absence of the 30° rotations at the low pressures the pellets being formed exhibited either uncompressed forms or significant fractures along the diameter. These cracks cannot be removed by sintering; once cracks were observed after pressing, the process had to be restarted from the grinding stage.

Figure 3-2. Pellet Pressing Experimental Set-up

The use of binder helps in creating pellets that are mechanically stable. In the absence of a the pellets are very fragile and they tend to break when they are moved from the dye to the sintering boat. Binders used included hexane, 2% poly vinyl alcohol, PVA, MW range of 30,000-120,000, which needs to be dissolved at 60°C while stirring for 24hrs to form a solution), as well as liquid paraffin. Mechanically stable pellets were formed using either a PVA solution or liquid paraffin. However PVA produced black spots when used with the
oxide ion conductor, Yttria Stabilised Zirconia, YSZ. Further investigation showed, that the black spots were corrosion products formed from the dye polished surfaces. PVA was subsequently discontinued. Hexane did not yield mechanically stable pellets.

In summary the following recipe for pellet preparation was used:

- 1.4g of sulphide was used in order to yield a 1.5mm thickness pellet (diameter 20mm) with a particle size range of 0.2-10µm (the sulphides made by solid state reaction has a mean particle size of 100µm, hence a particle size reduction stage will be discussed in the following section)
- 2-4 drops of liquid paraffin
- Mixing binder and powder until homogeneous agglomerates (free from large initial agglomerates)
- Flattening of the power with the piston without the upper disc.
- Pressing at low pressures 0.5-5t, then press at maximum pressure 8 or 25t

Pellets synthesised according to the above method which were free from visible cracks were sintered in a 10% hydrogen sulphide in hydrogen atmosphere, at a maximum temperature of 250°C above their synthesis temperature and a residence time of 8-10hrs. The experimental set-up shown in Figure 3-1; the pressed pellets are supported on alumina balls to minimise if there is a reaction between sulphide and alumina and to allow uniform gas atmosphere around the pellets. Also the alumina boat (150mm) was located centrally in the tube furnace (600mm) to minimise temperature gradients. SEM images were taken of the surface of the pellet, as well as the internal of the pellet to observe if a dense pellet was formed.

3.2.1 Grinding metal sulphides

Chess et. al., 1983 studied many sulphides such as MLa$_2$S$_4$, MNd$_2$S$_4$, MP$_2$S$_4$ M$_2$S$_4$, MSM$_2$S$_4$ where M=Ca, Sr, amongst others and they showed a direct relationship between particle size and densification of metal sulphides where a maximum achievable density occurred with particles of 5µm. Later Tsay et. al., 1999 made CaLa$_2$S$_4$ from calcium methoxide and lanthanum methoxide as the methoxide produces smaller particles which lowered their sintering temperature while producing denser pellets. Chess et. al., 1983 observed that a sintering time (of up to 300mins) as well as high temperature (max 1600°C) were essential for the formation of dense sulphide pellets. They also showed that using the maximum temperature and sintering time with the smallest particle size, only 90% of the theoretical density was achieved. To increase the density of the pellet beyond this, hot pressing at
1400°C and 20Mpa for at least 15mins was needed. The metal sulphides of the type MNd₂S₄ and MSm₂S₄, M=Ca,Sr produced by solid state reaction have a mean particle size of 150 μm, measured using standard mesh sieves, therefore particle size reduction is necessary in order to produce dense pellets. To observe the relationship between particle size and pellet densification, scanning electron microscopy, SEM, was used.

Scanning Electron Microscope: The Scanning Electron Microscope (SEM) has developed into one of the most widely utilized instruments for material imagining. The SEM is a microscope that uses electrons rather than light to form an image. SEM’s have high resolution, which means that closely spaced features can be examined at a high magnification. Preparation of the samples is relatively easy since most SEM only require the sample to be conductive. Particles of submicron size can be easily imaged using SEM.

The resulting sintered pellet, 150 μm mean particle size, without grinding is shown in Figure 3-3, where the SEM showed that no sintering took place, since no grain boundaries could be seen. Also, the diameter and thickness of the ‘sintered’ pellet, measured by digital vernier calliper remained constant (at 20mm diameter) before and after sintering, confirms that densification did not occur. Therefore the pellets made from this material, pressed to 20t and heated at 1200°C for 48hrs did not increase in density.

![SEM of pellet made from ungrounded CaNd₂S₄ sulphide@ 1200°C for 48hrs in H₂S](image-url)
Pellets were then made after sulphide powder had been ground by hand in an agate mortar and pestle to a maximum diameter of 90μm. SEM images of these pellets show the formation of grain boundaries, however many pores, with a maximum diameter of 20μm are visible, Figure 3-4. The pellet diameter showed a slight reduction in the diameter of the pellet (0.02mm) suggesting some densification.

Figure 3-4. SEM of pellet made from grounded CaNd₂S₄ sulphide@ 1200°C for 48hrs in H₂S

The SEM images in Figure 3-3 and Figure 3-4 shows that grinding of material from 150μm down to 90μm improves the densification of pellet and sintering process. Therefore the sulphides were ground further by hand in an agate mortar and pestle to a maximum particle size of 35μm. This material was heated to 1200°C for 10hrs under H₂S, with the pellet diameter decreasing by 0.05mm suggesting a slight increase in densification was achieved when the average particle size was reduced from 90μm to 35μm. SEM images of pellets made with the latter particle size are shown in Figure 3-5.

Figure 3-5 shows the SEM of a pellet made from grounded CaNd₂S₄ doped with Nd₂S₃ (<35 μm) powder, has less pores compared to un-doped CaNd₂S₄, Figure 3-6. The significant difference in SEM images is clearly seen even though similar particle size and sintering conditions were used.
In order to improve the grinding operation, metal sulphides were ground in an agate ball mill operating using five 10mm diameter agate balls to reduce the particle size to less than 35\(\mu\)m. The particle size distribution of the resulting powder product was analysed using a Coulter counter. The principle of the laser coulter counter is based on laser diffraction techniques, which requires that the particles be dispersed in a liquid (dispersant). Therefore various liquids were experimented with; water, hexane and acetone were used. The use of hexane caused agglomeration. Agglomeration was identified when repetition of the particle size distribution analyses resulted in a reduced fraction of larger particles, Figure 3-7.
Using water as the dispersant, particle size of above 100μm after 3hrs of grinding in ball mill and 17μm after 11hrs, see Figure 3-8. However acetone indicated that most particles were less than 10μm, Figure 3-8. This discrepancy was solved using SEM images of the same material (powdered) suggested a maximum particle size of 5μm, Figure 3-9, suggesting that water causes agglomeration of the particles therefore water was also discontinued for the AB₂S₄ type compounds. Therefore the ball mill can be used to produce a particle size distribution with a significant mass fraction of mean diameter of 10μm, which meets the requirements to form a dense pellet. However the grinding was changed from the ball mill, which used centrifugal forces for grinding due to significant loss of material (10%), to shaker apparatus with 350-500rev/min where material loss was reduced to less than 1%, with similar particle reduction in either method.

Figure 3-7. Particle size distribution using Hexane solvent versus number of repetition which shows the agglomeration effect
Sintered pellets made from material ground to an average particle size 17μm, measured by the Laser (acetone dispersant) or 5μm by SEM showed a decrease in pellet diameter from 20.0mm to 18.6mm, thus indicating an increase in density. This shows the SEM image of the sintered pellet surface, confirming reduced porosity, Figure 3-9.

Grinding performed in a rubber ball attached to a shaker initially using Al₂O₃ cylinders as grinding material. The grinding media was changed to ZrO₂ balls because Al₂O₃ cylinders may lead to contamination of the product due to loss of mass of the Al₂O₃ cylinders in the grinding process. The shaker apparatus, with operating speed of 400-500rev/min, achieved similar mean particle size compared to the centrifugal ball mill grinder.
In summary the following procedure was followed to generate a powder particle size distribution with a mean diameter of 1.5µm. Particle size reduction of all materials were done according to the following procedure:

- Add, 25grams of grinding media, ZrO₂ balls (8) with 8-10grams of sulphide, to rubber ball, and seal with corks.
- Operate shaker operating at average speed of 350-500 rev/min for at least 2days

2.3 Experimental Methods- Temperature Programmed Techniques

3.3.1 TPO-S and TPR-S

Temperature Programmed Reduction and Oxidation of sulphides, TPR-S and TPO-S respectively, was carried out using an in-house system. Figure 3-10 shows the general setup of the system which is similar to existing experimental set-up, Loof, 1989. The systems' significant components are:

- Gas supply, usually from a cylinder or from a hydrogen generator;
- Programmable high temperature furnace and a Mass spectrometer as a detector;

The reaction gas (20vol% hydrogen in Argon for TPR-S, 10vol%O₂ in argon or air for TPO-S) is controlled with mass flow controllers. The gas flows through a 1/4” quartz reactor, fitted with or without a frit. Quartz wool is used to support 5-20mg of metal sulphide for reactors without a frit, but it is also used, in a smaller amount, on the reactors with frit as a liner (to prevent clogging of the frit).

The first reactor was without a frit, with a large bore (4mm diameter) and a large bulb (12mm³ volume), this led to very broad TPO-S peaks, Figure 3-11(a-b). The second reactor was also without frit and the bore was reduced to 2mm diameter, however the bulb size was retained, Figure 3-11(c). This lead to narrowing of the TPO traces, but it was difficult to remove the quartz wool used to support the sample. The large bulb reactor may cause a significant difference in thermocouple temperature and material temperature, an error that will severely affect experimental results. The temperature bias was minimised by placing the thermocouple inside of the reactor, however corrosion of thermocouple by SO₂ liberated in the oxidation reduced the life of the thermocouple, Figure 3-11(d).

The reactor bulb was reduced to 8mm diameter by 8mm height and the (2mm diameter) narrow bore maintained. This led to even sharper TPO-S traces, (Figure 3.12). A frit was added to remove the need of quartz wool, however in a relatively short time period the frit became blocked with residual material which could not be dislodged with compressed air.
Finally, the bulb was removed to allow easily cleaning of the reactor and the narrow bore of 2mm diameter maintained. The frit was removed to prevent permanent blocking of reactor and replaced with quartz wool to support the sample. The absence of the bulb allowed for accurate positioning of the thermocouple outside the reactor whilst narrow TPO-S traces were maintained, Figure 3-12.

The reactor was heated in the oven at a predetermined rate, typically from 10 to 40K/min, up to a maximum of 1273K, followed by an isothermal period at maximum temperature (using a WEST temperature controller). The exit gas from both TPR-S and TPO-S experiments were monitored using a Mass Spectrometer (ESS, VG). A schematic description of the procedure used in TPR-S and TPO-S is given below:

TPR-S and TPO-S procedure
1. Steady flow of hydrogen or air in argon mixture to remove air from reactor
2. Heating of reactor at heating rate range of 5-50K/min to 1273K
3. Isothermal period, at 1273K, of 10-30mins, to allow complete reaction
4. Cooling to room temperature

Figure 3-10. TPR/O Experimental Set-up for Complete SO₂ or H₂S scrubbing
Figure 3-11. Alternative reactor designs and thermocouple location

The reactor configurations shown in Figure 3-11(d) and (f) were selected because these gave a reproducible temperature profile, narrow oxidation peaks, with an area independent of the reactor volume. The difference in life time for the thermocouple can be compared using the set-up in Figure 3-11 (a) and (c), where the thermocouple lasted less than 80hrs (operating time) due to corrosion from H₂S and SO₂ gases, while in set-up (b) and (d) over 2months operating time was achieved. The only disadvantage with set-up in Figure 3-11 (e) and (f), is that the actual temperature of the reacting material may be slightly lower than the temperature measured, because of the possible temperature gradient. This effect was minimised by the use of thin tubes of <2mm wall thickness, a small reactor volume (<5ml) and a small diameter (15mm o.d.) furnace.
3.3.2 \textit{SO}_2 and \textit{H}_2\textit{S} Calibration of Mass Spectrometer

\textit{Calibration Compounds for TPO-S and TPR-S}

Bismuth sulphide (\textit{Bi}_2\textit{S}_3) was selected as the calibration compound, because it is known to reduce and oxidise completely below 1000°C (the maximum temperature of furnace). It was found that neodymium sulphide, \textit{Nd}_2\textit{S}_3, reacts completely with oxygen (at least to the same extent as bismuth sulphide). The oxidation of \textit{Nd}_2\textit{S}_3 and \textit{Bi}_2\textit{S}_3 resulted in similar peak areas (based on the same molar sulphide content), even though the shape of the oxidation curves was completely different. The TPO trace of \textit{Nd}_2\textit{S}_3 showed one peak while the oxidation trace of \textit{Bi}_2\textit{S}_3 showed three peaks, Figure 3-13.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure313.png}
\caption{TPO traces for \textit{Nd}_2\textit{S}_3 and \textit{Bi}_2\textit{S}_3}
\end{figure}

The calibration process requires the following sequence of activities to be performed:

1. Charging sufficient amount of the sample, \textit{Bi}_2\textit{S}_3 for example, measured using a scale with at least four decimal place accuracy. Using a large amount of sample (>25mg) may have led to oxygen/hydrogen diffusion limitations in the reaction, which may broaden the TPO-S, TPR-S peaks, hence generating larger areas.

2. Variation in the mass of calibration material should be small, 4-20mg for linearity of calibration curve.

3. Using the same experimental conditions such as, heating rate, hydrogen concentration and flow-rate, vacuum in Mass Spectrometer using and the same electron multiplier (EM) voltage.
4. Integrating the area under the H_2S/SO_2 signal
5. Plotting area vs molar amount of sulphur in sample to get a linear calibration

H_2S Calibration

The mass spectrometer was calibrated with 20% hydrogen/Argon. Samples of Bi_2S_3 between 4-30mg were used. The TPR-S results of Bi_2S_3 are shown in Appendix B where the derived calibration line with R-Square value is above 0.96; hence the calibrations are valid. R-square is the square of the correlation between the response values and the predicted response values.

- R-Square is computed from the sum of the squares of the distances of the points from the best-fit curve determined by nonlinear regression. This sum-of-squares value is called SSreg, which is in the units of the Y-axis squared. To turn R-Square into a fraction, the results are normalized to the sum of the square of the distances of the points from a horizontal line through the mean of all Y values. This value is called SStot. If the curve fits the data well, SSreg will be much smaller than SStot.
- R-Square is calculated using this equation as $1 - \left(\frac{SS_{reg}}{SS_{tot}} \right)$

SO_2 Calibration

The material used for SO_2 calibration was Bi_2S_3; a typical TPO-S is shown in Figure 3-13. Complete oxidation of Bi_2S_3 was confirmed by in-situ XRD at 1000°C. The varying experimental conditions used are given below. The calibration results are shown in Appendix B.

Calibration of Mass Spectrometer

The number of moles of sulphur was calculated using:

TPO reaction: $Bi_2S_3 + 4.5O_2 \rightarrow Bi_2O_3 + 3SO_2$

Theoretical number of moles of $SO_2 = 3 \times \frac{Mass_{Bi_2S_3}}{RMM_{Bi_2S_3}}$

Where RMM - Relative Molecular Weight of compound; $Bi_2S_3 = 144$ and $H_2S = 64$

Therefore from the mass of calibration sample, the total number of moles of SO_2 liberated is known. This assumes that all the sulphide oxides to form the oxide. This gives the Y-axis of the calibration curve. In-situ Xrd of the oxidation of Bi_2S_3 confirms complete oxidation at 1000°C. Johnson et. al., 2003

The X axis is calculated based on the area below the SO_2 trace in TPO-S. This area was calculated using different software packages such as PEAKFIT® and CUREEXPERT®.
Provided that a small variation in mass was used, this relationship between Area and Moles of SO$_2$ was shown to be linear. The linear relationship between moles of SO$_2$ and Area of SO$_2$ for Bi$_2$S$_3$ was:

$$Y \text{ (SO}_2\text{ in moles)} = C \times \text{(Area of SO}_2\text{ in au.min)}$$ \hspace{1cm} (3)

Where C, is the calibration constant, Appendix B

3.3.3 Determination of degree of oxidation

The metal sulphides were oxidised using the experimental set-up described in Figure 3-10. The procedure was identical to that of oxidising the calibration compounds, i.e. the mass of the metal sulphide was recorded and all other experimental conditions such as heating rate and gas composition were kept constant. Using the mass of the sample and assuming complete oxidation reaction, the theoretical maximum oxidation is determined.

Example:

Consider the oxidation of CaNd$_2$S$_4$

$$\text{CaNd}_2\text{S}_4 + 6\text{O}_2 \rightarrow \text{CaNd}_2\text{O}_4 + 4\text{SO}_2$$ \hspace{1cm} (4)

1 mole CaNd$_2$S$_4$ gives 4 moles SO$_2$

Therefore using the mass of metal sulphide the maximum number of moles of SO$_2$ that can be released is determine as

$$\text{SO}_2\text{(theoretical max)} = \frac{\text{CaNd}_2\text{S}_4\text{(mass)}}{\text{CaNd}_2\text{S}_4\text{(Molecular weight)}} \times 4$$ \hspace{1cm} (5)

The SO$_2$ signal collected with a mass spectrometer during the oxidation of the sample is integrated using CUREEXPERT© or PEAKFIT4.1©. Using the calibration equation (3) the actual SO$_2$ liberated during the oxidation process

$$\text{SO}_2\text{(actual)} = \text{Area} \times C$$ \hspace{1cm} (6)

Where the units are

- C - Calibration constant, e.g. 14635 moles/a.u-min
- Area - a.u.min (arbitrary unit)

The degree of oxidation is defined in equation (7) below as:

$$\% \text{ Oxidation} = \frac{\text{SO}_2\text{(actual)}}{\text{SO}_2\text{(theoretical max)}} \times 100$$ \hspace{1cm} (7)
3.3.4 Determination of \(O_2 \) Consumed

- The oxygen concentration is kept constant at 5vol\% corresponding to an \(O_2 \) molar flow rate, e.g. \(1.247 \times 10^{-4} \) moles/min, resulting in an \(O_2 \) signal (measured in arbitrary units, a.u., by the mass spectrometer) and is denoted as \(O_2(signal) \), (in the absence of any reactions)

- The \(O_2 \) peak was integrated using CURVEEXPERT© or PEAKFIT 4.1©, denoted as \(O_2(area) \) with units (a.u.min)

- Therefore the relationship between area and moles of oxygen consumed is defined as

\[
O_2(moles) = \frac{M.F}{O_2(signal)} \times O_2(area) \tag{8}
\]

Where the units are

- \(M.F \)- Molar flow rate constant (moles/min);
- \(O_2(area) \) (a.u.min);
- \(O_2(signal) \) (-a.u);
- \(O_2(moles) \) (moles)

Determining the amount of oxygen consumed allows a complete mass balance to be constructed for the oxidation of the sulphide investigated. Therefore considering the molar amount of sulphur dioxide liberated and oxygen consumed can identify the formation of sulphates, oxy-sulphates or oxides. The mass balance for the formation of sulphates, oxy-sulphates or oxides is considered below with the material \(\text{CaNd}_2S_4 \) as the case study material.

Oxide formation

The formation of oxide follows equation (9), where 6 moles of oxygen are needed for each mole of sulphide that is converted to the oxide. The equation shows that oxygen is consumed and sulphur dioxide is produced during this process.

\[
\text{CaNd}_2S_4 + 6O_2 \rightarrow \text{CaNd}_2O_4 + 4SO_2 \tag{9}
\]

Sulphate formation

The formation of sulphate from the sulphide requires 8 moles of oxygen for each mole sulphide converted. This process would not liberate any sulphur dioxide, equation (10)

\[
\text{Ca}_2\text{Nd}_2S_4 + 8O_2 \rightarrow \text{CaNd}_2(SO_4)_2 + 0SO_2 \tag{10}
\]

Therefore, if the number of moles of oxygen consumed lies between 6-8 it indicates that a mixture of oxide and a sulphate has formed. The extent of oxide formation is determined by the amount of sulphur dioxide liberated.
Oxy-Sulphide formation

Consider the situation where the number of moles of O_2 consumed is less than 6. This indicates that at the end of the experiment, neither the sulphate nor the oxide was formed, for example, see equation (11). In this theoretical example, 3 moles of oxygen are consumed and two moles of sulphur dioxide released. Such a mass balance would infer, the formation of a compound that is typically called an oxy- sulphide. The formation of oxy-sulphides from oxides occurs during the sulphidation of lanthanides such as cerium where the transformation from the oxide CeO_2 to Ce_2S_3 was observed by Hirai, 1998 with CS_2 as the sulphiding gas. $\text{Ce}_2\text{O}_2\text{S}$ was also formed when CeO_2 is sulphided with H_2S in the absence of carbon, Eastman, 1950, and the formation of oxy-sulphides was eliminated only when carbon was used. Ma, 1996, observed the formation of the oxy-sulphide, $\text{La}_2\text{O}_2\text{S}$, which has found application as a catalyst in the reduction of SO_2 by CO by Lau, 2003 and 1996. Neodymium oxide Nd_2O_3 also formed the oxi-sulphide $\text{Nd}_2\text{O}_5\text{S}$ when Nd_2O_3 is heated to 500°C in the presence of elemental sulphur, Wu, 2003 and Yttria also forms an oxi-sulphide state of $\text{Y}_2\text{O}_2\text{S}$, Dwivedi, and Ray, 1984. This shows that the formations of oxi-sulphides are likely and they take the form of $\text{M}_2\text{O}_2\text{S}$, therefore Equation (13) will possible be the most likely outcome for the sulphides studied.

$$\text{CaNd}_2\text{S}_4 + 3\text{O}_2 \rightarrow \text{CaNd}_2\text{S}_2\text{O}_2 + 2\text{SO}_2$$ \hspace{1cm} (11)

Other possible oxi-sulphides includes

$$\text{CaNd}_2\text{S}_4 + 1.5\text{O}_2 \rightarrow \text{CaNd}_2\text{S}_3\text{O} + \text{SO}_2$$ \hspace{1cm} (12)

$$\text{CaNd}_2\text{S}_4 + 4.5\text{O}_2 \rightarrow \text{CaNd}_2\text{S}_4\text{O}_3 + 3\text{SO}_2$$ \hspace{1cm} (13)

3.4 Impedance Spectroscopy

Electrochemical Impedance spectroscopy, EIS, combined with appropriate modelling was used to characterise materials for bulk conductivity, time constants for the conduction process and activation energies. These parameters when compared to oxide ion conduction may infer what ion is conducting. For example, if sulphide ion is the main ion being conducted in the sulphide electrolytes, then the expectation is higher activation energy with a smaller conductivity, also a longer time constant. This expectation is attributed to the larger sulphide ion which intuitively would need more energy to hop from one vacant site to another, and the sulphide ion may move slower giving longer time constant, and less of the sulphide ion may move hence lower conductivity.
To make accurate and repeatable EIS measurements the three most important considerations in the design of the impedance measurement cell are:

- Accurate control of the temperature
- Consistent control of the gaseous environment inside the cell
- The provision of good and repeatable electrical contact with the sample.

The temperature control has been achieved by the use of a Eurotherm 2216e controller, which is programmable through the impedance software, provided by Solartron. This ensures that the impedance measurement does not begin until the set point and the actual temperatures are the same, which was achieved after holding for one hour at each temperature. The gaseous atmosphere was H$_2$S/H$_2$, Argon or an H$_2$S/Ar mixture; selection of gas will be discussed in detail later. The atmosphere was maintained by the use of an O-ring seal between two stainless steel plates. Gases enter and exit the reactor via heat-treated stainless steel tubing, Figure 3-14. Engineering drawings of EIS systems are presented in Appendix E.

![Impedance measurement cell-type 1 showing sample holder (upper object) and reactor casing (lower object)](image)

The electrical contact between sample holder and EIS instrument was made through the BNC connectors and cables. The BNC connector was located in the stainless steel plate, Figure 3-15. Connection between the BNC connector and electrode on pellet is made using current collectors made of platinum wire and mesh, the schematics shown in Figure 3-16. The pellet and current collectors were held in a fixed position though the central pin held in place by a stainless steel spring, Figure 3-16.
Sample and current collectors platinum mesh are placed here under the piston.

Spring loaded plunger

BNC connector

BNC pin where platinum wire is attached

Figure 3-15. Sample holder

Current collector platinum mesh

BNC

Pellet with electrode (painted)

BNC connector attached to platinum

Figure 3-16. Schematics of electrical contact to sample

The EIS cell described in Figure 3.18 to Figure 3.20, called impedance cell-type 1, had operational limitations of:

- The BNC was welded to the stainless steel head, so separation for periodic cleaning was impossible. Blowing compressed air onto the pin was the possible method of cleaning. The BNC connectors required periodic cleaning to ensure that the centre pin remains insulated from the other conducting materials used to make the reactor, hence removable BNC connectors were used in type-II impedance cell, Figure 3-17.

- The main limitation of type-I impedance cell design was the laborious inserting and removing of the pellet and the two current collectors, which are located below the spring-loaded piston. In order to compress the spring while inserting the pellet and two current collectors, two pairs of hands were needed. With these limitations in mind, type-II impedance cell was built, from Figure 3-17 to Figure 3-20.

Figure 3-17. BNC on removable plate with a ceramic tubes for gas entry and exit
Figure 3-17 shows the removable stainless plate with BNC connectors, which gave easy access so that they can be cleaned easily. Two separate ceramic tubes were used for gas entry and exit to the EIS cell.

Figure 3-18 shows the modified sample holder. The design is much simpler than the original design because rather than having four ceramic tubes joined to a base plate using high temperature ceramic cement, a single half ceramic tube was cemented to the base plate. Engineering drawings of EIS systems are presented in Appendix E.

Figure 3-18. (a) Sample holder (empty) and (b) sample holder with removable spring loaded internals

This design is user friendly in that the sample along with the current collectors was first inserted before spring-loading the piston.

A gas-tight seal was achieved by using O-rings seals, Figure 3-19.
Figure 3-19. Stainless steel reactor head showing the O-ring seal for BNC plate and shoulder to attach sample holder

Figure 3-20 shows the shoulder to which the sample holder was attached. The stainless steel plate with the 2 BNC connectors is slotted in the middle and held into position using three screws. The complete stainless steel plate with BNC plate and sample holder is then inserted into the same ceramic tube in Figure 3-14, hence this new design may be considered as modular, in that each component is not permanently joined hence it can disassemble into these independent component for maintenance. The complete assemble is shown below in Figure 3-20.

Figure 3-20. Impedance cell- - type 2 –: sample holder with removable BNC plate and spring loaded piston

Figure 3-17 to Figure 3-20, shows the modified impedance reactor. The assembling procedure for this impedance reactor is as follows:

- Inserting BNC plate with ceramic gas tubes, into the sample holder, Figure 3-17
- Insert pellet, then the spring loaded piston, Figure 3-18, this is now the complete sample holder
- Insert the complete sample holder into stainless steel plate, Figure 3-20 and Figure 3-20. Screw to tighten and seal with O-rings.
- This assembly was then attached to a 50mm id, closed one end ceramic tube, and tighten crews for gas tight O-ring seals, inserted into a vertical furnace with no magnetic field, after which impedance measurements were made.
3.5 Impedance spectroscopy experimental conditions

Experimental conditions for impedance spectroscopy, were established in order to produce repeatable and reliable data.

Gas atmosphere: the gas should not react with either the electrolyte or electrode. Some sulphides, (e.g. cerium sulphide) needs sulphur partial pressure, 1x10-10atm, at elevated temperatures to maintain stability.

Maximum temperature: At elevated temperatures, the electrolyte may lose sulphur to the atmosphere that may cause an increase in conductivity due to hole-conduction. This situation can be prevented either by using low temperatures or by having a sulphur partial pressure.

Applied voltage: The signal should be as small as possible, so that linearity can be assumed between applied signal and cell response. However at too small a voltage, no polarisation may occur. Typical values of applied voltage were between 0.01 and 1Vrms.

Electrode material: the material should be stable, not reacting with the electrolyte or the atmosphere.

Each of these aspects is discussed in detail below.

3.4.1 Impedance Atmosphere

Electrochemical impedance spectroscopy of sulphide pellets was initially carried out in 10ppmH₂S/H₂ mixture, using platinum electrodes. The results were inconsistent and erratic; no modelling could be done on the results because a scatter of data points rather than impedance arc(s) were observed, e.g. Figure 3-21. This scatter was possibly due to a reaction between H₂S and Pt or H₂ and Pt; thus this problem can be solved by either replacing the reactive gas with an inert one, or by changing the electrode material to one which exhibits electrical conductivity, but is un-reactive in hydrogen-hydrogen sulphide gas at elevated temperature. Changing the atmosphere from H₂S/H₂ to argon gave typical impedance plots as shown in Figure 3-22.
Figure 3-21. Electrochemical Impedance Spectroscopy of CaNd$_2$S$_4$-0.0Nd$_3$S$_3$ in 10ppmH$_2$/H$_2$S @ 600°C with platinum electrodes and an applied volts of 0.01Vrms

Therefore using platinum electrodes in an argon or H$_2$S/Ar atmosphere is suitable, however H$_2$S/H$_2$ was not suitable. Low voltages of 0.01Vrms was sufficient to produce reproducible impedance arcs, hence higher voltages were not used.

3.4.2 Maximum Temperature

Stable arcs were observed in H$_2$S/argon at temperatures which are 250°C less than the oxidation onset temperature. An impedance arc is stable if upon repetition, the plots overlap.
Figure 3-23 and Figure 3-24 shows stable impedance arc at 50°C and 200°C with platinum electrodes for CaNd₃S₄+30%Nd₂S₃ in H₂S/argon with 1 hour isothermal period before impedance measurement. However, at 300°C under the same conditions, the impedance arcs become unstable, Figure 3-25. This could only be attributed to electrode-electrolyte interaction, since a positive pressure of H₂S was used, hence the electrolyte should be stable at these low temperatures.

Figure 3-23. Stable impedance plot at 50°C using Pt electrodes in H₂S/argon

Figure 3-24. Stable impedance plots at 250°C using Pt electrodes in H₂S/argon
Jensen, *et. al.*, 2003, observed unstable impedances with nickel electrode that was thermal evaporated unto a YSZ pellet during the first 50h of impedance measurements. They observed a significant decrease in electrode conductivity in the first 30hrs, which was attributed to microstructure properties of the electrode. The electrodes made from pure metal were described as 'shattered' from the impedance measurements. The stability of the electrodes were improved my using a cement (nickel + YSZ). The conductivity of the electrode made from the cement was higher than the pure metal. This unusual observation was attributed to the expansion of the three-phase boundary due to roughing of the YSZ interface. The unstable nickel electrode showed a decrease in conductivity while the platinum electrodes on the sulphide materials show an increase in conductivity, therefore the explanation provided does not explain the increase in conductivity with time, as observed in Figure 3-25.

Therefore if platinum electrodes are used, only low temperatures, less than 300°C, yield reproducible impedance arcs even in a hydrogen sulphide atmosphere.

3.4.3 Electrode Materials and application method

Three electrode materials, namely platinum, gold and carbon, were employed, combined with a number of methods of application: namely spray painting, brush painting, sputtering, thermal evaporation, or simple physical contact.

Platinum

Platinum catalyses many reactions; for example, the shifting of the equilibrium of H₂S, H₂, and S₂ molecules. This reaction may become important when sulphide ions are attempted to
be pumped across the electrolyte by applying a direct current, (DC). The reaction between platinum and \(\text{H}_2\text{S} \), and subsequent pumping of sulphide across the membrane, requires the presence of three-phase boundary between electrode, hydrogen sulphide and electrolyte, this implies porous electrodes. The literature-surveyed to-date speaks loosely of conducting electrodes and porous electrodes even though the value of conductivity was not specified. Therefore electrodes were initially deemed conducting when less than 5\(\Omega \) resistance was achieved.

The creation of low resistance electrodes from platinum paint required a three-stage process involving the following:

- Painting each side of the pellet with Gwent Chemicals platinum paste made with 99.99\% purity platinum mixed with low and high temperature organic binder (binders helps in the formation of porous electrodes)
- The low temperature binder is removed from the platinum paste by drying in air at 200\(^\circ \)C. The high temperature binder was removed by thermal treatment using a reducing atmosphere of 5\%\(\text{H}_2\text{S} \) and 95\%\(\text{H}_2 \) at a temperature of 950\(^\circ \)C with a dwell time of 4hrs. This stage produces a black coating, with a resistance of 20\(\Omega \), due to the formation of platinum sulphide
- Platinum sulphide is converted to platinum by treating the coatings in 100\%\(\text{H}_2 \) at 450\(^\circ \)C with a dwell time of four hours; this reduces the electrode resistance to 0-2 \(\Omega \). However the cross-sectional resistance of the pellet, which was greater than 200\(\Omega \) prior to application of the platinum paste, fell to approximately 0.5k\(\Omega \). The reduction in resistance of the pellet could only be attributed to the entrainment of conducting particles within the cross section of the pellet. The conducting particles could either be due small Pt particles since the paint was thinned for easy painting, hence the smallest particles would settle first or high temperature organic binder (carbon) and based on the SEM images pore size of 2-5\(\mu \)m on the pellet surface was typical. If this was the case, no heat treatment could restore the conductivity. If this drop in cross sectional resistance is related to carbon from the binder then heat-treating in trace amount oxygen could restore the resistivity. Therefore a carbon removal stage was added.
- The coated pellet was heated to 490\(^\circ \)C for four hours in a very dilute oxygen stream (0.01\% oxygen). Pellet resistance increased to 20\(\Omega \)
- This process produced 0\(\Omega \) electrode on the exposed surface of the pellet and 50\(\Omega \) electrode on the under-side of the pellet.
The electroding process was subsequently altered to heating of the Platinum paint in 1100°C for 1hr in pure argon, converting the organics to carbon which was subsequently removed by heating to 600°C at 40K/min in pure hydrogen. This process gave perfect electrodes on both sides however the pellet may crack. The cracking of the pellet was attributed to thermal shock of the high heating rate used, hence heating rate was lowered to 10K/min. SEM images of this electrode showed that the resulting electrode was porous, Figure 3-26. Bauerle, 1969 produced porous platinum electrodes by painting platinum paste, sintering to 1400°C for 1hr, which gave non-porous Pt electrodes; porosity was increased by passing a current of 1A/cm³ at 800°C. The porosity of the electrode was estimated by applying a small drop of liquid to the electrode surface; observing of the liquid its disappearance (or lack of it) by capillary action.

![SEM image of electrode](image)

Figure 3-26. Pt electrode painted on CaNd₂S₄, which has a porous structure similar to base material.

Initial impedance experiments were carried out in 10ppm H₂S/H₂ using Platinum electrodes. This resulted in data with so much scatter that no arcs could be discerned. To obtain reproducible experimental data, the experimental parameters available to change were the electrode material or the atmosphere under which the experiments were performed. Initially the electrode material was changed; painting platinum on to the sintered pellet was changed to sputtering of gold unto the pellet surface.
Gold

Gold was used as an alternative electrode material due to its high electronic conductivity. Gold was sputtered for 120s onto the sample pellet. The surface resistance of the pellet fell from greater than 200MΩ to 2kΩ. A repetition of the sputtering reduced the surface resistance to 600Ω. Sputtered electrodes were found to be reasonable porous without any additional treatment as stated by a Bauerle, 1969. The limitation of sputtered electrodes was continuity; that is achieving little resistance across the surface of the pellet (less than 20Ω).

Pellets were also coated with gold using thermal evaporation using gold wire 2mmx5mm for multiple pellets. The evaporation process vessel was initially purged with Argon followed by evacuation. The resulting surface resistance varied from 0-20Ω. Boer et al, 2000 have coated YSZ with nickel applied by evaporation followed by annealing at 1000°C for 2hr under reducing conditions (10vol%H₂ in N₂). They have shown SEM images of porous electrodes.

Pellets of samarium based electrolytes with initial gold electrode resistance of 0-20Ω increased to greater than 200MΩ after impedance in argon with a maximum temperature of 400°C, therefore SEM images were taken to understand the change in electrode resistance. Figure 3-27. Gold electrode on samarium based electrolyte after impedance in argon shows gold as the white and electrolyte as black, and it clear that that the gold is not continuous, and this explains the high electrode resistance.

The colour of the electrode changed from a gold colour to an orange-red and the exposed cross-section of the pellet changed from yellow to brick red. This observation led to the investigation this increase in surface resistance using SEM analysis of the electrode surface.
SEM showed the electrode was not uniform but rather globules of gold could be seen on the surface, i.e. the electrode had become discontinuous Figure 3-27. SEM of the exposed cross section of the pellet before and after EIS measurements is shown in Figure 3-28 and Figure 3-29.

Morris et al. 2001 reports that gold can react with sulphur to form Au-S or Au-S₂ both of which are more covalent than ionic bonding therefore if sulphides ions are conducted to the electrode during the impedance measurements then the sulphide ions could subsequently react with the electrode to form Au-S or Au-S₂. The impedance was done in argon, and no other source of sulphur is present in the system to allow for such a reaction. Gold sulphide has a golden brown colour that matches the colour the electrode colour after E.I.S measurements.

![Figure 3-28. SEM image of cross section of samarium sulphide based pellet after EIS measurements](image)

![Figure 3-29. SEM image of cross section of samarium sulphide based pellet before EIS measurement](image)
SEM analysis of the reddish cross section of the pellet showed that a second phase had formed on the primary metal sulphide phase, Figure 3-29 when compared to SEM images taken before EIS measurements, Figure 3-29. Furthermore no gold was observed in the cross section of the pellet. This result led to the conclusion that the use of sputtered or thermal evaporated gold electrode on samarium based pellets was not successful due to a surface reaction between the gold and the electrolyte. The increase in surface resistance of the electrode was not due to loss of gold or due to gold entering the electrolyte, but rather attributed to the formation of discontinuous gold globules.

Neodymium sulphide doped materials formed stable gold electrodes since no significant change in electrode resistance was observed before and after EIS experiments. Also no colour change of electrode or electrolyte was observed after EIS measurements. SEM image of the electrode after EIS in Figure 3-30 shows a continuous phase (absence of large globules).

Figure 3-30. SEM image of gold electrode on undoped CaNd₂S₄ after EIS at 400°C in argon

In summary, gold is not suitable electrode material due to the apparent reaction with the electrolyte; hence this electrode was discontinued.

Graphite

The failure of gold in forming a stable electrolyte and the complexity of creating a stable platinum electrode led to the investigation of carbon electrodes. The initial investigation of sulphide ion conduction of CaNd₂S₄ was done using graphite electrodes, with no report of electrode-electrolyte interaction, Kalinina et. al. 1994. Figure 3-31 shows stable Nyquist plot of a sulphide electrolyte at 400°C in argon using graphite electrodes. The applied voltage was
increased from 0.01Vrms (used with gold and platinum electrodes) to 0.1Vrms on graphite electrodes to reduce the scattering observed at low frequencies. The need for higher applied voltage is possible due to the lower contact area between the mechanically pressed graphite plates and electrolyte.

![Figure 3-31. Nyquist plot at 400°C in argon using graphite electrodes](image)

Therefore the use of graphite electrodes allows higher temperatures to be examined, 400°C in argon, this suggest that the instability at lower temperatures with platinum electrodes was due to the electrode-electrolyte interaction and not loss of sulphide from electrolyte to the atmosphere. However higher applied voltages were need, 0.1Vrms for graphite electrode, compared to 0.01Vrms for platinum electrode.

3.4.4 Modelling E.I.S Experimental data

The aim of modelling of EIS data is to understand the conduction process and to derive characteristic parameters that describe this process. To understand the electro-chemical process, information of the physical conditions such as thickness, porosity, roughness etc, should be established. EIS data is best understood by the use of an appropriate model, hence modelling, which can be rather difficult, is the most important part of EIS technique.

Once reliable, repeatable experimental data are obtained, usually an equivalent circuit is chosen to fit the experimental data using complex non-linear least-squares (CNLS) which is a part of the Z-view© software. The CNLS procedure may deduce a complex equivalent circuit even though only one arc is seen; in such cases the number of arc should be estimated before modelling. The other main problem of modelling is that the same experimental data
maybe represented using different equivalent circuits. The choice of the equivalent circuit is based on which circuit can be explained in terms of the likely experimental conditions. Other errors in impedance modelling are associated with experimental errors in the data. This represents the greatest challenge in model identification and hence the utmost test of analysing impedance data. The challenge is tackled by using knowledge of the physical and chemical properties of the system and CNLS approximations. Macdonald, 1987, recommends that if a modelling element has more than 30% relative error, then this modelling element should be removed from the model.

Modelling should be carried out starting with the smallest number of equivalent circuit elements, then additional element can be added to decrease in the sum of squares; the decrease should be statistically significant. Apart from statistical test, it has been suggested that the bode phase angle plot is sensitive to the time constants. If the difference between the modelled data and experimental data is not random, then more circuit elements should be added.

General Chemistry of the system

The electrolyte material is not a single crystal but a rather a pellet made by compression followed by sintering, which gave a maximum of 94% of the theoretical density. This means that if conduction by ions occurs, one expects three arcs provided that their time constants are in the measurable range (greater than 10^{-7}s). These arcs would be attributed to conduction in the bulk of the material, conduction/blocking by the grain boundary and if the electrodes are insert, blocking of the ions by electrodes which should be an ionic insulation material.

The electrode materials used were gold, platinum and graphite plates; gold showed a reaction with the electrolyte which led to an easily observable colour change. Platinum showed unstable arcs in that experimental data was not repeatable. Carbon plates gave repeatable experimental data. The use of carbon plates which are mechanically pressed to the pellet leads to phenomena which has been coined as spreading resistance effect, Hwang, 1997. This effect is identified if the related impedance arc changes with the mechanical pressure, or if the activation energy of the resistance of the bulk and electrode arcs similar; activation energy is determined by plotting log($1/R$) vs $1/T$.

Practical Guidelines for E.I.S modelling

- Use the simplest equivalent circuit, however this circuit should model impedance at all frequencies, temperatures and partial pressure
Use Bode plot of phase angle vs frequency for time constant evaluation. Also there should not be a uniform difference between the modelled and experimental results, if this occurs it is an indication that more circuit elements should be added, see Appendix C, where a single R-CPE gives a poor fit in both Nyquist plot and the Bode plot, *Sum-of squares of 32.67*. Since a good fit between the modelled and experimental data was not obtained with one R-CPE element, another R-C or R-CPE can be added, *Sum-of squares of 1.869*. Modelling using the Z-view© software gives two statistical parameters to judge the goodness of fit, namely Chi-square and Weighted sum of squares, where both numbers reduce in value as the goodness of fit is increased. However each modelling parameter needs a physical justification, and this limits the number of circuit elements that can be used.

The ratio of the weight sum of squares, the variance ratio, of the old to new model gives an indication if the new model is justified by using the Fisher table. A shortened table is given below.

Table 3.1 Variance ratio \[\frac{\sum_{\text{new model}} \text{weighted squares}}{\sum_{\text{old model}} \text{weighted squares}} \] and the degrees of freedom \(v1 \) and \(v2 \) for old and new model respectively (Fisher table)

<table>
<thead>
<tr>
<th>V2</th>
<th>1</th>
<th>4</th>
<th>8</th>
<th>24</th>
<th>(\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>5.99</td>
<td>4.53</td>
<td>4.15</td>
<td>3.84</td>
<td>3.67</td>
</tr>
<tr>
<td>8</td>
<td>5.32</td>
<td>3.84</td>
<td>3.44</td>
<td>3.12</td>
<td>2.93</td>
</tr>
<tr>
<td>10</td>
<td>5.99</td>
<td>3.48</td>
<td>3.07</td>
<td>2.74</td>
<td>2.54</td>
</tr>
<tr>
<td>20</td>
<td>4.96</td>
<td>2.87</td>
<td>2.45</td>
<td>2.08</td>
<td>1.84</td>
</tr>
<tr>
<td>30</td>
<td>4.35</td>
<td>2.69</td>
<td>2.27</td>
<td>1.89</td>
<td>1.62</td>
</tr>
<tr>
<td>40</td>
<td>4.17</td>
<td>2.61</td>
<td>2.18</td>
<td>1.79</td>
<td>1.51</td>
</tr>
<tr>
<td>60</td>
<td>4.08</td>
<td>2.53</td>
<td>2.10</td>
<td>1.70</td>
<td>1.39</td>
</tr>
<tr>
<td>(\infty)</td>
<td>3.84</td>
<td>2.37</td>
<td>1.94</td>
<td>1.52</td>
<td>1.00</td>
</tr>
</tbody>
</table>

The degree of freedom for a model is the difference between the number of data-points used in the model and the number of circuit elements for the respective model. The degree of freedom used is approximately 60, therefore a change in models that gives a variance ratio greater than 1.39 is statistically correct. Considering the examples of Appendix C, the variance ratio changed from 17.48 when going from a 1-R//CPE model to a 1-R//CPE &
1R//C-1R//CPE; 4.019 when going from 1R//C-1R//CPE to 2R//CPE model, therefore both modelling changes are justified statistically.

- It is not recommended to use CPE for modelling impedance arc in the lower frequency range, because it is most used to model materials with distributed parameters. The high frequency arc is equivalent to that of a single crystal (that is the true bulk impedance) and is hence not a distributed physical property. Therefore even though the variance ratio is greater than 1.39, the physical explanation is not clear.

3.5 Four-Point DC resistivity measurement

Nyquist plot of real versus imaginary component of impedance may yield multiple arcs, and hence modelling using equivalent circuit is done to obtain the intercept of value of the real components. This intercept, determined by equivalent circuit modelling, at lowest frequency corresponds to the DC conductivity of the material. Different equivalent circuit models may give different values, hence four point DC resistivity measurements allows for an independent measurement of this value which will also aid in selecting the most appropriate equivalent circuit.

Two cells were designed, one for room temperature resistivity measurement and a second for elevated temperature resistivity measurement (<673K) to be used with Danbridge 501 four point DC resistivity meter, Figure 3-32. The probe has four BNC connectors located in the first insulating plate. Four pins in the second plate are located in an insulating plate made of machine-able ceramic while the third plate moves the sample towards and away from the pins in the second plate through a screw mechanism. All three plates are bolted to the aluminium supporting plate. The schematics of the pins contacting pellet is given in Figure 3-33.

![Figure 3-32 Actual equipment set up for 4-point DC resistivity measurement at low temperatures](image)
The measurement follows the procedure below:

a. Inserting reference sample into the measurement cell
b. Contacting reference pellet to four pins,
c. Performing zero check using a reference sample
d. Removing reference sample then inserting sulphide sample
e. Elevating sample until all four pins have made contact with sample
f. Recording resistance
g. Measuring thickness and diameter of sample

![Figure 3-33 Schematics of spring loaded pin](image)

2. The measurement for high temperature resistivity follows the procedure below:
 a. Inserting reference sample into the measurement cell, Figure 3-34
 b. Contacting sample to pins
c. Inserting measurement cell in to oven,
d. Isothermal period until target temperature (less than 200°C) is achieved
e. Performing zero check using a reference sample
f. Inserting sulphide sample
g. Elevating sample until all four pins have made contact with pellet
h. Isothermal period, 20mins, Recording resistance
i. Measuring thickness and diameter of sample

![Figure 3-34. High temperature 4-point DC resistivity measuring cell](image)
The surface resistivity was measured at room temperature using apparatus in Figure 3-32 as well as elevated temperatures, using apparatus in Figure 3-34, not exceeding 150°C. The instrument, Danbridge DB 501 High Speed DC Resistance Bridge, was operated in two modes, namely trig and continuous mode.

The resistance bridge gave consistent, within 2 decimal places, and quick reading for copper sulphide pellet, with a resistivity not greater than 3.545mΩ. For Yttria stabilised Zirconia, which is a known oxide ion conductor, the measurements fluctuated by several orders of magnitude. This suggests that the resistance bridge for measuring ohmic resistance may have significant deviations in the absolute value. The variation of the 4-point dc measurements is shown in Figure 3-35. However, it might become a qualitative indicator of differentiating pure electronic conductors versus ionic conductors; because electronic conductors give consistent results, while a known oxide ion conductor gave unstable results.

Figure 3-35. Variation in 4-point DC using manual mode for CaNd₂S₄+0.3Nd₂S₃

Figure 3-35. shows the DC resistivity values varied from 580kΩ to 640kΩ for CaNd₂S₄+30mol%Nd₂S₃ at room temperature. A similar variance was observed with the oxide ion conductor YSZ.

The resistance remained greater than 200MΩ when measured using a 2-point DC multi-metre at elevated temperatures. However the resistance measured using a 4-point DC resistivity bridge gave very high resistivity, until 150°C but at 200°C, the 4-point dc method showed a significant reduction in resistivity, Figure 3-36.
3.6 Reactor for Galvanic cell or Electrochemical Measurements

A two-chamber electrochemical reactor made from alumina tubes, 99.97 wt%, which can withstand temperatures up to 1800°C, was used to investigate the sulphide transference number of the electrolytes, by pumping sulphides ions through the metal sulphide electrolyte, induced by applying a voltage across the electrolyte.

The schematic of the electrochemical cell is shown in Figure 3-37, where stainless steel plates, which are bolted, together using three spring-loaded screws, hold the two ceramic compartments together. The electrochemical cell is of the form H₂S/H₂, Pt//Metal Sulphide//Pt, H₂, Ar.

The gas mixtures (H₂S, H₂) and (H₂, Ar), hence the presence of sulphur concentration gradient, were supplied at the same flow rate. Temperatures were kept isothermal for 30 min before application of the DC voltages.

The solid electrolyte was prepared by methods discussed in the pellet sintering section and the platinum electrode was prepared as documented in the section presented in the impedance spectroscopy section. Platinum electrodes were used rather than gold since platinum catalyses the reaction (1).

\[H_2S \rightarrow 2H^+ + S^{2-} \quad (1) \]

The electrochemical cell consists of hydrogen sulphide concentration on half of the cell and hydrogen (zero partial pressure of H₂S) on the adjacent side thus creating a concentration gradient, Figure 3-39 and Figure 3-39. At elevated temperatures, 450-800°C – three data
points, a direct current voltage is applied (maximum 10V), and the response current is measured.

It is expected that with the application of the DC voltage, a corresponding current flow will occur on the half-cell with H₂S according to equation (1). If the electrolyte is a pure sulphide ion conductor, no current flow is expected on the H₂ half-cell, i.e. the current should have a decay curve. If the electrolyte conducts positive ions as well, suggesting mixed conductor, a current flow would also occur when DC voltage is applied to the H₂ containing half-cell.

![Figure 3-37. Sketch of reactor cell used for pumping sulphide ions](image)

The measurement follows the procedure below:

- Insert pellet in the recess, Figure 3-39; this will be membrane that separates the two gaseous atmospheres, one hydrogen and the other hydrogen sulphide in hydrogen, and seal using high temperature cement.
- Insert ceramic tubes into the high temperature stainless steel which when tightened using spring loaded screw will aid the sealing of the compartments, Figure 3-38.
- Using same total flow rate of gases on either side of the reactor, measure the response current at 450, 550, 650, or 750°C, controlled with a Eurotherm 2416 temperature controller, to 1°C accuracy, when applied 0.1-5V (DC)
- At maximum temperature and highest DC applied volts, (maximum pumping rate), the exhaust gas, monitored for H₂S using a quadruple mass spectrometer. If sulphide ions are pumped through the membrane with application of a DC voltage, then an
increase in \(\text{H}_2\text{S} \) is expected (provided the change is significant and within the measurement range of the Mass spectrometer.

- Under no applied voltage, measure the open circuit voltage, OCV.

![Stainless Steel Plates](image1)

Figure 3-38. Reactor for two phase impedance and Galvanic cell measurements

![Recess for pellet](image2)

![Screw position](image3)

Figure 3-39. Internals of two electrochemical phase reactor

The reactor is clamped together using three screws. Gas will enter using 1/16’’ swage-lock fittings to be added to the open end of both tubes. Over tightening one of the screws caused the pellet to crack. This limitation lead to the design of an electrochemical cell that has limited weight exerted onto the pellet.

The modified cell used only high temperature cement as sealant, while the compartment were made either of 67% alumina, 99.7% alumina or quartz. Gas tight compartments was not formed when high purity alumina, 99.7%, \(\text{Al}_2\text{O}_3 \), was used, hence this material was discontinued. Figure 3-40 and Figure 3-41 shows slight variations in design of the electrochemical cell used.
This set-up, Figure 3-40, relies on the high temperature cement not shorting circuiting at elevated temperatures since the entire pellet surface was painted with platinum, which was contacting high temperature cement. The portion of 67% alumina used to reduced the inside diameter, i.d., from 20mm to 18.5mm to support pellet which has outside diameter, o.d., of 18.7mm to 19mm, is assumed to be insulation. The identical reactor was also made completely of 66% alumina, as shown in Figure 3-40, and the only change in operation was the contact between platinum electrode and tungsten (Pt painted) was established my continuity measurement using a 2point DC multi-meter.

The second version of the two phase reactor was made either from 66% alumina or quartz tubes with reduced electrode area so that the high temperature sealant does not short circuit the system at high temperatures, Figure 3-40. Also the pellet is sealed on one side only, this was achieved by using a cap or recess design similar to Figure 3-40. The reactor and schematic is represented in Figure 3-40.
3.7 Experimental References

Chapter 4

4 Characterisation and electrochemical application of CaNd₂S₄ and SrNd₂S₄ doped with Nd₂S₃

The ionic conductor calcium neodymium sulphide doped with excess neodymium sulphide has previously been synthesised and characterised by Kalinina et. al., 1995. Two galvanic cells operating by using an instant touch method described by equations (1) and (2) were used to differentiate cation conduction from anion conduction; equation (1) describes the galvanic cell, which is reversible to the calcium ion conduction, and equation (2) describes the galvanic cell, which is reversible to sulphide ion conduction.

\[C, Ca | CaNd_2S_4-xmol\%Nd_2S_3 | CaNd_2S_4Ca, C \] \hspace{1cm} (1)
\[C, Fe, FeS | CaNd_2S_4 | CaNd_2S_4-xmol\%Nd_2S_3 | FeS, Fe, C \] \hspace{1cm} (2)

Based on the measured electromotive force, e.m.f, in the temperature range of 400-500°C the anionic transport number, defined, as the ratio of anion conduction to total conduction, was determined. These galvanic cells identified the electrolytes to be predominantly sulphide ion conductors at these temperatures with the remainder of the conduction attributed to calcium ions, with no mention of electronic conduction. With increasing temperature the anionic transport number (sulphide ion conduction) increased while the reverse is true for the cationic transport number (calcium ion conduction), see Table 4.1.

The instant touch method does not measure the steady state response of a system, and as such the technique has an inherent vulnerability. Considering equation (1), the cell that is reversible to calcium ions, mobile calcium ions needs to be activated from calcium, enter the AB₂S₄-xB₂S₃ unit cell, conduct through and then enter AB₂S₄. This progression path includes many steps beyond calcium ion conduction through the electrolyte being tested. It requires formation of Ca²⁺ from Ca as well as mobility of this species across several interfaces. Therefore if any of these steps were inherently slow, they could significantly influence the instantaneous measurement of S²⁻ and Ca²⁺ conduction.

Table 4.1. Transport numbers for calcium and sulphide ions in CaNd₂S₄+10mol%Nd₂S₃, Kalinina et. al. 1995

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Transport numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sulphide ion (±0.02)</td>
</tr>
<tr>
<td>450</td>
<td>0.92</td>
</tr>
<tr>
<td>470</td>
<td>0.95</td>
</tr>
<tr>
<td>500</td>
<td>0.97</td>
</tr>
</tbody>
</table>

106
The high transport number for sulphide ion conduction was attributed to the presence of channels in the crystal structure. The channel size radius, which is required for sulphide ion conduction, is 0.911 Å for a Th₃P₄ cubic lattice and apparently is satisfied in this crystal structure. However, the channel size, which is required for calcium ion in this cubic structure, is 0.493 Å and this crystal structure does not meet this requirement. Does this mean that once the channel has the correct size the ion can therefore move in it? Probably not, because other parameters such as local electro-neutrality must be met and a sufficient number of vacancies must also be present.

Kalinina et al. 1995 further describe these sulphides as having intrinsic defects, where charge neutrality is maintained. These defects are known to increase with temperature, which provides a possible explanation of the increase in S^{2-} transport number as the temperature is increased. The defect formation in these sulphides is described by equation 3 using Kröger-Vink notation:

\[
(CaNd₂S₄)\text{lan} \leftrightarrow Ca^{+2}_\text{Ca} + 2Nd^{+3}_\text{Nd} + 3S^{+2}_\text{S} + \frac{1}{2}S^{+2}_\text{S} + V^{++}_\text{S} + 2e
\]

Where Ca^{+2}_Ca - calcium ion on a calcium lattice site
Nd^{+3}_Nd - neodymium ion on a neodymium lattice site
S^{+2}_S - sulphur ion on a sulphur lattice site
V^{++}_S - vacant sulphur lattice site
ee - electron

The equilibrium equation (3) shifts to the right with an increase in temperature, hence sulphur loss to the atmosphere increases and the formation of sulphur vacancies, V^{++}_S, which is responsible for sulphide ion transport, also increases. It should be noted that maintenance of electro-neutrality requires that for every sulphur vacancy formed an associated calcium vacancy, V^{+}_Ca, must also be present, thereby increasing the calcium ion conduction with increasing temperature. Based on the work of Kalinina et al., 1995 this series appears to be a promising start in order to find sulphide ion conductors.

Varying the dopant concentration as well as the host cation has been done to optimise ionic conductivity for high temperature oxide ion conducting electrolytes such as cerium-based system. For example ceria doped with lanthana, gadolinia or ytterbia established that gadolinia was the best dopant cation and that maximum conductivity, Faber et al., 1989.
Earlier work by Worrel et. al. 1967 attempted to develop high temperature sulphide ion conducting electrolytes by using a calcium sulphide based compound, however the secondary sulphide used was Y_2S_3 rather than Nd_2S_3. The resulting compound was not characterised for its crystal structure but electrochemical measurements made at sulphur partial pressures greater than 10^{-6} atmosphere showed that the resistance was a function of partial pressure which is an indication of electron-hole conduction. At lower sulphur partial pressures doping with Y_2S_3 leads to an increase in cation conduction. It should be noted that Kalinina et. al., 1995 mentioned CaS-Y_2S_3 as a sulphide ion conductor.

A family of compounds was prepared, White 2005, by combining stoichiometric amounts of calcium sulphide (CaS) and neodymium sulphide (Nd_2S_3) with 10-30mol% excess Nd_2S_3, by heating in an argon atmosphere up to 1200°C for 24hrs to form the compound $CaNd_2S_4+xNd_2S_3$ according to a procedure established by Kalinina et. al. 1995. X-ray analysis for these compounds lead to the identification and crystal structure calculation using Rietveld analysis. $CaNd_2S_3+(0, 0.1, 0.2, 0.3)Nd_2S_3$ has a cubic unit cell, see Figure 4.1, White, 2004. Where black spheres represent Nd, smallest grey spheres represent Ca and larger grey spheres represent sulphur. The X-ray pattern shows that an increase in dopant level does not lead to great changes in the general XRD pattern; however slight shifts in the peak locations were noted, Figure 4.1, White, 2005

![Figure 4-1. Unit Cell Structure and X-ray pattern of $CaNd_2S_3+(0.0-0.3Nd_2S_3$, White, 2005](image-url)
Pelletizing CaNd₂S₄ series

Successful synthesis of dense, crack free pellets is needed for impedance spectroscopy and electrochemical pumping experiments. Densification processing of sulphides requires that the starting materials should have a very small average diameter (<10μm) to achieve sintered pellet density greater than 80% of the theoretical density, Chess, 1983. The particle size distributions for CaNd₂S₄ series measured using a coulter counter (with acetone as dispersant) or scanning electron microscopy, SEM. The initial mean particle size of 90μm was reduced to less than 5μm, Figure 4.2, after 3 days ball milling with zirconia balls.

Figure 4-2 SEM of CaNd₂S₄ powders before and after grinding

The grounded powders were poured into a dye and mechanically pressed up to 10 tons, producing a ‘green’ or un-sintered pellet. The ‘green’ pellet, heated in a 10 vol%H₂S atmosphere up to 1350°C for 8 hrs. This produced pellets with a maximum of 95% of the theoretical density; having its actual density greater than 95% of the theoretical density identifies a dense pellet, Table 4.2. Increasing temperatures to more than 1350°C produced curved pellets rather than flat ones; hence the final sintering temperature was chosen to be 1350°C.

Scanning electron microscopy (SEM) of the pellets surface exhibits 2μm pores with fairly thin grain boundaries, Figure 4-3. Therefore the pellets were not fully dense when made with smallest average particle size and at maximum temperature. A consequence of using a pellet that is not dense for impedance spectroscopy is the observation of Nyquist plots with the depressed arcs, that is, the centres of the arcs are likely to be below the real axis. The presence of depressed arcs is successfully modelled by constant phase elements (CPE).
An even more pronounced consequence of using a pellet which is not dense in characterising by electrochemical pumping, is the possibility of mixing of the gases in the separate chambers due to diffusion through the pores. Thus a symmetric current response could result with the application of anodic or cathodic potential. This could be misinterpreted as electronic conduction in the electrolyte rather than the bypassing of H₂S through the electrolyte.

![Figure 4-3. SEM CaNd₂S₄ sintered pellet made with pre-grounded powder](image)

<table>
<thead>
<tr>
<th></th>
<th>Theoretical density (g/cm³)</th>
<th>Actual density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un-doped</td>
<td>4.888</td>
<td>4.646</td>
</tr>
<tr>
<td>10mol% doped</td>
<td>4.819</td>
<td>4.356</td>
</tr>
<tr>
<td>20mol% doped</td>
<td>4.76</td>
<td>4.524</td>
</tr>
<tr>
<td>30mol% doped</td>
<td>4.715</td>
<td>4.425</td>
</tr>
</tbody>
</table>

4.1 Temperature Programmed Oxidation and Reduction of CaNd₂S₄ series

The thermal stability of the prepared series CaNd₂S₄ₓNd₂S₃ was established using temperature programmed oxidation (TPO) and temperature programmed reduction (TPR). The TPO trace of this series consists of one major peak with a shoulder to the higher temperature side, Figure 4-4, with the undoped compound showing a minor peak at 825°C. Because of its insignificant small area (less than 3% of the major peak) the small peak was ignored. The presence of one major peak indicates that only one type of sulphur reacts to form sulphur dioxide. Since neodymium sulphide was formed by direct combination of the metal with sulphur it is conceivable that non-stoichiometric sulphur could be present. Also the absence of post treatments such as regrinding and heating to remove any trace amounts of excess (non-stoichiometric) sulphur causes the solid state synthesis method to be vulnerable...
to produce compounds with non-stoichiometric sulphur. However the presence of excess sulphur would be identified in TPO by the presence of a sulphur dioxide peak at low temperature (less than 300°C), but this was not observed. Hence the presence of a single phase was also supported in this series of compounds.

Figure 4-4 TPO of CaNd₂S₄+0.0-0.3Nd₂S₃ using a heating rate of 10°C/min

The sulphur dioxide peak for this family of compounds is located in the range of 671-723°C when a heating rate of 10°C/min is used, Figure 4.4. The onset temperatures, Table 4.3, for the oxidation of these compounds are fairly similar with approximately 60°C increase in temperature at 10mol% excess Nd₂S₃. Further increase in excess Nd₂S₃ caused the onset temperature to decrease. The absence of a second peak up to the maximum dopant concentration of 30mol% Nd₂S₃, indicates that a single phase compound was formed (in agreement with the X-ray pattern in Figure 4.1). This high solubility is unusual for sulphides since 1-16mol% is the typical range, Lowe-Ma et al., 1992.

Table 4.3. Oxidation onset and peak temperatures for CaNd₂S₄ series and lattice parameter

<table>
<thead>
<tr>
<th>Compound</th>
<th>Onset temp. (°C)</th>
<th>Peak temp. (°C)</th>
<th>Lattice parameter Å (a-site)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaNd₂S₄+0.0Nd₂S₃</td>
<td>671</td>
<td>754</td>
<td>8.5301(1)</td>
</tr>
<tr>
<td>CaNd₂S₄+0.1Nd₂S₃</td>
<td>723</td>
<td>726</td>
<td>8.5399(1)</td>
</tr>
<tr>
<td>CaNd₂S₄+0.2Nd₂S₃</td>
<td>708</td>
<td>715</td>
<td>8.5280(1)</td>
</tr>
<tr>
<td>CaNd₂S₄+0.3Nd₂S₃</td>
<td>703</td>
<td>730</td>
<td>8.5273(1)</td>
</tr>
</tbody>
</table>
The volume of the unit crystal decreases as the dopant level is increased. Contraction of the unit cell, Table 4.2 (due to creation of cation and anion vacancies) is accompanied by an increase in onset temperatures, Table 4.3. The increased TPO onset temperature for all doped-CaNd$_2$S$_4$ relative to CaNd$_2$S$_4$ may be due to the general decrease in ionic distances of the crystal lattice. Reduced lattice distance may create stronger ionic bonds and hence the higher temperatures at which the sulphide ions leave the structure and reacts with oxygen forming sulphur dioxide.

Temperature programmed oxidation is used to determine the thermal activation energy of compounds by measuring the peak temperature as a function of the heating rate. The peak temperature is defined as the temperature at which the maximum SO$_2$ signal is measured by the mass spectrometer. The relationship between peak temperature and heating rate gives an Arrhenius plot, the corresponding slope gives the thermal activation energy for the compounds, Figure 4-5. The heating rates used were 5, 10, 20 and 40°C/min. The slope of the line (-E/R) where R is the universal gas constant (8314.4J/kg-mol-K), gives the thermal activation energy.

![Arrhenius plot of thermal activation energy for undoped CaNd$_2$S$_4$](image)

Figure 4-5. Arrhenius plot of thermal activation energy for undoped CaNd$_2$S$_4$

The thermal activation energy increases as the dopant level is increased to 10mol% Nd$_2$S$_3$, which is consistent with the knowledge of an unexpanded unit cell being more stable, Figure 4-6. However the increase of thermal activation energy approximately by a factor of two with the initial addition of excess Nd$_2$S$_3$, appears to be anomalous. Further increase of dopant causes a reduction in the activation energy, possibly due to the larger number of lattice vacancies at 20 and 30mol% doping.
Figure 4-6. Activation energy trend for the CaNd2S4+0.0-0.3Nd2S3 series

The lowering of the activation energy with the addition of greater than 10mol% Nd2S3, coinciding with an increase in the number of vacancies is consistent. The following equations, (4) and (5), were considered to interpret these changes in activation energies. The liberation of SO2 and the consumption of O2 may occur as:

\[S^{2-} + O_2 \rightarrow SO_2 + 2e^- \text{(SO}_2\text{ formation)} \]
\[S^{2-} \text{leaving the unit cell} \]

\[O_2 + 2e^- \rightarrow O^{2-} \text{(oxide formation)} \]
\[O^{2-} \text{entering the unit cell} \]

Oxidation of CaNd2S4 series involves the creation of an oxide anion from a gaseous oxygen molecule, equation 5. The formation/ionization energy for this reaction is documented, and it is possible that the measured activation energy for the overall oxidation process of CaNd2S4 series depends significantly on the extent of oxide ion formation. Typical values reported by Greenwood, 1968 for the formation of an oxide ion is 732±8.4 kJ/mol, which is similar in order of magnitude to the activation energy for the oxidation of CaNd2S4 series.

The extent of oxidation is calculated by integrating the SO2 peak in the TPO trace, (with units a.u.·min), Figure 4.4, and using the SO2 calibration curves in Appendix B to convert the area in arbitrary unit to moles·min. The percent sulphur liberated from the structure was calculated using the mass of reacted sulphur (based on SO2 measured) relative to the total sulphur in the compound (based on sample mass oxidised), expressed by equation 6.
Percent Oxidation = \frac{\text{moles } S_2^-_{\text{measured as } SO_2}}{\text{moles } S^x_{\text{in sample}}} \times 100 \tag{6}

Where \(S_2^- \) - moles of SO\(_2\) liberated and measured by Mass Spectrometer

\(S^x \) – Sulphur in crystal lattice, moles of sulphur based on the mass of the sample

Both the un-doped CaNd\(_2\)S\(_4\) and the CaNd\(_2\)S\(_4\)+0.1Nd\(_2\)S\(_3\) liberate over half of their sulphur as sulphur dioxide, Figure 4-7, yet there was a significant difference in thermal activation energy, Figure 4-6. Hence the thermal activation energy is related to parameters other than the amount of sulphur released (as SO\(_2\)).

![Figure 4-7. Percent Oxidation of sulphide to form sulphur dioxide](image)

CaNd\(_2\)S\(_4\)+0.2Nd\(_2\)S\(_3\) and CaNd\(_2\)S\(_4\)+0.3Nd\(_2\)S\(_3\) releases less than 50% of the total sulphide ions available, this was accompanied by a reduction in the thermal activation energy relative to CaNd\(_2\)S\(_4\)+0.1Nd\(_2\)S\(_3\), Figure 4-7. Therefore a loose relationship between the thermal activation energies and the extent of SO\(_2\) released appears to exist for the doped compounds. However undoped CaNd\(_2\)S\(_4\) has a low activation energy even though the amount of sulphur released from the unit cell was comparable to CaNd\(_2\)S\(_4\)+0.1Nd\(_2\)S\(_3\), this result does not fit into the general assumption that the thermal activation energy is directly proportional to the amount of sulphur removed from the crystal lattice.

A typical mass spectrometer trace for oxygen consumed during the oxidation CaNd\(_2\)S\(_4\)+0.1Nd\(_2\)S\(_3\) is shown in Figure 4-8. The presence of significant noise when compared with the SO\(_2\) trace in Figure 4-4 is due to the high background value of oxygen in the mass spectrometer (mass spectrometer O\(_2\) background signal is 2\(\times\)10\(^{-8}\) while that of SO\(_2\) is 1\(\times\)10\(^{-12}\)). The oxygen trace can be described as having two peaks, the first peak with an onset
temperature of 700°C and the higher temperature second peak with an onset temperature of 911°C. The low temperature peak is narrow and well defined while the high temperature peak is much wider with an ill-defined shape. Analysing the oxygen consumption traces for this series showed that the second peak became smaller as the dopant increased except for CaNd$_2$S$_4$+0.2Nd$_2$S$_3$ where no high temperature peak was observed. Because the second oxygen consumption peak has no corresponding sulphur dioxide peak, it is attributed to the formation of the sulphate.

When considering the oxygen balance for undoped CaNd$_2$S$_4$, excess oxygen was consumed compared to what was needed for the formation of the oxide and the release of sulphur dioxide. The excess oxygen consumed could be used to form the mixed sulphate-oxide system by the following reaction

$$\text{CaNd}_2\text{S}_4 + 7\text{O}_2 \rightarrow \text{CaNd}_2\text{O}_2\left(\text{SO}_4\right)_2 + 2\text{SO}_2$$ \hspace{1cm} (7)

![Figure 4-8. TPO showing O$_2$ trace for un-doped CaNd$_2$S$_4$](image)

Therefore, based on the high oxygen uptake and the low sulphur release, a mixed oxide-sulphate system was produced under the current oxidising conditions. Similar analysis was done for the doped CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ which shows that even more oxygen was consumed, equation (8), to a mixed oxide-sulphate, which also agrees with the increased activation energies. The summary of the sulphur and oxygen balance gives the following

$$\text{CaNd}_{2.2}\text{S}_{4.3} + 7.35\text{O}_2 \rightarrow \text{CaNd}_2\left(\text{O}_2\right)_{2.5}\left(\text{SO}_4\right)_{1.8} + 2.5\text{SO}_2$$ \hspace{1cm} (8)
Sulphur and oxygen balance for the CaNd$_2$S$_4$+0.2Nd$_2$S$_3$ showed a significant decrease in the oxygen consumption such that a compound free of a sulphate group appeared to have been formed. The proposed reaction as a result of the sulphur and oxygen balance is given in equation (9)

$$CaNd_{2.4}S_{4.6} + 1.8O_2 \rightarrow CaNd_{2.4}S_{3.4}O_{1.2} + 1.2SO_2$$ (9)

Repeating the oxygen and sulphur balances for the CaNd$_2$S$_4$+0.3Nd$_2$S$_3$ showed an increase in the amount of sulphur dioxide liberated relative to the CaNd$_2$S$_4$+0.2Nd$_2$S$_3$, as well as increase in the amount of sulphate formation. The proposed reaction as a result of the sulphur and oxygen balance is given in equation (10)

$$CaNd_{2.6}S_{5.2} + 3.6O_2 \rightarrow CaNd_{2.6}S_{3.075}(SO_4)_{0.675}O_{1.5} + 1.5SO_2$$ (10)

Therefore, in summary, the calcium neodymium sulphide series does not form a pure oxide at 1000°C but all compound seem to form a mixed oxide-sulphate system, Figure 4-9. The CaNd$_2$S$_4$+0.0Nd$_2$S$_3$ and CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ oxidised in a similar manner. Both compounds appear to exchange all of their sulphide ions to form oxide or sulphate species. At higher dopant levels this behaviour changes since at Nd$_2$S$_3$ dopant levels beyond 10mol%, sulphide ions remain in the crystal lattice at maximum temperature rather than reacting to form oxide and sulphate species, Figure 4-9. This is consistent with the experimental observation of a lowering in thermal activation energies at 20mol% and 30mol% doping. While the oxygen and sulphur balance does not explain the marked increase in thermal activation energy for the doped compounds it does agree with the subsequent reduction in activation energies with increasing Nd$_2$S$_3$ content. Remarkably galvanic cell characterisation by Kalinina, 1994, states that CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ has the highest sulphide ion conductivity and this compound also released the highest amount of sulphur from the unit cell to form SO$_2$, see equation (8). This could imply that conductivity is related to the mobile sulphide ions via electrochemical activation is related to thermally activated mobile sulphide ions, but further investigation is needed to confirm this observation.
4.2 Temperature Programmed Reduction

TPR experiments were conducted up to 1000°C in an H₂/Ar atmosphere (10vol%H₂). The resulting H₂S signal for the CaNd₂S₄ series remained at the maximum detection level at 1000°C suggesting that the reduction reaction was incomplete at this temperature, Figure 4-10. The onset temperature was determined by a graphical procedure where a line was drawn parallel to the steepest slope of the H₂S trace, and the intercept of this line with the base line H₂S signal gives the onset temperature.

The onset temperature of 766°C, the highest for CaNd₂S₄+0.1Nd₂S₃ is comparable with the TPO experiments, where a maximum oxidation onset temperature of 723°C was measured. The CaNd₂S₄ based compounds were all marginally more stable under reducing conditions, Table 4.4.
Figure 4.10. TPR of CaNd$_2$S$_4$+0.0-0.3Nd$_2$S$_3$

Table 4.4 TPR onset temperatures for the Calcium Neodymium Sulphide series

<table>
<thead>
<tr>
<th></th>
<th>TPR Onset temp (°C)</th>
<th>TPO onset temp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaNd$_2$S$_4$+0.0Nd$_2$S$_3$</td>
<td>737</td>
<td>671</td>
</tr>
<tr>
<td>CaNd$_2$S$_4$+0.1Nd$_2$S$_3$</td>
<td>766</td>
<td>723</td>
</tr>
<tr>
<td>CaNd$_2$S$_4$+0.2Nd$_2$S$_3$</td>
<td>711</td>
<td>708</td>
</tr>
<tr>
<td>CaNd$_2$S$_4$+0.3Nd$_2$S$_3$</td>
<td>724</td>
<td>703</td>
</tr>
</tbody>
</table>
4.3 Electrochemical Impedance Spectroscopy of Nd$_2$S$_3$ doped CaNd$_2$S$_4$

The bulk conductivities and other electrochemical properties of calcium neodymium sulphide doped with excess neodymium sulphide were characterised using electrochemical impedance spectroscopy, (EIS). This characterisation technique combined with the correct equivalent circuit model also measures activation energy for ionic hopping and the time constants for conduction processes. Other information such as identifying whether the material's conduction is controlled by highly resistive grain boundaries causing significant ohmic losses (an undesirable feature for these materials if they are to find application in fuel cells and electrochemical reactors) can also be established. For example yttria stabilised zirconia (YSZ) is the most studied solid oxide ion conductor has its main limitation in its high resistive grain boundaries, which is clearly observable in EIS measurements of this electrolyte, Bauerle, 1969. EIS is also used to distinguish between bulk properties from bulk/electrode interface properties, which can lead to the selection of the most appropriate electrode material.

The bulk conductivities of Nd$_2$S$_3$ doped CaNd$_2$S$_4$ was investigated in the temperature range between 50°C and 400°C using gold or carbon electrodes. An ac voltage of 0.1 Vrms was applied at frequencies between 1×10^6 and 0.1 Hz in an argon atmosphere. A delay of 1 hour was employed for temperature stabilization.

Generic interpretation of a Nyquist plot is that the high frequency arc for ionic conductors gives the bulk conductivity of the material. The low frequency arc may indicate grain boundary conduction or electrode effects depending on the capacitive values, for example, 0.3 pF is a typical value for the capacitance for grain boundary conduction while 3.5 pF (10 times greater) is associated with electrode effects.

4.3.1 Impedance Spectroscopy of CaNd$_2$S$_4$ series using gold electrodes

The Nyquist plot of all doped compounds of the CaNd$_2$S$_4$ series using gold electrodes shows a single arc, except for the 10 mol% doped, which has two arcs, Figure 4-11 to Figure 4-11. The second arc for CaNd$_2$S$_4$+0.1Nd$_2$S$_4$ suggests either very resistive grain boundaries or ionic blocking electrodes. At low frequencies (less than 10 Hz) the arc appears to intercept the real axis however, at even lower frequencies the real part of the impedance decreases significantly, hence the horizontal set of points along the real axis. This behaviour was observed at 200°C and upwards at low frequencies (less than 100 Hz), which is generally associated with electrode effects. The arc observed at high frequencies (greater than 100 Hz) can be ascribed to the bulk resistivity of the material. While the number of arcs in the Nyquist plot of CaNd$_2$S$_4$ remains independent of temperature. Figure 4-11, the direction of the lowest
frequency (less than 10Hz) horizontal line reverses at higher temperature. Therefore a
switching behaviour occurs when going from 350°C to 400°C at low frequencies. The
formation of the horizontal line was observed in the same frequency range as before, namely,
between 10 and 0.01Hz (again range corresponding to electrode reactions), Figure 4-11.

Figure 4-11. Nyquist plot of CaNd$_2$S$_4$ +0.1Nd$_2$S$_3$ using gold electrodes at elevated temperatures

The low frequency switching effect was also observed at similar temperatures for all CaNd$_2$S$_4$
compounds. The Nyquist plot has an exceptional feature for CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ which is a
second arc that could represent either blocking grain boundaries or ionic blocking electrode,
Figure 4-11 and 4.13.

Figure 4-12 Bode plot of CaNd$_2$S$_4$ +0.1Nd$_2$S$_3$ using gold electrodes at elevated temperatures
4.3.2 Equivalent circuit modelling for CaNd$_2$S$_4$ with gold electrodes

All Nyquist plots, exclusive of CaNd$_2$S$_4$+0.1Nd$_2$S$_3$, seem to exhibit one major arc; the experimental impedance data were modelled initially with a single R//C element. The fit between the R//C equivalent circuit and experimental data was not excellent, Figure 4-14. A significant improvement in the goodness of fit between the modelled and experimental data was achieved by replacing the ideal capacitive component with a distributed capacitor, Constant Phase Element (CPE), Table 4.5, Figure 4-15. The depression of the arc in the Nyquist plot could be associated with the low-density of the pellet, Table 4.5. The optimum model is the one with minimum number of equivalent circuit elements, e.g. resistors and capacitors, which minimizes the statistical parameters Chi-square and Sum-of-squares (which are measures of the goodness of fit between experimental and modelled data). Therefore modelling the experimental impedance data for all compounds in the CaNd$_2$S$_4$ series exclusive of CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ with a parallel R/CPE model gave a good fit between experimental and modelled impedance (Table 4.5) hence this was the selected model, Figure 4-16.

A good fit is evident when the real vs. imaginary impedances (Nyquist plot) as well as the phase angle (theta) vs. frequency plot (Bode plot) agrees for both modelled and experimental data. All the error on each modelling parameter, such as a resistor, should be less than 30%.
Table 4.5. Statistical parameters evaluating the goodness of fit for gold coated CaNd$_2$S$_4$ series alternative models

<table>
<thead>
<tr>
<th>Models</th>
<th>Chi-square</th>
<th>Weighted-sum-of-squares</th>
<th>Maximum error on equivalent circuit element</th>
</tr>
</thead>
<tbody>
<tr>
<td>R//C model</td>
<td>3.66x10$^{-4}$</td>
<td>0.071</td>
<td>24%</td>
</tr>
<tr>
<td>R//CPE model</td>
<td>3.87x10$^{-4}$</td>
<td>0.061</td>
<td>42%</td>
</tr>
<tr>
<td>R//C-R//CPE Model</td>
<td>8.13x10$^{-4}$</td>
<td>1.651</td>
<td>5042%</td>
</tr>
<tr>
<td>Bauerle model</td>
<td>2.64x10$^{-4}$</td>
<td>0.04151</td>
<td>12%</td>
</tr>
</tbody>
</table>

![Diagram of equivalent circuits](image)

Where,

- R_b – Bulk resistance, Ω
- R_{gb} – Grain boundary resistance, Ω
- R_{ele} – Electrode resistance, Ω
- C_b – Bulk capacitance, F
- C_{gb} – Grain boundary capacitance, F
- C_{ele} – Electrode capacitance, F

Figure 4-14. Alternative equivalent circuits for CaNd$_2$S$_4$ series with gold electrode

Figure 4-15. Nyquist and Bode plots experimental and modelled result for undoped gold-coated CaNd$_2$S$_4$ at 350°C using R//C and R//CPE models
Figure 4-16. Nyquist and Bode plots of experimental and modelled data for CaNd2S4+0.1Nd2S3 using gold electrodes in argon at 250°C

For CaNd2S4+0.1Nd2S3, at least two arcs are present in the Nyquist plot, Figure 4-14, hence the starting model would be of the form R//C-R//CPE. If however there is significant overlap, then the modified Bauerle equivalent model, three arc system, R//C-R//CPE-R//CPE is proposed, Figure 4-14. Ideally the proposed model should be valid for all experimental conditions inclusive of frequencies and temperatures, however based on Figure 4-14, the experimental data in the frequency range of 1-10Hz (known to be electrode effect) was not modelled since the capacitive component went to zero and the resistive component was not constant as a function of frequency. The Bauerle model was the most suitable for CaNd2S4+0.1Nd2S3 since an excellent fit at high frequencies was achieved, (this is very important since the bulk conductivities and activation energies are derived from this value), Figure 4-15.

4.3.3 Activation energy

From the modelled results the activation energy for the conduction process as well as the time constants are easily evaluated using equation 11;

$$\sigma = \left(\frac{\sigma_0}{T}\right) \exp\left(-\frac{\Delta H_m}{kT}\right)$$ \hspace{1cm} (11)

Where

- σ - conductivity S.cm$^{-1}$
- σ_0 - conductivity at standard temperature and pressure S.cm$^{-1}$ (pre-exponential factor)
- T - temperature (K)
- ΔH_m - activation energy for ionic migration
- k- Boltzman constant, 8.6175x10$^{-5}$ eV/K
It is conventional (Macdonald) to plot \(\ln(p/T)\), i.e., the resistivity rather than conductivity vs \(1000/T\), the slope \(\Delta H_m/k\) giving the activation energy for ionic migration.

The Arrhenius plot of undoped CaNd_2S_4 using either R//CPE or R//C-1R//CPE model resulted in a similar non-linear Arrhenius plots, Figure 4-17. Two distinct regions with different activation energies were observed even with the R//C-R//CPE model which models two arcs initially thought to represent bulk and boundary. Using the R//CPE model, which models the average bulk and boundary conduction, a non-linear Arrhenius plot is reasonable. However using the R//C-R//CPE model should yield linear Arrhenius plots with a slightly different slope for bulk and boundary conduction. Therefore the change in activation energy of both arcs, this suggests that the mechanism of conduction has changed; either a change in the conducting specie or a change in crystal, Figure 4-17.

![Figure 4-17 Arrhenius plot for ionic mobility for undoped CaNd_2S_4 with gold electrodes](image)

Table 4.6 gives the activation energies for the CaNd_2S_4 series using both models for both temperature ranges. It can be seen that at high temperatures the activation energy is much higher for the un-doped CaNd_2S_4 compared to the doped-CaNd_2S_4 compounds. Also the low temperature range (50-250°C) has an activation energy of 0.44-0.52eV which is 50% lower than the activation energy in the high temperature range, suggesting that at low temperature the conduction process is different from the high temperature range, possibly involving calcium ions. The doped CaNd_2S_4+0.1-0.2Nd_2S_3 gave very low activation energies, which is atypical for anionic conduction, and no activation energy could be calculated for CaNd_2S_4+0.3Nd_2S_3 due to extremely unstable impedance data.
Table 4.6. Activation energies for CaNd₂S₄ series using gold electrodes

<table>
<thead>
<tr>
<th>Electrolytes with gold Electrodes, 1st run</th>
<th>R//CPE</th>
<th>R//C-R//CPE (250-400°C)</th>
<th>R//C-R//CPE (50-200°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High temp. (eV)</td>
<td>Low temp. (eV)</td>
<td>High temp (eV)</td>
</tr>
<tr>
<td>CaNd₂S₄+0.2Nd₂S₃</td>
<td>0.35</td>
<td>0.19</td>
<td>0.12</td>
</tr>
<tr>
<td>CaNd₂S₄+0.1Nd₂S₃</td>
<td>N/A</td>
<td>N/A</td>
<td>0.44</td>
</tr>
<tr>
<td>Undoped CaNd₂S₄</td>
<td>1.19</td>
<td>0.52</td>
<td>1.02</td>
</tr>
</tbody>
</table>

N/A - not available

4.3.4 Bulk conductivities for gold coated CaNd₂S₄ series

The derived parameter, bulk conductivity, based on the equivalent circuit model is given in Table 4.7. Modelling the CaNd₂S₄ series using R//C-R//CPE compared with an R//CPE model caused the bulk conductivity to increase by an order of magnitude. This shows the importance of model selection, since it affects the calculated conductivity. Irrespective of the model used, CaNd₂S₄+0.1Nd₂S₃ is the least conducting of the series.

Table 4.7. Equivalent circuits and bulk conductivities calculated at 500°C for CaNd₂S₄ series with gold electrodes

<table>
<thead>
<tr>
<th>Material</th>
<th>R//CPE (S.cm⁻¹)</th>
<th>R//C - R//CPE(S.cm⁻¹)</th>
<th>R//CPE - R//CPE (S.cm⁻¹)</th>
<th>R//C-R//CPE (S.cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaNd₂S₄+0.2Nd₂S₃</td>
<td>6.18x10⁻⁴</td>
<td>2.74x10⁻⁴</td>
<td>5.75x10⁻²</td>
<td>1.83x10⁻⁵</td>
</tr>
<tr>
<td>CaNd₂S₄+0.1Nd₂S₃</td>
<td>2.10x10⁻⁶</td>
<td>1.55x10⁻⁶</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undoped CaNd₂S₄</td>
<td>1.67x10⁻³</td>
<td>9.00x10⁻³</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The total conductivity for CaNd₂S₄ series of 1-1.5x10⁻⁶ S.cm⁻¹ at 500°C, Kalinina et. al., 1995, was previously established using a galvanic cell with graphite electrodes. With the exception of 10mol% doped, the bulk conductivities for all other compounds are several orders of smaller greater. However when the bulk conductivity was measured using impedance spectroscopy of CaNd₂S₄ series with gold electrode gave larger conductivities than what was previously stated. Using galvanic cell measurements.
4.3.5 Time constant analysis for gold coated CaNd₂S₄ series

The time constant is given by the following expressions where the choice of equation is based on the modelling elements used. For a simple resistor-capacitor (R//C) circuit, the time constant for that process is

\[\tau = RC \]

(12)

For the case of a resistor-constant phase element (R//CPE) circuit, the time constant for that process is given as

\[\tau = (RA_o)^\psi \]

(13)

Where \(\tau \) – time constant, s

\(R \) - resistor, \(\Omega \)
\(C \) - capacitor, \(F \)
\(A_o = C \), when \(\psi = 0 \),
\(\psi \) - fractional exponent, to model depressed arc, varies from 0 to 1

Time constant analysis, Table 4.8 and Table 4.9, for the conducting species in the un-doped CaNd₂S₄ is much faster than the oxide anion in YSZ at comparable temperatures. The CaNd₂S₄+0.1Nd₂S₃ has similar time constant to YSZ, making this compound more likely to be conducting sulphide ions. CaNd₂S₄+0.2Nd₂S₃ has time constants three orders of magnitude smaller than YSZ, which is unexpected for ionic conduction; such small time constant is rationally attributed to electron-hole conduction. Assuming that sulphide ions were hopping, then their time constants would arguably be larger than those of oxide, assuming similar hopping distance. These data suggest that the low activation energies and very fast time constants are not a measure of bulk anionic conduction of ions within these electrolytes.

Table 4.8. Circuit parameters for Zr₂O+6mo%Y₂O₃, Bauerle 1969 at 240°C

<table>
<thead>
<tr>
<th>Grain interior (bulk)</th>
<th>Grain Boundary</th>
<th>Electrode blocking</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{gi} = 2.1M\Omega)</td>
<td>(R_{gb} = 1.5M\Omega)</td>
<td>(R_e = 5.0M\Omega)</td>
</tr>
<tr>
<td>(C_{gi} = 4.8pF)</td>
<td>(C_{gb} = 1.7nF)</td>
<td>(C_e = 2.0\mu F)</td>
</tr>
<tr>
<td>(\tau = 1.01x10^{-3}s)</td>
<td>(\tau = 2.55x10^{-3}s)</td>
<td>(\tau = 1.0s)</td>
</tr>
</tbody>
</table>

Where:

\(gi \) - grain interior; \(bg \) - grain boundary; \(e \) - electrode

126
Table 4.9. Time constant analysis for CaNd$_2$S$_4$ series at 250°C using gold electrodes, application of alternative models of R//CPE or R/C-R//CPE

<table>
<thead>
<tr>
<th></th>
<th>Undoped CaNd$_2$S$_4$</th>
<th>CaNd$_2$S$_4$+0.1Nd$_2$S$_3$</th>
<th>CaNd$_2$S$_4$+0.2Nd$_2$S$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/C-R//CPE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulk</td>
<td>$R_{gi} = 0.54\Omega$</td>
<td>$R_{gi} = 2.9 \times 10^4\Omega$</td>
<td>$R_{gi} = 9.1 \times 10^4\Omega$</td>
</tr>
<tr>
<td>Grain boundary</td>
<td>$R_{gb} = 2.4 \Omega$</td>
<td>$R_{gb} = 1.5 \times 10^7\Omega$</td>
<td>$R_{gb} = 4.6 \times 10^3\Omega$</td>
</tr>
<tr>
<td>Bulk</td>
<td>$C_{gi} = 60.7\mu\text{F}$</td>
<td>$C_{gi} = 1.4 \times 10^{-10}\text{F}$</td>
<td>$C_{gi} = 1.01 \times 10^{-10}\text{F}$</td>
</tr>
<tr>
<td>Grain boundary</td>
<td>$C_{gb} = 0.2455\mu\text{F}$</td>
<td>$C_{gb} = 1.47 \times 10^{-9}\text{F}$</td>
<td>$C_{gb} = 3.3 \times 10^{-9}\text{F}$</td>
</tr>
<tr>
<td>Electrode</td>
<td>$\tau_{gb} = 2.45 \times 10^{-3}\text{s}$</td>
<td>$\tau_{gb} = 5.0 \times 10^{-3}\text{s}$</td>
<td>$\tau_{gb} = 9.98 \times 10^{-8}\text{s}$</td>
</tr>
<tr>
<td>R//CPE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulk</td>
<td>$R_{gi} = 2.3 \times 10^{-4}\Omega$</td>
<td>$R_{gi} = 1.7 \times 10^{-4}\Omega$</td>
<td>$R_{gi} = 9.1 \times 10^4\Omega$</td>
</tr>
<tr>
<td>Grain boundary</td>
<td>$R_{gb} = 1.5 \times 10^7\Omega$</td>
<td>$R_{gb} = 5.5 \times 10^6\Omega$</td>
<td>$R_{gb} = 6.5 \times 10^{-7}\Omega$</td>
</tr>
<tr>
<td>Bulk</td>
<td>$C_{gi} = 0.07\mu\text{F}$</td>
<td>$C_{gi} = 1.4 \times 10^{-9}\text{F}$</td>
<td>$C_{gi} = 8.8 \times 10^{-8}\text{F}$</td>
</tr>
<tr>
<td>Grain boundary</td>
<td>$C_{gb} = 1.47 \times 10^{-9}\text{F}$</td>
<td>$C_{gb} = 3.3 \times 10^{-9}\text{F}$</td>
<td>$C_{gb} = 6.5 \times 10^{-7}\text{F}$</td>
</tr>
</tbody>
</table>

4.3.6 Interface phenomena of Gold electrode and CaNd$_2$S$_4$ Electrolyte

Using Figure 4-18 it may be possible to explain the different behaviour between the electrolyte and gold electrodes at different temperatures. Mobile sulphide ions (predominantly from the bulk) may be conducted to the surface of the electrolyte due to the application of the small electrical potential (0.1Vrms). At low temperatures activated mobile sulphur could then react with the gold electrode to form Au$_2$S or AuS. These covalent compounds dissociate as the temperature is further increased. This possible phenomena occur between the bulk and the electrolyte, leaving the grain boundaries unaffected. The extent of the proposed reaction would be affected by the likelihood of the sulphide ions to reach the electrode, and since the number of sulphur vacancies increases with doping, the activation energy for this reaction to take place should decrease as the dopant is increased, as observed, Table 4.10.
Possibly dissociates Au -S association at low temperatures to S_2 or SO$_2$ in the absence of S partial pressure or re-enter crystal lattice

Au – S association at low temperatures

Grain boundaries, hence no contact with electrode

Au – S disassociation at high temperatures

Figure 4-18. Proposed mechanism for low activation with gold electrode

If this reaction occurs, then the resistance of the electrolyte should decrease as the reaction of a gold-sulphide compound proceeds due to the creation of vacant sulphide ion lattice sites. Decomposition of interfacial gold-sulphide compound at higher temperatures could lead to re-substitution of sulphide, thus restoring the initial resistance of the electrolyte is expected. However due to the absence of a positive sulphur partial pressure (argon atmosphere), sulphur liberated from the decomposition of AuS or Au$_2$S could form SO$_2$ with oxygen traces in the argon (laboratory grade Ar has ppm O$_2$) making complete re-substitution not likely. If this theory describes the reaction between gold electrode and the CaNd$_2$S$_4$ series, repeating the impedance experiment should result in an increase in conductivity and further lowering of the activation energy. The increase in conductivity would be due to the formation of vacancies as sulphur leaves the crystal structure.

Step 1. \[(CaNd_{2}S_{4})_{\text{lattice}} + Au \rightarrow Ca_{Ca}^{x} + 2Nd_{Nd}^{x} + 3S_{S}^{x} + AuS + V_{S}^{**} + 2e \] (13)

Step 2. \[AuS \leftrightarrow Au + \frac{1}{2}S_{2}^{*} \] Depending on Temperature

Step 3. \[\frac{1}{2}S + O_{2\text{(trace)}} \rightarrow SO_{2} \] or \[Ca_{Ca}^{x} + 2Nd_{Nd}^{x} + 3S_{S}^{x} + \frac{1}{2}S_{2}^{*} + V_{S}^{**} + 2e \leftrightarrow (CaNd_{2}S_{4})_{\text{lattice}} \]

Where \(Ca_{Ca}^{x}\) -calcium ion on a calcium lattice site

\(Nd_{Nd}^{x}\) -neodymium ion on a neodymium lattice site

\(S_{S}^{x}\) - sulphur ion on a sulphur lattice site

\(V_{S}^{**}\) - vacant sulphur lattice site

The Nyquist plot, Figure 4-11. Nyquist plot of CaNd$_2$S$_4$ +0.1Nd$_2$S$_3$ using gold electrodes at elevated temperatures shows that at 350°C the impedance is reducing with time at low frequencies, possibly due to the reaction with the electrode according to equation 13-step1 (because of the AuS decomposition). At higher temperature, 400°C, the reverse occurs, this is possibly due to
re-substitution of sulphur into the crystal lattice, equation 13-step3. Therefore impedance data supports the proposed theory. Repetition of impedance experiments using gold electrode was done, and the bulk conductivities increased with the number of repetitions, accompanied with a lower activation energy suggesting permanent creation of vacancies, therefore confirming the proposed hypothesis as expressed in equation 13-step2.

The onset temperature for the formation of Au-S varies as the experiment is repeated (low frequency tail in the impedance plot); it begins at 250°C, increasing to 350°C and then to 400°C with the second and third repetition of impedance experiments. The initial onset temperature agrees with decomposition the temperature of 230°C of colloidal gold sulphide (Au$_2$S), Morris et. al., 2002. A. Scott, 2000 mentioned that gold sulphide amongst other sulphides such as silver and copper have voltage dependent switching characteristics as was observed simply by changing the temperature by 50°C. This theory, (equation 13) assumes that gold can absorb S$^{2-}$ ions, provided that the electrolyte conducts this ion to the electrode-electrolyte interface. Wierse et. al. 1978, showed that gold electrodes can adsorb a monolayer of sulphide in liquid phase system, which can be desorbed by application of a cathodic current. They observed a decrease in capacitance, attributed to the formation of the insulating layer, with a dielectric constant of 2., thereby showing the charging and discharging of the capacitance with gold electrodes with CaNd$_2$S$_4$ as electrolyte. The absence of ionic blocking electrode mechanism with gold could be attributed to the uptake mechanism represented in step 1 and 3 (equation 13) or due to the partial electronic conduction property of Au$_2$S, Ishikawa, et. al. 1995.

4.3.7 Impedance spectroscopy CaNd$_2$S$_4$ series with graphite electrodes

Impedance spectroscopy of the CaNd$_2$S$_4$ series using gold electrode resulted in non-repeatable results. This is likely due to an electrode reaction between the gold and the electrolyte. Therefore graphite plates were used as the electrode material for further. Graphite is suitable for galvanic cells in terms of chemical inertness. When used as a thin pellet it poses a significant disadvantage when it is used in impedance spectroscopy, in that it is mechanically pressed into pellets. This means spreading resistance may result causing an overlap between electrode arc and grain boundary arc. If spreading resistance is significant, improvement in electrolyte-electrode contact can be achieved by painting. The electrode arc for mechanically contacted electrodes is a function of the number of contact points between the electrode and the electrolyte which will affect the assembly of the cell, causing the electrode arc not to be reproducible. However Fleig, 2000, 1996 showed that the high
frequency arc is free from electrode effects associated with contact resistance or spreading effects, therefore the high frequency arc should be equal to the true bulk resistance of the electrolyte, a value which should be similar to that of the single crystal.

Impedance spectroscopy of undoped, 20mol% and 30mol%, using graphite electrodes gave two arcs without significant overlap so that they were easily distinguished in the Bode plot, while only one arc could be seen on the Nyquist plot, Figure 4-19. Also CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ has three distinguishable arcs in the Bode plot, Figure 4-20.

![Nyquist plot CaNd$_2$S$_4$ series at 400°C using graphite electrodes in Argon](image)

Figure 4-19. Nyquist plot CaNd$_2$S$_4$ series at 400°C using graphite electrodes in Argon

The multiple arcs were observed at all temperatures between 200°C and 400°C for all CaNd$_2$S$_4$ compounds. Graphite electrodes at low temperatures (less than 200°C) result in significantly scattered impedance data, such that no arcs could be resolved. Higher temperatures yielded reproducible high frequency arcs but signal scattering at lower frequencies was apparent which was not observed with gold electrodes.

The use of graphite electrodes with CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ at higher temperatures produced three arcs including a frequency ion blocking arc as shown in Figure 4-19 and Figure 4-20. The low frequency effect is attributed to blocking electrodes, limiting ions to traverse the electrolyte-electrode interface.
Reproducibility of graphite electrodes

Repeating impedance experiments on the same sample gave reproducible bulk conduction, but grain boundary and ionic blocking electrode effects reduced, indicating that a better contact between electrolyte and electrode was obtained over time. Two types of repeatability tests were performed: the first test was to maintain identical cell geometry including electrode contact with the sample; this tested the material stability which resulted in identical Nyquist plots at 400°C, indicating that the electrolyte is stable up to this temperature when graphite electrodes and argon atmosphere are used, Figure 4-21.

Figure 4-20. Bode plot CaNd$_2$S$_4$ series at 400°C using graphite electrodes in argon

Figure 4-21. Reproducibility test using graphite electrode with identical cell geometry
The second test used involves reassembling the electrolyte-electrode interface; this was carried out to check the effect of electrode contact on the impedance plot. Figure 4-22 indicates that the resistive component of the Nyquist plot is stable even when the contact changes, i.e. reinserting the pellet into the sample holder with the graphite plates will give different contact with each attempt. However the capacitive component of the grain boundary conduction and electrode blocking effect changes as the sample contact varies. Therefore due to inherent effect of bad electrode contact on the medium and low frequency arc, only the high frequency arc is used for bulk conductivity measurement.

![Nyquist plot with two arcs](image)

Figure 4-22. Reproducibility test using graphite electrode with different cell geometry

4.3.8 Equivalent circuit modelling for CaNd$_2$S$_4$ series with graphite electrodes

Nyquist plots for CaNd$_2$S$_4$ series exhibit two arcs (high and medium frequency arcs) with the exception of CaNd$_2$S$_4$+0.1Nd$_2$S$_3$, which shows three arcs at elevated temperatures (high, medium and low frequency arc). The distinguishable high frequency arc (closest to the origin) is very clear for all compounds of the series, Figure 4-23, therefore the simplest equivalent circuit to be employed is a resistor-capacitor and a resistor-constant phase element, R//C-R//CPE. A constant phase element was chosen to model the low and middle frequency arc because they are associated either with the grain boundaries or the electrode contact, both are physically distributed hence flattening of these arcs is expected. For example using a constant phase elements CPE for modelling grain boundary conduction is justified by the low density of the pellets (all pellets were less than 95% of their theoretical densities, Table 4.2). It is worth mentioning that the changing resistive component with zero capacitance change effect, seen with gold electrodes at low frequencies was not observed with the graphite
electrodes, which confirms that the low frequency phenomena is attributed to the gold-electrolyte interface.

The fit between the experimental and Bauerle model for CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ is shown in Figure 4-23 and Figure 4-24. Since CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ is the only compound in the CaNd$_2$S$_4$ series which has a distinct low frequency arc using either gold or graphite electrode, Figure 4-12 and Figure 4-23. This electrode effect is characteristics feature for pure ionic conductors, hence this compound, based on experimental evidence, and is an ionic conductor. Classical Bauerle model takes the form of R//C-R//C-R///C, however since the graphite electrodes were mechanically pressed to obtain pellets, this would also cause a physical distributed contact area. Therefore achieving a good fit between experimental and equivalent circuit was achieved by using R//CPE to model the distinct low frequency arc, therefore the 'modified' Bauerle model used is R//C-R//C-R//CPE, for CaNd$_2$S$_4$+0.1Nd$_2$S$_3$.

Figure 4-23. Nyquist Modelled and experimental results for CaNd$_2$S$_4$ and CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ using graphite electrodes
Figure 4-24. Bode plot of modelled and experimental results for CaNd$_2$S$_4$ and CaNd$_2$S$_4$ +0.1Nd$_2$S$_3$ using graphite electrodes

4.3.9 Activation energy for CaNd$_2$S$_4$ series with graphite electrodes

Varying the impedance spectroscopy temperatures up to 500°C in argon, with the appropriate equivalent circuit and using equation (11) gives the Arrhenius plot of activation energy for ionic hopping. The slope of the Arrhenius plot in Figure 4-25 is not linear between 50°C and 450°C, but rather two regions are observed, coined, 'low temp' and 'high temp'. This suggests that the CaNd$_2$S$_4$ series are mixed calcium and sulphide ion conductors, where conduction of calcium occurs at lower temperatures (less than 450°C) and sulphide ion conduction at higher temperatures, Kalinina et al., 1995. This is in agreement with data published by Kalinina et. al., 1995. Therefore impedance spectroscopy also confirms more than one conducting species due to the non-linearity of the Arrhenius plot.

The graph shows slight scattering of data points in the low temperature region; this is attributed to the difficulty in collecting reliable data at these very low conductivities. Activation energies listed in Table 4.9 are collected from the higher temperatures. Since the non-linear Arrhenius plot using either graphite or gold electrode indicates more than one conducting species.
Using graphite electrodes resulted in a maximum activation energy of 0.97eV for CaNd$_2$S$_4$+0.2Nd$_2$S$_3$ while gold electrodes resulted in a maximum activation energy of 1.02eV for undoped-CaNd$_2$S$_4$. The activation energy is clearly dependent on the electrode material used, Table 4.10. Also while the activation energies and bulk conductivities obtained with gold electrodes decreases as the dopant concentration was increased from 0% to 20mol%, graphite electrodes shows increased activation energy (to a maximum) with increasing dopant concentration. Therefore the mismatch between activation energy between gold and graphite electrodes with CaNd$_2$S$_4$ series could be related to the reaction between gold and the electrolyte. No activation energy could be collected for the 30% doped compound with gold electrodes, due to significant scattering of the impedance data. The thermally evaporated gold electrode on CaNd$_2$S$_4$+0.3Nd$_2$S$_3$ was discoloured to reddish-brown when stored at room temperature indicating a reaction between the electrolyte and gold. See Appendix D.

The activation energy for the CaNd$_2$S$_4$ series was also sensitive to the equivalent circuit. For example, using Jamnik equivalent circuit, Figure 4-26, for mixed ionic-electronic conductors, identifies the minimum activation energy at 10mol%, while the R//C-R//CPE model results in a maximum activation energy at 20mol%, Table 4.10. A minimum activation energy as a function of doping is observed for many high temperature solid oxide ion-conducting electrolytes, typically between 5mol% and 10mol%, H. Inaba and H. Tagawa, 1996, but with higher absolute values for activation energy.
Cl dielectric interface capacitance
Rele - Electronic resistance
Rion - Ionic resistance
Cele - Electronic capacitance
Chem - Chem. capacitance

Figure 4-26. Jamnik model for mixed ionic-electronic conductor

Table 4.10 Activation energy for CaNd₂S₄ series using graphite or gold electrodes in argon, using alternative equivalent circuit

<table>
<thead>
<tr>
<th>Material</th>
<th>Activation energy (eV)</th>
<th>Graphite electrode</th>
<th>Gold electrode</th>
<th>Graphite electrode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Jamnik model</td>
<td>R/C-R/CPE</td>
<td>R/C-R/CPE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bulk</td>
<td>Bulk</td>
<td>Grain</td>
</tr>
<tr>
<td>Undoped CaNd₂S₄</td>
<td>0.43</td>
<td>1.02</td>
<td>0.44</td>
<td>0.48</td>
</tr>
<tr>
<td>CaNd₂S₄+0.1Nd₂S₃</td>
<td>0.23</td>
<td>0.44</td>
<td>0.59</td>
<td>0.62</td>
</tr>
<tr>
<td>CaNd₂S₄+0.2Nd₂S₃</td>
<td>0.46</td>
<td>0.12</td>
<td>0.48</td>
<td>0.97</td>
</tr>
<tr>
<td>CaNd₂S₄+0.3Nd₂S₃</td>
<td>0.65</td>
<td>NA</td>
<td>NA</td>
<td>0.64</td>
</tr>
</tbody>
</table>

N/A - not available

Considering the high temperature region only, the largest activation energies values for bulk conduction for the CaNd₂S₄ series occurs when using graphite electrodes and R/C-R/CPE equivalent circuit, Table 4.10, shows a range of 0.97eV to 0.48eV with a maximum of 0.97eV for 20% doped. Since the sulphide ion is larger than the oxide one, it approximately would be expected that the activation energy for ionic hopping would be larger. However, the activation energy for ionic conduction varies not only with size of ion, but also with dopant, crystal structure, as well as synthesis method. For example Bi₂O₃ is known to have one of the largest oxide ion conductivities, and its activation energy varies from 0.7 to 1.4eV depending on whether the dopant used is Pb²⁺ or Ca²⁺ (Pb²⁺ was the better dopant), Drache et. al., 1992.

Another well-researched pure oxide ion conductor is YSZ, and its activation energy lies at (or near to, depending on choice of reference) 1.25eV. Cerium oxide is a mixed ionic-electronic conductor, with oxide ion conductivity dominating at high oxygen partial pressure, and its activation energy when doped with Yttria varies from 0.75eV to 1.1eV (depending on the quantity of dopant); for gadolinia doped ceria the activation energy is 0.71eV, Tschöpe et. al. 2001. Since the range of activation energies for anionic conduction for these oxides lies between 0.71-1.25eV, then the low activation energies for CaNd₂S₄ series indicates the possibility of mixed ionic-electronic conduction.
Activation energy for sulphide ion conduction has not been researched much in the literature, even though some attempts were made to synthesize sulphide ion conductor. Most recently, Kalinina et al. 1995 reported predominant sulphide ion conduction in doped CaNd$_2$S$_4$ based compounds, with no mention on the activation energy. Calcium sulphide has a defect structure and theoretical calculations of its activation energy show that sulphide ion conductors are likely through conduction of interstitial S^2- with an activation energy of 1.96eV which is higher than the experimental value of 1.21eV, Otowa et. al., 1980. CaS vacancies are introduced thermally and a significant proportion of the activation energy could be attributed to the association enthalpy, which for oxides lies in the range of 0.3-0.5eV. In CaNd$_2$S$_4$ sulphide systems the vacancies are created by doping rather than thermally and the activation energy for sulphide ion conduction is likely to be within 0.61-1.66eV, using available literature and equation (14);

$$E_a = E_m + E_a$$ \hspace{1cm} (14)

Where E_a = measured activation energy (apparent), eV [1.96-1.21, Pandey, 1984, Otowa et. al., 1979]

E_m – ionic migration activation energy, eV

E_a – association enthalpy, eV, [0.3eV, 0.5eV; Tschöpe et. al., 2001, Nowick and Liang 2000]

All activation energies for the doped CaNd$_2$S$_4$ compound are within this range, and hence it is possible that conduction is via sulphide ions, however the undoped system has a somewhat lower activation energy outside the expected range. It is possible that the undoped electrolyte is a calcium ion conductor since the presence of neodymium ions creates equal amounts of calcium and sulphide ion defects. The absence of an ion-blocking arc in the Nyquist plot indicates the presence of electron or hole conduction.

4.3.10 Effect of equivalent circuit modelling on derived parameters

The derived parameters, time constant and bulk conductivity, depend on the absolute values of resistance and capacitance that are the outputs of equivalent circuit modelling. Initial modelling using R//C-R//CPE or R//C-R//C for two arcs type Nyquist plots and Bauerle for three arcs type Nyquist plots gave good fit between experimental and modelled data, Figure 4-23 and Figure 4-24.
However a slight improvement was achieved using Jamnik predominant ionic (mixed with
electronic conduction) equivalent circuit with the derived bulk parameters or conductivity and
time constant changing significantly compared to the previous Randles or Bauerle equivalent
circuit.

Kalinina et. al., 1995, reported that all the doped CaNd₂S₄ compounds had conductivities at
500°C between \(10^{-7}\) and \(10^{-6}\) S.cm\(^{-1}\) with CaNd₂S₄+0.1Nd₂S₃ having the maximum
conductivity of \(1.15 \times 10^{-6}\) S.cm\(^{-1}\) as having the highest conductivity. However the equivalent
circuits used to model impedance spectroscopy yield much higher conductivities, Table 4.11.

**Table 4.11. Time constant and bulk conductivity derived from R//C-R//CPE, Bauerle and
Jamnik equivalent circuits**

<table>
<thead>
<tr>
<th>Material</th>
<th>R//C-R//CPE equivalent circuit</th>
<th>Jamnik equivalent circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bulk conductivity @ 500°C</td>
<td>Time constant @ 250°C</td>
</tr>
<tr>
<td>Undoped CaNd₂S₄</td>
<td>(7.05 \times 10^{-7})</td>
<td>(1.27 \times 10^3)</td>
</tr>
<tr>
<td>CaNd₂S₄+0.1Nd₂S₃</td>
<td>(4.26 \times 10^{-4})*</td>
<td>(7.56 \times 10^4)*</td>
</tr>
<tr>
<td>CaNd₂S₄+0.2Nd₂S₃</td>
<td>(2.51 \times 10^{-3})</td>
<td>(4.40 \times 10^5)</td>
</tr>
<tr>
<td>CaNd₂S₄+0.3Nd₂S₃</td>
<td>(3.19 \times 10^{-4})</td>
<td>(3.07 \times 10^5)</td>
</tr>
</tbody>
</table>

*Based on Bauerle equivalent circuit; Conductivity is quoted at 500°C because of reference
data is quoted at this temperature, Kalinina et. al., 1995; Time constant is quoted for YSZ at
250°C, Mc Donald, 1981.

The Jamnik mixed ionic-electronic equivalent circuit identifies CaNd₂S₄+0.1Nd₂S₃ with a
bulk conductivity of \(1.09 \times 10^{-6}\) S.cm\(^{-1}\) agreeing with Kalinina bulk conductivity determined
through galvanic cells. However all other bulk conductivities were several orders of
magnitude larger than the ones obtained by Kalinina galvanic cell method. The Kalinina
galvanic cell used Ca, CaNd₂S₄ and Fe,FeS,CaNd₂S₄ discs adjacent to the electrolyte and the
carbon electrode, as ionic sources and sinks for Ca, Nd and S. These disks are not electronic
conductors therefore there experimental method would not allow the conduction of electrons,
and as such the possibly low bulk conductivities.

The time constant for bulk conduction also varies by several orders of magnitude depending
on the model used, Table 4.11. The constant using the traditional equivalent circuits, R//C-R//CPE or Bauerle, gave similar time constant to YSZ of approximately \(10^6\) s at comparable
temperature for CaNd₂S₄+0.1Nd₂S₃. However the other doped compounds have larger time
constants, by an order of magnitude. Using Jamnik equivalent circuit, time constant for bulk conduction was several orders of magnitude larger than YSZ at similar temperature, Table 4.11 and Table 4.7.

If the basic assumption that a larger ion moves slower than a smaller, then both models identify the conducting species to be at least similar in size to the oxide ion if not larger due to the significantly larger time constants for doped \(\text{CaNd}_2\text{S}_4 \) compounds.

4.3.11 Effect of electrode material on time constant and bulk conductivity for \(\text{CaNd}_2\text{S}_4 \) series

Time constant

Impedance measurement up to 400°C with graphite electrodes in argon gave repeatable results unlike gold electrodes, therefore the impedance data using graphite electrodes should give conductivity and time constants for the bulk properties of the electrolyte. The similar time constants of all doped compounds in the \(\text{CaNd}_2\text{S}_4 \) series using graphite electrode suggest similar conducting species, while the small time constant for the undoped compound may indicate electronic or hole conduction, Table 4.12.

The time constants for bulk conduction in doped \(\text{CaNd}_2\text{S}_4 \) compounds using gold electrodes were significantly smaller than those for oxide ion conduction in YSZ, Table 4.7. The small time constants for gold-coated \(\text{CaNd}_2\text{S}_4 \) support the proposed reaction mechanism, in equation (13), of a gold-electrolyte interaction rather than the bulk properties of the electrolyte.

The time constant, using graphite electrodes, for the second lower frequency, \(6.08 \times 10^4 \) s to greatly exceeds the time constant for electrode response for YSZ of 1 s @ 250°C. Since the time constants the second arc for all \(\text{CaNd}_2\text{S}_4 \) compounds are too small to be related to ionic blocking electrode therefore it must relate to a material property, namely grain boundary conduction. The presence of the third arc, which unambiguously identifies a pure ionic conductor, occurs only with \(\text{CaNd}_2\text{S}_4 + 0.1\text{Nd}_2\text{S}_3 \). Therefore the other members of this series are at best predominant ionic conducting conductors.
Table 4.12. Time constant analysis for CaNd₂S₄ series with gold and graphite electrode with R//C-R//CPE equivalent circuit at 250°C

<table>
<thead>
<tr>
<th>Undoped CaNd₂S₄</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GOLD - R//C-R//CPE</td>
<td>GRAHITE - R//C-R//CPE</td>
<td></td>
</tr>
<tr>
<td>Bulk</td>
<td>Grain boundary</td>
<td>Bulk</td>
</tr>
<tr>
<td>Rᵢ = 5.4x10⁵Ω</td>
<td>Rᵢ = 5.4x10⁵Ω</td>
<td>6.0x10⁶</td>
</tr>
<tr>
<td>Cᵢ = 6.1x10⁻¹¹</td>
<td>Cᵢ = 6.1x10⁻¹¹</td>
<td>1.4x10⁻¹⁰</td>
</tr>
<tr>
<td>ψᵢ = 0.91</td>
<td>ψᵢ = 0.91</td>
<td>0.93</td>
</tr>
<tr>
<td>τ = 3.3x10⁻⁵s</td>
<td>τ = 2.8x10⁻⁵s</td>
<td>τ = 2.1x10⁻⁵s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CaNd₂S₄+0.1Nd₂S₃</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GOLD - R//C-R//CPE-R//CPE</td>
<td>GRAHITE - R//C-R//CPE-R//CPE</td>
<td></td>
</tr>
<tr>
<td>Bulk</td>
<td>Grain boundary</td>
<td>Electrode</td>
</tr>
<tr>
<td>Rᵢ = 1.7x10⁴Ω</td>
<td>Rᵢ = 1.7x10⁴Ω</td>
<td>Rᵢ = 3.4x10⁴Ω</td>
</tr>
<tr>
<td>Cᵢ = 3.0x10⁻¹¹</td>
<td>Cᵢ = 3.9x10⁻¹⁰</td>
<td>Cᵢ = 1.9x10⁻⁷</td>
</tr>
<tr>
<td>ψᵢ = 0.64</td>
<td>ψᵢ = 0.91</td>
<td>ψᵢ = 1.0</td>
</tr>
<tr>
<td>τᵢ = 5.0x10⁻⁸s</td>
<td>τᵢ = 3.3x10⁻⁸s</td>
<td>τᵢ = 8.7x10⁻⁸s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CaNd₂S₄+0.2Nd₂S₃ (300°C)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GOLD - R//C-R//CPE</td>
<td>GRAHITE - R//C-R//CPE</td>
<td></td>
</tr>
<tr>
<td>Bulk</td>
<td>Grain boundary</td>
<td>Bulk</td>
</tr>
<tr>
<td>Rᵢ = 9.1x10³Ω</td>
<td>Rᵢ = 4.6x10³Ω</td>
<td>Rᵢ = 1.3x10⁵Ω</td>
</tr>
<tr>
<td>Cᵢ = 1.01x10⁻¹⁰</td>
<td>Cᵢ = 2.07x10⁻⁶</td>
<td>Cᵢ = 3.4x10⁻⁷</td>
</tr>
<tr>
<td>ψᵢ = 1.0</td>
<td>ψᵢ = 0.85</td>
<td>ψᵢ = 1.0</td>
</tr>
<tr>
<td>τᵢ = 9.9x10⁻⁸s</td>
<td>τᵢ = 8.8x10⁻⁸s</td>
<td>τᵢ = 4.4x10⁻⁸s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CaNd₂S₄+0.3Nd₂S₃</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAHITE - R//C-R//CPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulk</td>
<td>Grain boundary</td>
<td></td>
</tr>
<tr>
<td>Rᵢ = 2.1x10⁷Ω</td>
<td>Rᵢ = 2.1x10⁷Ω</td>
<td></td>
</tr>
<tr>
<td>Cᵢ = 1.7x10⁻¹⁰</td>
<td>Cᵢ = 5.5x10⁻¹⁰</td>
<td></td>
</tr>
<tr>
<td>ψᵢ = 1.0</td>
<td>ψᵢ = 0.86</td>
<td></td>
</tr>
<tr>
<td>τᵢ = 3.1x10⁻³s</td>
<td>τᵢ = 2.43x10⁻³s</td>
<td></td>
</tr>
</tbody>
</table>

140
Bulk Conductivity

The bulk conductivity reaches a maximum at CaNd₂S₄+0.2Nd₂S₃ irrespective of the choice of electrode or equivalent circuit, Table 4.11. The conductivity of CaNd₂S₄+0.2Nd₂S₃ and CaNd₂S₄+0.3Nd₂S₃ using impedance is significantly greater than that the previously reported conductivities (10⁻⁷ to 10⁻⁵ S.cm⁻¹), Kalinina et. al., 1995.

Impedance with graphite electrodes proves that the significant increase in conductivity with increasing dopant levels, and using gold electrode was in fact related to the electrolyte interface rather than bulk properties of the material, Table 4.13.

<table>
<thead>
<tr>
<th>Material</th>
<th>Model</th>
<th>Bulk conductivity @500°C (S.cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gold electrode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Graphite electrode</td>
</tr>
<tr>
<td>CaNd₂S₄-0.0mole%Nd₂S₃</td>
<td>R/C -R/CPE</td>
<td>1.67x10⁻²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaNd₂S₄-10.0mole%Nd₂S₃</td>
<td>R/C -R/CPE -R/CPE</td>
<td>1.55x10⁻⁵</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R/C -R/CPE</td>
</tr>
<tr>
<td>CaNd₂S₄-20.0mole%Nd₂S₃</td>
<td>R/C -R/CPE</td>
<td>5.75x10⁻²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaNd₂S₄-30.0mole%Nd₂S₃</td>
<td>R/C -R/CPE</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R/C -R/CPE</td>
</tr>
</tbody>
</table>

Doping Ca²⁺ of 0.99Å diameter with Nd³⁺ of similar diameter, 0.995Å, seems appropriate since research has shown that doping with similar ionic radius is an important prerequisite to improve ionic conductivity. For example improving the ionic conductivity of CeO₂ was achieved by using Ca²⁺, Yahiro et. al., 1989, or Sm³⁺, Eguchi et. al., 1992, since both dopants have similar radius as the host cation (0.99Å). Using similar diameter of host relative to dopant ion, results in minimizing the association enthalpy between dopant ion and vacant site, Inaba and Tagawa, 1996. Apparently this association enthalpy is more pronounced for smaller dopant cation relative to the host cation, Kilner, 1983.

Using graphite electrodes, maximum conductivity for CaNd₂S₄ series was achieved at 20mol% even though the minimum activation energy at 0mol% was achieved, agreeing with literature of the mismatch between minimum activation energy and maximum conductivity. Similar observation was made for cerium oxide based electrolytes doped with alkaline earth metals: it has a maximum conductivity between 10 and 20mol%, Yahiro et. al., 1988, 1989 and Wang, et. al., 1981. They noted that maximum conductivity and minimum activation energy did not always coincide at the same dopant concentration, apparently due to the pre-exponential, σ, in equation 11. Using data from Cohen et. al., 1981, it seems that pre-exponential factor remains constant a low levels of doping, then a significant increase occurs after the minimum activation energy, and maximum conductivity is achieved at higher
dopant after passing the minimum activation energy. Therefore the mismatch between maximum conductivity and minimum activation energy could be attributed to the concentration dependency of the pre-exponential factor, Inaba and Tagawa, 1996.

4.4 H_2S Concentration dependence of bulk conductivity for CaNd$_2$S$_4$ series

Impedance spectroscopy of CaNd$_2$S$_4$ series using either gold or graphite in argon did not produce an ionic blocking electrode arc, except 10mol% doped, which is apparently compulsory for pure ionic conductors. Therefore it stands to reason that these compounds are not pure ionic conductors, but possibly mixed ionic-electronic conductors.

The conductivity for a pure ionic conductor is independent of concentration changes in the atmosphere therefore impedance spectroscopy was carried out from 350°C to 550°C with concentration of H_2S/Ar varying from 18vol% to 0.1vol% for each temperature. Using one-hour isothermal period-allowed temperature and concentration stabilization of the sample prior to impedance measurements. Song and Yoo, 2003, have studied BaTiO$_3$, a mixed-ionic-electronic conductor; they established BaTiO$_3$ to be an ionic conductor if the ratio $(\partial(\log \sigma_{\text{total}})/\partial(\log P_{H_2S})) \leq 0.01$, i.e. the (conductivity change/ concentration change) is considered independent of oxygen partial pressure if the ratio is less than 0.01.

Results for CaNd$_2$S$_4$ show that the conductivity is not independent of H_2S concentration, Figure 4-27, but increases with increasing sulphur concentration. The onset of hole conduction may occur at high H_2S concentrations, according to equation (15).

$$\frac{1}{2}S_2^+ + V_{S^2-} \leftrightarrow S^{2-} + 2\Theta$$ \hspace{1cm} (15)

Where

V_{S^2-} - sulphide anion vacancy

S^{2-} - sulphur anion in unit cell

Θ - electron hole

Thus increasing the sulphur partial pressure increases the number of electron holes and therefore increases the conductivity of the electrolyte.
Figure 4-27 Concentration dependence (vol% H₂S) of bulk conductivity vs. temperature for undoped CaNd₂S₄

A plot of total conductivity vs. inverted temperature, \((\log \sigma_{\text{total}})\) vs \((\log P_{\text{H}_2\text{S}})\) for CaNd₂S₄ shows that at temperatures greater than 450°C and H₂S concentration greater than \(P_{\text{H}_2\text{S}}=2\) or 0.5v/v%, the total conductivity is independent of H₂S, Figure 4-28.

At lower temperatures, the conductivity increases with increasing H₂S concentration, which is indicative of positive hole conduction. Interestingly, hole conduction has been reported to dominate conduction in calcium sulphide at H₂S partial pressures greater than \(10^{-6}\)kPa., Worrell, 1976.

Figure 4-28. H₂S concentration dependence of total conductivity for undoped CaNd₂S₄
The total conductivity of CaNd$_2$S$_4$$+$$0.1Nd_2S_3$ appears to be independent of H$_2$S partial pressure at temperatures greater than 450°C indicating ionic conductivity, Figure 4-29 and Figure 4-30. However at the lowest temperature measured, 350°C, conduction via positive holes occurs since an increased conductivity occurred as the hydrogen sulphide concentration was increased from 0vol% (argon) to 1vol%H$_2$S/Ar, Figure 4-30. The filling of sulphide ions vacancies with sulphide ions from H$_2$S producing positive hole is described by equation (15).

\[
S^{2-} \leftrightarrow \frac{1}{2} S_2 + V_{S^{2-}} + 2e \tag{16}
\]

Figure 4-29. H$_2$S concentration dependence of ionic conductivity vs. temperature for CaNd$_2$S$_4$$+$$0.1Nd_2S_3$

Figure 4-30. H$_2$S concentration dependence of total conductivity for CaNd$_2$S$_4$$+$$0.1Nd_2S_3$

The bulk conductivity of CaNd$_2$S$_4$$+$$0.2Nd_2S_3$ decreased in the presence of a positive hydrogen sulphide partial pressures, at all temperatures, indicating the presence of electronic conduction, Figure 4.31. The formation of quasi-free electrons at low partial pressures may be expressed by equation (16).
Where

\(V_{S^{2-}} \) - sulphide anion vacancy

\(S^{2-} \) - sulphur anion in unit cell

\[\text{Figure 4.31. } \text{H}_2\text{S concentration dependence of ionic conductivity vs. temperature for CaNd}_2\text{S}_4+0.2\text{Nd}_2\text{S}_3 \]

Increasing the concentration beyond 1vol\%\text{H}_2\text{S}/\text{Ar causes positive hole conduction in CaNd}_2\text{S}_4+0.2\text{Nd}_2\text{S}_3 since this results in an increase in conductivity, Error! Reference source not found.. The formation of positive electron holes at high H\text{2S is governed by equation (15). Therefore CaNd}_2\text{S}_4+0.2\text{Nd}_2\text{S}_3 has inherent electronic conduction, Figure 4.31, as well as positive electron hole conduction, Figure 4.31.}

CaNd\text{2S}_4+0.3\text{Nd}_2\text{S}_3, differs from the compounds in this series since the total conductivity as a function of H\text{2S concentration changes with temperature. At temperatures less than 450\degree C, the bulk conductivity decreased as the partial pressure is increased, suggesting electronic contribution. However at high temperatures, the bulk conductivity in the presence of a positive H\text{2S partial pressure is greater than the bulk conductivity in the absence of a positive H\text{2S partial pressure, this infers positive hole conduction, Figure 4.32.}
In summary, the bulk conductivity for undoped CaNd$_2$S$_4$ is dependent on H$_2$S concentration from 0.5vol% to 2vol%H$_2$S, therefore may be used as a sensor at high H$_2$S concentration.

The bulk conductivity of CaNd$_2$S$_4$+0.1Nd$_2$S$_3$, appears to be independent of H$_2$S concentration from 0vol% to 2vol%H$_2$S and in the temperature range from 400°C to 500°C. Therefore this electrolyte may find use in application as sensors, electrochemical membranes or even high temperature fuel cells since the conductivity is independent of hydrogen sulphide concentration. At low temperature, the bulk conductivity was controlled by positive hole conduction.

The bulk conductivities CaNd$_2$S$_4$+0.2Nd$_2$S$_3$, switches between electronic and hole conductor as H$_2$S concentration changes from 0vol% to 2vol% between 350 to 500°C, therefore this material might prove useful as electrode materials in hydrogen sulphide rich atmospheres.

The bulk conductivity for CaNd$_2$S$_4$+0.3Nd$_2$S$_3$ appears to be controlled by positive hole conduction at greater that 500°C for all H$_2$S concentration studied, However at temperatures less than 400°C, the electronic conduction was deduced based on the reduction in the bulk conductivity with increasing temperature.
4.5 Electrochemical pumping of sulphide ions in CaNd$_2$S$_4$

The asymmetric electrochemical concentration cell of the type H$_2$S/H$_2$//Pt/CaNd$_2$S$_4$/Pt//Ar/H$_2$ was operated at elevated temperatures (550-750°C) with 1-2V (d.c) to identify sulphide ion conduction. The constant source of S$^{2-}$ ions formed by application of a negative potential applied on the H$_2$S compartment, equation (17), conduction of sulphide ion through a sulphide ion conducting electrolyte would generate a steady state current within the cell.

\[
2e^- + H_2S \rightarrow H^+ + \frac{1}{2} S^{2-} \tag{17}
\]

If the generated current decays during the application of a negative voltage on the H$_2$S compartment, then the movement of a positive ion is interpreted. This is because there is no continuous source of positive ions, only from the electrolyte and as such the peak current could be expressed by equation (18).

\[
Ca^{2+} + 2e^- \rightarrow Ca \tag{18}
\]

Alternatively, a decaying current could also indicate a mixed conductor, the peak current related to the total ionic and electronic, while a reversible steady state current related to the electronic current.

A current flow, which occurs without an applied voltage, would confirm the presence of electronic conduction. Simple EMF measurements of the asymmetric electrochemical concentration cell of the type H$_2$S/H$_2$//Pt/CaNd$_2$S$_4$/Pt//Ar/H$_2$ should approach zero in if the cell is electronic conducting.

Electrochemical pumping with CaNd$_2$S$_4$ gave decaying current generation, Figure 4.33, may indicate that the pumping cell had mixed ionic/electronic conduction. The identical negative and positive peak current suggest that the peak current was independent of H$_2$S concentration therefore the conducting ionic species could be cationic. The steady state current was relatively comparable with either the application of a cathodic or an anodic voltage and this infers electronic conduction. The cross-sectional resistance, of 257Ω (measured with a FLUKE, 5 decimal place multimeter, at room temperature) prior to the pumping experiment shows that short-circuiting of electrolyte occurred as a result of either the electroding process or cementing of the electrochemical cell rather than a inherent property of the material.
Figure 4.33 Electrochemical pumping of CaNd$_2$S$_4$ at 600°C with 1V and 2Vdc

Electrochemical pumping with CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ also gave decaying current generation, Figure 4-34, which may indicate that the pumping cell had mixed ionic electronic conduction. The height of the negative and positive peak current is identical, suggesting that the peak current could be attributed to the conduction of cations. However a snap shot in time, for example at 15 minutes, after the application of the cell voltage on the H$_2$S rich reactor compartment, the resulting current was at least 30% greater suggesting conduction of sulphide ions.

Figure 4-34 Electrochemical pumping of CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ at 600°C with 5V dc
The larger steady state current generated with a negative potential on the H₂S atmosphere can be explained by equation (17). A current flow after 15 mins of 1.6x10⁻⁴ A was achieved with the application of 5Vdc anodic potential on the H₂S rich atmosphere which was more than double the current flow of 6.4x10⁻⁵ A, achieved after 15 mins with the application of 5Vdc cathodic potential, Figure 4-34. Also increasing the H₂S partial pressure increased the current flow, which conclusively shows that flow has an anionic component, Figure 4-35. The peak current was not sustainable due to the short-circuiting by electronic conduction.

The reason for the short circuiting of CaNd₂S₄+0.1Nd₂S₃ is most likely due to the electroding process since the cross sectional resistance of the electrolyte decreased 200MΩ to 0.5MΩ after electroding. The reason for this contamination was due to flow of binder (organic) into pores (up to 5µm) in the electrolyte. This high temperature binder would carbonize in a reducing atmosphere hence the resulting carbon could conduct electrical current in the electrochemical experiments. A reduction in the contamination of the pellets of the binder/solvent was achieved by painting with a thick platinum paste (rather than thinned paste) and drying immediately. For example using the thinned paste without hot air drying, the cross sectional resistance was 200Ω compared with 0.5MΩ achieved using platinum paste and hot air drying.

![Figure 4-35 Electrochemical pumping of CaNd₂S₄+0.1Nd₂S₃ at 600°C with 5V dc](image)

The electrical current generated from the application of cathodic 2Vdc or anodic 2Vdc to CaNd₂S₄+0.2Nd₂S₃ produced a symmetric current response, which indicates electronic conduction, Figure 4-36. The dc current generated was independent of the H₂S partial
pressure, suggesting the absence of sulphide ion conduction, Figure 4-36. This suggests that 20mol% Nd₂S₃ resulted in onset of electronic conduction.

Figure 4-36 Electrochemical pumping of CaNd₂S₄+0.2Nd₂S₃ at 550°C with 2V dc

The electrical current generated from the application of cathodic 5Vdc or anodic 5Vdc to CaNd₂S₄+0.3Nd₂S₃ produced asymmetric current at 650°C and 750°C, which indicates anionic conduction, Figure 4-37. The increased current occurred with the application of the anodic voltage on the H₂S compartment, as expressed by the half-cell reaction in equation (17).

The application of cathodic 2Vdc to the H₂S rich compartment resulted in a decreasing current curve, possibly due to absence of the constant source of Ca²⁺ ion, therefore the lowering of the current flow according to equation (18), Figure 4-37. The steady state current under these experimental conditions was 1.1x10⁻³ A, which is 50% less than the steady state current generated with the application of the anodic current to the H₂S rich compartment.

Based on the repeatable current flow achieved with the application of 2V anodic potential to the H₂S rich compartment, the electrolyte was deemed stable under these experimental conditions. Application of the 2V cathodic potential did not lead to repeatable current, this could be due to electrochemical decomposition of the electrolyte or due ‘back pumping’ of sulphur previously pumped.
Alternatively, the peak current generated with the initial application of the positive potential to the H₂ compartment, could be related to 'back pumping' of sulphide ion, equation (19), through the membrane as explained in Figure 4-37. Since the current was not sustainable, conduction could not be attributed to H⁺ ions, therefore current flow.

Reverse pumping of sulphide is conceivable since the applied potential is switched almost instantaneously, therefore pumped sulphide ions may still remain at the electrolyte interface, i.e. the 'pumped sulphur' remains does not react to form hydrogen sulphide via the reaction with hydrogen in the presence of the platinum electrodes and purged from the reactor.

4.6 Conclusion for the CaNd$_2$S$_4$ series

The search for a high temperature conducting electrolyte began with the CaNd$_2$S$_4$ doped compounds; they apparently exhibit predominant sulphide ion conduction at temperatures higher than 450°C. Therefore CaNd$_2$S$_4$ compounds were synthesised using solid state reaction method developed by Kalinina et. al. The XRD refinements of these compounds showed that the desired cubic Th$_3$P$_4$ type structure was formed. Therefore the thermal properties (including thermal stability, thermal activation, extent of oxidation) and electrochemical properties (bulk conductivity, time constant, activation energy for ionic-hoping, amongst others) were determined using the appropriate characterisation technique.
Thermal characterisation using TPO and TPR shows that the CaNd$_2$S$_4$ series is stable up to approximately 600°C in both oxidising and reducing atmosphere. The CaNd$_2$S$_4$ series does not oxides to form a pure oxide at 1000°C but all compounds appears to form either a mixture of oxide and un-reacted starting material, oxy-sulphide or mixed oxide-sulphate inhomogeneous system. CaNd$_2$S$_4$+0.0Nd$_2$S$_3$ and CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ oxidise in a similar manner, since both compounds appears to exchange all of their sulphide ions to form oxide or sulphate species. At higher dopant levels this behaviour changes since at Nd$_2$S$_3$ dopant levels beyond 10mol%, sulphide ions remain in the crystal lattice at maximum temperature rather than reacting to form oxide and sulphate species.

The thermal activation energy was lowest for the un-doped CaNd$_2$S$_4$. A step increase in activation energy at 10mol% doping was observed, followed by a subsequent lowering on the thermal activation energy at higher doping. While the oxygen and sulphur balance does not explain the marked increase in thermal activation energy for the doped compounds it does agree with the subsequent reduction in activation energies with increasing Nd$_2$S$_3$ content. Since the extent of oxidation reduces for 20mol% and 30mol% doped CaNd$_2$S$_4$ compounds.

The identifying feature of a pure ionic conductor is the presence of an ion blocking low frequency arc in the Nyquist plot; this was observed only for CaNd$_2$S$_4$+0.1Nd$_2$S$_3$. Therefore all the other investigated compounds in this series are at best mixed ionic-electronic conductors. The absence of an ion blocking arc at low frequency occurs with materials with ionic transport numbers as high as 0.9999, Jamnik 2003, even though a material is considered to be an ionic conductor once the transport number for ionic conduction exceeds 0.95, Vayenas, 2003. Therefore the absence of the conclusive low frequency ionic blocking arc in the Nyquist diagram does not mean that the electrolyte is not predominantly ionic conducting. Ionic conduction is identified if the bulk conductivity is independent of H$_2$S partial pressure. Varying the H$_2$S concentration (and therefore the S$_2$ partial pressure) from 0vol% (pure Argon) to 18vol% H$_2$S, confirmed that CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ is an ionic conductor over this range of H$_2$S concentration and at temperatures as low as 300°C. Further doping to 20mol% Nd$_2$S$_3$ resulted in electronic conduction, since a decrease in conduction occurred with the increase in H$_2$S concentration, as well as hole conduction at high H$_2$S concentration.
Similarly the bulk conductivity for CaNd₂S₄+0.3Nd₂S₃ appears to be controlled by positive hole conduction at greater than 500°C for all H₂S concentration studied, while at temperatures less than 400°C, the electronic conduction was deduced based on the reduction in the bulk conductivity with increasing temperature. Un-doped CaNd₂S₄ exhibits positive hole conduction since the bulk conductivity increased with the increasing H₂S partial pressure from pure argon to 2vol%H₂S/Ar mixture.

While performing impedance spectroscopy in various hydrogen sulphide concentrations differentiates ionic conduction from electronic, it does not differentiate cationic from anionic conduction. However, derived information from EIS such as the activation energy for the hopping process associated with ionic motion within a crystal lattice (from Arrhenius plot of bulk conductivity) could give an insight to the conducting species. For example, low activation energy for hopping occurs when there is little resistance, such small cations compared to larger anions, assuming that the jump distance for cations and anions are comparable in the unit cells. Therefore a relatively low activation energy would be indicative of cation conduction. Since there are no published results for experimentally determined activation energy for sulphide conduction, the theoretical value for sulphide ion conduction in CaS, modified for the association energy of vacancies, lead to the development of a reasonable activation energy for sulphide ion conduction of 0.61-1.66eV. This was used as reference point, to infer anionic conduction. The activation energy for bulk conduction in CaNd₂S₄ series lies within the probable range for sulphide ion conduction.

Time constants are another derived data from impedance spectroscopy; they quantify the time taken for an ion to hop from a vacant site to another. The conduction of larger sulphide ions is expected to move slower than oxide ions at a given temperature. Therefore larger time constants for CaNd₂S₄ compounds (with respect to oxide ion conduction in YSZ) would more likely indicate anionic conduction. The complication for determining the time constants is that they depend on the absolute values of resistive and capacitive components of the impedance, which are derived from equivalent circuit modelling. Using the most appropriate model, Jamnik mixed-ionic electronic conductor, time constants for doped CaNd₂S₄ compounds are slower than reported values for YSZ at similar temperature; this thus favours anionic conduction. This is of course a basic analogy because factors other than temperature will affect the time constant such as lattice parameter (distance between lattice sites), polarizability of other ions within the unit cell etc.
The bulk conductivity of CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ using graphite electrodes and Jamnik equivalent circuit is 1.09×10^{-6} S cm$^{-1}$, which compares well with that of Kalinina’s galvanic cell bulk conductivity of 1.15×10^{-6} S cm$^{-1}$. The bulk conductivity measured using impedance spectroscopy remained independent of H$_2$S partial at all temperatures; it indicates ionic conduction. Electrochemical pumping experiments showed a larger current flow in a higher H$_2$S partial pressure, indicating the conduction of sulphide ions. The generated current in the electrochemical pumping experiments was not steady indicating short-circuiting by electronic conduction. However the onset of electronic conduction may relate to experimental errors set-up of the experiment.

While the bulk conductivity depends on the equivalent circuit, all applicable models identified CaNd$_2$S$_4$+0.2Nd$_2$S$_3$ with the maximum bulk conductivity. CaNd$_2$S$_4$+0.2Nd$_2$S$_3$ bulk conductivity decreased with an increase in H$_2$S partial pressure, thus confirming the presence of electronic conduction. The symmetrical current response with application of 5Vdc in the electrochemical pumping experiments also indicates predominant electronic conduction. However time constant analysis of CaNd$_2$S$_4$+0.2Nd$_2$S$_3$ in argon suggested ionic conduction since the values were comparable to CaNd$_2$S$_4$+0.1Nd$_2$S$_3$. This could simply mean that CaNd$_2$S$_4$+20mol%Nd$_2$S$_3$ becomes a predominant electronic conductor at high H$_2$S partial pressures. However considering all data available for this compounds, it appears to have significant electronic conduction.

The bulk conductivity of CaNd$_2$S$_4$+0.3Nd$_2$S$_3$ is comparable to CaNd$_2$S$_4$+0.2Nd$_2$S$_3$, in that this electrolyte exhibits electronic conduction at low temperature, followed by hole conduction at higher temperatures up to 500°C. However at 550°C, the absence of a H$_2$S partial pressure dependence of the bulk conductivity shows that this compound is predominantly ionic conduction at high temperatures. The asymmetric cell response of the electrochemical pumping of CaNd$_2$S$_4$+0.3Nd$_2$S$_3$ favours sulhide ion conduction at 700°C.
4.7 Thermal and Electrochemical Characterisation of Strontium Neodymium Sulphide doped with excess Nd2S3 Series

SrNd\textsubscript{2}S\textsubscript{4} doped with excess Nd\textsubscript{2}S\textsubscript{3} was previously mentioned to be a sulphide ion conductor, Kalinina et. al., 1995. Therefore the analogue, SrNd\textsubscript{2}S\textsubscript{4} series, of the CaNd\textsubscript{2}S\textsubscript{4} series was synthesised using the identical reactions procedure according to Kalinina et. al., 1995. The expectation of changing the host cation is that the conductivity would improve without significant change in the activation energy provided the unit structure is maintained. For example, Drache et. al., 1992, showed that changing the dopant cation in a bismuth oxide based system favourably alters the oxide ionic conductivity depending on the cation substituted.

The X-ray diffraction pattern shows that the SrNd\textsubscript{2}S\textsubscript{4} series has a cubic unit cell similar to CaNd\textsubscript{2}S\textsubscript{4} shown in Figure 4.1 where the smallest spheres now represents Sr rather than Ca atoms, White, 2004. The X-ray diffraction pattern shows that an increase in dopant level does lead to similar changes as observed with the CaNd\textsubscript{2}S\textsubscript{4} system, Figure 4.1. The volume of the unit cell increased as the cation is changed from calcium to strontium, Table 4.14, expressed by an increase in the lattice parameter while increasing the dopant level in each group of compounds causes a contraction of the unit cell, White, 2004. The increase in lattice parameter with the cation change from calcium to strontium is expected since the strontium ion is larger than the calcium ion, and as such an increase is inevitable. Doping with excess Nd\textsubscript{2}S\textsubscript{3} lead to a decrease in lattice parameter which is the norm when Schottky defects are formed.

<table>
<thead>
<tr>
<th>Lattice parameter Å (a-site) SrNd\textsubscript{2}S\textsubscript{4}</th>
<th>Lattice parameter Å (a-site) CaNd\textsubscript{2}S\textsubscript{4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undoped 8.6204(1)</td>
<td>8.5301(1)</td>
</tr>
<tr>
<td>10mol%Nd\textsubscript{2}S\textsubscript{3} 8.6200(4)</td>
<td>8.5299(1)</td>
</tr>
<tr>
<td>20mol%Nd\textsubscript{2}S\textsubscript{3} 8.6181(3)</td>
<td>8.5280(1)</td>
</tr>
<tr>
<td>30mol%Nd\textsubscript{2}S\textsubscript{3} 8.5919(2)</td>
<td>8.5273(1)</td>
</tr>
</tbody>
</table>

Large grain particles of SrNd\textsubscript{2}S\textsubscript{4} do not sinter well, similarly to CaNd\textsubscript{2}S\textsubscript{4}, therefore the average particle size was reduced to increase the density of the sintered pellet using dry ball milling for up to four days. Pellets were made with ground material by uniaxial pressing to 10 tonnes and sintering at 1350°C; pellets were produced with a maximum of 93% of the
theoretical density, Table 4.15. Increasing temperatures to more than 1350°C produced curved pellets rather than flat ones.

Table 4.15. Theoretical and actual densities for SrNd$_2$S$_4$ series

<table>
<thead>
<tr>
<th></th>
<th>Theoretical density SrNd$_2$S$_4$ (g/cm3)</th>
<th>Actual density SrNd$_2$S$_4$ (g/cm3)</th>
<th>% of theoretical density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undoped</td>
<td>5.229</td>
<td>4.35</td>
<td>83</td>
</tr>
<tr>
<td>10mol%Nd$_2$S$_3$</td>
<td>5.118</td>
<td>4.25</td>
<td>83</td>
</tr>
<tr>
<td>20mol%Nd$_2$S$_3$</td>
<td>5.028</td>
<td>4.35</td>
<td>87</td>
</tr>
<tr>
<td>30mol%Nd$_2$S$_3$</td>
<td>4.993</td>
<td>4.06</td>
<td>81</td>
</tr>
</tbody>
</table>

SEM’s of the sintered pellets shows large pores of diameter up to 15µm with fairly thin grain boundaries, Figure 4-38. Therefore the pellets were not dense when made with smallest particle size distribution and maximum temperature, Table 4.15. SrNd$_2$S$_4$+0.2Nd$_2$S$_3$ achieved the highest percentage of theoretical density similarly to what was observed in the CaNd$_2$S$_4$ series.

Figure 4-38. SEM of SrNd$_2$S$_4$ sintered pellet at 1350°C in H$_2$S/Ar mixture with 93% of theoretical density

4.7.1 TPO and TPR for SrNd$_2$S$_4$ series

The thermal stability of the proposed SrNd$_2$S$_4$ series was established using TPO and TPR. The TPO traces of this series consist of one major peak with a shoulder at the high temperature side, which mimics the CaNd$_2$S$_4$ series TPO traces, Figure 4-39. The presence of only one major peak at elevated temperatures indicates that only one type of sulphur peak is being reacted to form sulphur dioxide. The onset temperature is higher for doped SrNd$_2$S$_4$ compounds relative to un-doped SrNd$_2$S$_4$; while all CaNd$_2$S$_4$ compounds are more stable relative to the undoped-CaNd$_2$S$_4$, Table 4.16.
Therefore changing the calcium ion to the strontium ion (a larger cation) led to an increase in the onset temperatures for the undoped electrolyte of approximately 130°C, Table 4.16. This increase in oxidation onset temperature may be explained by using the basic theory of polarisation effect, which states that, the more polarising an ion, the stronger the bond between oppositely charged ions. Since strontium ion has a polarisability number of 1.4 which is approximately three times greater than calcium with polarisability number of 0.4, higher oxidizing onset temperatures are expected.

The effect of doping with excess Nd$_2$S$_3$ caused a increase in onset temperatures for SrNd$_2$S$_4$ series, while for the CaNd$_2$S$_4$ series increasing the dopant caused a decrease in onset temperatures, however no simple explanation is possible for this contrasting observation.

The thermal activation energies of these compounds were evaluated by the method described in Chapter 4.1. On changing the cation from calcium to strontium (without doping) lead to an
increase in activation energy by a factor of 2, which agrees well with the increasing in polarisability. Increasing the dopant concentration of Nd₂S₃ in SrNd₂S₄ caused variations in the thermal activation energy with a maximum of 1.24×10⁶ kJ/kg-mol-K for SrNd₂S₄+0.2Nd₂S₃, Figure 4-40.

![Activation Energy Chart](image)

Figure 4-40 Thermal Activation energy for SrNd₂S₄ and CaNd₂S₄ series

No clear relationship is apparent between thermal activation energies and the two types of neodymium sulphide based compounds. What is known is that the unit cell contracts once the excess Nd₂S₃ content increases beyond 10mol%, this should cause an increase in thermal activation energy, as observed for SrNd₂S₄+0.2Nd₂S₃, Figure 4-40. Increasing the excess Nd₂S₃ also increases the number of cation and ion vacancies, which should cause a lowering in activation energy, due to increased number of free pathways for sulphide ions to leave the unit cell as well as for inserting of oxide ions into to the vacant sites. This lowering of activation energy was only observed at SrNd₂S₄+0.3Nd₂S₃, Figure 4-40.

No significant trend was observed between the reduction onset temperatures and dopant level or unit cell lattice parameter for the SrNd₂S₄ series, Figure 4-41, Table 4.17. SrNd₂S₄+0.2Nd₂S₃, which is most stable under reducing conditions, also had the highest thermal activation energy, Figure 4-40 even though SrNd₂S₄+0.2Nd₂S₃ was not the most stable, within the SrNd₂S₄ series, in an oxidising atmosphere, Table 4.16. The thermal stabilities of both the SrNd₂S₄ and CaNd₂S₄ series in a reducing atmosphere are comparable, Table 4.17.
Figure 4-41. Temperature programmed reduction of SrNd$_2$S$_4$ series

Table 4.17 TPR onset temperature for the SrNd$_2$S$_4$ and CaNd$_2$S$_4$ series

<table>
<thead>
<tr>
<th>Dopant level</th>
<th>SrNd$_2$S$_4$ (°C)</th>
<th>CaNd$_2$S$_4$ (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>712</td>
<td>737</td>
</tr>
<tr>
<td>10%</td>
<td>723</td>
<td>766</td>
</tr>
<tr>
<td>20%</td>
<td>793</td>
<td>711</td>
</tr>
<tr>
<td>30%</td>
<td>713</td>
<td>724</td>
</tr>
</tbody>
</table>

4.8 EIS of Nd$_2$S$_3$ doped SrNd$_2$S$_4$ series

The electrochemical behaviour of strontium neodymium sulphide doped with neodymium sulphide was characterised by using EIS. The bulk conductivities were measured in the temperature range from 150 to 400°C with 25°C increments with a one-hour temperature isothermal period before measuring in the frequency range from 0.1Hz to 1GHz (10 points per decade) in an atmosphere. Graphite electrodes, with an applied ac voltage of 0.1Vrms were used. Other electrode materials such as gold and platinum were not used due to the previously discussed apparent reaction with the electrolyte at low temperatures.
4.8.1 EIS characterisation for SrNd$_2$S$_4$ series: ionic or mixed conductors

Modelling of pure ionic conducting ceramics represented by three series connection of resistor-capacitor (RC) connected in parallel was proposed initially by Bauerle, 1969 where grain boundary (highest frequency), grain interior (medium frequency) and ionic blocking electrode (low frequency). Randles equivalent circuit model is used extensively for liquid system and it is a useful starting point.

Boukamp and Bouwmeester 2003, attempted to address the situation of mixed conductor and in doing so showed that the addition of a parallel resistance to the RC elements of the Bauerle to account for electronic conduction. However the results showed that it was inaccurate, and that the situation was accurately modelled by using a Gerisher impedance element, a modelling tool available in Z-view©. Jamnik et. al., 1999, proposed two models for the two extreme cases of mixed conductor; firstly a system where conduction takes place predominantly by ionic conduction, Figure 4-42, and secondly where conduction takes place predominantly by electronic movement, Figure 4-43. Two complex situations were modelled, one of partial blocking grain boundaries to one of the conduction species and secondly the conduction mechanism is observed in lithium insertion reaction into a mixed electronic ionic lithium based electrolyte, Figure 4-44 and Figure 4-45, Jamnik et. al., 2003.

![Figure 4-42](image1)

Figure 4-42 Equivalent circuit for a mixed conductor with ideal selectively blocking electrodes with predominant electronic conductivity

![Figure 4-43](image2)

Figure 4-43 Equivalent circuit for a mixed conductor with ideal selectively blocking electrodes with predominant ionic conductivity
Figure 4-44 Equivalent circuit for Lithium ion insertion into a Lithium based mixed conducting electrolyte

Where

- R_{ion} – Resistance to ionic movement
- R_{ele} – Resistance to electronic movement
- C_{die} – Electrode capacitance
- C_{ele} – Chemical capacitance
- C_q – Electrostatic (bulk) capacitance
- R_{li+} – Interfacial resistance,
- C_{li+} – interfacial capacitance,
- Z_{fwo} and Z_{fw-c} are the open and closed finite Warburg diffusion elements related to the chemical diffusion of lithium ion into the electrolyte.

Figure 4-45. Model for mixed conduction electrolyte with partial blocking grain boundaries where all modelling elements are as defined in previous figure with ‘g’ referring to grain conduction and ‘gb’ referring to grain boundary conduction, $C_{g,p}$ relates to the parallel discharging of grain chemical capacitance

Figure 4-46. Typically called the Randles equivalent circuit used to model ionic conduction

The correct model was selected based on goodness of fit between modelled and experimental data determined by the Chi-square and Sum-of-squares statistical parameters. For mixed ionic-electronic conducting electrolyte, the Bode plot is very sensitive to apparently small
numerical changes in the Chi-square or Sum-of squares and therefore qualitatively identifies the most appropriate model, Figure 4-47 to Figure 4-50.

The vivid misfit between the experimental data and the Jamnik predominantly electronic conducting model is clearly shown in both the Nyquist and Bode plot in Figure 4-47. This infers that SrNd$_2$S$_4$ is not predominately electronic conducting.

The Nyquist plots for either Jamnik predominantly ionic conductor or Randles equivalent circuit give comparable results, but based the fitted results as shown in the Bode plot shows, the Jamnik predominant ionic conducting model yields a better fit at low frequencies (electrode response), Figure 4-48 and Figure 4-50.

The insertion type reaction model produced a better fit at high frequencies (see Bode plot inserted in Figure 4-49), but the misfit was clearly shown at lower frequencies mainly in the Nyquist plot, Figure 4-49. This infers that no reaction (insertion) occurred during the impedance measurement.

Figure 4-47. Model result using perfectly blocking boundaries for predominant electronic conductivity for undoped SrNd$_2$S$_4$ at 400°C
Figure 4-48. Model result using perfectly blocking boundaries for Jamnik predominant ionic conductivity for undoped SrNd$_2$S$_4$ at 400°C

Figure 4-49. Model result using partially blocking boundaries with an insertion reaction for undoped SrNd$_2$S$_4$ at 400°C
The Nyquist and Bode plot gives a visual impression of the goodness of fit which varied significantly for different models as shown in Figure 4-47 through to Figure 4-50. The equivalent circuit representing an insertion reaction showed a largest visual variance with respect to the experimental data on the Nyquist plot, Figure 4-49.

The statistical parameters, Chi-square and Sum-of-Squares, which quantifies the goodness of fit, shows that modelling of impedance spectroscopy data for the SrNd₂S₄ series with the Jamnik predominantly ionic conducting is most suitable, since both the Sum-of-squares and Chi-squares are minimised, Table 4.18. Hence the Jamnik mixed ionic-electronic model was used to quantify the bulk conductivity for SrNd₂S₄ series. Jamnik predominantly ionic conducting model appears to be only marginally better than Randles ionic conducting model when considering only the statistical measurement of goodness of fit, Table 4.18. However at low temperatures, the mixed ionic-electronic Jamnik model fits the high frequency data much better than the pure ionic conductor represented by Randles models. Macdonald, 1981 suggest that the best model is one which fits data at all experimental conditions, hence the Jamnik mixed model most appropriate since fit is good at all temperatures measured.
Table 4.18. Statistical parameters evaluating the goodness of fit for alternative models

<table>
<thead>
<tr>
<th>Models</th>
<th>Chi-square</th>
<th>Weighted-sum-of-squares</th>
<th>Maximum error on an equivalent circuit element (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jamnik predominantly electronic conducting</td>
<td>8.1</td>
<td>1082</td>
<td>6.0x10¹¹</td>
</tr>
<tr>
<td>Jamnik predominantly ionic conducting</td>
<td>0.002</td>
<td>0.322</td>
<td>2.8</td>
</tr>
<tr>
<td>Insertion reaction</td>
<td>0.014</td>
<td>1.917</td>
<td>1.3x10⁸</td>
</tr>
<tr>
<td>Randles circuit</td>
<td>0.003</td>
<td>0.452</td>
<td>8.0</td>
</tr>
</tbody>
</table>

However, for SrNd₂S₄+0.2Nd₂S₃ only the Bauerle equivalent circuit fitted the experimental data under all experimental conditions, indicating that the electronic component is less than 0.0001% which is the lower limit of electronic component for Jamnik model. The addition of a third RC element to Randles model that is the Bauerle model, in an attempt to model the observed low frequency phenomena did not result in any improvement in goodness of fit for all other compounds exclusive of SrNd₂S₄+0.2Nd₂S₃.

4.7.2 Effect of changing from CaNd₂S₄ series to SrNd₂S₄ series

The host cation was changed from calcium ion to the larger strontium ion in order to increase the lattice parameter of the unit cell thereby increasing the ionic conductivity. Since mechanically contacted graphite electrodes on the electrolytes introduces spreading resistance, only the high frequency arc was used to measure bulk conductivity. The Nyquist plots for both un-doped CaNd₂S₄ and SrNd₂S₄ have similar shape and if an improvement in bulk conductivity was made it cannot be seen clearly, Figure 4-51. However equivalent circuit modelling can quantify the bulk conductivity; the results are discussed in section 4.8.3.
Figure 4-51. Experimental impedance of SrNd$_2$S$_4$ and CaNd$_2$S$_4$ at 400°C in Argon with graphite electrodes

The CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ Nyquist plot has a distinct low frequency arc (ionic blocking electrode effect), however the Nyquist plot for SrNd$_2$S$_4$+0.1Nd$_2$S$_3$ appears to lack this feature, Figure 4-52. Also the very large imaginary component of medium frequency arc of CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ reduced significantly with host cation change, Figure 4-52. Therefore the increase in conductivity for SrNd$_2$S$_4$+0.1Nd$_2$S$_3$ apparently without the low frequency ionic blocking arc in the Nyquist plot suggests that the increase in conductivity could be attributed to an increase in electronic conductivity rather than ionic conductivity.

Figure 4-52. Impedance of SrNd$_2$S$_4$+0.1Nd$_2$S$_3$ and CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ at 300°C

The Nyquist plots of both SrNd$_2$S$_4$+0.2Nd$_2$S$_3$ and SrNd$_2$S$_4$+0.3Nd$_2$S$_3$ electrolytes have total impedance which is much less than their respective equivalent calcium sulphide based electrolyte, Figure 4-53. The absence of ionic blocking suggests that electronic conduction
may be prevalent in these SrNd$_2$S$_4$ electrolytes. Only at excess 10mol% Nd$_2$S$_3$ doping of CaNd$_2$S$_4$ produced a Nyquist plot with the ionic blocking arc; a future increasing the dopant level increased electronic-type conduction. The absence of a clear ion blocking arc for all compounds of the SrNd$_2$S$_4$ series, may infer that the optimum ionic conduction for both SrNd$_2$S$_4$ and CaNd$_2$S$_4$ series should be explored at lower dopant level.

![Z Real (ohm) vs -Z Imag (ohm) plot](image)

Figure 4-53 Impedance of the SrNd$_2$S$_4$+0.2Nd$_2$S$_3$ and CaNd$_2$S$_4$+0.2Nd$_2$S$_3$ with graphite electrodes at 300°C

4.8.2 Activation energy for SrNd$_2$S$_4$ series

The Arrhenius plot for all compounds of the SrNd$_2$S$_4$ series was linear excluding SrNd$_2$S$_4$+0.2Nd$_2$S$_3$. Since the unit cell is cubic, a highly order symmetric structure, no phase transformation is expected or can easily explained. However at high dopant concentration it is likely that cationic or electronic conduction may occur. The similar gradient of the other lines in Figure 4-54 indicates similar activation energies for the respective compounds within this series, agreeing with ideas expressed in literature that doping causes very little change in activation energy but can have pronounced effect on conductivity.
The activation energies were calculated from both Jamnik and Randles models due to the closeness in the goodness of fit. Generally, the Jamnik’s predominantly ionic conducting model resulted in a marginal improvement in the R^2 value of the Arrhenius plot, Table 4.19. Also the activation energies derived from the Jamnik model resulted in lower values, of 0.05-0.1eV, relative to Randles model; excluding SrNd$_2$S$_4$+0.3Nd$_2$S$_3$. However, both models identify that SrNd$_2$S$_4$+0.2Nd$_2$S$_3$ has the minimum activation energy.

Table 4.19. Activation energy for SrNd$_2$S$_4$ series using Jamnik or R/C- R/CPE model

<table>
<thead>
<tr>
<th></th>
<th>Jamnik model</th>
<th>R/C – R/CPE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High temp Low temp</td>
<td>High temp Low temp</td>
</tr>
<tr>
<td>Undoped SrNd$_2$S$_4$</td>
<td>0.35eV, $R^2=0.997$</td>
<td>0.46eV, $R^2=0.982$</td>
</tr>
<tr>
<td>*SrNd$_2$S$_4$+0.1Nd$_2$S$_3$</td>
<td>0.32eV, $R^2=0.999$</td>
<td>0.37eV, $R^2=0.978$</td>
</tr>
<tr>
<td>SrNd$_2$S$_4$+0.2Nd$_2$S$_3$</td>
<td>0.37eV, $R^2=0.997$</td>
<td>0.51eV, $R^2=0.999$</td>
</tr>
<tr>
<td>SrNd$_2$S$_4$+0.3Nd$_2$S$_3$</td>
<td>1.77eV, $R^2=0.96$</td>
<td>0.38eV, $R^2=0.999$</td>
</tr>
</tbody>
</table>

*Bauerle model used due to the lack of fit for the Jamnik model

Based on available literature for sulphide ion conduction in symmetric unit cells an expected range of activation energy for bulk conduction was previously established to be 0.61-1.61eV in Chapter 4.45. While the activation energy, determined using R/C-RCPE (Randles) model, for sulphide ion conduction lies in the expected range for the doped CaNd$_2$S$_4$ compounds, only SrNd$_2$S$_4$+0.3Nd$_2$S$_3$ has an activation energy greater than 0.61eV, Table 4.20.
Table 4.20. Activation energy of bulk conductivity for SrNd₂S₄ and CaNd₂S₄ series at temperatures greater than 350°C using Randles and Jamnik models

<table>
<thead>
<tr>
<th>Dopant level</th>
<th>SrNd₂S₄ Jamnik model</th>
<th>SrNd₂S₄ Randles(R//C-R//CPE) model</th>
<th>CaNd₂S₄ Jamnik model</th>
<th>CaNd₂S₄ Randles(R//C-R//CPE) model</th>
</tr>
</thead>
<tbody>
<tr>
<td>0mol%Nd₂S₃</td>
<td>0.35eV</td>
<td>0.46eV</td>
<td>0.48eV</td>
<td>0.35eV</td>
</tr>
<tr>
<td>10mol%Nd₂S₃</td>
<td>0.32eV</td>
<td>0.37eV</td>
<td>0.62eV</td>
<td>0.23eV</td>
</tr>
<tr>
<td>20mol%Nd₂S₃</td>
<td>0.37eV</td>
<td>0.46eV</td>
<td>0.97eV</td>
<td>0.37eV</td>
</tr>
<tr>
<td>30mol%Nd₂S₃</td>
<td>1.77eV</td>
<td>0.72eV</td>
<td>0.64eV</td>
<td>0.65eV</td>
</tr>
</tbody>
</table>

The opening up of the unit cell structure by using a larger cation, should cause a lowering in activation energy if the conducting specie is in fact sulphide. Therefore the trend of decreasing activation energy for the SrNd₂S₄ series relative to CaNd₂S₄ is consistent with conduction of sulphide ions; based on activation energies derived from either Jamnik or Randles models, Table 4.20. This theory assumes no impact (if present) of electronic conduction for both CaNd₃S₄ and SrNd₂S₄ based compounds.

Both the undoped SrNd₂S₄ and CaNd₂S₄ have comparable activation energies for ionic hopping, Table 4.19. Using Jamnik model for predominant ionic conduction for electrolytes doped with excess Nd₂S₃ for both CaNd₂S₄ and SrNd₂S₄ series lead to the minimum activation energy occurring at 10mol%Nd₂S₃. Faber et al., 1989, also found a minimum activation energy in every series of doped cerium oxide based compounds. Faber ascribes this minimum to changes in the energy of oxygen sites in the vicinity of dopant cation. Other theories are proposed to explain this minimum such as the theory related to the electrostatic effect of dopant ion, Wang et al., 1981. Butler et al., 1983 proposed that this phenomena was the effect of the elastic strain energy on the association enthalpy of a simple pair of vacant site and dopant site. Irrespective of the founding reason the presence of the minimum activation energy, for the Nd₂S₃ based series apparently exhibit similar behaviour to cerium oxide compounds.

4.8.3 Conductivity energy for SrNd₂S₄ series

Using either Randles or Jamnik equivalent circuits to model EIS experimental data gave conductivity values with a difference of over 2 orders of magnitude, Table 4.21. This highlights the importance of model selection and hence need to use complimentary techniques to characterise materials.
The change from undoped-CaNd$_2$S$_4$ to undoped-SrNd$_2$S$_4$ caused a significant increase in conductivity from 1.69×10^{-5} S cm$^{-1}$ to 6.73×10^{-4} S cm$^{-1}$ without a major alteration of the activation energy for ionic hopping, Table 4.20 and Table 4.21.

Table 4.21. Bulk conductivities at 500°C, energies for CaNd$_2$S$_4$ and SrNd$_2$S$_4$ series using Jamnik or Randles equivalent circuit

<table>
<thead>
<tr>
<th>Nd$_2$S$_3$ Mol%</th>
<th>SrNd$_2$S$_4$ (S. cm$^{-1}$)</th>
<th>CaNd$_2$S$_4$ (S. cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6.73x10$^{-4}$</td>
<td>2.19x10$^{-8}$</td>
</tr>
<tr>
<td>10</td>
<td>3.39x10$^{-3}$</td>
<td>9.16x10$^{-4}$</td>
</tr>
<tr>
<td>20</td>
<td>2.61x10$^{-4}$</td>
<td>3.49x10$^{-5}$</td>
</tr>
<tr>
<td>30</td>
<td>2.95x10$^{-3}$</td>
<td>2.87x10$^{-5}$</td>
</tr>
</tbody>
</table>

*Conductivities calculated from Randles equivalent circuit

Both the Randles and Jamnik models identifies the SrNd$_2$S$_4$0.1Nd$_2$S$_3$ as having the maximum conductivity in this series of compounds, Table 4.21.

4.8.4 Concentration dependence of SrNd$_2$S$_4$ series bulk conductivity

The conductivity for a pure ionic conductor is independent of atmospheric concentration changes. Therefore the conductivity for the SrNd$_2$S$_4$ series was measured in a varying concentration of H$_2$S. Impedance spectroscopy was carried out from 350°C to 550°C, one hour isothermal period, with the concentration ranging from pure argon to 2vol% H$_2$S/Ar for each temperature. Oxide based electrolytes were considered to be ionic conducting rather than mixed ionic-electronic if the gradient of $(\log \sigma_{total})$ vs $(\log P_{H_2S})$ \leq 0.01, that is the total conductivity was considered to be independent of the oxygen partial pressure if the ratio is less than 0.01, C. Song and H. Yoo 2000. This establishes a realistic definition for a pure ionic conductor, and as such was used as the benchmark for the characterisation sulphide ion conductors.

The bulk conductivity of undoped-SrNd$_2$S$_4$ appears to be independent of H$_2$S concentration at elevated temperatures, Figure 4-55. However, at lower temperatures and H$_2$S concentration greater than 1vol%, a decrease in conductivity was observed, suggesting the onset of electronic conduction, Figure 4-55. Plotting conductivity isotherms of total conductivity vs. H$_2$S partial pressure, the gradient, $(\log \sigma_{total})$ vs $(\log P_{H_2S})$, was 0.05 indicating predominant ionic conduction at 550°C and a H$_2$S concentration range 0vol% to 1vol%H$_2$S/Ar, Figure 4-56.
The bulk conductivity for SrNd$_2$S$_4$+0.1Nd$_2$S$_3$ decreased with the presence of a positive H$_2$S partial pressure, Figure 4-57. This indicates the presence of electronic conductivity. Therefore the significantly increased bulk conductivity for SrNd$_2$S$_4$+0.1Nd$_2$S$_3$ with respect to CaNd$_2$S$_4$+0.1Nd$_2$S$_3$, Table 4.21, could be attributed to the onset of electronic conduction. On increasing the H$_2$S concentration from 1vol% to 2vol% the conductivity also increased, therefore implying the onset of hole conduction at high H$_2$S concentration, Figure 4-57.
Figure 4-57. Concentration dependence of bulk conductivity vs. temperature for SrNd$_2$S$_4$+0.1Nd$_2$S$_3$

SrNd$_2$S$_4$+0.1Nd$_2$S$_3$ and CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ have identical unit cells and symmetry, and yet the calcium based compound is an ionic conductor while the strontium based compound has predominant electronic conduction, Figure 4-58 and Figure 4-29 respectively. Since undoped SrNd$_2$S$_4$ possibly exhibited ionic conduction at 500°C and at H$_2$S/Ar concentrations less than 2vol%, it is possible that doping with less than 10mol%Nd$_2$S$_3$ could improve ionic conduction without causing electronic conduction as was observed with SrNd$_2$S$_4$+0.1Nd$_2$S$_3$.

Figure 4-58. H$_2$S concentration dependence of total conductivity for SrNd$_2$S$_4$+0.1Nd$_2$S$_3$

The conductivity of SrNd$_2$S$_4$+0.2Nd$_2$S$_3$ decreased in presence of a positive H$_2$S partial pressure thus implying electronic conduction that is similar behaviour to SrNd$_2$S$_4$+0.1Nd$_2$S$_3$, Figure 4-59. It would appear that the high level of doping, 20mol%, causes the onset of electronic conduction since electronic conduction also occurred for CaNd$_2$S$_4$+0.2Nd$_2$S$_3$.
Increasing the H₂S concentration from 0.5vol% to 2vol% produced no change in conductivity for SrNd₂S₄+0.2Nd₂S₃, signifying ionic conduction in this concentration range, Figure 4-59.

![Figure 4-59. Concentration dependence of bulk conductivity vs. temperature for SrNd₂S₄+0.2Nd₂S₃](image)

SrNd₂S₄+0.3Nd₂S₃ decreased in conductivity, as the partial pressure is increased, symptomatic of electronic contribution, Figure 4-60. However at 550°C the conduction becomes independent of all partial pressures studied, signifying ionic conductivity, Figure 4-60.

![Figure 4-60. Concentration dependence of bulk conductivity vs. temperature for SrNd₂S₄+0.3Nd₂S₃](image)
4.8.5 Electrochemical pumping of sulphide ions in SrNd$_2$S$_4$

Electrochemical concentration cell of the type H$_2$S/H$_2$/Pt/SrNd$_2$S$_4$ series/Pt//Ar/H$_2$ operated at elevated temperatures (550-750°C) with applied voltage of 1-2V (d.c) was set up to identify the conducting species in these electrolytes. A sulphide ion conducting electrolyte should generate a steady state current with the application of a negative potential applied on the H$_2$S compartment of the cell. Alternatively, a decaying current could indicate a mixed conductor, the peak current related to the total ionic and electronic, while the reversible steady state current related to the electronic current.

Application of a positive potential to the H$_2$S compartment should not produce any current if the electrolyte is a pure sulphide ion conductor, i.e. the current should decay rapidly to baseline. If the current decays slowly, then the movement of a positive ion is interpreted, (decay because there is no continuous source of ions, only from the electrolyte).

An electronic conducting electrolyte would produce a steady state current irrespective of the polarity of the applied voltage. An offset from the origin with no applied voltage is indicative of electronic current.

The asymmetric result of pumping SrNd$_2$S$_4$ at 550°C with 5V dc indicates mixed conduction. The source of large electronic contribution (difference between peak current and steady state current) could be attributed to the electroding process/cementing process since the cross sectional resistance 890Ω was much smaller than initial resistance, which was greater than 200MΩ. The peak current that relates to ionic conduction appears independent of the H$_2$S concentration which suggests that the peak current is cation based rather than anionic, Figure 4-61.
Figure 4-61. Electrochemical pumping of SrNd$_2$S$_4$ at 550°C with 1V & 5V dc
Electrochemical pumping of SrNd$_2$S$_4$+0.2Nd$_2$S$_3$ also resulted in a symmetric current generation plot as the direction of the applied voltage was reversed, Figure 4-62. The absence of a significant peak suggests that the current flow is electronic, Figure 4-62.

Figure 4-62. Electrochemical pumping of SrNd$_2$S$_4$+0.2Nd$_2$S$_3$ at 500°C with 5V dc
Electrochemical pumping at 650°C resulted in asymmetric current response, Figure 4-63. Currents generated from a positive as well as negative applied voltage did not decay, and the higher current corresponds to the higher H$_2$S concentration side of the reactor.
Figure 4-63. Electrochemical pumping of SrNd$_2$S$_4$+0.2Nd$_2$S$_3$ at 650°C with 1V dc

Figure 4-63 shows the only asymmetric result obtained for SrNd$_2$S$_4$+0.2Nd$_2$S$_3$ when pulsed at 650°C with 1V dc. A higher current was generated when 1V dc was applied to the H$_2$S rich side indicating the movement of negatively charged S$^{2-}$ ions. Movement of S$^{2-}$ ions would yield a constant current flow with the application of a negative potential on the H$_2$S rich compartment, as observed in Figure 4-63.

4.8.6 Conclusion for the SrNd$_2$S$_4$ series

Structurally both neodymium types of compounds are similar; however replacing the host cation from calcium to strontium brought increased thermal stability in oxidizing conditions, Table 4.16, with no significant change in reducing atmospheres, Table 4.17. No clear relationship is apparent between thermal activation energies and the two types of neodymium based compounds. Therefore SrNd$_2$S$_4$ has different thermal properties to CaNd$_2$S$_4$, and this must be related to the properties of Ca and Sr since both groups of compounds have similar structures and unit cells.

Electrochemical characterisation by using impedance spectroscopy on SrNd$_2$S$_4$ series in an argon atmosphere indicates at best mixed ionic-electronic conduction since no ionic blocking electrode response was present in the Nyquist plots. Therefore increased bulk conductivities of SrNd$_2$S$_4$ and SrNd$_2$S$_4$+0.1Nd$_2$S$_3$ are most likely electronic rather than ionic.

The H$_2$S concentration dependency of bulk conductivity of undoped SrNd$_2$S$_4$ showed electronic conduction at lower temperatures; on increasing the temperature it seems to be ionic conductivity because no change occurred with the increase in H$_2$S concentration, which
is a more promising beginning than CaNd$_2$S$_4$. However the bulk conductivities for all doped SrNd$_2$S$_4$ compounds decreased in the presence of a H$_2$S positive partial pressure, thus implying the presence of electronic conduction in argon atmosphere.

The opening up the SrNd$_2$S$_4$ unit cell structure is expected to cause a lowering in activation energy if the conducting specie was in fact sulphide. Therefore the increased activation energy for SrNd$_2$S$_4$+0.2Nd$_2$S$_3$ compounds qualitatively suggests cationic ion conduction in preference to anion conduction, Table 4.20. Both the undoped SrNd$_2$S$_4$ and CaNd$_2$S$_4$ have similar activation energies for ionic hoping, Table 4.20, and doping in both CaNd$_2$S$_4$ and SrNd$_2$S$_4$ series leads to a minimum activation energy at 10mol%Nd$_2$S$_3$, assuming negligible electronic conduction in both CaNd$_2$S$_4$ and SrNd$_2$S$_4$ based compounds. Faber et. al., 1989 found a minimum activation energy in any case of cerium oxide based compounds. Therefore these neodymium sulphide based compounds have similar behaviour to cerium oxide compounds. Interestingly CeO based electrolytes exhibit electronic conduction in low concentrations of oxygen as was observed for doped SrNd$_2$S$_4$ electrolytes.

Finally the asymmetric result of pumping SrNd$_2$S$_4$ at 550°C with 5V dc indicates mixed conduction and the peak current that relates to ionic conduction appears independent of the H$_2$S concentration, which suggests that the peak current is cation based rather than anionic. Electrochemical pumping of SrNd$_2$S$_4$+0.2Nd$_2$S$_3$ gives symmetric response at 550°C, indicating electronic conduction, but at 750°C an asymmetric current response indicates sulphide ion conduction. The frequent short-circuiting of the electrolytes in the pumping cells could have skewed the data enormously and such data cannot be used to differentiate ionic from electronic conduction.
4.9 References For Chapter 4

Chapter 5

5 Characterisation and electrochemical application Samarium Sulphide doped
CaSm$_2$S$_4$ and SrSm$_2$S$_4$ series

Finding a suitable high temperature sulphide ion-conducting electrolyte began with
verification of the previously reported sulphide ion conducting calcium neodymium sulphide
series. While Kalinina et al., 1995, identified all doped CaNd$_2$S$_4$ compounds as purely ionic
(a mix of anions and cations). However only CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ was found to exhibit this
property when characterised by impedance spectroscopy. The bulk conductivity of
CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ (at 500°C) was low, 1.09x10$^{-6}$S.cm$^{-1}$. Therefore modification of the
material was sought, which entailed changing the host cation from calcium to strontium. This
led to an increase in bulk conductivity but was later established to have significant electronic
or positive hole conduction. Therefore the next logical change in modifying the electrolyte
was to change the dopant compound. Therefore calcium samarium sulphide doped with
excess samarium sulphide was characterised in order to identify if these materials are indeed sulphide ion conductors.

Calcium samarium sulphide doped with excess samarium sulphide has previously been
synthesised and characterised by Kalinina et al. 2000 where they reported that these
materials exhibited sulphide ion conductivity. Therefore the analogue CaSm$_2$S$_4$ of CaNd$_2$S$_4$
was synthesised using an identical solid-state reaction procedure as established by Kalinina
et al., 1995.

The XRD pattern shows the defining reflections of CaNd$_2$S$_4$; this compound has a cubic unit
cell similar to CaNd$_2$S$_4$ shown in Figure 4.1, Chapter 4, where the larger black spheres now
represent Sm rather than Nd atoms, White, 2005. The X-ray diffraction pattern shows that an
increase in dopant level does lead to similar changes as observed with the CaNd$_2$S$_4$ system,
Figure 4.1, Chapter 4, White, 2005. The volume of the unit cells decreased as the cation was
changed from neodymium to samarium expressed by the reduction in the lattice parameter
while increasing the dopant level in each group of compounds caused a contraction of the unit
cell, Table 5.1. The decrease in lattice parameter with the cation change from neodymium to
samarium was expected since the samarium ion is smaller than the neodymium ion, and as
such a decrease is inevitable.
Table 5.1. Lattice parameter for CaNd$_2$S$_4$ series and CaSm$_2$S$_4$ series

<table>
<thead>
<tr>
<th>Dopant level (Sm$_2$S$_3$ or Nd$_2$S$_3$)</th>
<th>Lattice parameter Å (a-site) CaSm$_2$S$_4$</th>
<th>Lattice parameter Å (a-site) CaNd$_2$S$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undoped</td>
<td>8.4708(1)</td>
<td>8.5301(1)</td>
</tr>
<tr>
<td>10%</td>
<td>8.4701(8)</td>
<td>8.5299(1)</td>
</tr>
<tr>
<td>20%</td>
<td>8.4684(8)</td>
<td>8.5280(1)</td>
</tr>
<tr>
<td>30%</td>
<td>8.4653(1)</td>
<td>8.5273(1)</td>
</tr>
</tbody>
</table>

Large grain particles of CaSm$_2$S$_4$ do not sinter well, similar to CaNd$_2$S$_4$, therefore the average particle size was reduced by dry ball milling for up to four days to increase the density of the sintered pellet. Pellets were made with ground material by uniaxial pressing to 10 tonnes followed by sintering at 1350°C; pellets were produced with a maximum of 97% of the theoretical density, Table 5.2. Increasing temperatures to 1550°C produced severely cracked pellets and the high quality alumina (99% Al$_2$O$_3$) support changed colour from white to yellow indicating a reaction between pellet and support. The final sintering temperature of 1350°C was selected.

Table 5.2. Theoretical and actual densities for CaSm$_2$S$_4$ series

<table>
<thead>
<tr>
<th>Dopant level (mol% Nd$_2$S$_3$)</th>
<th>Theoretical density CaSm$_2$S$_4$ (g/cm3)</th>
<th>Actual density CaSm$_2$S$_4$ (g/cm3)</th>
<th>% Of theoretical density Before grinding</th>
<th>% Of theoretical density After grinding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undoped</td>
<td>5.125</td>
<td>4.09</td>
<td>80</td>
<td>91</td>
</tr>
<tr>
<td>10mol%Nd$_2$S$_3$</td>
<td>5.055</td>
<td>4.00</td>
<td>79</td>
<td>90</td>
</tr>
<tr>
<td>20mol%Nd$_2$S$_3$</td>
<td>4.995</td>
<td>3.91</td>
<td>78</td>
<td>93</td>
</tr>
<tr>
<td>30mol%Nd$_2$S$_3$</td>
<td>4.953</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

n/a – not available

SEM's of the sintered pellets made with un-ground powders shows many large pores of diameter up to 20µm with fairly thin grain boundaries, Figure 5-1. These pores are the cause of the low density of the sintered pellet. The pellet is so porous that its SEM resembles that of compressed powder. Reducing the mean particle size by grinding resulted in a significant improvement in the final density of the sintered pellet, Figure 5-2. The density increased by 10% when the pellets were made with ground powder, Table 5.2. While the density of pellets of SrNd$_2$S$_4$+0.2Nd$_2$S$_3$ and CaNd$_2$S$_4$+0.2Nd$_2$S$_3$ were higher when compared to other
compounds in either family, the CaSm$_2$S$_4$ series all appear to have similar ‘sinterability’ since the percentage of theoretical density was comparable.

Figure 5-1. CaSm$_2$S$_4$+0.2Sm$_2$S$_3$ sintered pellets at 1350°C in H$_2$S/Ar mixture with 78% and 92% of theoretical density

Figure 5-2 Particle size distribution of before and after grinding of CaSm$_2$S$_4$+0.2Sm$_2$S$_3$
5.1 TPO and TPR for CaSm$_2$S$_4$ series

The thermal stability of CaSm$_2$S$_4$ series was established using TPO and TPR techniques. The TPO traces of this series consist of one major peak with a shoulder at the higher temperature, which mimics the CaNd$_2$S$_4$ series TPO traces, Figure 5-3. The presence of a single major SO$_2$ peak at elevated temperatures indicates that only one type of sulphur is being reacted to form sulphur dioxide, implying a single-phase compound.

![Figure 5-3. Temperature programmed oxidation of CaSm$_2$S$_4$ series showing peak and onset temperatures](image)

The addition of excess Sm$_2$S$_3$ did not cause any significant change in onset temperatures while the CaNd$_2$S$_4$ series had higher onset temperatures for all doped compounds compared with the undoped CaNd$_2$S$_4$. Therefore changing the lanthanide from neodymium to samarium improved the thermal stability under oxidizing conditions, Table 5.3.

Table 5.3 Onset temperatures for CaNd$_2$S$_4$ and CaSm$_2$S$_4$ and unit cell lattice parameter

<table>
<thead>
<tr>
<th>Onset Temperatures</th>
<th>Lattice parameter for ‘a’ site Å</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CaNd$_2$S$_4$</td>
</tr>
<tr>
<td>0%</td>
<td>671</td>
</tr>
<tr>
<td>10%</td>
<td>723</td>
</tr>
<tr>
<td>20%</td>
<td>708</td>
</tr>
<tr>
<td>30%</td>
<td>703</td>
</tr>
</tbody>
</table>

Bracketed () number indicates the standard deviation on the fourth decimal place.
The increase in oxidation onset temperature with increasing dopant content for CaNd$_2$S$_4$ series could be related to the reduction in the lattice parameter, Table 5.3 that indicates a reducing unit cell volume. However the CaSm$_2$S$_4$ unit cell decreased with increasing dopant content, yet the oxidation onset temperature remains unchanged implying that unit cell size is not the only parameter, which governs oxidation onset temperature. None of the groups of sulphides studied so far, CaNd$_2$S$_4$, SrNd$_2$S$_4$ and CaSm$_2$S$_4$, have a similar trend in oxidation onset temperatures as a function of dopant content. It implies that this temperature is a unique property of each compound. The increased polarisability of the Sm$^{3+}$ ion with respect to the Nd$^{3+}$, due to the smaller radius of Sm$^{3+}$ combined with the reduced lattice parameter should lead to an increase in thermal stability, as observed based on the slight improvement in the onset temperatures, Table 5.3.

The thermal activation energy of the CaSm$_2$S$_4$ series follows the same trend as in the CaNd$_2$S$_4$ series: both series have a maximum thermal activation energy. CaSm$_2$S$_4$ and CaSm$_2$S$_4+0.1$Sm$_2$S$_3$ unit cells are of comparable size, and they have similar thermal activation energy, Table 5.4. The CaSm$_2$S$_4+0.2$Sm$_2$S$_3$ unit cell contracts and the activation energy increases; this is the expected response since the ions within the unit cell are closer, Figure 5-4. However for CaSm$_2$S$_4+0.3$Sm$_2$S$_3$ unit cell which is smaller than CaSm$_2$S$_4+0.2$Sm$_2$S$_3$ yet the activation energy reduced; this is not the expected response since this ions within the unit cell are closer, Figure 5-4. Greenwood, 1968, explained that when ions are in close proximity, an effective repulsive force operates which resists closer contact. Though it is a short-range interaction it increases exponentially with a decrease in inter-nuclear distance. Therefore this repulsive force at short lattice parameter could explain the decreased thermal activation energy for 30mol% doped CaNd$_2$S$_4$ and CaSm$_2$S$_4$, Table 5.4.

Figure 5-4 Thermal Activation energy for CaSm$_2$S$_4$ and CaNd$_2$S$_4$ series
Small concentrations of Schottky defects in stoichiometric compounds lower the density because these defects expand the crystal lattice. Frenkel defects are created within the crystal volume by an equivalent number of interstitial ions therefore small concentrations of Frenkel defects in a stoichiometric crystal cause no change in X-ray based densities. However, for doped or non-stoichiometric crystals, Frenkel defects may increase the density if the supernumerary ions are incorporated in interstitial sites without the corresponding number of vacant sites, Greenwood, 1968. Therefore the decrease in theoretical density for these non-stoichiometric sulphides infers Schottky defects.

Table 5.4 Thermal activation energies and XRD-based densities for CaNd₂S₄ and CaSm₂S₄ series

<table>
<thead>
<tr>
<th>Activation energy (kJ/g-mol)</th>
<th>Lattice parameter for ‘a’ site Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaNd₂S₄</td>
<td>CaSm₂S₄</td>
</tr>
<tr>
<td>0%</td>
<td>1.90x10⁵</td>
</tr>
<tr>
<td>10%</td>
<td>6.37x10⁵</td>
</tr>
<tr>
<td>20%</td>
<td>5.71x10⁵</td>
</tr>
<tr>
<td>30%</td>
<td>4.36x10⁵</td>
</tr>
</tbody>
</table>

The doped compounds of the CaSm₂S₄ series are less stable in hydrogen than the undoped-CaSm₂S₄, Figure 5-5. However CaSm₂S₄ series is more stable than CaNd₂S₄ in a reducing atmosphere, Table 5.5. Both series have CaSm₂S₄+0.2Sm₂S₃ and CaNd₂S₄+0.2Nd₂S₃ with the lowest onset temperature.

Figure 5-5. Temperature programmed reduction of CaSm₂S₄ series
Table 5.5 TPR onset temperature for the SrNd$_2$S$_4$ and CaNd$_2$S$_4$ series

<table>
<thead>
<tr>
<th>Dopant level</th>
<th>CaSm$_2$S$_4$ (°C)</th>
<th>CaNd$_2$S$_4$ (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>775</td>
<td>737</td>
</tr>
<tr>
<td>10%</td>
<td>745</td>
<td>766</td>
</tr>
<tr>
<td>20%</td>
<td>720</td>
<td>711</td>
</tr>
<tr>
<td>30%</td>
<td>750</td>
<td>724</td>
</tr>
</tbody>
</table>

5.2 Electrochemical characterisation of CaSm$_2$S$_4$ series

Impedance spectroscopy of the calcium samarium series was carried out in the temperature range from 250 to 400°C using graphite electrodes, with an ac voltage of 0.1Vrms, frequency range from 0.1Hz to 1x106Hz under argon atmosphere with 1hour delay for temperature stability. Other electrode materials such as gold and platinum were not used based on the apparent reaction, previously discussed, with the electrolytes at low temperatures.

The Nyquist plots show a significantly increase in the real and imaginary components compared with either CaNd$_2$S$_4$ or SrNd$_2$S$_4$ indicating that changing the dopant from neodymium sulphide to samarium sulphide caused a loss in bulk conductivity, an undesired effect, Figure 5-6. The lowest temperature at which reliable impedance spectroscopy could be measured for CaSm$_2$S$_4$ series was 275°C. At 250°C, significant scattering of the data occurred due to high impedance values.

5.2.1 Alternative Equivalent circuits for CaSm$_2$S$_4$ series Modelling: Diffusion based equivalent circuits

The experimental impedance data for CaSm$_2$S$_4$ differs from both the calcium and strontium neodymium sulphide series, Figure 5-6. CaNd$_2$S$_4$ and SrNd$_2$S$_4$ series Nyquist data are adequately modelled by using R/C-R//CPE, Bauerle or Jamnik models, which address ionic and mixed ionic-electronic conduction. It is unlikely that the model for pure ionic conductor or mixed conductors electrolyte would fit CaSm$_2$S$_4$ experimental data, since the shape of the Nyquist plot for calcium samarium is different from neodymium based electrolytes, hence an alternative model was sought, Figure 5-6.
Figure 5-6. Impedance of undoped CaSm$_2$S$_4$, CaNd$_2$S$_4$ and SrNd$_2$S$_4$ at 400°C

The Nyquist plot of CaSm$_2$S$_4$ series can be described as flattened semicircles related normally to predominant diffusion process, Fleischmann et. al. 1988, 1991. A complete mathematical treatment was done on different geometric shapes, however only a generic equivalent circuit model was produced for diffusion disc electrode, Figure 5-7. The governing equations for this model correspond to the two-dimensional diffusion of an electrode proposed equivalent circuit by Fleischmann et. al., 1988, 1991. As the initial impedance spectroscopy was done in the absence of a positive sulphur partial pressure, it is conceivable that diffusion of sulphur from the electrolyte may occur at elevated temperature. However this is not likely since comparable thermal activation energy and oxidation onset temperature for CaSm$_2$S$_4$ series was achieved relative to the CaNd$_2$S$_4$ series. Caution should be exercised in this theory since these parameters do not justify the mobility of sulphur within the unit cell nor does it address the electrochemical activation of mobile sulphur.

Figure 5-7. Fleischmann model for diffusion onto a disc micro electrode

Modelling of impedance data with more than three R//C combinations is done for two-phase systems, McDonald, 1987. If the phases are randomly distributed, with irregular shaped grains such as ellipsoids rather than spheres, the number of RC elements may increase beyond four. The low frequency arc corresponds to the low conductivity continuous phase, which would appear in the Nyquist plot by an apparent perfect semi-circle, Fricke, 1953. The
high frequency arc corresponds to the suspended phase and it is composed of three RC elements or relaxation times, corresponding to three possible orientations of the ellipsoids. The shape of Nyquist plot is independent of detailed microstructure, but the high frequency intercept could be affected by the presence of the second phase leading to a small distortion at high frequencies. Heating these compounds, CaSm₂S₄ series, supported on Al₂O₃ plates, in the presence of H₂S up to 1350°C resulted in a colour change in the alumina plates from white to green; thus highlighting the possibility of a reaction between the electrolyte and the Al₂O₃ support. A possible consequence of this reaction, is the formation of a secondary phase within the electrolyte, and therefore may provide experimental justification of the 4RC element model addresses two-phase systems.

McDonald and others, McDonald, 1976, Bauerle, 1969, Bruin and Badwal, 1976, also proposed an equivalent circuit that addresses the diffusion process. The equivalent circuit has five RC circuit elements, which are related to bulk conduction, a reaction mechanism, an adsorption mechanism, a recombination process and a diffusion process, respectively, Figure 5-8. Generally not all semicircles are observed, and even then a very wide frequency range, 10^{-3} to 10^{8} Hz is used, Armstrong and Taylor, 1975.

![Figure 5-8. McDonald 5RC model (upper labels) or Fricke two non-spherical composite (lower labels)](image)

If the material is a mixed ionic electronic conductor with distinguishable grain boundary and interior condition, then a combined model of Bauerle and Jamnik may adequately describe the impedance data. Two RC elements should model bulk and grain boundary conduction, while Jamnik equivalent circuit should address the relaxation process of the ions and electrons at the electrode-electrolyte interface, Figure 5-9.

![Figure 5-9. Combined Bauerle and Jamnik model for electrolyte with predominant ionic conduction](image)
Figure 5-10 shows a visual impression of the goodness of fit between the various proposed equivalent circuits and a typical experimental EIS result at high temperature. Generally, all the proposed equivalent circuits matched closely the experimental data at high frequencies but at low frequencies only the combined Bauerle & Jamnik or McDonald model fitted the experimental data.

![Figure 5-10 Experimental and modelled results for un-doped CaSm$_2$S$_4$ at 400°C](image)

Figure 5-10 Experimental and modelled results for un-doped CaSm$_2$S$_4$ at 400°C

The statistical parameters, Chi-square and Sum-of-Squares, which quantifies the goodness of fit and are outputs of the Z-view software©; both should be minimum for the best model, Table 5.6. The combined Bauerle and Jamnik equivalent circuit was most suitable since the Chi-square, Sum-of-Squares and maximum error on an equivalent circuit element were minimised. However the sum-of-squares and Chi-square for McDonald, are comparable with the combined Bauerle & Jamnik model, hence either is justified statistically, Table 5.6.
Fricke's equivalent circuit was included because it is a reasonable assumption that a second phase maybe present in the electrolytes since they were made from two starting materials. While Fricke model is physically justifiable since the sulphides were made from two starting sulphides, CaS and Sm2S3, therefore it is conceivable that more than one phase may be present. The maximum error on an equivalent circuit element exceeded the allowed maximum of 30%, therefore this model is not appropriate. This misfit between Fricke model and experimental impedance spectroscopy, infers that CaSm2S4 compounds are indeed homogeneous, thus confirming the XRD results, White, 2005. However powered XRD measures the bulk properties and a minor impurity between grains may not be detectable. The single TPO peak also suggests a single phase for CaSm2S4 series confirming the XRD data.

The McDonald's model should be used over a wide frequency range, of 10^8 Hz to 1×10^3 Hz, to observe the presence of five RC equivalent circuit elements. However the frequency range from 10^{-1} Hz to 10^6 Hz was used for the experimental impedance spectroscopy measurements. Therefore, the narrow frequency range used does not satisfy the criteria for this model. Nevertheless Armstrong and Taylor, 1975 used McDonald's model in a smaller frequency range of 10^6 Hz to 10^1 Hz, without mention of significant errors, which compares with these experimental conditions.

Therefore McDonald's equivalent circuit model was used to model the impedance data of CaSm2S4 series since this model has been previously established. It should be noted that the combined Bauerle and Jamnik equivalent circuit has a better fit than the McDonald, however

Table 5.6. Statistical parameters evaluating the goodness of fit for alternative models

<table>
<thead>
<tr>
<th>Models</th>
<th>Chi-square</th>
<th>Weighted-sum-of-squares</th>
<th>Maximum error on equivalent circuit element</th>
</tr>
</thead>
<tbody>
<tr>
<td>McDonald diffusion from a cylinder</td>
<td>3.66×10^4</td>
<td>0.071</td>
<td>24%</td>
</tr>
<tr>
<td>Fricke model (two phase mixture)</td>
<td>3.87×10^4</td>
<td>0.061</td>
<td>42%</td>
</tr>
<tr>
<td>Fleischmann generic model for diffusion and micro electrode effects</td>
<td>8.13×10^4</td>
<td>1.651</td>
<td>5042%</td>
</tr>
<tr>
<td>Combined Bauerle and Jamnik model</td>
<td>2.64×10^4</td>
<td>0.04151</td>
<td>12%</td>
</tr>
</tbody>
</table>
this model has not been verified mathematically, and therefore McDonald's model was used to model this series of compounds

5.2.2 Effect of doping CaSm_2S_4 Series with excess Sm_2S_3 on Impedance Spectroscopy

The Nyquist plot for $\text{CaSm}_2\text{S}_4+0.1\text{Sm}_2\text{S}_3$ and $\text{CaSm}_2\text{S}_4+0.3\text{Sm}_2\text{S}_3$ appears to be a single arc or two arcs with significant overlap so that they cannot be seen clearly in the plot. However CaSm_2S_4 and $\text{CaSm}_2\text{S}_4+0.2\text{Sm}_2\text{S}_3$ shows an asymptotic shape, which is typical for diffusion related process, Figure 5-11. This asymptotic shape occurred at medium frequency and therefore is material property rather than electrode (including contact error). Since the arc for bulk conductivity is not easily seen in the Nyquist plot due to significant overlap with other arcs, the effect of doping on the bulk conductivity could not be determined from the Nyquist plot.

![Figure 5-11. Effect of doping CaSm_2S_4 with Sm_2S_3 at 400°C in argon on nyquist plot](image)

The Bode plot for CaSm_2S_4 series shows that each compound in this series of compounds has a unique phase angle frequency dependency in the range measured, Figure 5-12. At low frequency both 10mol% and 30mol% have no phase shift, but at high frequencies the phase angles differ significantly. Impedance of undoped CaSm_2S_4 and $\text{CaSm}_2\text{S}_4+0.2\text{Sm}_2\text{S}_3$ have similar frequency dependency of phase angle at low frequencies, but different phase change at medium frequencies, Figure 5-12.
Figure 5-12. Effect of doping CaSm$_2$S$_4$ with Sm$_2$S$_3$ at 400°C in argon on nyquist plot

Very few published work addresses the meaning of complex phase angle change to conduction process as observed in Figure 5-12. What is known for sure about phase angle is that a system, which is purely resistive, has no phase angle change; hence the presence of phase angle highlights a capacitive type process. Recently Chaulet et. al. 2001 identified different conducting ions based purely on the phase angle response, hence EIS has the potential to identify different mobile ionic species. Chaulet et. al., 2001, used EIS to study the dissolution of calcium carbonate, sodium sulphate and sodium carbonate. Calcium carbonate and sodium carbonate gave a completely different phase angle frequency dependency, while for sodium sulphate and sodium carbonate it was qualitatively the same, suggesting that EIS phase angle differentiates calcium from sodium ions. This empirical test was done for a liquid system; the use of this theory to understand phase angle frequency dependency in solid-state systems is not established. However, if the solids being compared have identical unit cell and crystal structure, a similar frequency dependency of phase angle would be expected. Considering the CaSm$_2$S$_4$ compounds, which have similar unit cell and identical crystal structure, yet they have different phase angle change as a function of frequency, Figure 5-12. Does this imply that the conducting species changed? These non-stoichiometric compounds have equal cation and anion vacancies, so it is possible to have a change in the mobile conducting species from anion to cation or indeed to electronic.

\[
\begin{align*}
\text{Phase change for 0\% and} & \quad 20\% \text{ at medium frequency} \\
\text{Phase change for 0\%} & \quad \text{and 20\%} \\
\text{No phase change} & \quad \text{for 10\% and 30\%} \\
\text{Unique phase angle for 10\% and 30\% at} & \quad \text{high frequency} \\
\end{align*}
\]
5.2.3 Effect of changing the dopant Neodymium sulphide in CaNd$_2$S$_4$ to Samarium sulphide in CaSm$_2$S$_4$

Changing the dopant from Nd$_2$S$_3$ to Sm$_2$S$_3$ caused a significant increase in both real and imaginary components of impedance, i.e. the conductivity decreased. However the dopant was changed from Nd$_2$S$_3$ to Sm$_2$S$_3$ to improve the conductivity. Therefore this result is contrary to what was anticipated, Figure 5-13. However if the conductivity of CaSm$_2$S$_4$ were purely ionic then an improvement relative to CaNd$_2$S$_4$ or SrNd$_2$S$_4$ would have still occurred, since the previous electrolytes were at best mixed ionic-electronic conductors.

![Bode plot (insert)](image)

Figure 5-13. Experimental EIS showing the effect of cation in CaSm$_2$S$_4$ and CaNd$_2$S$_4$ at 400°C

The frequency dependency of the phase angle of CaSm$_2$S$_4$ differs to that CaNd$_2$S$_4$, Figure 5-14. Qualitatively, a change in phase angle frequency dependency may indicate a change in conducting species since the change in phase angle at high frequencies refers to a change in bulk properties. The unit cell for either compound does not contain any known Sm or Nd defects, hence these ions cannot conduct through the unit cell. Cationic (Ca$^{2+}$) and anionic (S$^{2-}$) vacancies are present, so either ion may conduct via these vacant sites, Since many of the CaNd$_2$S$_4$ compounds may have mixed cationic-electronic conduction, therefore by deduction, CaSm$_2$S$_4$ compounds may exhibit anionic conduction. The presence of anionic conduction should lead to a significant increase in activation energy for CaSm$_2$S$_4$ in comparison to CaNd$_2$S$_4$.

The impedance for CaSm$_2$S$_4$+0.1Sm$_2$S$_3$ is much larger than CaNd$_2$S$_4$+0.1Nd$_2$S$_3$. Also, the frequency dependency of the phase angle differed for each compound, Figure 5-14.
Figure 5-14. Experimental EIS showing the effect of cation in CaSm$_2$S$_4$ +0.1Sm$_2$S$_3$ and CaNd$_2$S$_4$ +0.1Nd$_2$S$_3$ with Sm$_2$S$_3$ at 400°C

Figure 5-15 shows the typical Nyquist and Bode plots for CaSm$_2$S$_4$+0.2Sm$_2$S$_3$ with graphite electrodes at temperatures of 400°C in argon. Changing the dopant from 20mole% Nd$_2$S$_3$ to 20mol%Sm$_2$S$_3$ resulted in a significant increase in impedance, Figure 5-15. CaSm$_2$S$_4$+0.2Sm$_2$S$_3$ has a pronounced medium frequency arc, which indicates highly resistive grain boundaries. Also, CaSm$_2$S$_4$+0.2Sm$_2$S$_3$ has a low frequency arc that is indicative of ionic conduction.

Figure 5-15. Nyquist plot for CaSm$_2$S$_4$, CaSm$_2$S$_4$+0.2Sm$_2$S$_3$ and CaNd$_2$S$_4$+0.2Nd$_2$S$_3$ at 400°C in argon

The typical Nyquist and Bode plots for CaSm$_2$S$_4$+0.3Sm$_2$S$_3$ with graphite electrodes at temperatures of 400°C in argon is shown in Figure 5-16. Changing the dopant from 30mole% Nd$_2$S$_3$ to 30mol%Sm$_2$S$_3$, resulted in a significant increase in impedance. Both
CaSm$_2$S$_4$+0.3Sm$_2$S$_3$ and CaNd$_2$S$_4$+0.3Nd$_2$S$_3$ have no low frequency arc, suggesting that electronic conduction occurs at this high level of doping, Figure 5-16.

![Figure 5-16. Nyquist plot of experimental EIS showing the effect of cation in CaSm$_2$S$_4$+0.3Sm$_2$S$_3$ and CaNd$_2$S$_4$+0.3Nd$_2$S$_3$ at 400°C](image)

5.2.4 Activation energy for CaSm$_2$S$_4$ and CaNd$_2$S$_4$ series with Lattice parameter

The Arrhenius plot for ionic hoping for the CaSm$_2$S$_4$ series is linear within 350-450°C, Figure 5-17. The activation energy for ionic hoping passes through a minimum at CaSm$_2$S$_4$+0.2Sm$_2$S$_3$, Table 5.7, which now seems to be a typical feature for this crystal structure since similar observations were made for CaNd$_2$S$_4$ and SrNdS$_4$ series. The activation energy decreased from 1.41eV (undoped CaSm$_2$S$_4$) to 0.60eV for CaSm$_2$S$_4$+20mol%Sm$_2$S$_3$, Table 5.7.

![Figure 5-17. Activation energy for CaSm$_2$S$_4$ series at elevated temperatures](image)

The minimum activation energy for CaNd$_2$S$_4$ series is at 10mole% Nd$_2$S$_3$ dopant level while it occurs at 20mol% dopant for CaSm$_2$S$_4$, Table 5.7. Doping at 30mol% excess in both
groups of compounds, leads to a decrease in the activation energy. No relationship between thermal activation energy and ionic mobility activation energy was observed for CaNd$_2$S$_4$ and CaSm$_2$S$_4$ series, Table 5.7.

<table>
<thead>
<tr>
<th>Thermal activation energy (kJ/g-mol)</th>
<th>Activation energy for bulk conduction (eV)</th>
<th>Lattice parameter for ‘a’ site Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaNd$_2$S$_4$</td>
<td>CaSm$_2$S$_4$</td>
<td>CaNd$_2$S$_4$</td>
</tr>
<tr>
<td>0% 1.90x105</td>
<td>2.78x105</td>
<td>0.44 1.41</td>
</tr>
<tr>
<td>10% 6.37x105</td>
<td>2.79x105</td>
<td>0.33 1.03</td>
</tr>
<tr>
<td>20% 5.71x105</td>
<td>8.42x105</td>
<td>0.52 0.60</td>
</tr>
<tr>
<td>30% 4.36x105</td>
<td>9.69x105</td>
<td>0.62 1.40</td>
</tr>
</tbody>
</table>

Arrhenius plots for YSZ, pure oxide ion conducting, does not exhibit a phase change, and as a result the Arrhenius plot is linear in the temperature range from 200°C to 500°C, McDonald, 1987. Since the Arrhenius plot for CaSm$_2$S$_4$ appears to be linear in the temperature range from 200°C to 500°C, then the CaSm$_2$S$_4$ series is assumed to have no phase in the temperature range examined. Therefore the conductivity is expected to vary linearly with temperature (plotted on a log scale).

Mixed conductors of anion and cation are known to have two significantly different activation energies. This variation supersedes the typical variation in activation energy for bulk and grain boundary conduction in pure ionic conductors such as YSZ, which has activation energy of 1.07eV and 1.12eV for bulk and grain boundary conduction respectively, McDonald, 1987. For example the complex perovskite Sr$_2$(ScNb)O$_6$ facilitates protonic and oxide ion conduction with 0.64±0.04eV and 1.38eV±0.15eV respectively, Nowick and Lang, 2000. Therefore it is possible that the low activation energy for ionic hopping, 0.60eV, of CaSm$_2$S$_4$+0.2%SmS$_3$ has a different predominant conduction species compared with the other compounds in the family, Table 5.8.

Non-linearity between dopant concentration and activation energies is a typical occurrence with cerium-based electrolytes when doped with various rare earth metals, Panhans and Blumenthal, 1993. They observed a minimum activation energy at approximately 10mol% excess dopant for various rare earth metals with stoichiometry M$_2$O$_3$ (M indicates metal cation). For CeO$_2$ based compounds, the difference between the maximum and minimum activation energies for a series of CeO$_2$ compounds, as a function of doping, was 20%, Panhans and Blumenthal, 1993. However the variation between the maximum and
minimum activation energies, 1.41eV and 0.60eV, for CaSm$_2$S$_4$ series based compounds is 60%, Table 5.8.

Minervini et al., 1999 developed a system of equations describing the possible defect mechanism, which may occur when CeO$_2$ is doped with M$_2$O$_3$. Their results show that conduction can switch from anionic to cationic even though the systems have similar unit cell and crystal structure. Also they showed that conduction via the dopant cation is unlikely, that is conduction via samarium ion is unfavourable. Also the earlier work by Banks and Ward, 1949, which characterised a cerium dilute solution of cerium sulphide (maximum 10mol%) in strontium sulphide exhibited cationic conduction. Doping caused a decrease in lattice constant, which indicates that the cerium enters substitutional positions and remains trivalent. Vacant cation positions were postulated because of this decrease in lattice parameter. For every two-cerium ions (dopant), one vacant Sr lattice point (hole) should be introduced. The presence of Sr (host) vacancies was confirmed by the direct relationship between low temperature conductivity and cerium concentration.

By using Minervini et al., 1999 defect equations, the following equations are proposed to describe CaSm$_2$S$_4$ electrolytes.

Undoped CaSm$_2$S$_4$ could conduct ions by intrinsic disorder based on:

Schottky: $Ca^+ + 2Sm^+ + 4S^+ \leftrightarrow [CaSm_2S_4]^{\cdot\cdot\cdot} + V_{Ca}^{-} + 2V_{Sm}^{-} + 4S_{\cdot\cdot\cdot}^{-}$ (1)

Cation Frenkel: $Ca^+_1 \leftrightarrow Ca_{\cdot\cdot\cdot}^+, \Delta E = 9.79eV^*$ (2)

Anion Frenkel: $S_{\cdot\cdot\cdot}^+ \leftrightarrow S_{\cdot\cdot\cdot}^\cdot + V_{a}^{\cdot\cdot\cdot}, \Delta E = 17.33eV^*$ (3)

* Taken from CaS unit cell, R. Pandey and H Harding, 1984

The disorder mechanism with the lowest reaction enthalpy will dominate. If the measured activation energy, from Arrhenius plot, is the enthalpy for Schottky defects, then enthalpy for Schottky defects of CaSm$_2$S$_4$ is much lower than the enthalpy for conduction via Frenkel defects, assuming that the enthalpy for Frenkel defects (Ca and S) remains unchanged when going from CaS to CaSm$_2$S$_4$ electrolytes. However the enthalpy for Frenkel defects should be determined for the compound of interest since the value is likely to be dependent on the unit cell size and type. Therefore the reaction enthalpy for each defect mechanism in each compound must be determined individually.

When a secondary solid (aliovalent solute) is dissolved in a crystal lattice, the unit cell must compensate the resulting charge imbalance. Sm$_2$S$_3$ can be incorporated into CaSm$_2$S$_3$
via a three intrinsic disorder mechanism: sulphide vacancy compensation (equation 4), dopant interstitial compensation (5) and calcium vacancy compensation (6).

\[
\begin{align*}
\text{Sm}_2\text{S}_3 & \leftrightarrow 2\text{Sm}_{\text{Ca}}^+ + \text{V}^{**} + 3\text{S}^x \\
2\text{Sm}_2\text{S}_3 & \leftrightarrow 3\text{Sm}_{\text{Ca}}^+ + \text{Sm}^{***} + 6\text{S}^x \\
\text{Ca}^{\text{S}}_{\text{Ca}} + 2\text{Sm}^+_{\text{S}^3} + 4\text{S}^x + \text{Sm}_2\text{S}_3 & \leftrightarrow 2\text{Sm}_{\text{Ca}}^+ + \text{Ca}^{**} + 7\text{S}^x
\end{align*}
\]

Solving equations (1) to (6) requires detailed simulation, which considers Coulombic forces, which lie outside the scope of this project. However Minervini et al., 1999, solved this system of equations for CeO$_2$-M$_2$O$_3$ systems. They found that the intrinsic defects had very high activation energies and would therefore not contribute significantly to the overall conduction process. Also the activation energy for equation (3) was enormous and this compensation method would be trivial, since conduction via Sm ions would not occur. Solving the equations governing the defects, Minervini et al., 1999, they found that a variation of the dopant could cause the conduction to change from anionic to cationic.

In summary, XRD of previous sulphide system of 90mol%SrS+10mol%Ce$_2$S$_3$ showed that the lattice parameter for unit cell decreased, which meant Schottky defects, and this compound showed cationic conduction, Banks and Ward, 1949. CaSm$_2$S$_4$ also experienced a decrease in lattice parameter, an indication of Schottky defect, and yet this was reported as sulphide ion conducting, Kalinina, et. al. 1995. Therefore Kalinina et al. and Banks and Ward have shown that ceramic sulphides exhibit cationic conduction or anionic conduction. Minervini, et. al., 1999 developed a system of equations which describes the possible defect mechanisms which was solved for cerium oxide systems. Their results show that conduction can switch from anionic to cationic, even though the systems have similar unit cell and crystal structure. Therefore, theoretically, changing from CaNd$_2$S$_4$ system to CaSm$_2$S$_4$ system can cause a change from cationic to anionic or vice versa.

5.2.5 Conductivity and Activation energy for CaSm$_2$S$_4$ and CaNd$_2$S$_4$ series

A summary of the bulk conductivities for both CaSm$_2$S$_4$ series and CaNd$_2$S$_4$ series is given in Table 5.8 where both series reach a maximum conductivity prior to reaching the highest level of 30mol% doping. The maximum conductivity occurs at different concentrations depending on the dopant composition; 20 mol% for Nd$_2$S$_3$ and 10mol% for Sm$_2$S$_3$. Figure 5-18. Wang et. al., 1981, studied strontium oxide based electrolytes and found maximum
conductivity before reaching the minimum activation energy, therefore it the true maximum conductivity should occur at less than 20mol%Sm$_2$S$_3$.

Table 5.8. Bulk Conductivity for CaSm$_2$S$_4$ and CaNd$_2$S$_4$ series at 500°C in argon

<table>
<thead>
<tr>
<th></th>
<th>Bulk conductivity @500°C in argon (S.cm)</th>
<th>Activation energy for bulk conduction (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CaNd$_2$S$_4$</td>
<td>CaSm$_2$S$_4$</td>
</tr>
<tr>
<td>0%</td>
<td>2.55x10$^{-4}$</td>
<td>3.11x10$^{-4}$</td>
</tr>
<tr>
<td>10%</td>
<td>1.43x10$^{-4}$</td>
<td>3.51x10$^{-4}$</td>
</tr>
<tr>
<td>20%</td>
<td>6.94x10$^{-4}$</td>
<td>2.32x10$^{-5}$</td>
</tr>
<tr>
<td>30%</td>
<td>4.21x10$^{-4}$</td>
<td>5.06x10$^{-7}$</td>
</tr>
</tbody>
</table>

The occurrence of these maximum conductivities has been ascribed to the formation of defect clusters, Figure 5-18, beginning with simple defect pairs at low concentrations, which are also called, associated pairs. Defect pairs occur between dopant cation and the charge compensating anion vacancy and once the pair has formed, the anion vacant site does not participate in the conduction process and hence the overall conductivity is lowered, Kilner, 2003.

At high doping the associated pairs may become more complex and form ‘trimers’ which are stable to higher temperatures, Minervini. et. al., 1999. This is the main reason why maximum conductivity does not occur at maximum doping. These simple defect pairs dominate bulk conductivity at low concentrations for dopant with an effective charge of −1 or −2., Kilner and Steele, 1981.

Figure 5-18. Bulk Conductivity for CaSm$_2$S$_4$ and CaNd$_2$S$_4$ series at 500°C in argon
Cerium oxide doped with alkaline earth oxides, CaO, MgO, BaO, with fluorite structures showed maximum conductivities between 10mol% and 20mol%, similar to the observed maximum conductivities for CaSm$_2$S$_4$ and CaNd$_2$S$_4$ series, Figure 5-18, Yahiro et. al., 1988. The maximum and minimum activation energy are not associated with the same dopant concentration, Table 5.8, because the pre-exponential factor is also a function of dopant concentration, see equation 7.

$$\sigma T = A \exp(-E_a/kT)$$ \hspace{1cm} (7)

σ = conductivity

A- pre-exponential factor

E_a – activation energy of electrical energy

At low dopant concentrations, the pre-exponential factor remains constant, and a decrease in activation energy is observed with increasing dopant concentration for cerium oxide electrolytes. At high dopant concentration, typically 20mol% above, the pre-exponential factor increases after the minimum activation energy is reached, Hideaki and Tagwawa, 1996. Similarly a minimum activation energy followed by a sharp increase occurs for CaSm$_2$S$_4$ and CaNd$_2$S$_4$ series, Figure 5-19.

Other structures such as $A_2B_2O_7$ pyrochlore, which can be considered as a severely doped fluorite structure, also have a minimum activation energy. For example Gd$_2$Ti$_2$O$_7$, when doped on either cation sites, has a minimum activation energy, Kramer and Tuller, 1994 & 1995. This indicates the presence of associated vacancy interactions. The extent of associated vacancy interactions was strongly dependent on the ionic radius of the dopant; a mismatch between host and dopant radius exacerbate vacancies interaction. Petric and Huang studied perovskite oxide structures, and a clear minimum in activation energy at approximately 10mol% with B-site doping was observed.
In summary, defect association has significant effects on conductivities and activation energies. The literature agrees that using a dopant with an effective charge of -1 causes a concentration dependency in conductivity by which has an associated minimum in activation energy however the explanations vary for this observation, Kilner, 2003. The difference in relative size of the dopant to the host exacerbates the vacancy association. Since a clear minimum in activation energy was observed for both CaNd$_2$S$_4$ and CaSm$_2$S$_4$ series, Figure 5-19, association of defects occurs, therefore lower concentration of dopant should be used since, at these high concentrations, the associated defect pairs do not contribute to bulk conductivities.

5.2.6 Time Constant Analysis for CaSm$_2$S$_4$ series

Time constants for bulk conduction in the CaSm$_2$S$_4$ series has a minimum for the undoped CaSm$_2$S$_4$ series of 1.74×10^{-5} s at 20 mol% doping; followed by an increase at 30 mol% doping, Table 5.9. On the contrary the time constants for doped CaNd$_2$S$_4$ compounds remained almost constant, from 1×10^{-6} to 3×10^{-6} s, with a slight reduction at 30 mol% doped.

The time constants for doped CaSm$_2$S$_4$ are larger than those for oxide ion conducting YSZ at similar temperature, Table 5.9 and Table 4.9. If CaSm$_2$S$_4$ is sulphide ion conducting, then the larger time constants are consistent with anionic conduction. However concentration cell experiments were necessary to confirm the conducting ion.
Table 5.9 Time constant analysis for CaSm$_2$S$_4$ and CaNd$_2$S$_4$ series with graphite electrode

<table>
<thead>
<tr>
<th></th>
<th>Undoped CaSm$_2$S$_4$</th>
<th>Undoped CaNd$_2$S$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bauerle+ Jamnik model</td>
<td>R//C+ Jamnik model</td>
</tr>
<tr>
<td></td>
<td>Bulk</td>
<td>Grain boundary</td>
</tr>
<tr>
<td>R=5.86x105Ω</td>
<td>R=1.96x106Ω</td>
<td>R=7.06x106Ω</td>
</tr>
<tr>
<td>C=1.51x10$^{-10}$Ω</td>
<td>C=4.21x10$^{-10}$Ω</td>
<td>C=2.96x10$^{-11}$Ω</td>
</tr>
<tr>
<td>τ = 8.87x10$^{-7}$s</td>
<td>τ = 8.33x10$^{-4}$s</td>
<td>τ = 2.09x10$^{-4}$s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CaSm$_2$S$_4$+0.1Sm$_2$S$_3$</th>
<th>CaNd$_2$S$_4$+0.1Nd$_2$S$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauerle+ Jamnik model</td>
<td>R//C+ Jamnik model</td>
</tr>
<tr>
<td>Bulk</td>
<td>Bulk</td>
</tr>
<tr>
<td>R=2.15x105Ω</td>
<td>R=8.69x105Ω</td>
</tr>
<tr>
<td>C=3.93x10$^{-11}$Ω</td>
<td>C=5.31x10$^{-10}$Ω</td>
</tr>
<tr>
<td>τ = 8.24x10$^{-6}$s</td>
<td>τ = 4.61x10$^{-4}$s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CaSm$_2$S$_4$+0.2Sm$_2$S$_3$</th>
<th>CaNd$_2$S$_4$+0.2Nd$_2$S$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauerle+ Jamnik model</td>
<td>R//C+ Jamnik model</td>
</tr>
<tr>
<td>Bulk</td>
<td>Bulk</td>
</tr>
<tr>
<td>R=1.69x105Ω</td>
<td>R=9.58x105Ω</td>
</tr>
<tr>
<td>C=1.03x10$^{-10}$Ω</td>
<td>C=6.95x10$^{-10}$Ω</td>
</tr>
<tr>
<td>Ψ = 0.85</td>
<td>Ψ = 1.0</td>
</tr>
<tr>
<td>τ = 1.74x10$^{-3}$s</td>
<td>τ = 2.79x10$^{-3}$s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CaSm$_2$S$_4$+0.3Sm$_2$S$_3$</th>
<th>CaNd$_2$S$_4$+0.3Nd$_2$S$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauerle+ Jamnik model</td>
<td>R//C+ Jamnik model</td>
</tr>
<tr>
<td>Bulk</td>
<td>Bulk</td>
</tr>
<tr>
<td>R=1.09x106Ω</td>
<td>R=1.74x107Ω</td>
</tr>
<tr>
<td>C=6.98x10$^{-11}$Ω</td>
<td>C=1.82x10$^{-11}$Ω</td>
</tr>
<tr>
<td>τ = 7.41x10$^{-3}$s</td>
<td>τ = 3.18x10$^{-4}$s</td>
</tr>
</tbody>
</table>

5.3 The effect of Hydrogen sulphide concentration on bulk conductivities and activation energies

The total conductivities of the CaSm$_2$S$_4$ series with varying H$_2$S concentration were determined by impedance spectroscopy. If the bulk conductivity is independent of hydrogen sulphide at low concentration, then ionic conduction predominates. At higher H$_2$S concentrations the sulphide vacancies may interact with hydrogen sulphide to produce excess holes:

$$S^+_x + 2V^*_{s} = 2S^{+} + 4\oplus$$

Where

- V^*_{s} - vacant sulphide ion site; S^{+} - occupied sulphide site; \oplus - electron hole
Perovskites have the tendency to exhibit hole conduction at high oxygen partial pressures, Huang and Petric, 1995. If there were an increase in conductivity at low hydrogen sulphide concentrations, then this would suggest electronic conduction, Kofstad, 1972.

Figure 5-20 shows the Arrhenius plot for bulk conductivity for CaSm$_2$S$_4$ in different atmospheres. Bulk conductivity of undoped CaSm$_2$S$_4$ remained independent of hydrogen sulphide partial pressure from pure argon up to 1vol%H$_2$S. At 2vol% of H$_2$S, an increase in conductivity was achieved at all temperatures measured, 350-550°C, which suggests hole conduction according to equation (2), Huang and Petric, 1995.

![Arrhenius plot for bulk conductivity of CaSm$_2$S$_4$](image)

Figure 5-20. Bulk conductivities for undoped CaSm$_2$S$_4$ measured in different atmospheres

The activation energy, 1.23-1.41eV, remained constant for CaSm$_2$S$_4$, up to 1vol%H$_2$S. However at 2vol%, the activation energy decreased to 0.29eV, suggesting that the predominant conducting species had changed. This low activation energy is consistent with the expectation that sulphide ion vacancies react with HS producing electrons holes as in equation (8).

Song and H. Yoo, 2003 studied BaTiO$_3$, which is a mixed ionic-electronic conductor, in which the conducting species changed from anionic to electronic then to electronic hole by simply changing the oxygen partial pressure. CaSm$_2$S$_4$ appears to have similar behaviour, since the conduction changed from electronic to electron hole as the H$_2$S concentration increased from 0vol% to 0.1vol%H$_2$S/Ar. Song and H. Yoo proposed that if the ratio r determined from the gradient of a plot of (log σ_{total} vs log P_s) is less than or equal to 0.1, then
ionic conductivity was assumed. CaSm$_2$S$_4$ has a ratio r of 0.07 between 1vol$\%$H$_2$S and 2vol$\%$H$_2$S at 550°C, which suggests ionic conductivity in this narrow range, Figure 5-21.

![Graph showing bulk conductivities for undoped CaSm$_2$S$_4$ measured in different atmospheres.](image)

Figure 5-21. Bulk conductivities for undoped CaSm$_2$S$_4$ measured in different atmospheres

Bulk conductivity of CaSm$_2$S$_4$+0.1Sm$_2$S$_3$ remained independent of hydrogen sulphide partial pressure from pure argon up to 2vol$\%$H$_2$S at all temperatures measured, 350-550°C, which indicated predominantly ionic conduction, Figure 5-22. The activation energy for CaSm$_2$S$_4$+0.1Sm$_2$S$_3$ decreased from 1.25eV in pure argon to 0.93eV in 2vol$\%$H$_2$S. At low temperatures and high H$_2$S partial pressures an increase in the bulk conductivity occurred, hence a reduction in activation energy, Figure 5-23.

![Graph showing bulk conductivities for CaSm$_2$S$_4$+0.1Sm$_2$S$_3$ measured in different atmospheres.](image)

Figure 5-22 Bulk conductivities for CaSm$_2$S$_4$+0.1Sm$_2$S$_3$ measured in different atmospheres
Figure 5-23 shows that the conductivity for CaSm$_2$S$_4$+0.1Sm$_2$S is independent of H$_2$S partial pressure up to 1vol% H$_2$S. The reduction in conductivity at 2vol% H$_2$S at 350°C and 400°C indicates electronic conductivity. The gradient of a plot of ($\log \sigma_{\text{total}}$ vs $\log P_S$) is 0.03, therefore ionic conductivity can be assumed. Also, from Figure 5-23, the conductivity appears to be fairly independent of H$_2$S concentration from 0vol%H$_2$S to 1vol% H$_2$S at temperatures higher than 350°C; this suggests ionic conductivity.

![Figure 5-23. Variation of conductivity of CaSm$_2$S$_4$+0.1Sm$_2$S with sulphur partial pressure at various temperatures](image)

Bulk conductivity of CaSm$_2$S$_4$+0.2Sm$_2$S$_3$ increased significantly upon changing the gas from argon to 0.1vol%H$_2$S/Ar. A further increase in the H$_2$S concentration to 2vol% caused a slight increase in conductivity, more pronounced at lower temperatures, Figure 5-24 and Figure 5-25.

Even though the bulk conductivity changed significantly with the presence of a positive H$_2$S partial pressure, the corresponding activation energy of CaSm$_2$S$_4$+0.2Sm$_2$S$_3$ remained unchanged, 0.44-0.48eV, with increasing H$_2$S partial pressure from pure argon to 1vol%H$_2$S. Therefore the onset of electronic conduction does not affect the activation energy for CaSm$_2$S$_4$+0.2Sm$_2$S$_3$.

Figure 5-24 shows the conductivity for CaSm$_2$S$_4$+0.2Sm$_2$S, which increases significantly with increasing H$_2$S concentration, indicating hole conduction. Therefore the low activation energy for this compounds shows that it is hole conduction under these experimental conditions (350-500°C and 0-2vol%H$_2$S).
Figure 5-24. Variation of conductivity of CaSm$_2$S$_4$+0.2Sm$_2$S$_3$ with sulphur partial pressure at various temperatures

Figure 5-25 shows that the conductivity for CaSm$_2$S$_4$+0.3Sm$_2$S remains unchanged when the atmosphere is changed from argon to 0.1vol% H$_2$S, but increases rapidly with further increase in H$_2$S concentration, indicating hole conduction.

Figure 5-25. Variation of conductivity of CaSm$_2$S$_4$+0.3Sm$_2$S with sulphur partial pressure at various temperatures

The activation energy for bulk conductivity of CaSm$_2$S$_4$+0.3Sm$_2$S decreased from 1.41eV in pure argon to 0.09eV in 2vol% H$_2$S, Figure 5-26. The major reduction in activation energy occurs between 1vol%H$_2$S and 2vol%H$_2$S, which is also the point when the bulk conductivity increased, Figure 5-26. Therefore the onset of hole conduction is shown by the increased conductivity and the reduced activation energy.
The early work of Nagata and Goto, 1974 showed that the bulk conductivity for CaS increased as H₂S partial pressure increased beyond 10⁻⁶ atm. The increased conductivity was represented by equation (9). Mobile calcium ions react with S₂ (derived from H₂S) to form calcium ion vacancies and electron holes.

$$\frac{1}{2}S_2 + Ca^{2+}(\text{lattice}) \rightarrow V_{Ca^{2+}} + CaS + 2\Theta$$ \hspace{1cm} (9)

The divalent sulphide CaS+1wt%Y₂S₃ was electrochemically characterised by W. L. Worrel et. al., 1967. The compound was an ionic conductor up to a maximum concentration of 0.5vol%H₂S. The increased conductivity at high concentrations was attributed to the formation of positive holes represented by equation (10); mobile sulphide vacancies react with H₂S and simultaneously produce electron holes.

$$\frac{1}{2}S_{2s} + V_{S^{2-}} \leftrightarrow S^{2-} + 2\Theta$$ \hspace{1cm} (10)

The conductivity of CaS+1wt%Y₂S₃ is higher than CaS; it was accredited to the creation of cationic rather than anionic vacancies. Cationic vacancies were postulated due the reduction in lattice parameters.

5.4 Electrochemical Pumping of Selected SrSm₂S₄ compounds

The asymmetric electrochemical concentration cell of the type H₂S/H₂/Pt/SrSm₂S₄/Pt//Ar/H₂ was operated at elevated temperatures (550-750°C) with 1-10V (d.c) to identify sulphide ion conduction. The constant source of S^{2-} ions was formed by the application of a negative potential applied on the H₂S compartment, equation (9);
\[2e^- + H_2S \rightarrow H_2 + \frac{1}{2} S^{2-} \] \hspace{2cm} (9)

The conduction of \(S^{2-} \) through a sulphide ion electrolyte would produce a steady state current within the cell.

If a current decay occurs with the use of an applied negative potential on the \(H_2S \) section, then the transfer of a positive ion is interpreted, (decay because there is no continuous source of positive ions, only from the electrolyte), equation (10).

\[Ca^{2+} + 2e^- \rightarrow Ca \] \hspace{2cm} (10)

On the other hand, a decaying current may be a sign of mixed ionic-electronic conductor, the peak current related to the total ionic and electronic, while the steady state current related to the electronic current. A current flow with no applied voltage is indicative of electronic; it will confirm the presence of electronic conduction.

At room temperature, the cross-sectional resistance for the \(H_2S/H_2//Pt/CaSm_2S_4/Pt//Ar/H_2 \) cell was 20k\(\Omega \), suggesting short-circuiting of this cell. The symmetric response of both the peaks and steady state current suggests that the conduction is mixed electronic-cationic, Figure 5-27. The rate of current decay was also the same in both compartments, indicating that the dc current flow was \(H_2S \) independent.

![Figure 5-27. Electrochemical pumping of CaSm_2S_4 at 750°C with 1V and 2V](image)

The electrochemical concentration cell of the type, \(H_2S/2//Pt/CaSm_2S_4+0.2Sm_2S_3/Mo//Ar/H_2 \) operating at 700°C with 10V (d.c), produced asymmetric results shown in Figure 5-28. The steady state current with the application of a negative 10V dc on the \(H_2S \) section of the reactor indicates sulphide. The absence of a current flow on the reverse section of the reactor is ambiguous. The negligible reversible current flow with no applied potential infers that the
electronic current flow is an order of magnitude less than the peak current, indicating very little electronic contribution.

![Graph](image)

Figure 5-28. Electrochemical pumping of CaSm$_2$S$_4$+0.2Sm$_2$S$_3$ at 700°C with 10V

Repetition of the experiment produced a generative current when -0.5V was applied to H$_2$S compartment, confirming sulphide ion conduction, Figure 5-29. Reversing the current also produced a smaller steady state current, which was interpreted as a leakage of H$_2$S through the membrane, since the OCV of the cell was 0.04mV, showing that the pellet broke.

![Graph](image)

Figure 5-29. Electrochemical pumping of CaSm$_2$S$_4$+0.2Sm$_2$S$_3$ at 825°C with 0.5V
Impedance spectroscopy of CaSm$_2$S$_4$+0.2Sm$_2$S$_3$ after pumping experiments resulted in comparable Nyquist plot what was obtained prior to pumping with 10V dc as shown in Figure 5-30, therefore significant electrochemical reduction did not take place with the application of 10V at 700°C.

In summary, undoped CaSm$_2$S$_4$ is a mixed conductor, exhibiting electronic and electron-hole conduction under appropriate temperature and H$_2$S concentration, based on the partial pressure dependence of impedance. A change in conducting species was also evident with a significant reduction in the activation energy with increasing H$_2$S concentration. The electrochemical pumping shows that current flow is a mixed ionic-electronic, based on the large difference between peak and steady state current.

CaSm$_2$S$_4$+0.1Sm$_2$S$_3$ activation energy was fairly independent of the H$_2$S concentration, suggesting that the predominant conducting species remained unchanged. The variation of the H$_2$S concentration up 2vol% had no effects on the bulk conductivity at 450°C and above. However at lower temperatures the onset of electronic conduction was observed at H$_2$S up 2vol%.

A further increase in dopant level to CaSm$_2$S$_4$+0.2Sm$_2$S$_3$ caused hole conduction up to 450°C, since the increase in conductivity with increasing H$_2$S concentration. The marginal change in activation energy suggests unchanging conducting species. However the low activation energy, 0.44eV, is atypical for S2. Both the pumping experiments carried out at 700°C and 825°C show that dc conductivity increases in the presence of H$_2$S, which is a typical response for a sulphide ion conduction electrolyte. Electrochemical pumping at lower temperatures

![Figure 5.30. Nyquist plot of CaSm$_2$S$_4$+0.2Sm$_2$S$_3$ before and after pumping experiments, at 450°C](image-url)
yielded symmetric results; it is an indication of electronic type conduction, thus agreeing with the low activation energy observed for impedance spectroscopy as well as the H_2S dependent conductivity.

The bulk conductivities and the activation energies for $\text{CaSm}_2\text{S}_4 + 0.3\text{Sm}_2\text{S}_3$ were sensitive to the H_2S concentration. The reduction in activation energy indicates a change in conducting specie and the increased conductivity with increasing partial pressure indicates positive hole conduction. However at 500°C the bulk conductivity remained independent of H_2S concentration. Therefore, optimum dopant level to achieve maximum sulphide ion conduction is less than $10\text{mol}\%$; doping beyond this level introduced electron hole conduction.

5.6 Introduction to the Thermal and Electrochemical Characterisation of Strontium Samarium Sulphide doped with excess Sm_2S_3

Identifying suitable high temperature sulphide ion conducting electrolytes began with verification of the previously identified sulphide ion conductors, Nd_2S_3 doped-CaNd_2S_4, as stated by Kalinina et al., 1995. However, only $\text{CaNd}_2\text{S}_4 + 0.1\text{Nd}_2\text{S}_3$ was found to exhibit sulphide ion conduction when characterised by impedance spectroscopy and electrochemical pumping. The bulk conductivity, $1 \times 10^{-6}\text{Scm}^{-1}$, of $\text{CaNd}_2\text{S}_4 + 0.1\text{Nd}_2\text{S}_3$ (at 500°C) is marginal, hence optimisation of conductivity was sought; by changing the host cation from calcium to strontium. This led to an increase in bulk conductivity but was later established to cause significant electronic or positive hole conduction. Therefore the next logical change in optimising the electrolyte is to change the dopant; the dopant Nd_2S_3 was changed to Sm_2S_3 as well as the host cation, from Ca to Sr, therefore forming the SrSm$_2$S$_4$ series.

Calcium samarium sulphide doped with excess samarium sulphide has previously been synthesised and characterised by Kalinina et al. 2000 where they reported that these materials exhibited sulphide ionic conduction. Therefore the analogue SrSm$_2$S$_4$ of CaSm$_2$S$_4$ was synthesised using the identical solid-state reactions procedure according to Kalinina et al., 1995.

The XRD pattern of the SrSm$_2$S$_4$ series shows that these compounds have a cubic unit cell similar to the CaNd$_2$S$_4$ series shown in Chapter-Figure 4.1, White, 2005. The larger black spheres now represent Sm rather than Nd atoms and the smallest spheres represents Sr rather than Ca atoms. The X-ray diffraction pattern shows that an increase in dopant level does lead
to similar changes as observed with the CaNd₂S₄ system, Chapter-Figure 4.2, (White 2005) see Appendix A for XRD’s.

The volume of the unit crystal increases as the host cation is changed from calcium to samarium, expressed by an increase in the lattice parameter. The increase in lattice parameter with the host cation changing from calcium to strontium is excepted since the latter cation is larger. However increasing the dopant level in each group of compound causes a contraction of the unit cell, Table 5.10.

Table 5.10. Lattice parameter for SrSm₂S₄ series and CaSm₂S₄ series

<table>
<thead>
<tr>
<th>Dopant level (Sm₂S₃ or Nd₂S₃)</th>
<th>Lattice parameter Å (a-site) CaSm₂S₄</th>
<th>Lattice parameter Å (a-site) SrSm₂S₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undoped</td>
<td>8.4708(1)</td>
<td>8.5361(1)</td>
</tr>
<tr>
<td>10%</td>
<td>8.4701(8)</td>
<td>8.5595(3)</td>
</tr>
<tr>
<td>20%</td>
<td>8.4684(8)</td>
<td>8.5523(1)</td>
</tr>
<tr>
<td>30%</td>
<td>8.4653(1)</td>
<td>8.5467(1)</td>
</tr>
</tbody>
</table>

The pellet making process began with grinding the materials; particle size distribution of the ground product is shown in Figure 5-31, followed by pressing to 10 tonnes and then sintering at 1350°C in a H₂S atmosphere. The sintered pellets achieved a maximum of 91% of the theoretical density. Both the theoretical and actual density decreased with increasing dopant concentration, Table 5.11.

Table 5.11. Theoretical and actual densities for SrSm₂S₄ series

<table>
<thead>
<tr>
<th></th>
<th>Theoretical density SrSm₂S₄ (g/cm³)</th>
<th>Actual density SrSm₂S₄ (g/cm³)</th>
<th>% of theoretical density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undoped</td>
<td>5.464</td>
<td>4.98</td>
<td>91</td>
</tr>
<tr>
<td>10mol%Nd₂S₃</td>
<td>5.375</td>
<td>4.71</td>
<td>88</td>
</tr>
<tr>
<td>20mol%Nd₂S₃</td>
<td>5.268</td>
<td>4.57</td>
<td>87</td>
</tr>
<tr>
<td>30mol%Nd₂S₃</td>
<td>5.202</td>
<td>4.40</td>
<td>86</td>
</tr>
</tbody>
</table>

SEM’s of the sintered pellets show large pores of diameter up to 25μm with fairly thin grain boundaries, Figure 5-31. Therefore the pellets were not dense even when made with grounded material and maximum temperature, Table 5.11. Undoped SrSm₂S₄ achieved the highest percentage of theoretical density.
Figure 5-31. SrSm$_2$S$_4$+0.3Sm$_2$S$_3$ sintered pellet at 1350°C in H$_2$S/Ar mixture exhibiting 86% of theoretical density

5.7 TPO and TPR for SrSm$_2$S$_4$ series

The thermal stability for the prepared series SrSm$_2$S$_4$+xSm$_2$S$_3$ was established using TPO and TPR techniques. The TPO traces of this series consist of possibly two peaks with a shoulder at the lower temperatures, which differs from all other sulphide series previously investigated, Figure 5-32. The presence of multiple SO$_2$ peaks at elevated temperatures may indicate a complex reaction mechanism for the oxygen-sulphur exchange of the oxidation SrSm$_2$S$_4$ series. The low temperature peak reduced to a shoulder, as the dopant was increased beyond 10mol%Sr$_2$S$_3$.

Further detailed analysis involving oxygen and sulphur balances was not done for the SrSm$_2$S$_4$ series since no relationship was found between percentage of oxidation and ionic conductivity in the CaNd$_2$S$_4$ series. Therefore TPO was done solely to determine the thermal stability of these materials in an oxidising atmosphere.
The sulphur dioxide peak for this family of compounds is located in the temperature range from 818°C to 844°C when a heating rate of 10°C/min is used, Table 5.12. The addition of excess Sm$_2$S$_3$ did not cause any significant change in onset temperatures of both SrSm$_2$S$_4$ and CaSm$_2$S$_4$ series while doping with Nd$_2$S$_3$ in the CaNd$_2$S$_4$ series caused increased onset temperatures for all doped compounds. Changing the host cation from calcium to samarium improved the thermal stability in oxidizing conditions, Table 5.12.

Table 5.12 Onset temperatures for SrSm$_2$S$_4$ and CaSm$_2$S$_4$ and unit cell lattice parameter

<table>
<thead>
<tr>
<th>Onset Temperatures</th>
<th>Lattice parameter for ‘a’ site Å</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SrSm$_2$S$_4$</td>
</tr>
<tr>
<td>0%</td>
<td>832</td>
</tr>
<tr>
<td>10%</td>
<td>818</td>
</tr>
<tr>
<td>20%</td>
<td>844</td>
</tr>
<tr>
<td>30%</td>
<td>832</td>
</tr>
</tbody>
</table>

*Bracketed () number indicates the standard deviation on the fourth decimal place

The unit cells for both SrSm$_2$S$_4$ and CaSm$_2$S$_4$ series decreased with increasing dopant content yet the oxidation onset temperature remains unaffected; suggesting that the unit cell size is not the only factor which controls oxidation onset temperature, Table 5.12. While the CaNd$_2$S$_4$ series showed increased oxidation onset temperatures with increasing dopant content, which correlates with the reduction in the lattice parameter, Table 5.3, the Sm$_2$S$_3$ doped material did not show such a correlation.
Both series showed a slight reduction in their thermal stability at 20mol% doping, Table 5.12. The SrSm$_2$S$_4$ series is more stable in an oxidising atmosphere than the CaSm$_2$S$_4$ series. The increased polarisability of the Sr$^{2+}$ ion with respect to the Ca$^{2+}$ ion, due to the smaller radius of Sr$^{2+}$ should lead to an increase in the thermal stability.

The thermal activation energies for the SrSm$_2$S$_4$ series are in excess by an order of magnitude smaller than the CaSm$_2$S$_4$, Figure 5-33. The high oxidation onset temperatures and small activation energy for SrSm$_2$S$_4$ series imply that while these materials are very stable in oxygen, yet the oxidation process requires less energy than compound with lower onset temperatures, therefore both data are separate and possibly unrelated.

![Figure 5-33. Thermal Activation energy for SrSm$_2$S$_4$ and CaSm$_2$S$_4$ series](image)

The thermal activation energies of the CaSm$_2$S$_4$ series showed that, by increasing the doping the unit cell contracts and the activation energy decreases. The phenomenon may be explained by considering that when ions are in close proximity, an effective repulsive force operates which resists closer contact. Though it is a short-range interaction it increases exponentially with a decrease in inter-nuclear distance. Therefore this repulsive force could explain the decreased thermal activation energy for the 20mol% and 30mol% doped CaSm$_2$S$_4$, Figure 5-33. However the thermal activation energies for the SrSm$_2$S$_4$ series remains unchanged with increasing dopant levels.

The compounds of the SrSm$_2$S$_4$ series all showed similar TPR traces, Figure 5-34. The doped compounds of the SrSm$_2$S$_4$ series are less stable in hydrogen than in air, Table 5.12 and Table 5.13. Also the CaSm$_2$S$_4$ series is more stable than the SrSm$_2$S$_4$ series in a reducing atmosphere while the reverse is true under oxidizing conditions, Table 5.12 and Table 5.13.
Figure 5-34 Temperature programmed reduction of SrSm$_2$S$_4$ series showing onset temperatures

Table 5.13 TPR onset temperature for the SrNd$_2$S$_4$ and CaNd$_2$S$_4$ series

<table>
<thead>
<tr>
<th>Dopant level</th>
<th>SrSm$_2$S$_4$ (°C)</th>
<th>CaSm$_2$S$_4$ (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>722</td>
<td>775</td>
</tr>
<tr>
<td>10%</td>
<td>700</td>
<td>745</td>
</tr>
<tr>
<td>20%</td>
<td>694</td>
<td>720</td>
</tr>
<tr>
<td>30%</td>
<td>701</td>
<td>750</td>
</tr>
</tbody>
</table>

5.8 Electrochemical Impedance Spectroscopy for SrSm$_2$S$_4$ series

The electrochemical properties of the SrSm$_2$S$_4$ series was characterised using impedance spectroscopy. Impedance spectroscopy of the SrSm$_2$S$_4$ series was carried out in argon atmosphere and the temperature range from 150 to 450°C with a one-hour temperature isothermal period. The spectra were collected using graphite electrodes and the frequency range from 0.1 Hz to 1 x 106 Hz to (10 points per decade).

The Nyquist plot for undoped SrSm$_2$S$_4$ has the most pronounced low frequency effect of all sulphides characterised by impedance spectroscopy, thus strongly inferring the possibility of pure ionic conduction, Figure 5-35.
Figure 5-35 Impedance of undoped SrSm$_2$S$_4$, CaSm$_2$S$_4$, and SrNd$_2$S$_4$ at 400°C in argon

Jamnik’s predominantly ionic conducting model provided an adequate fit between modelled and experimental data for CaNd$_2$S$_4$ series (excluding CaNd$_2$S$_4$+0.1Nd$_2$S$_3$) and SrNd$_2$S$_4$ series, since neither had a noticeable ionic locking electrode arc. CaSm$_2$S$_4$ had an unusual Nyquist plot which was asymptotic rather than composed of multiple arcs therefore the impedance data were modelled using either, Bauerle, Figure 5-36, McDonald five RC components or combination of R//C -R//CPE elements (this models the high frequency curve), Figure 5-37. However an excellent fit between modelled and experimental data for SrSm$_2$S$_4$ series was achieved, using the model developed by Bauerle, 196, Figure 5-38.

5.8.1 Equivalent circuits for modelling SrSm$_2$S$_4$ series

The Nyquist plot for the SrSm$_2$S$_4$ series can be described as one with three arcs, which agrees with Bauerle model, suggesting pure ionic conduction. Figure 5-38 shows the goodness of fit for both the Bauerle and McDonald modelled results versus a typical experimental data at 400°C.

Both models fit the high frequency arc, but the McDonald model appears to have a better fit at lower frequencies, Figure 5.38. The statistical parameters for quantifying the goodness of fit, Chi-square and the Sum-of-Squares, should be minimized for the best model. Therefore, based on the smaller values for the Sum-of-squares and the Chi-squares for the McDonald model, this should be the best model. However the maximum error of 81% on an equivalent circuit parameter exceeds in the McDonald model, exceeds the upper allowable limit of 30%, hence the rejection of this model, Table 5.14. Models for mixed conduction were not used.
since their characteristic asymmetric low frequency arc in the Nyquist plot was absent for the SrSm₂S₄ series.

Figure 5-36 Bauerle Equivalent circuit

Figure 5-37 McDonald Equivalent circuit

Figure 5-38 Experimental and modelled results for undoped CaSm₂S₄ 400°C

Table 5.14. Chi-square and Sum-of-Squares results for alternative models used to model SrSm₂S₄ at 400°C

<table>
<thead>
<tr>
<th>Models</th>
<th>Chi-square</th>
<th>Weighted-sum-of-squares</th>
<th>Maximum error on equivalent circuit element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauerle model with ionic blocking electrode</td>
<td>0.00402</td>
<td>0.479</td>
<td>17%</td>
</tr>
<tr>
<td>McDonald model with diffusion effect</td>
<td>0.00168</td>
<td>0.190</td>
<td>81%</td>
</tr>
</tbody>
</table>
5.8.2 Impedance Spectroscopy: Effect of doping Sr\(\text{Sm}_2\text{S}_4\) with excess \(\text{Sm}_2\text{S}_3\)

The Nyquist plot for the \(\text{SrSm}_2\text{S}_4\) series appears to have the low frequency arc which is identifying feature for pure ionic conductors, Figure 5-39. However both the undoped \(\text{SrSm}_2\text{S}_4\) and \(\text{SrSm}_2\text{S}_4+0.2\text{Sm}_2\text{S}_3\) appears to have only two arcs in the Bode plot, while \(\text{SrSm}_2\text{S}_4+0.1\text{Sm}_2\text{S}_3\) and \(\text{SrSm}_2\text{S}_4+0.3\text{Sm}_2\text{S}_3\) have three distinguishable arcs which is typical feature for a pure ionic conductor, Figure 5-39. Interestingly the Nyquist plots for \(\text{CaSm}_2\text{S}_4+0.1\text{Sm}_2\text{S}_3\) and \(\text{CaSm}_2\text{S}_4+0.3\text{Sm}_2\text{S}_3\) also show similar forms while the Nyquist plots for \(\text{CaSm}_2\text{S}_4\) and \(\text{CaSm}_2\text{S}_4+0.2\text{Sm}_2\text{S}_3\) are comparable. Therefore the undoped and 20mol% \(\text{Sr}_2\text{Sm}_3\) doped compounds with have similar Nyquist plots while 10mol% and 30mol% doped \(\text{Sr}_2\text{Sm}_3\) exhibit similar Nyquist plots.

![Nyquist plot showing the effect of doping of Sr\(\text{Sm}_2\text{S}_4\) with Sm\(\text{S}_3\) at 400°C](image)

Figure 5-39 Nyquist plot showing the effect of doping of \(\text{SrSm}_2\text{S}_4\) with \(\text{Sm}_2\text{S}_3\) at 400°C

The Bode plot for the \(\text{SrSm}_2\text{S}_4\) series shows a phase angle change at low frequencies for all compounds within the series, inferring that all compounds of this series are ionic conductors, Figure 5-40. The phase angle change for the \(\text{SrSm}_2\text{S}_4\) based compounds are similar except for \(\text{SrSm}_2\text{S}_4+0.2\text{Sm}_2\text{S}_3\), which has a distinctive change in phase angle at medium frequencies, Figure 5-40.
Figure 5-40 Bode plot showing the effect of doping of SrSm₂S₄ with Sm₂S₃ at 400°C in argon

Very few published literature addresses the meaning of the frequency dependency of complex phase angle change with respect to conduction process as observed in Figure 5-40. Recently, Chaulet et. al. 2001 identified calcium ions from sodium ions based purely on the phase angle response of impedance spectroscopy for the dissolution of calcium carbonate, sodium sulphate and sodium carbonate. This empirical test was done for a liquid system; therefore the use of this theory to understand phase angle frequency dependency in solid-state systems is questionable. If the solids being compared have identical unit cell and crystal structure, then a similar frequency dependency of phase angle appears to be a reasonable expectation. However the unique phase angles for the SrSm₂S₄ could imply conduction by different species, Figure 5-40. The varying phase angle frequency dependency was also apparent in the CaSm₂S₄ series. Could this imply that the conducting species changes? These non-stoichiometric compounds have equal cation and anion vacancies, so it is possible to have a change in the mobile conducting species from anion to cation or electronic, or this could simply be an inherent property of Sm₂S₃.

5.8.3 Effect of changing host and dopant cation: CaNd₂S₄, SrNd₂S₄, CaSm₂S₄ and SrSm₂S₄ series

Doping at 10mol%
The matrix of electrolytes, CaNd₂S₄+0.1Nd₂S₃, SrNd₂S₄+0.1Nd₂S₃, CaSm₂S₄+0.1Sm₂S₃ and SrSm₂S₄+0.1Sm₂S₃, show that the electrochemical property is determined predominantly by dopant, therefore the Nd₂S₃ based electrolytes are similar and likewise the Sm₂S₃ based electrolytes, Figure 5-41. Even though changing the dopant from Nd₂S₃ to Sm₂S₃ caused a significant increase in both real and imaginary components of impedance, which may lead to
a reduction in the conductivity; this is opposite to what was anticipated. However the clear low frequency arc is indicative of ionic conduction.

![Figure 5-41 Nyquist for 10mol% doped CaNd₂S₄, SrNd₂S₄, CaSm₂S₄ and SrSm₂S₄ 400°C](image)

The Bode plot for matrix of 10mol% doped electrolytes is shown in Figure 5-42, where a low frequency phase angle dependency is present for both the SrSm₂S₄+0.1Sm₂S₃ and CaNd₂S₄+0.1Nd₂S₃. The Bode plot for CaSm₂S₄+0.1Sm₂S₃ shows that the phase angle at low frequencies is reduced while SrNd₂S₄+0.1Nd₂S₃ has no phase angle change at low frequencies, Figure 5-42.

![Figure 5-42. Bode plot for 10mol% doped CaNd₂S₄, SrNd₂S₄, CaSm₂S₄ and SrSm₂S₄ 400°C](image)
Doping at 20mol%

The Nyquist plot for the matrix of the 20mol% doped of electrolytes, CaNd$_2$S$_4$+0.2Nd$_2$S$_3$, SrNd$_2$S$_4$+0.2Nd$_2$S$_3$, CaSm$_2$S$_4$+0.2Sm$_2$S$_3$ and SrSm$_2$S$_4$+0.2Sm$_2$S$_3$, confirms that the electrochemical property varies as the quantity of dopant is increased, since the easily observable low frequency arc for many of the 10mol% doped matrix of electrolytes, Figure 5-42, is not seen at 20mol% doping, Figure 5-43.

![Nyquist plot](image)

Figure 5-43. Nyquist plot of 20mol% doped CaNd$_2$S$_4$, SrNd$_2$S$_4$, CaSm$_2$S$_4$ and SrSm$_2$S$_4$ 400°C

The apparent disappearance of the distinctive low frequency phase arc in the Nyquist plot in Figure 5-43 was not supported in the Bode plot for all the 20mol% doped matrix, Figure 5-44, since a phase angle change occurs at low frequency for samarium based electrolytes. Sm$_2$S$_4$+0.2Sm$_2$S$_3$ is distinctively different from all other compounds within this 20mol% doped matrix, due to phase angle change at medium frequencies, Figure 5-44. This implies that the frequency dependency of phase angle for solids depends on the dopant concentration. At high frequency CaSm$_2$S$_4$+0.2Sm$_2$S$_3$ and CaNd$_2$S$_4$+0.2Nd$_2$S$_3$ both have similar phase angle.
Similar phase angle for CaSm$_2$S$_4$+0.2Sm$_2$S$_3$ and CaNd$_2$S$_4$+0.2Nd$_2$S$_3$.

Low frequency arc for Sm$_2$S$_3$ compounds.

Electronic conduction.

Figure 5-44. Bode plot of 20mol% doped CaNd$_2$S$_4$, SrNd$_2$S$_4$, CaSm$_2$S$_4$ and SrSm$_2$S$_4$ 400°C

Doping at 30mol%

The Nyquist plot for the matrix of electrolytes, CaNd$_2$S$_4$+0.3Nd$_2$S$_3$, SrNd$_2$S$_4$+0.3Nd$_2$S$_3$, CaSm$_2$S$_4$+0.3Sm$_2$S$_3$ and SrSm$_2$S$_4$+0.3Sm$_2$S$_3$, shows that the Sm$_2$S$_3$ based electrolytes each has a unique Nyquist plot, while the Nyquist plots for the Nd$_2$S$_3$ based electrolytes are similar, Figure 5-45. Changing from CaSm$_2$S$_4$+0.3Sm$_2$S$_3$ to SrSm$_2$S$_4$+0.3Sm$_2$S$_3$ caused a reduction in very large medium frequency (blocking grain boundaries), Figure 5-45. Therefore at 30mol% doping SrSm$_2$S$_4$+0.3Sm$_2$S$_3$ differs from CaSm$_2$S$_4$+0.3Sm$_2$S$_3$.
Figure 5-45. Nyquist plot of 30mol% doped CaNd₂S₄, SrNd₂S₄, CaSm₂S₄ and SrSm₂S₄ 400°C

The Bode plot for matrix of 30mol% doped electrolytes shows that the frequency dependency of their phase angle for each electrolyte differs from one to the other, Figure 5-46. SrSm₂S₄+0.3Sm₂S₃ is the only electrolyte that has a phase angle change at low frequencies, therefore this electrolyte may exhibit ionic conduction under argon.

Figure 5-46. Bode plot of 30mol% doped CaNd₂S₄, SrNd₂S₄, CaSm₂S₄ and SrSm₂S₄ 400°C

5.8.4 Activation energy for SrSm₂S₄ considering temperature effect on Bode plot

The Arrhenius plots for the SrSm₂S₄ series shows nonlinearity in the temperature range from 175°C to 450°C, Figure 5-47, however from temperatures greater than 300°C, the plot becomes linear. This nonlinearity was also evident in the Bode plot at 300°C, since the trend in the phase angle changed at this temperature. The 25°C increase in temperature from 275°C
to 300°C caused the onset of a phase angle change at low frequencies. It is plausible that the onset of ionic conduction begins at 300°C. The linearity of the activation energy for ionic conduction after this initial onset is shown in the Arrhenius plot as well as the Bode plot, Figure 5-47 and Figure 5-48. The activation energies for SrSm₂S₄ series refers to the linear region above 300°C.

Figure 5-47 Arrhenius plot of SrSm₂S₄ from 175°C to 450°C in argon

The activation energy decreased from 1.49eV for undoped CaSm₂S₄ to 0.70eV for undoped SrSm₂S₄, Table 5.15. While a minimum activation energy was observed for these series, CaNd₂S₄, SrNd₂S₄, CaSm₂S₄, at either 10mol% or 20mol% doping, the activation energies increased with increasing dopant for the SrSm₂S₄ series. Since a minimum activation energy was observed as a function of dopant concentration for all other analogues, this could infer that the minimum activation energy for SrSm₂S₄ series may occur when doped with less than 10mole% Sm₂S₃.
Figure 5-48. Phase angle change vs. temperature for undoped SrSm$_2$S$_4$ in argon

No clear relationship between thermal activation energy, ionic mobility activation energy and doping level was observed for SrSm$_2$S$_4$ and its analogues, Table 5.15. However in general terms CaNd$_2$S$_4$ and SrNd$_2$S$_4$ had similar thermal activation energies and ionic activation energies. The thermal activation energy for SrSm$_2$S$_4$ decreased by an order of magnitude and the activation energy for ionic conduction decreased by approximately 50% relative to the CaSm$_2$S$_4$ series.

Table 5.15. Thermal and Bulk Conduction Activation energies for CaSm$_2$S$_4$, CaNd$_2$S$_4$, CaSm$_2$S$_4$ and CaNd$_2$S$_4$ series

<table>
<thead>
<tr>
<th></th>
<th>Thermal activation energy (kJ/g-mol)</th>
<th>Activation energy for bulk conduction (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CaNd$_2$S$_4$</td>
<td>SrNd$_2$S$_4$</td>
</tr>
<tr>
<td>0%</td>
<td>1.90x105</td>
<td>1.85x105</td>
</tr>
<tr>
<td>10%</td>
<td>6.37x103</td>
<td>1.24x106</td>
</tr>
<tr>
<td>20%</td>
<td>5.71x105</td>
<td>5.98x105</td>
</tr>
<tr>
<td>30%</td>
<td>4.36x103</td>
<td>5.19x105</td>
</tr>
</tbody>
</table>

The likely range of activation energies for bulk conduction was previously established to be 0.61-1.61eV in Chapter 4-Section 4.45. All the Sm$_2$S$_3$ based compounds have activation energy within the range expected for sulphide ion conduction, Table 5.15. The activation energies for the Nd$_2$S$_3$ based electrolytes are based on modelling results using the Jamnik model which is always 0.2-0.5eV smaller than the typical RC element based model, e.g. the Bauerle. Since the activation energy of Sm$_2$S$_3$ sulphide base electrolytes was obtained from the Bauerle model, a direct comparison between the two models is not recommended.
Assuming that electronic conduction is negligible in both the CaNd$_2$S$_4$ and SrNd$_2$S$_4$ series, the opening up of the unit cell structure by using the larger strontium cation should cause a lowering in activation energy if the conducting species was in fact sulphide. On the other hand an increase in activation energy would infer cationic conduction since strontium is larger than calcium. Therefore the reduction in activation energy for SrNd$_2$S$_4$ compounds with respect to CaNd$_2$S$_4$ compounds qualitatively suggests anionic conduction, with the exception of the 10mol% Nd$_2$S$_3$ doped compounds. Similarly, the reduction in activation energy for the SrSm$_2$S$_4$ series relative to the CaSm$_2$S$_4$ series also infers sulphide ion conduction; with the exception of the 20mol% Sm$_2$S$_3$ doped compounds, since the activation decreased with the increased lattice parameter, Table 5.16.

Table 5.16. Thermal and Bulk Conduction Activation energies and lattice parameter for CaSm$_2$S$_4$ and CaNd$_2$S$_4$ series

<table>
<thead>
<tr>
<th></th>
<th>Activation energy for bulk conduction (eV)</th>
<th>Lattice parameter for ‘a’ site Å</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CaNd$_2$S$_4$</td>
<td>SrNd$_2$S$_4$</td>
</tr>
<tr>
<td>0%</td>
<td>0.42</td>
<td>0.35</td>
</tr>
<tr>
<td>10%</td>
<td>0.23</td>
<td>0.32</td>
</tr>
<tr>
<td>20%</td>
<td>0.46</td>
<td>0.37</td>
</tr>
<tr>
<td>30%</td>
<td>0.65</td>
<td>0.38</td>
</tr>
</tbody>
</table>

5.8.5 Conductivity and Activation energy for SrSm$_2$S$_4$ series and all analogues

A summary of the bulk conductivities for the SrSm$_2$S$_4$ series and all analogue series is given in Table 5.17 where all series reach a maximum conductivity prior to reaching the highest level of doping (30mol%). The maximum conductivity for SrSm$_2$S$_3$ is at 20mol% while the analogues reach their maximum conductivity at 10mol%.

Table 5.17. Bulk Conductivity and activation energy for SrSm$_2$S$_4$ series and all analogue series at 500°C in argon

<table>
<thead>
<tr>
<th>Bulk conductivity @500°C in argon (S$^{-1}$ cm)</th>
<th>Activation energy for bulk conduction (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaNd$_2$S$_4$</td>
<td>SrNd$_2$S$_4$</td>
</tr>
<tr>
<td>0%</td>
<td>2.19x104</td>
</tr>
<tr>
<td>10%</td>
<td>1.09x104</td>
</tr>
<tr>
<td>20%</td>
<td>3.09x103</td>
</tr>
<tr>
<td>30%</td>
<td>1.85x103</td>
</tr>
</tbody>
</table>
The presence of a maximum conductivity with respect to dopant level has been attributed to the formation of defect clusters, beginning with simple defect pairs (associated pairs) at low concentrations. Defect pairs occur between dopant cation and the charge compensating anion vacancy and once formed the anion vacant site does not participate in the conduction process and therefore the decrease in the overall conductivity, Kilner, 2003. At high doping, the associated pairs may become more complex and form 'trimers' which are stable to higher temperatures, Minervini. et. al., 1999. This is the main reason why maximum conductivity does not occur at maximum doping. These simple defect pairs dominate bulk conductivity at low concentrations for dopant with an effective charge of \(-1\) or \(-2\), Kilner and Steele, 1981.

A direct comparison for bulk conductivities between the Nd$_2$S$_3$ doped electrolytes and the Sm$_2$S$_3$ doped electrolytes is not possible since Jamnik equivalent circuit was used to model many of the EIS experimental data for most of the Nd$_2$S$_3$ compounds. Therefore the resulting conductivity values are greater than 2 orders of magnitude than conductivity calculated based on models made up of multiple R//C elements (Bauerle or Randles equivalent circuits). However, comparison within Nd$_2$S$_3$ based compounds, similarly Sm$_2$S$_3$ based compounds, is plausible since comparable equivalent circuit was used. While the cation change from calcium to strontium in Nd$_2$S$_3$ electrolytes caused an increase in conductivity, an opposite trend was observed for the Sm$_2$S$_3$ doped sulphides. The bulk conductivities for Nd$_2$S$_3$ doped compounds (except for CaNd$_2$S$_4$+0.1Nd$_2$S$_3$) occurred with no phase angle change at low frequencies which infers the presence of electronic conduction. Therefore the high conductivities for Nd$_2$S$_3$ doped compounds are not purely ionic. The lower conductivities for the Sm$_2$S$_3$ doped electrolytes occurred with the presence of a phase change in low frequencies indicating ionic conductivity.

The Jamnik equivalent circuit for predominately ionic conduction for CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ calculates a bulk conductivity of \(1.09 \times 10^{-6} \) S\(^{-1}\) cm agreeing with Kalinina et. al. 1994, bulk conductivity established through galvanic cells. The Kalinina et. al. 1994, galvanic cell used CaS and Nd$_2$S$_3$ discs as ionic sources and sinks for Ca, Nd and S ions between the electrolyte (and the carbon electrode) which are not electronic conductors, therefore the experimental method would not allow for the measurement of electronic flow and therefore may account for significantly lower low bulk conductivities for the highly doped CaNd$_2$S$_4$.

5.8.6 Time Constant Analysis for SrSm$_2$S$_4$ series

The time constants for the bulk conduction in the SrSm$_2$S$_4$ series approached a minimum for the SrSm$_2$S$_4$+0.2Sm$_2$S$_3$. Table 5.18, which also has the maximum conductivity as well as the
highest activation energy for the doped SrSm$_2$S$_4$ compounds, Table 5.17. The time constants for both CaSm$_2$S$_4$ and SrSm$_2$S$_4$ series decreased as the dopant is increased from no excess dopant to 30mol% dopant, Table 5.18. The similar time constants of all compounds in the SrSm$_2$S$_4$ series suggests similar conducting species, Table 5.18.

The time constants for doped SrSm$_2$S$_4$ compounds are greater than those for the oxide ion conducting YSZ at similar temperature, Tables 5.18 and 4.7. Assuming that a larger ion moves slower than a smaller one, then the larger time constant is consistent with anionic conduction for doped SrSm$_2$S$_4$ compounds. The observation of asymmetric concentration cell experiments is necessary to identify the conducting ion.

Table 5.18. Time constant, at 350°C, analysis for SrSm$_2$S$_4$ and CaSm$_2$S$_4$ series with graphite electrode

<table>
<thead>
<tr>
<th></th>
<th>Undoped CaSm$_2$S$_4$</th>
<th>Undoped SrSm$_2$S$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bauerle+ Jamnik model</td>
<td>Bauerle model</td>
</tr>
<tr>
<td></td>
<td>Bulk</td>
<td>Grain boundary</td>
</tr>
<tr>
<td>Resistor (R)</td>
<td>5.86×10^5 Ω</td>
<td>7.06×10^5 Ω</td>
</tr>
<tr>
<td>Capacitor (C)</td>
<td>1.51×10^{-10} F</td>
<td>2.96×10^{-11} F</td>
</tr>
<tr>
<td>Time Constant (τ)</td>
<td>8.87×10^{-7} s</td>
<td>2.09×10^{-4} s</td>
</tr>
<tr>
<td></td>
<td>Bulk</td>
<td>Grain boundary</td>
</tr>
<tr>
<td>Resistor (R)</td>
<td>2.15×10^7 Ω</td>
<td>3.38×10^6 Ω</td>
</tr>
<tr>
<td>Capacitor (C)</td>
<td>3.93×10^{-11} F</td>
<td>8.90×10^{-11} F</td>
</tr>
<tr>
<td>Time Constant (τ)</td>
<td>8.24×10^{-6} s</td>
<td>3.01×10^{-4} s</td>
</tr>
<tr>
<td></td>
<td>Bulk</td>
<td>Grain boundary</td>
</tr>
<tr>
<td>Resistor (R)</td>
<td>1.69×10^9 Ω</td>
<td>2.36×10^8 Ω</td>
</tr>
<tr>
<td>Capacitor (C)</td>
<td>6.98×10^{-11} F</td>
<td>4.26×10^{-11} F</td>
</tr>
<tr>
<td>Time Constant (τ)</td>
<td>7.41×10^{-5} s</td>
<td>3.18×10^{-4} s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>SrSm$_2$S$_4$+0.1Sm$_2$S$_3$</th>
<th>SrSm$_2$S$_4$+0.3Sm$_2$S$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bauerle+ Jamnik model</td>
<td>Bauerle model</td>
</tr>
<tr>
<td></td>
<td>Bulk</td>
<td>Grain boundary</td>
</tr>
<tr>
<td>Resistor (R)</td>
<td>2.15×10^7 Ω</td>
<td>3.38×10^6 Ω</td>
</tr>
<tr>
<td>Capacitor (C)</td>
<td>3.93×10^{-11} F</td>
<td>8.90×10^{-11} F</td>
</tr>
<tr>
<td>Time Constant (τ)</td>
<td>8.24×10^{-6} s</td>
<td>3.01×10^{-4} s</td>
</tr>
<tr>
<td></td>
<td>Bulk</td>
<td>Grain boundary</td>
</tr>
<tr>
<td>Resistor (R)</td>
<td>1.69×10^9 Ω</td>
<td>2.36×10^8 Ω</td>
</tr>
<tr>
<td>Capacitor (C)</td>
<td>6.98×10^{-11} F</td>
<td>4.26×10^{-11} F</td>
</tr>
<tr>
<td>Time Constant (τ)</td>
<td>7.41×10^{-5} s</td>
<td>3.18×10^{-4} s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>SrSm$_2$S$_4$+0.2Sm$_2$S$_3$</th>
<th>SrSm$_2$S$_4$+0.3Sm$_2$S$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bauerle+ Jamnik model</td>
<td>Bauerle model</td>
</tr>
<tr>
<td></td>
<td>Bulk</td>
<td>Grain boundary</td>
</tr>
<tr>
<td>Resistor (R)</td>
<td>2.15×10^7 Ω</td>
<td>3.38×10^6 Ω</td>
</tr>
<tr>
<td>Capacitor (C)</td>
<td>3.93×10^{-11} F</td>
<td>8.90×10^{-11} F</td>
</tr>
<tr>
<td>Time Constant (τ)</td>
<td>8.24×10^{-6} s</td>
<td>3.01×10^{-4} s</td>
</tr>
<tr>
<td></td>
<td>Bulk</td>
<td>Grain boundary</td>
</tr>
<tr>
<td>Resistor (R)</td>
<td>1.69×10^9 Ω</td>
<td>2.36×10^8 Ω</td>
</tr>
<tr>
<td>Capacitor (C)</td>
<td>6.98×10^{-11} F</td>
<td>4.26×10^{-11} F</td>
</tr>
<tr>
<td>Time Constant (τ)</td>
<td>7.41×10^{-5} s</td>
<td>3.18×10^{-4} s</td>
</tr>
</tbody>
</table>
5.8.7 \textit{H}_2\textit{S} Concentration dependence of bulk conductivity for SrSm\textsubscript{2}S\textsubscript{4} series

Impedance spectroscopy of the SrSm\textsubscript{2}S\textsubscript{4} series using graphite electrodes in argon produced an ionic blocking electrode arc which indicates pure ionic conductors. The conductivity for a pure ionic conductor is also independent of concentration changes in the atmosphere; therefore impedance spectroscopy was carried out from 350\textdegree C to 550\textdegree C with the concentration of H\textsubscript{2}S/Ar varying from 0vol\% to 18vol\% for each temperature. Using one-hour isothermal period allows for the stabilization of temperature and concentration prior to impedance measurements.

The conductivity which increases with increasing sulphur concentration at high H\textsubscript{2}S concentration indicates the presence of hole conduction: it may occur via equation 15.

\[
\frac{1}{2}S_2 + V_{S^{2-}} \leftrightarrow S^{2-} + 2\Theta
\]

Where

- $V_{S^{2-}}$: sulphide anion vacancy
- S^{2-}: sulphur anion in unit cell
- Θ: electron hole

Thus increasing the sulphur partial pressure increases the number of electron holes and increases the conductivity of the electrolyte.

The increasing conductivity with increasing H\textsubscript{2}S concentration from 0vol\% (pure argon) to 0.1vol\%H\textsubscript{2}S/Ar for SrSm\textsubscript{2}S\textsubscript{4} indicates electron hole conduction, Figure 5-49. This may result from the interaction between vacant sulphide ion sites and gaseous sulphur, as expressed in equation 15.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5-49.png}
\caption{Bulk conductivities for undoped SrSm\textsubscript{2}S\textsubscript{4} measured in different atmospheres}
\end{figure}
However at temperatures greater than or equal to 500°C, a further increase in \(\text{H}_2\text{S} \) concentration resulted in no change in the conductivity for undoped \(\text{SrSm}_2\text{S}_4 \), Figure 5-49. This is shown clearly in Figure 5-50, that at high temperatures, the bulk conductivity appears to be independent of \(\text{H}_2\text{S} \) concentration.

![Figure 5-50. Bulk conductivities for undoped \(\text{SrSm}_2\text{S}_4 \) measured in different atmospheres](image)

The activation energy for \(\text{SrSm}_2\text{S}_4 \), 0.69-0.74eV, remained constant up to 1vol%\(\text{H}_2\text{S} \). However at 2vol%, the activation energy increased to 0.99eV, suggesting a change in the mechanism of conduction. If equation 15 accurately describes the conduction process, then as the vacant sulphide ion sites become occupied, the inevitable decrease in sulphur vacant sites may cause an increase in activation energy for the conduction of sulphide ions, Figure 5-51.

![Figure 5-51. Activation energy for undoped \(\text{SrSm}_2\text{S}_4 \) measured in different atmospheres](image)
The bulk conductivity of SrSm$_2$S$_4$+0.1Sm$_2$S$_3$ appears to be somewhat independent of hydrogen sulphide partial concentration, ranging from 0vol%H$_2$S/Ar up to 2vol%H$_2$S/Ar at all temperatures measured, 350-550°C, which indicates predominant ionic conduction, Figure 5-52.

![Graph showing bulk conductivities for SrSm$_2$S$_4$+0.1Sm$_2$S$_3$ measured in different atmospheres](image)

Figure 5-52. Bulk conductivities for SrSm$_2$S$_4$+0.1Sm$_2$S$_3$ measured in different atmospheres

The activation energy for SrSm$_2$S$_4$+0.1Sm$_2$S$_3$ increased from 0.70eV in pure argon to 1.25eV in 2vol%H$_2$S, Figure 5-53. Therefore undoped SrSm$_2$S$_4$ and SrSm$_2$S$_4$+0.1Sm$_2$S$_3$ compounds exhibit an increased in activation energy for bulk conductivity with increasing H$_2$S concentration. A corresponding increase in conductivity with increasing H$_2$S concentration is attributed to hole conduction, equation 15.

![Graph showing activation energy for SrSm$_2$S$_4$+0.1Sm$_2$S$_3$ measured in different atmospheres](image)

Figure 5-53. Activation energy for SrSm$_2$S$_4$+0.1Sm$_2$S$_3$ measured in different atmospheres
Bulk conductivity of SrSm$_2$S$_4$+0.2Sm$_2$S$_3$ remains independent of H$_2$S concentration from pure argon to 0.1vol%H$_2$S/Ar, indicating ionic conduction over this wide concentration range, Figure 5-54. Similarly the corresponding activation energy of SrSm$_2$S$_4$+0.2Sm$_2$S$_3$ remained unchanged, 1.3-1.2eV, with increasing H$_2$S partial pressure from pure argon to 1vol%H$_2$S. Therefore SrSm$_2$S$_4$+0.2Sm$_2$S$_3$ appears to remain an ionic conductor over this range of H$_2$S concentrations, which is unique to this series of compounds.

![Figure 5-54. Bulk conductivities for SrSm$_2$S$_4$+0.2Sm$_2$S$_3$ measured in different atmospheres](image)

Figure 5-54 shows that the conductivity for SrSm$_2$S$_4$+0.3Sm$_2$S increases as the gas is changed from argon to a H$_2$S rich atmosphere. This increased conductivity occurs with a lowering of the activation energy from 0.81eV to 0.40eV, this is typical for electron hole conduction.

![Figure 5-55. Variation of conductivity of SrSm$_2$S$_4$+0.3Sm$_2$S$_3$ with sulphur partial pressure](image)

Figure 5-55. Variation of conductivity of SrSm$_2$S$_4$+0.3Sm$_2$S$_3$ with sulphur partial pressure
5.9 **Electrochemical Pumping of Selected SrSm₂S₄ compounds**

The electrochemical concentration cell of the type H₂S/H₂/Pt/SrSm₂S₄/Pt//Ar/H₂ was operated at temperatures (550-650°C) with 1-2V (d.c) to identify sulphide ion conduction. The constant source of S²⁻ ions was formed by the application of a negative potential applied on the ‘H₂S rich’ compartment, equation 16; conduction of the sulphide ion through a sulphide ion conducting electrolyte would produce a steady state current.

\[2e^- + H_2S \rightarrow H_2 + \frac{1}{2} S^{2-} \quad (16) \]

If the current decays with the application of a negative potential on the H₂S section, then the transfer of a positive ion is interpreted, (decay because there is no continuous source of positive ions, only from the electrolyte), equation 17.

\[Sr^{2+} + 2e^- \rightarrow Sr \quad (17) \]

The electrochemical response of SrSm₂S₄+0.1Sm₂S₃ at 550°C with applied 1Vdc is shown in Figure 5-56. The first dc current generated, 1.5x10⁻³ A, with the application of a negative potential to the ‘H₂S rich compartment’ is less than the current, 1.9x10⁻³ A, generated with the application of the positive potential to the said compartment. This initial response does not support the conduction of sulphide ions.

However the initial response was not repeatable since the subsequent repetition led to a larger current being generated with the application of a negative potential to the ‘H₂S rich compartment’, Figure 5-56. The trend of second and subsequent response supports the conduction of sulphide ions.

A current flow that is greater with the application of a positive potential to the ‘H₂S rich compartment’ was not repeatable. The current generated with the application of a positive potential to the ‘H₂S rich compartment’ decreased towards, 9x10⁻⁴ A, Figure 5-56.

The steady state current generated with the application of a negative potential to the ‘H₂S rich compartment’ of 1.9x0⁻⁴ A is greater than the steady state current generation with the application of a positive potential to the ‘H₂S rich compartment’, Figure 5-56. If this steady state current is a measure of the electronic conduction, the one the ionic conduction is approximately 50% of the total measure current flow. This possible electronic conduction could be as a result of the experimental set-up rather than an inherent property of the electrolyte.
Figure 5-56 Electrochemical pumping SrSm₂S₄+0.1Sm₂S₃ at 550°C with applied 1Vdc

The result of SrSm₂S₄+0.3Sm₂S₃ electrochemical pumping at 650°C with applied 1Vdc is shown in Figure 5-57. The peak dc current generated, 6.3x10⁻³A occurred with the application of a negative potential on the H₂S rich ‘compartment’ is greater than the peak current generated with the application of the positive potential to the H₂S rich ‘compartment’ of -5.4x10⁻⁴A; this response supports the conduction of sulphide ions according to equation 16.

If an offset of ±4x10⁻³A is used (because this is the lowest steady state current), then the current generated with the application of a negative potential to the H₂S rich ‘compartment’ is greater, when compared to the application of a positive potential to the said compartment, Figure 5-57. This response indicates sulphide ion conduction. However each successive application of a negative potential to the H₂S rich ‘compartment’, the bulk resistance of the electrolyte decreased during the experiment (based on the increasing dc current with the application of a positive potential to the H₂S rich ‘compartment’), Figure 5-57. Therefore while sulphide ion conduction was qualitatively identified for SrSm₂S₄+0.3Sm₂S₃, it appears that the electrolyte is not stable at 650°C with the application of 1V(d.c.).
Figure 5-57. Electrochemical pumping SrSm$_2$S$_4$+0.3Sm$_2$S$_3$ at 650°C with applied 1Vdc

Based on the complex asymmetric response during the electrochemical pumping of doped SrSm$_2$S$_4$ compounds, a complete list of possible half reactions that may occur with the application of a positive or negative potential to the electrochemical cell is presented in order to propose an explanation of the results. For example, consider the application of a negative potential to the ‘H$_2$S rich’ compartment and hence a positive potential to the H$_2$ compartment, Figure 5-58 highlights the possible reactions, assuming that all ions are mobile.

- $H_2S + 2e^- \rightarrow H_2 + S^{2-}$
- $Sr^{2+} + 2e^- \rightarrow Sr$
- $Sm^{3+} + 3e^- \rightarrow Sm$
- $H_2 \rightarrow 2H^+ + 2e^-$
- $Sr \rightarrow Sr^{2+} + 2e^-$
- $Sm \rightarrow Sm^{3+} + 3e^-$
- $H_2 + S^{2-} \rightarrow H_2S + 2e^-$

Figure 5-58. Electrochemical half reactions with the application of a negative potential to H$_2$S compartment

Based on Figure 5-58, the following scenarios may be deduced with the application of a negative potential to the ‘H$_2$S rich compartment’:

Pure Sulphide ion conduction: Sulphide ion conduction is described by equations (a) and (g), Figure 5-58. Sulphide ion is formed with the application of negative potential to H$_2$S rich compartment. As a result sulphide ions are created at the platinum electrode surface at elevated temperatures. These sulphide ions would conduct through the electrolyte and reacts with hydrogen, via equation (g). Therefore this scenario would result in a constant current with the application of negative potential to the H$_2$S rich compartment.

Pure Cationic ion conduction: If the electrolyte is a cationic conductor, then the current should decay with time, since the mobile cation species is not being replenished, as expressed by equations (b), (c), (e) and (f).

Hydrogen ion conduction: If the electrolyte conducts H$^+$ ions, then a constant current would as expressed by equation (d). Therefore differentiation between sulphide ion conduction and H$^+$ ions would not be possible using the current electrochemical cell.

Considering the opposite scenario, that is the application of positive potential to the H$_2$S rich compartment and hence a negative potential to the H$_2$ compartment, the following half reactions, Figure 5-59, are possible if all ions conduct.

![Electrochemical half reactions with the application of a positive potential to H$_2$S compartment](image)

The current flow with the application of a positive potential to the H$_2$S rich compartment could generate H$^+$ ions via equation (j) in Figure 5-59. Therefore the application of a negative voltage current to the H$_2$ compartment could also lead to steady state current if the electrolyte is a H$^+$ conductor.
A current generated under from equations (l) and (m) could be associated with the direct electrochemical reduction of the electrolyte. The corresponding experimental observation could include either a decaying current with time, as well as the inability to obtain repeatable current measurements (because the electrochemical reduction of the electrolyte changes the bulk resistivity) to confirm this scenario.

Producing H\(^-\) is rather difficult and as such equation (k) should not occur.

The complicated behaviour of these compounds was also observed in the EIS experiments, since the conductivity as well as the frequency dependency of phase angle changed when the atmosphere was changed from argon to H\(_2\)S/Ar mixtures, Figure 5-60 and Figure 5-61. Varying the concentration of H\(_2\)S from 0.1vol\% to 2vol\% resulted in no further increase in conductivity or a different phase angle dependency. The distinct change in the frequency dependency of phase angle with the introduction of Ar/H\(_2\)S is shown in Figure 5.60 and 5.61 below.

![Bode plot of SrSm\(_2\)S\(_4\)+0.1Sm\(_2\)S\(_3\) at 400°C in different H\(_2\)S concentration](image)

Figure 5-60. Bode plot of SrSm\(_2\)S\(_4\)+0.1Sm\(_2\)S\(_3\) at 400°C in different H\(_2\)S concentration

The high and flow frequency section of the Bode plot in Figure 5-60 remains independent of the H\(_2\)S concentration. However the middle frequency range has a distinct shift with changing the atmosphere from pure argon to mixed Ar/H\(_2\)S. The middle frequency is normally attributed to the grain boundary conduction of the electrolyte, hence the change does not appear to be related to the electrolyte-electrode interface since the low frequency arc remains unchanged, but rather a change in the bulk property of the material.
Only the flow frequency section of the Bode plot for SrSm$_2$S$_4$+0.3Sm$_2$S$_3$ in Figure 5-61 remains independent of the H$_2$S concentration. The middle and high frequency range has a distinct shift with changing the atmosphere from pure argon to mixed Ar/H$_2$S. High frequency refers to bulk properties and the middle frequency is normally attributed to the grain boundary conductivity of the electrolyte, hence the change does appear to be related to the material property.

The SrSm$_2$S$_4$ compounds have very low thermal activation energy therefore the loss of sulphur to the atmosphere during the EIS under argon may have altered the bulk properties, Table 5.15. Also, sulphur vacancies within the unit cell may interact with sulphur in the atmosphere creating hole, thus increasing the bulk conductivity which was observed for this series of compounds, Figure 5-60 and Figure 5-61.

![Figure 5-61. Bode plot of SrSm$_2$S$_4$+0.3Sm$_2$S$_3$ at 400°C in different H$_2$S concentration](image)

In concluding, the electrochemical behaviour of the SrSm$_2$S$_4$ series, exhibits the ion blocking electrode arcs in their Nyquist plots, which indicates ionic conduction under an argon atmosphere. Further EIS characterisation shows that the at high H$_2$S concentrations, greater than 0.01vol\%, the bulk conductivities changes suggesting the onset of electron hole conduction.

The results of the electrochemical pumping experiments confirms sulphide ion conduction in SrSm$_2$S$_4$+0.1Sm$_2$S$_3$ and SrSm$_2$S$_4$+0.3Sm$_2$S$_3$ because of the increasing current observed with the application of a negative potential to the H$_2$S rich atmosphere. A constant current was also observed with the application of a negative potential to the H$_2$ rich compartment, also inferring that positive ions or holes are also conducting.
In comparison, the Bode plot of the CaSm$_2$S$_4$ series showed phase angle change at low frequency (ionic blocking electrode arc) in argon atmosphere, also suggesting ionic conduction. The bulk conductivity of doped-CaSm$_2$S$_4$ based compounds changed marginally with varying the partial pressure of H$_2$S (at 550°C) and this confirms ionic conductivity. Therefore both CaSm$_2$S$_4$ and SrSm$_2$S$_4$ series exhibits ionic conduction.

Electrochemical pumping experiments of a doped CaSm$_2$S$_4$ compound shows a current flow only in the presence of H$_2$S, thus identifying sulphide ion conductivity. While the characterisation of the CaSm$_2$S$_4$ series shows sulphide ion conduction, the bulk conductivity remains low (10$^{-4}$ to 10$^{-7}$ S$^{-1}$.cm at 500°C in Ar). Therefore the host cation was changed from calcium to the larger strontium ion to form the SrSm$_2$S$_4$ series. However this change resulted in a significant improvement only in the conductivity of SrSm$_2$S$_4$+0.2Sm$_2$S$_3$.

5.10 References For Chapter 5

Chapter 6

6. Thermal and Electrochemical Characterisation of Barium Based sulphides

Ba$_2$In$_2$O$_5$, displays oxide ion conduction above 925°C, Goodenough et. al., 1990. Since then oxide materials of the form A$_2$B$_2$O$_5$ have been investigated as possible fast oxide-ion conductors for use in oxygen sensors, solid oxide fuel cells and other electrochemical devices, Goodenough et. al., 1992. These types of oxide compounds have been synthesised with the aim of developing fast oxide ion conducting materials, superior to the commercially available yttria-stabilised zirconia (YSZ). Ba$_2$In$_2$O$_5$ is both a proton and oxide-ion conductor, Yao, et. al. 2002, Schober and J. Friedrich, 1998.

The structure of Ba$_2$In$_2$O$_5$ at ambient temperature is the Brownmillerite type orthorhombic Icmm symmetry, Figure 6.1, with lattice parameters $a=6.086\AA$, $b=16.790\AA$ and $c = 5.969\AA$. Ba$_2$In$_2$O$_5$ is stable up to 900°C, above this temperature the point oxygen vacancies begin to disorder, Speakman et. al., 2002. The oxygen vacancy order–disorder transition is associated with a structural transition to a fast oxide-ion conducting state. At 1040°C Ba$_2$In$_2$O$_5$ becomes a cubic oxygen-deficient perovskite, with lattice parameter of 4.274Å. Doping the indium site in the Ba$_2$In$_2$O$_5$ compound with trivalent cations of various radii alters the order-disorder transition temperature. For example, doping with ions larger than the host In$^{3+}$ ion, such as Y$^{3+}$ and Yb$^{3+}$ caused an increase in the transition temperature, while doping with smaller ions like Sc$^{3+}$ and Ga$^{3+}$ lead to a decrease in the transition temperature of the material, Yamamura, 1998. It was reported that Ba$_2$In$_2$O$_5$ undergoes an approximate six-fold increase in its ionic conductivity over the temperature range from about 900-950°C, in broad agreement with previous studies, Berastegui, et. al., 2002.

Based on impedance spectroscopy experiments, Ba$_2$In$_2$O$_5$, exhibits cationic, (In$^{3+}$) ions, conduction, Berastegui et. al. 2002. Introducing a higher valency cation such as Zr$^{4+}$ into the Ba$_2$In$_2$O$_5$ structure induces anionic disorder which causes a transformation from the Brownmillerite type orthorhombic to the cubic defect perovskite structure as adopted by the high-temperature phase of Ba$_2$In$_2$O$_5$, Berastegui et. al, 2002. An increase conductivity of Ba$_2$In$_2$O$_5$ was also observed with La doping. A discontinuous jump of ion conductivity in the Arrhenius plot was observed with the increasing La content, which was related to the disordering of the oxygen vacancies. The activation energy remained constant with respect to the La content. Moreover, the conductivity for Ba$_{1-x}$La$_x$In$_2$O$_5$ (x=0.6) was 0.042 (S.cm$^{-1}$) at 1073K, which exceeded that of 8 mol% yttria-stabilized zirconia. The higher oxide-ion
conductivity of this system could be dominated by the amount of mobile oxygen ions, Kakinuma, et. al. 2001.

The primary consideration for selecting the dopant cation was similarity to the host cationic radius (In$^{3+} = 0.81 \text{Å}$), to assist the inclusion of the dopant ion onto the indium site, the ions considered were Sn$^{4+}(0.71 \text{Å})$, Zr$^{4+}(0.79 \text{Å})$ and Pb$^{4+}(0.84 \text{Å})$, White, 2005. Due to the combination of the closest ratio of ionic radii to the In$^{3+}$ ion and the previous successful inclusion of zirconium onto the indium site in the oxide system, Zr$^{4+}$ was chosen as the selected dopant in this case, White, 2005. Therefore the sulphide analogue materials Ba$_2$In$_2$S$_5$ and Ba$_2$In$_{2-x}$Zr$_x$S$_5$, where $x = 0.2$, were prepared, White, 2005, with the aim of creating a sulphide ion conducting compound, and the structure and properties of the compounds were investigated.

The XRD data for both compounds show that the materials crystallised with an orthorhombic unit cell, White 2005. Rietveld refinements for the compounds Ba$_2$In$_2$S$_5$ and Ba$_2$In$_{2-x}$Zr$_x$S$_5$ are shown in Figure 6-1 with refined structural data summarised in Table 6.1, White 2005. Atomistic simulation techniques used by Fisher et. al., 2002, to investigate the crystal structure and defect energetics of Ba$_2$In$_2$O$_5$ shows that the orthorhombic brownmillerite structure has alternating layers of oxygen octahedral and tetrahedral, with intrinsic defects of the Frenkel type. Calculated formation energies of electronic defects suggest that Ba$_2$In$_2$O$_5$ will oxidize with the formation of positive holes, Fisher et. al., 2002

![Figure 6-1. Powder X-RD pattern and unit cell structure for Ba$_2$In$_2$S$_5$, White, 2005](image)
Table 6.1. Refined unit cell parameter and theoretical density for orthorhombic Ba$_2$In$_2$S$_5$ and Ba$_2$In$_2$Zr$_x$S$_5$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ba$_2$In$_2$S$_5$</th>
<th>Ba$_2$In$_2$Zr$_x$S$_5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>Pbca</td>
<td>Pbca</td>
</tr>
<tr>
<td>Refined cell parameter a (Å)</td>
<td>13.1643(3)</td>
<td>13.1508(3)</td>
</tr>
<tr>
<td>Refined cell parameter b (Å)</td>
<td>12.7251(3)</td>
<td>12.7165(3)</td>
</tr>
<tr>
<td>Refined cell parameter c (Å)</td>
<td>11.7805(3)</td>
<td>11.7732(2)</td>
</tr>
<tr>
<td>Density g/cm3 (theoretical)</td>
<td>4.474</td>
<td>4.448</td>
</tr>
</tbody>
</table>

Based on the XRD pattern of Ba$_2$In$_2$Zr$_x$S$_5$, this compound has an orthorhombic unit cell similar to Ba$_2$In$_2$S$_5$ shown in Figure 6-1. The volume of the unit crystal decreases with the introduction of Zr$^{4+}$ expressed by the decrease in the lattice parameter, i.e. is the Zr$^{4+}$ dopant causes a contraction of the unit cell, Table 6.1. Doping with Zr$^{4+}$ also causes a decrease in density even though the unit cell contracts, thus inferring the formation of vacant sites within the unit cell.

Pellets were made by pressing ground material, to 10 tonnes and sintering to 1050°C. The resulting pellets have a maximum of 95% of the theoretical density, Table 6.2. The significant difference between Ba$_2$In$_2$S$_5$+0.2ZrS$_2$ and the un-doped BaIn$_2$S$_5$ was also evident in the particle size distribution, where Ba$_2$In$_2$S$_5$+0.2ZrS$_2$ has a larger volume percent of particles at the mean particle size, Figure 6-2. It was not possible to obtain higher densities for Ba$_2$In$_2$S$_5$ by increasing the sintering temperature since this caused sublimation of the material at 1150°C.

Table 6.2. Theoretical and actual densities for Ba$_2$In$_2$S$_5$ and Ba$_2$In$_2$S$_5$+0.2ZrS$_2$

<table>
<thead>
<tr>
<th></th>
<th>Theoretical density SrSm$_2$S$_4$ (g/cm3)</th>
<th>Actual density SrSm$_2$S$_4$ (g/cm3)</th>
<th>% of theoretical density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba$_2$In$_2$S$_5$</td>
<td>4.474</td>
<td>3.65</td>
<td>85</td>
</tr>
<tr>
<td>Ba$_2$In$_2$S$_5$+0.2ZrS$_2$</td>
<td>4.448</td>
<td>4.25</td>
<td>95</td>
</tr>
</tbody>
</table>
Figure 6-2. Particle size distribution of $\text{Ba}_2\text{In}_2\text{S}_5+0.2\text{ZrS}_2$ and un-doped $\text{Ba}_2\text{In}_2\text{S}_5$

Figure 6-3 shows an SEM of the sintered pellets with pores of 2μm diameter up with fairly thin grain boundaries. The thin lines in Figure 6-3 suggest that thermal stresses occurred in the sintering process therefore decreasing the heating and cooling rate should improve the actual density.

Figure 6-3 SEM of $\text{Ba}_2\text{In}_2\text{S}_5$ sintered at 1050°C in H_2S

6.1.2 TPO and TPR for $\text{Ba}_2\text{In}_2\text{S}_5$ and $\text{Ba}_2\text{In}_{2-x}\text{Zr}_x\text{S}_5$

The thermal stability of $\text{Ba}_2\text{In}_2\text{S}_5$ and $\text{Ba}_2\text{In}_2\text{S}_5+0.2\text{ZrS}_2$ was established using TPO and TPR techniques. The TPO traces of this series consist of one major peak with onset temperatures higher than any of the previous AB$_2$S$_4$ compounds, Figure 6-4. The addition of ZrS$_2$ to $\text{Ba}_2\text{In}_2\text{S}_5$ increased the onset temperature for oxidation, Table 6.3. The presence of a single
major SO₂ peak indicates that there is only one type of sulphur that reacts to form sulphur dioxide, implying a single-phase compound.

Table 6.3. Onset temperatures for Ba₂In₂S₅ and Ba₂In₂S₅+0.2ZrS₂ and unit cell lattice parameter

<table>
<thead>
<tr>
<th></th>
<th>Onset Temperatures</th>
<th>Lattice parameter for ‘a’ site Å</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ba₂In₂S₅</td>
<td>Ba₂In₂S₅+0.2ZrS₂</td>
</tr>
<tr>
<td>Oxidation</td>
<td>978</td>
<td>995</td>
</tr>
<tr>
<td>Reduction</td>
<td>845</td>
<td>865</td>
</tr>
</tbody>
</table>

*Bracketed () number indicates the standard deviation on the fourth decimal place

Figure 6-4. TPO of Ba₂In₂S₅ and Ba₂In₂S₅+0.2ZrS₂ using 10°C/min heating rate

The doped compound, Ba₂In₂S₅+0.2ZrS₂, with an onset temperature of 880°C in a reducing atmosphere is also more stable than the undoped-compound which has an onset temperature of 820°C, Figure 6-5. Therefore Ba₂In₂S₅+0.2ZrS₂ is more stable than Ba₂In₂S₅ in both oxidizing and reducing atmospheres. This infers that the reduced ionic distance results in an increased stability.
6.1.3 Electrochemical characterisation of Ba$_2$In$_2$S$_5$ and Ba$_2$In$_2$S$_5$+0.2ZrS$_2$

Impedance spectroscopy of BaIn$_2$S$_5$ and Ba$_2$In$_2$S$_5$+0.2ZrS$_2$ were measured in the temperature range from 250 to 400°C using graphite electrodes, with an ac voltage of 0.1Vrms, frequency range from 0.1Hz to 1×10^6Hz under an argon atmosphere with 1hour delay for temperature stability. Other electrode materials such as gold and platinum were not used due to the possible reactions observed earlier with other sulphide materials.

The Nyquist plot for both compounds is dominated by the prominent low frequency effect, known as Warburg impedance, Figure 6-6. Pure ionic conductors exhibit Warburg impedances, 45° line changes, at unique temperatures before the 45° line changes to a typical arc. Even though Warburg impedance is defined by the characteristic 45° line, the angle may reduce from 45° to approximately 21°, due to mechanical contact of the electrodes, Doi, 1990. Therefore the large low frequency line, in Figure 6-6, can be called Warburg impedance. This property is unique to ionic conducting materials; therefore both Ba$_2$In$_2$S$_5$ and Ba$_2$In$_2$S$_5$+0.2ZrS$_2$ are ionic conductors. The experimental impedance data for Ba$_2$In$_2$S$_5$ and Ba$_2$In$_2$S$_5$+0.2ZrS$_2$ differ from all AB$_2$S$_4$ type compounds, none of which exhibited Warburg impedance, at the temperatures examined.
The oxide analogue Ba$_2$In$_2$O$_5$ has a Brownmillerite type orthorhombic, here oxygen vacancies begin to disorder at temperatures in excess of 900°C, Speakman et. al, 2002. The oxygen vacancy order–disorder transition is directly related to the structural transition to a fast oxide-ion conducting deficient perovskite unit cell. At 1040°C, Ba$_2$In$_2$O$_5$ becomes a cubic oxygen-deficient perovskite with lattice parameter of 4.274Å.

The Bode plot of Ba$_2$In$_2$S$_5$ possibly shows the transformation from a Brownmillerite type orthorhombic Icmm symmetry to a deficient perovskite unit cell since the low frequency arc begins at 300°C, i.e. no ionic conduction takes place at lower temperatures, Figure 6-7. While the temperature at which ionic conduction occurs in the Ba$_2$In$_2$S$_5$ is much lower than its equivalent oxide, it appears that the principle governing the change, explained by the change in the unit cell, is also valid for Ba$_2$In$_2$S$_5$. The identification of this phase could be determined by XRD isotherm measurements at these temperatures in future works.
Figure 6-7. Bode plot of temperature effect on phase angle of Ba$_2$In$_2$S$_5$ in argon

The Nyquist plot for Ba$_2$In$_2$S$_5$+0.2ZrS$_2$ shows that the phase change at low frequencies was present at temperatures as low as 200°C, hence the stabilisation of conduction was lowered by doping with Zr$^{2+}$, Figure 6-8. Therefore the sulphide analogues of Ba$_2$In$_2$O$_5$ and Ba$_2$In$_2$Zr$_x$O$_5$ compound have similar electrochemical behaviour in terms of the transformation to an ionic conducting electrolyte at elevated temperatures, as well as the stabilisation of ionic conduction to lower temperatures by doping with the smaller Zr$^{4+}$ cation.

Figure 6-8. Bode plot of temperature effect on phase angle of Ba$_2$In$_2$S$_5$+0.2ZrS$_2$ in argon
6.1.4 Alternative Equivalent circuits Modelling for Ba\textsubscript{2}In\textsubscript{2}S\textsubscript{5} and Ba\textsubscript{2}In\textsubscript{2}S\textsubscript{5+0.2}ZrS\textsubscript{2}

The Bode plot of Ba\textsubscript{2}In\textsubscript{2}S\textsubscript{5} varies significantly depending on the temperature used in the experiment. Impedance data obtained at low temperatures is best modelled by using the equivalent circuit shown in Figure 6-9, where R_2 - represents a charge transfer resistance, R_1 - bulk conduction, CPE\textsubscript{1} - capacitance for bulk conductivity. At low temperatures, the total impedance is very high, Figure 6-10 and very little phase change occurred.

\begin{center}
\includegraphics[width=0.5\textwidth]{figure6_9.png}
\end{center}

Figure 6-9. R-R//CPE Equivalent circuit used at temperatures lower than 225°C for Ba\textsubscript{2}In\textsubscript{2}S\textsubscript{5}

Using the simple equivalent circuit, R-R//CPE in Figure 6-9, a good fit between the experimental and the modelled data was achieved, as shown by Nyquist and Bode plots in Figure 6-10 and Figure 6-11 respectively.

\begin{center}
\includegraphics[width=0.7\textwidth]{figure6_10.png}
\end{center}

Figure 6-10 Nyquist plot of experimental and modelled result for Ba\textsubscript{2}In\textsubscript{2}S\textsubscript{5} at 200°C
Figure 6-11. Bode plot of experimental and modelled result for Ba$_2$In$_2$S$_5$ at 200°C

The Nyquist plot for Ba$_2$In$_2$S$_5$ has three arcs at temperatures higher than 250°C, therefore the Bauerle equivalent circuit was used to model impedance data. The Bauerle equivalent circuit is shown in Figure 6-12. Included in Figure 6-13 is the Fricke’s equivalent circuit which addresses two-phase compounds, was also used to see if a better fit could be achieved between experimental and modelled data. The fit between experimental and modelled data is shown in the Nyquist and Bode Plots, Figure 6-14 and Figure 6-15, respectively.

Figure 6-12. Bauerle Equivalent circuit used for modelling Ba$_2$In$_2$S$_5$ and Ba$_2$In$_2$-, Zr$_x$S$_5$ throughout 200-450°C

Figure 6-13. Fricke equivalent circuit for a matrix of two phases used for modelling Ba$_2$In$_2$S$_5$ and Ba$_2$In$_2$-, Zr$_x$S$_5$ throughout 200-450°C
Both proposed equivalent circuits closely matched the experimental data at all frequencies, however the Fricke’s model appears to have a marginal improvement in the goodness of fit, Figure 6-15. The statistical parameters Chi-square and Sum-of-Squares, should be minimised for the best model, Table 6.4. The Fricke equivalent circuit was most suitable since the Chi-square and Sum-of-Squares and maximum error on an equivalent circuit element were minimum. The Fricke model is physically justifiable since the sulphides were made from two starting sulphides, Ba$_2$In$_2$S$_5$ and ZrS$_2$ or BaS and In$_2$S$_3$, therefore it is conceivable that more than one phase may be present. However, the XRD’s of these compounds have reflections
only for Ba$_2$In$_2$S$_5$ and Ba$_2$In$_2$S$_5$+0.2ZrS$_2$ with no additional reflections for a second phase. The absence of XRD reflections for a second does not eliminate the presence of a minor secondary phase because XRD measurements are based on the bulk property of the sample.

However the TPO traces have only one narrow peak, this suggests a single phase for Ba$_2$In$_2$S$_5$ and Ba$_2$In$_2$S$_5$+0.2ZrS$_2$. A generic rule of thumb used to justify using an equivalent circuit with more modelling elements is that the resulting Chi-square should decrease by an order of magnitude. Therefore the extent of reduction using Fricke’s model is too small to justify the additional resistor and capacitor, hence the Bauerle equivalent circuit was selected to model Ba$_2$In$_2$S$_5$ and Ba$_2$In$_2$S$_5$+0.2ZrS$_2$.

Table 6.4 Statistical parameters evaluating the goodness of fit for alternative models for BaIn$_2$S$_5$ and Ba$_2$In$_2$S$_5$+0.2ZrS$_2$

<table>
<thead>
<tr>
<th>Models</th>
<th>Chi-square</th>
<th>Weighted-sum-of-squares</th>
<th>Maximum error on equivalent circuit element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauerle Model</td>
<td>5.65x10$^{-3}$</td>
<td>0.9904</td>
<td>6%</td>
</tr>
<tr>
<td>Fricke’s model (two phase mixture)</td>
<td>2.02x10$^{-3}$</td>
<td>0.3539</td>
<td>6%</td>
</tr>
</tbody>
</table>

6.1.5 Activation energy for Ba$_2$In$_2$S$_5$ and Ba$_2$In$_2$S$_5$+0.2ZrS$_2$

The Arrhenius plot for ionic hoping in the BaIn$_2$S$_5$ is linear within the temperature range from 300°C to 450°C using either the Fricke or the Bauerle model, Figure 6-16.

![Figure 6-16 Activation energy for ionic hoping of Ba$_2$In$_2$S$_5$ in argon from 300-450°C](image)
The activation energy is slightly smaller when calculated using the Bauerle model compared with the Fricke model, Table 6.5. Therefore, the selection of the appropriate equivalent circuit affects the activation energy that is a derived parameter.

The Arrhenius plot for ionic hoping in the Ba$_2$In$_{2-x}$Zr$_x$S$_5$ is also linear between 300-450°C using either the Fricke or the Bauerle model, Figure 6.16. The activation energy reduces slightly when calculated using the Bauerle model compared to the Fricke model, Table 6.5.

![Graph showing Arrhenius plot for Ba$_2$In$_{2-x}$Zr$_x$S$_5$](image)

Figure 6-17. Activation energy for Ba$_2$In$_{2-x}$Zr$_x$S$_5$ in argon from 300-450°C

Table 6.5. Activation energy for Ba$_2$In$_2$S$_5$ and Ba$_2$In$_{2-x}$Zr$_x$S$_5$ based on the Fricke and the Bauerle models

<table>
<thead>
<tr>
<th></th>
<th>Activation energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bauerle model</td>
</tr>
<tr>
<td>Ba$_2$In$_2$S$_5$</td>
<td>0.84</td>
</tr>
<tr>
<td>Ba2In${2-x}$Zr$_x$S$_5$</td>
<td>0.99</td>
</tr>
</tbody>
</table>

6.1.6 Bulk Conductivity for Ba$_2$In$_2$S$_5$ and Ba$_2$In$_{2-x}$Zr$_x$S$_5$

A summary of the bulk conductivities for both Ba$_2$In$_2$S$_5$ and Ba$_2$In$_{2-x}$Zr$_x$S$_5$ is given in Table 6.6. Irrespective of using either the Bauerle or the Fricke model, Ba$_2$In$_2$S$_5$+0.2ZrS$_2$ has a higher bulk conductivity. However, a significant improvement in bulk conductivity for Ba$_2$In$_{2-x}$Zr$_x$S$_5$+0.2ZrS$_2$ is achievable at high temperatures, 900°C, since the electrolytes are thermally stable up to this temperature.
The bulk conductivity was calculated using equation 1:

$$\sigma T = A \exp(-E_a/kT)$$

(1)

σ - conductivity

A - pre-exponential factor

E_a - activation energy of electrical energy

Table 6.6. Bulk Conductivity for Ba$_2$In$_2$S$_5$ and Ba$_2$In$_2$S$_5$+0.2ZrS$_2$ measured at 500°C and extrapolated to 900°C in an argon atmosphere argon

<table>
<thead>
<tr>
<th></th>
<th>Bulk conductivity at 500°C in argon (S$^{-1}$cm)</th>
<th>Bulk conductivity at 900°C in argon (S$^{-1}$cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BaIn$_2$S$_5$</td>
<td>Ba$_2$In$_2$S$_5$+0.2ZrS$_2$</td>
</tr>
<tr>
<td>Bauerle</td>
<td>2.61x10$^{-6}$</td>
<td>1.42x10$^{-4}$</td>
</tr>
<tr>
<td>Fricke</td>
<td>3.20x10$^{-6}$</td>
<td>2.54x10$^{-4}$</td>
</tr>
</tbody>
</table>

Ba$_2$In$_2$S$_5$ has both a lower activation energy and bulk conductivity compared with Ba$_2$In$_2$S$_5$+0.2ZrS$_2$. From equation 1 it would appear that maximum conductivity would occur at minimum activation energy but this assumes that the pre-exponential factor remains constant. While this assumption is true at low dopant concentrations, at high concentrations, beginning typically at 20mol%, the pre-exponential factor increases after the minimum activation energy is reached, H. Hideaki and H. Tagwawa, 1996. Therefore doping the BaIn$_2$S$_5$ with a large excess of 20mol% ZrS$_2$ led to an increase in bulk conductivity and activation energy. Therefore the pre-exponential factor could not have remained constant since the minimum activation does not coincide with maximum conductivity.

6.1.7 Time Constant Analysis for Ba$_2$In$_2$S$_5$ and Ba$_2$In$_2$S$_5$+0.2ZrS$_2$

Conduction of the larger sulphide ion is expected to have a larger time constant compared with oxide ion conduction at comparable temperature. The time constants for doped BaIn$_2$S$_5$ and Ba$_2$In$_2$S$_5$+0.2ZrS$_2$ are several orders of magnitude greater than the oxide ion conducting YSZ, even though the measurement was done at a higher temperature, 350°C verses 240°C, Tables 6.7 and 6.8. Therefore the large time constant for the bulk conduction in BaIn$_2$S$_5$ and Ba$_2$In$_2$S$_5$+0.2ZrS$_2$ favours the larger sulphide ion conduction.
Table 6.7. Time constant analysis for Ba$_2$In$_2$S$_5$ and Ba$_2$In$_2$S$_5$+0.2ZrS$_2$ with graphite electrode

<table>
<thead>
<tr>
<th></th>
<th>Ba$_2$In$_2$S$_5$ at 350°C</th>
<th>Ba$_2$In$_2$S$_5$+0.2ZrS$_2$ at 350°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bauerle</td>
<td>Bauerle</td>
</tr>
<tr>
<td>Bulk</td>
<td>R = 4.91 x 106 Ω</td>
<td>R = 5.48 x 106 Ω</td>
</tr>
<tr>
<td></td>
<td>C = 2.50 x 10$^{-11}$ F</td>
<td>C = 6.05 x 10$^{-11}$ F</td>
</tr>
<tr>
<td></td>
<td>τ = 1.33 x 10$^{-4}$ s</td>
<td>τ = 2.22 x 10$^{-4}$ s</td>
</tr>
<tr>
<td>Grain boundary</td>
<td>R = 3.64 x 106 Ω</td>
<td>R = 1.74 x 106 Ω</td>
</tr>
<tr>
<td></td>
<td>C = 5.79 x 10$^{-10}$ F</td>
<td>C = 6.46 x 10$^{-11}$ F</td>
</tr>
<tr>
<td></td>
<td>τ = 1.82 x 10$^{-3}$ s</td>
<td>τ = 1.12 x 10$^{-3}$ s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Ba$_2$In$_2$S$_5$ at 350°C</th>
<th>Ba$_2$In$_2$S$_5$+0.2ZrS$_2$ at 350°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fricke</td>
<td>Fricke</td>
</tr>
<tr>
<td>Bulk</td>
<td>R = 6.80 x 106 Ω</td>
<td>R = 1.75 x 106 Ω</td>
</tr>
<tr>
<td></td>
<td>C = 2.60 x 10$^{-11}$ F</td>
<td>C = 2.88 x 10$^{-11}$ F</td>
</tr>
<tr>
<td></td>
<td>τ = 1.77 x 10$^{-4}$ s</td>
<td>τ = 6.44 x 10$^{-4}$ s</td>
</tr>
<tr>
<td>Grain boundary</td>
<td>R = 3.17 x 106 Ω</td>
<td>R = 6.27 x 106 Ω</td>
</tr>
<tr>
<td></td>
<td>C = 3.40 x 10$^{-10}$ F</td>
<td>C = 3.10 x 10$^{-9}$ F</td>
</tr>
<tr>
<td></td>
<td>τ = 1.08 x 10$^{-3}$ s</td>
<td>τ = 1.95 x 10$^{-3}$ s</td>
</tr>
</tbody>
</table>

Table 6.8. Circuit parameters for Zr$_2$O+6mo%Y$_2$O$_3$ at 240°C, Bauerle 1969

<table>
<thead>
<tr>
<th></th>
<th>Grain interior (bulk)</th>
<th>Grain Boundary</th>
<th>Electrode blocking</th>
</tr>
</thead>
<tbody>
<tr>
<td>R$_{gi}$</td>
<td>2.1 MΩ</td>
<td>R$_{gb}$</td>
<td>5.0 MΩ</td>
</tr>
<tr>
<td>C$_{gi}$</td>
<td>4.8 pF</td>
<td>C$_{gb}$</td>
<td>1.7 nF</td>
</tr>
<tr>
<td>τ = 1.01 x 10$^{-3}$ s</td>
<td>τ = 2.55 x 10$^{-3}$ s</td>
<td>τ = 1.0 s</td>
<td></td>
</tr>
</tbody>
</table>

6.1.8 H_2S Concentration dependence of bulk conductivity for Ba$_2$In$_2$S$_5$ and Ba$_2$In$_2$S$_5$+0.2ZrS$_2$

Impedance spectroscopy of Ba$_2$In$_2$S$_5$ and Ba$_2$In$_2$Zr$_5$S$_5$ using graphite electrodes in an argon atmosphere produced an ionic blocking electrode arc, thus inferring pure ionic conduction. A secondary condition for ionic conduction. However if the bulk conductivity remains unchanged when the H_2S partial pressure is varied. Therefore impedance spectroscopy was carried out from 350°C to 550°C with the concentration of H_2S/Ar varying from 18vol% to 0.0vol% for each temperature measured. Using one-hour isothermal period allows for both the temperature and concentration stabilization prior to impedance measurements.

A conductivity that increases with increasing sulphur concentration at high H_2S concentration indicates the presence of hole conduction: it may occur via equation 2.

$$\frac{1}{2}S_2 + V_{st.} \leftrightarrow S^{2-} + 2 \Theta$$ \hspace{1cm} (2)
Where

V_{S^2-} - sulphide anion vacancy

S^{2-} - sulphur anion in unit cell

Θ - electron hole

Thus increasing the sulphur partial pressure increases the number of electron holes and increases the conductivity of the electrolyte.

The bulk conductivity of $\text{Ba}_2\text{In}_2\text{S}_5$ remains independent of H_2S concentration from 0vol\%$\text{H}_2\text{S}/\text{Ar}$ to 1.0vol\%$\text{H}_2\text{S}/\text{Ar}$ confirming ionic conduction under these conditions, Figure 6-18. However increasing the H_2S concentration from 1.0vol\%$\text{H}_2\text{S}/\text{Ar}$ to 2.0vol\%$\text{H}_2\text{S}/\text{Ar}$ caused a corresponding increase in bulk conductivity at higher temperatures, Figure 6-18. This infers that the interaction between vacant sulphide ion sites and sulphur expressed in equation 2 begins at concentrations higher than 1vol\%$\text{H}_2\text{S}/\text{Ar}$, Figure 6-18.

Figure 6-18 Bulk conductivity of $\text{Ba}_2\text{In}_2\text{S}_5$ measured in different atmospheres

Similarly, the bulk conductivity of $\text{Ba}_2\text{In}_2\text{S}_5+0.2\text{ZrS}_2$ remained independent of the concentration of hydrogen sulphide from 0vol\%$\text{H}_2\text{S}/\text{Ar}$ to 1vol\%H_2S at all temperatures measured, from 350 to 550°C, which indicates ionic conduction, Figure 6-19. However increasing the H_2S concentration from 1.0vol\%$\text{H}_2\text{S}/\text{Ar}$ to 2.0vol\%$\text{H}_2\text{S}/\text{Ar}$ causes a corresponding decrease in bulk conductivity confirming the onset of electronic conduction at 2vol\%$\text{H}_2\text{S}/\text{Ar}$, Figure 6-19.
6.1.9 Electrochemical Pumping of Ba$_2$In$_2$S$_5$

The electrochemical concentration cell of the type H$_2$S/H$_2$/Pt/Ba$_2$In$_2$S$_5$/Pt//Ar/ was operated at elevated temperatures (from 550°C to 700°C) perturbed with 1V (d.c.) to identify sulphide ion conduction. The constant source of S$^{2-}$ ions is formed by the application of a negative potential to the H$_2$-S compartment, equation 3; conduction of S$^{2-}$ through a sulphide ion electrolyte would produce a steady state current within the cell.

$$2e^- + H_2S \rightarrow H_2 + \frac{1}{2} S^{2-}$$ \hspace{1cm} (3)

Since the oxide analogue Ba$_2$In$_2$O$_5$ is known to conduct H$^+$ ions, the H$_2$S free chamber was filled with argon rather than hydrogen. Changing the carrier gas from hydrogen to argon eliminates a current flow due to the conduction of H$^+$; with the application of a positive potential, see equation 4.

$$H_2 \rightarrow 2H^+ + 2e^-$$ \hspace{1cm} (4)

If the current generated with the application of a negative potential to the ‘H$_2$S rich compartment’ decays, then the transfer of a positive ion is interpreted; a decaying current because there is no continuous source of positive ions, only from the electrolyte). For example the conduction of indium ions, via the electrolytic reduction to metal, equation 5.

$$In^{3+} + 3e^- \rightarrow In$$ \hspace{1cm} (5)

The electrochemical response of BaIn$_2$S$_5$ at 600°C with an applied 1Vdc is shown in Figure 6-20. The first dc current generated, 4.5x10^{-8}A, with the application of a positive potential to
the ‘H$_2$S rich compartment’ resulted in no current flow, and therefore this confirms that there is no electronic or cationic conduction.

The application of a negative potential to the ‘H$_2$S rich compartment’ produced a peak current of 5.5x10$^{-7}$A, confirming sulphide ion conduction, Figure 6-20. The peak current decayed to 2.2x10$^{-7}$A; Figure 6-20. This could be due to stabilization of the electrode-electrolyte interface, since the painted platinum electrode was not previously heat-treated. While this experiment confirms sulphide ion conduction, the current flow is very small; therefore the experiment was repeated at higher temperatures.

Figure 6-20. Electrochemical pumping of Ba$_3$In$_2$S$_5$ at 600°C with applied 1Vdc

Electrochemical pumping of Ba$_3$In$_2$S$_5$ was repeated at higher temperatures to observe the possibility of an improvement in current flow. The electrochemical response of Ba$_3$In$_2$S$_5$ at 700°C with an applied 1Vdc is shown in Figure 6-21. The stable dc current generated of 1.1x10$^{-4}$A, with the application of a negative potential to the ‘Ar rich compartment’ indicates either that there is electronic conduction or that H$_2$S is bypassing into this chamber. The presence of electronic conduction was deduced by the significant current flow that occurred without the application of a potential, Figure 6-21.

The repeatability and stability of the current flow with application of a negative potential to the ‘Ar rich compartment’ infers no cationic conduction or electrolytic reduction of the
electrolyte under these experimental conditions, since this would have lead to decaying current according to equation 5.

The application of a negative potential to the ‘H₂S rich compartment’ produced a much larger peak current of 1.75x10⁻⁴A, confirming sulphide ion conduction, Figure 6-21. While this experiment also confirms sulphide ion conduction, the reason for the significant current with the application of a negative potential to the ‘Ar rich compartment’, exclusive of the leakage of H₂S into the ‘Ar rich compartment’ needs to determined and possibly eliminated.

![Graph showing electrochemical pumping of Ba₂In₂S₅ at 700°C with applied 1Vdc](image)

Figure 6-21 Electrochemical pumping of Ba₂In₂S₅ at 700°C with applied 1Vdc

In summary, the Ba₂In₂S₅ and Ba₂In₂S₅+0.2ZrS₂ electrolytes have excellent thermal stability in oxidizing and reducing conditions since their onset temperatures exceeds 840°C. The electrochemical characterisation of both compounds shows the distinct Warburg impedance that confirms that these electrolytes are pure ionic conductors. Further investigation of the variation of the bulk conductivity with respect to various H₂S concentrations was measured using impedance spectroscopy. The results of these experiments shows that the bulk conductivity for both electrolytes remains independent of the atmosphere as it varied from 0vol%H₂S/Ar to 1vol%H₂S/Ar confirming ionic conduction. However a further increase in H₂S concentration causes the onset of electronic conduction that is more pronounced for Ba₂In₂S₅+0.2ZrS₂. Therefore using a dopant concentration less than 20mol%ZrS₂ could improve the bulk conductivity without introducing electronic conduction.
6.2 The Ruddlesden-Popper BaZr$_3$S$_7$ Electrolyte

Various doped and un-doped strontium, titanium oxide compounds with Ruddlesden-Popper crystal structure have been previously synthesised that have the ability to conduct oxide anions, Shimura, et. al. 1998. The Ruddlesden-Popper, or layered perovskite, unit cell is considered as a distortion of the ideal cubic structure. Ruddlesden-Popper phases consist of intergrowths of perovskite blocks (ABO$_3$) with rock salt layers (AO); these blocks arrange themselves in the form (ABO$_3$)$_n$ (AO) according to the “n” number of the compound, Figure 6-22. There has also been considerable work to produce oxide-ion conducting Ruddlesden-Popper phases or layered perovskite oxides, Navas and Z. Loye, 1996. Detailed investigation of the oxygen stoichiometry in the system Sr$_3$M$_2$O$_7$ led to the modification of the M cation site to create oxygen non-stoichiometry by disordering the unit cell at high temperatures; hence increasing anionic mobility has been studied. A similar doping modification of the B site in A$_3$B$_2$S$_7$ materials could potentially yield to analogous sulphide ion conductivity.

Rietveld data and atomic positions for the Ba$_3$Zr$_2$S$_7$ system were obtained and the system was found to crystallise with the Ruddlesden-Popper unit cell compounds, having a (n = 2) doubled perovskite layer, Figure 6-23, White, 2005. Synthesis methodology for the Ba$_3$Zr$_2$S$_7$ compound follows the previously described process of Chen and Eichhorn, 1997 that uses a BaCl$_2$ common ion flux in the preparation from appropriate metallic sulphides, and reacted from the at 1323K (1050°C).

![Double perovskite layer](image)

Figure 6-22. Ruddlesden-Popper structure of Ba$_3$Zr$_2$S$_7$ (n = 2), White, 2005.
The large cell parameter for the ‘c’ lattice site shows that this large channel would favour ionic conduction, Table 6.9. Because of the ‘open’ cell, caused by the large lattice parameter, ‘c’ for Ba$_2$Zr$_2$S$_7$, the onset temperature for oxidation and reduction maybe small in comparison with the previous AB$_2$S$_4$ compounds.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ba$_2$In$_2$S$_5$</th>
<th>Ba$_2$In$_2$S$_5$+0.2ZrS$_2$</th>
<th>Ba$_3$Zr$_2$S$_7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>Pbc a</td>
<td>Pbc a</td>
<td>I4/mmm</td>
</tr>
<tr>
<td>Refined cell parameter a (Å)</td>
<td>13.1643(3)</td>
<td>13.1508(3)</td>
<td>5.0040(3)</td>
</tr>
<tr>
<td>Refined cell parameter b (Å)</td>
<td>12.7251(3)</td>
<td>12.7165(3)</td>
<td>5.0040(3)</td>
</tr>
<tr>
<td>Refined cell parameter c (Å)</td>
<td>11.7805(3)</td>
<td>11.7732(2)</td>
<td>25.5301(2)</td>
</tr>
<tr>
<td>Density g/cm3 (theoretical)</td>
<td>4.474</td>
<td>4.448</td>
<td>4.254</td>
</tr>
</tbody>
</table>

BaZr$_3$S$_7$, ground using a dry ball mill to reduce the average particle size and hence increase the density of the sintered pellet. Ground material was pressed to 10t and sintered to 1080°C. The resulting sintered pellets had a maximum of 75% of the theoretical density, Table 6.10. Increasing the sintering temperature leads to severe curving of pellet.
<table>
<thead>
<tr>
<th></th>
<th>Theoretical density (g/cm³)</th>
<th>Actual density (g/cm³)</th>
<th>% of theoretical density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba₂In₂S₅</td>
<td>4.474</td>
<td>3.65</td>
<td>85</td>
</tr>
<tr>
<td>Ba₂In₂S₅+0.2ZrS₂</td>
<td>4.448</td>
<td>4.25</td>
<td>95</td>
</tr>
<tr>
<td>Ba₃Zr₂S₇</td>
<td>4.254</td>
<td>3.17</td>
<td>75</td>
</tr>
</tbody>
</table>

SEM of the sintered Ba₃Zr₂S₇ pellet shows no grain boundary between particles or any pores between; it has the appearance of a compressed powder rather than a sintered pellet, thus agreeing with the low density of the resulting sintered pellet, Figure 6-24. Therefore the sintered pellets were not dense when made with the smallest particle size and maximum temperature.

![Figure 6-24. Ba₃Zr₂S₇ sintered pellet at 1080°C in H₂S/Ar mixture achieving 75% of theoretical density](image)

6.2.1 TPO and TPR for Ba₃Zr₂S₇

The thermal stability of Ba₃Zr₂S₇ was established using both TPO and TPR techniques. The TPO trace appears to consist of two peaks close to each other with an oxidation onset temperature of 690°C, Figure 6-25. Since the sulphide ion is not equidistant to all cations, the multiple peak of the TPO is a likely characteristic for this type of unit cell. TPO of Ba₃Zr₂S₇ showed that it is the least stable compound in an oxidising atmosphere of the barium-based compounds, Table 6.11. Further detailed analysis involving oxygen and sulphur balances was not done since no relationship was found between percentage of oxidation and ionic conductivity in the CaNd₂S₄ series.
Figure 6-25 TPO of Ba$_3$Zr$_2$S$_7$ using 10°C/min heating rate

Table 6.11. Onset temperatures and Unit Cell Lattice Parameters for Ba$_2$In$_2$S$_5$, Ba$_2$In$_2$S$_5$+0.2ZrS$_2$, and Ba$_3$Zr$_2$S$_7$

<table>
<thead>
<tr>
<th></th>
<th>Oxidation Onset Temperature (°C)</th>
<th>Reduction Onset Temperature (°C)</th>
<th>Lattice parameter for ‘c’ site Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba$_2$In$_2$S$_5$</td>
<td>978</td>
<td>845</td>
<td>11.7805(3)</td>
</tr>
<tr>
<td>Ba$_2$In$_2$S$_5$+0.2ZrS$_2$</td>
<td>995</td>
<td>865</td>
<td>11.7732(2)</td>
</tr>
<tr>
<td>Ba$_3$Zr$_2$S$_7$</td>
<td>670</td>
<td>640</td>
<td>25.5301(2)</td>
</tr>
</tbody>
</table>

*Bracketed () number indicates the standard deviation on the fourth decimal place

Similarly the TPR plot of Ba$_3$Zr$_2$S$_7$ has multiple peaks, which also infers a complex reaction reduction mechanism, Figure 6-26. The presence of multiple peaks in both the TPO and TPR suggests that this is related to an inherent property of material, possible due to varying lattice parameter of the unit cell. The low onset temperature, 640°C, for the reduction reaction could also be attributed to the open nature of this unit cell, Figure 6-26.
6.2.2 Electrochemical Impedance Spectroscopy for $\text{Ba}_3\text{Zr}_2\text{S}_7$

Impedance spectroscopy of $\text{Ba}_3\text{Zr}_2\text{S}_7$ was carried out using graphite electrodes in the temperature range from 50°C to 450°C with 25°C increments with a one-hour temperature isothermal period a frequency range from 1×10^6 Hz to 0.1 Hz (10 points per decade) in argon atmosphere.

The Nyquist plot for $\text{Ba}_3\text{Zr}_2\text{S}_7$ appears to contain either a single arc or possibly two arcs with significant overlap, Figure 6.27. The Nyquist plot has no pronounced low frequency effect which identifies a pure ionic conductor, inferring that $\text{Ba}_3\text{Zr}_2\text{S}_7$ is at best a mixed ionic-electronic conductor, when measured in an argon atmosphere. The Nyquist plot of $\text{Ba}_3\text{Zr}_2\text{S}_7$ was adequately modelled by using the Jamnik mixed ionic-electronic equivalent circuit.
Figure 6-27. Nyquist plot of Ba$_3$Zr$_2$S$_7$ in argon at elevated temperatures

The Bode plot for Ba$_3$Zr$_2$S$_7$ also shows a phase change only at high frequencies, thereby confirming the absence of a low frequency arc that would confirm pure ionic conduction, Figure 6.28. However Jamnik calculated that the low frequency ionic blocking arc might disappear for compounds with an electronic transport number of 0.0001, Vayenas, 2003. Therefore the absence of a low frequency is not conclusive with regards to the definition of an ionic conductor. Therefore the effect of varying the partial pressure of H$_2$S on the bulk conductivity will determine whether this compound has significant electronic conduction.

Figure 6-28. Bode plot of Ba$_3$Zr$_2$S$_7$ in argon at elevated temperatures
6.2.3 Activation energy, bulk conductivity and time constant for $\text{Ba}_3\text{Zr}_2\text{S}_7$, $\text{Ba}_2\text{In}_2\text{S}_5$ and $\text{Ba}_2\text{ln}_2\text{S}_5+0.2\text{ZrS}_2$

From the linear Arrhenius plot for $\text{Ba}_3\text{Zr}_2\text{S}_7$ in Figure 6.29 the activation energy is lower than that of either $\text{Ba}_2\text{In}_2\text{S}_5$ or $\text{Ba}_2\text{In}_2\text{S}_5+0.2\text{ZrS}_2$, thus indicating that the energy required for bulk conduction decreases with increasing lattice parameter for the ‘c’ site. However, the reduced activation energy for $\text{Ba}_3\text{Zr}_2\text{S}_7$ could also be attributed to the change in conducting specie, since there is no evidence of ionic conduction.

Figure 6-29 Arrhenius plot of ionic hoping activation energy for $\text{Ba}_3\text{Zr}_2\text{S}_7$

$\text{Ba}_3\text{Zr}_2\text{S}_7$ has the lowest bulk activation energy for the barium based electrolytes as well as the highest bulk conductivity. This significant increase in conductivity for $\text{Ba}_3\text{Zr}_2\text{S}_7$ could be explained by the presence of electronic conduction. However the similarity of the time constant, amongst the barium-based compounds, may indicate some ionic conductivity within the $\text{Ba}_3\text{Zr}_2\text{S}_7$ electrolyte. To identify if the conductivity for $\text{Ba}_3\text{Zr}_2\text{S}_7$ is ionic, further impedance spectroscopy experiments with varying H$_2$S partial pressure were done.

Table 6.12. Activation energy, bulk conductivity and time constant for $\text{Ba}_3\text{Zr}_2\text{S}_7$, $\text{Ba}_2\text{In}_2\text{S}_5$ and $\text{Ba}_2\text{In}_2\text{S}_5+0.2\text{ZrS}_2$ at 500°C in argon

<table>
<thead>
<tr>
<th>Materials</th>
<th>Activation energy (eV)</th>
<th>Conductivity at 500°C (S/cm)</th>
<th>Bulk time constant at 350°C (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Ba}_2\text{In}_2\text{S}_5$</td>
<td>1.00</td>
<td>3.20×10^{-6}</td>
<td>1.77×10^{-4}</td>
</tr>
<tr>
<td>$\text{Ba}_2\text{In}_2\text{S}_5+0.2\text{ZrS}_2$</td>
<td>0.89</td>
<td>3.44×10^{-6}</td>
<td>6.44×10^{-4}</td>
</tr>
<tr>
<td>$\text{Ba}_3\text{Zr}_2\text{S}_7$</td>
<td>0.76</td>
<td>5.41×10^{-3}</td>
<td>1.71×10^{-4}</td>
</tr>
</tbody>
</table>
6.2.4 \(H_2S \) Concentration dependence of bulk conductivity for \(Ba_3Zr_2S_7 \)

The bulk conductivity decreased with increasing \(H_2S \) concentration indicating the presence of electronic conduction in \(Ba_3Zr_2S_7 \), Figure 6.30. Therefore the absence of the low frequency arc in the Nyquist plot and decreased conductivity with increased \(H_2S \) concentration confirms the presence of significant electronic conduction.

![Graph](image)

Figure 6-30. Bulk conductivity of \(Ba_3Zr_2S_7 \) measured in different atmospheres

In summary, \(Ba_2In_2S_5 \) is the most thermally stable electrolyte; hence it has potential in very high temperature applications. Also the bulk conductivity remained fairly independent of \(H_2S \) concentration from 0vol\%\(H_2S/Ar \) to 2vol\%\(H_2S/Ar \), which infers excellent ionic conduction stability over this very large concentration range.

Doping of \(Ba_2In_2S_5 \) with \(ZrS_2 \) caused a slight increase in the thermal stability as well as the bulk conductivity. However the onset of hole conduction in 20mol\%\(ZrS_2 \) doped \(Ba_2In_2S_5 \) at high \(H_2S \) concentrations suggest that less doping should be used to improve thermal and ionic conducting properties without introducing electronic conduction.

\(Ba_3Zr_2S_7 \) is the least stable of the barium-based electrolytes. It appears to have significant electronic conduction since the bulk conductivity decreased with increasing \(H_2S \) concentration.
6.3 The Failed BaBi$_2$S$_4$ Electrolyte

BaBi$_2$S$_4$ electrolyte was synthesised because Bi$_2$O$_3$ is an excellent oxide ion conductor, Boyapati. *et. al*, 2001 A phase change occurs within Bi$_2$O$_3$ when heated; heating creates defects in the unit cell thus allowing ionic conduction. However the conducting phase of Bi$_2$O$_3$ disappears as the temperature is lowered. Therefore research continues to develop methods of stabilizing the conducting phase of Bi$_2$O$_3$ at reduced temperature Yaremchenko, 2000 and Sammes, 1999. BaBi$_2$S$_4$ was synthesised to begin the research in developing a sulphide ion conducting analogue compound to BaBi$_{2}$O$_4$.

The synthesis of BaBi$_2$S$_4$ was not successful since a single-phase compound free of the starting materials, BaS and Bi$_2$S$_3$, could not be formed using solid-state reactions (based on XRD results), White, 2004.

Figure 6.31 shows the temperature programmed oxidation of this impure' BaBi$_2$S$_4'$. The TPO trace has SO$_2$ peaks with onset temperatures identical to Bi$_2$S$_3$, confirming that much of the Bi$_2$S$_3$ did not react with BaS, Johnson *et. al.*, 2003. Conversely when CaS reacted with Nd$_2$S$_3$ to form CaNd$_2$S$_4$, the onset temperature of the resulting compound differed from the starting materials; oxidation onset temperatures were approximately: >1000°C, 620°C and 700°C for CaS, Nd$_2$S$_3$ and CaNd$_2$S$_4$ respectively.

![Figure 6.31. Temperature programmed oxidation of BaBi$_2$S$_4$ at 10°C/min](image)

The electrochemical characterisation of the failed BaBi$_2$S$_4$ compound has no capacitive component if its impedance, Figure 6-32. Therefore none of the physically distributed properties such as grain boundary, grain interior and the electrode-electrolyte interface that
causes a space charge collection (capacitance) that occurs in ionic conducting compounds is present for the failed BaBi₂S₄. Rather, the Nyquist plot represents conduction that would occur for metallic electrolyte. Since the real component of impedance is almost independent of frequency, Figure 6-32. However the imaginary component of impedance is frequency dependent; this indicates that the system, graphite//BaBi₂S₄//graphite, is more complicated than a pure metallic compound, as expected.

The Bode plot for BaBi₂S₄ shows that the phase change occurs at a high frequency, therefore the non-capacitive (inductive) feature of the Nyquist and Bode plot could be related to the property of the electrolyte rather than the graphite-BaBi₂S₄ interface, Figure 6.34.

![Figure 6-32. Nyquist plot of BaBi₂S₄ at different temperatures with 25°C increments](image)

Equivalent circuit modelling of BaBi₂S₄ was done using a series combination of a resistor and an inductor; the inductor modelled the frequency dependency of the imaginary component of impedance observed in the Nyquist plot, Figure 6.33.

![Figure 6-33. Proposed ‘R-L’ equivalent circuit for BaBi₂S₄](image)
Alternative models to the series combination of a resistor and an inductor gave errors, which exceed the maximum limit of 30%; therefore this model was selected to determine the bulk conductivity for the 'impure BaBi$_2$S$_4$', Table 6.13.

Table 6.13 Statistical parameters for alternative models

<table>
<thead>
<tr>
<th>Equivalent circuit</th>
<th>Chi-square</th>
<th>Sum-of-squares</th>
<th>Maximum error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0.529</td>
<td>1x10$^{-20}$</td>
<td>1x10$^{-20}$</td>
</tr>
<tr>
<td>RC series</td>
<td>2.6x1011</td>
<td>3.5e13</td>
<td>5.3x1011</td>
</tr>
<tr>
<td>RC parallel</td>
<td>1.9x1016</td>
<td>2.718</td>
<td>6.1x1013</td>
</tr>
<tr>
<td>L</td>
<td>1x10$^{-20}$</td>
<td>1x10$^{-20}$</td>
<td>1.2x105</td>
</tr>
<tr>
<td>RL series</td>
<td>0.0127</td>
<td>1.881</td>
<td>0.6456</td>
</tr>
<tr>
<td>RL parallel</td>
<td>1582</td>
<td>2.34x105</td>
<td>6036</td>
</tr>
</tbody>
</table>

The goodness of fit between the model and the experimental data is shown in the Bode plot of BaBi$_2$S$_4$ at 350°C, where it clearly shows an excellent agreement at all frequencies measured, Figure 6-35.

Figure 6-34. Bode plot of BaBi$_2$S$_4$ at different temperatures with 25°C increment
The activation energy for bulk conductivity for BaBi$_2$S$_4$ is 1.0 eV, which also remains independent of H$_2$S concentration, Figure 6.36. Since the bulk conductivity measured by impedance spectroscopy has no capacitive component.

Based on the experimental data for the impure BaBi$_2$S$_4$ electrolyte, ionic conduction apparently does not occur in compounds, which have not formed a pure phase. The multiplicity of SO$_2$ peaks in the TPO of BaBi$_2$S$_4$ also suggests mixed compounds. Therefore using XRD results, to discontinue and further characterisation appears to be justified since the
electrochemical characterisation of the impure BaBi$_2$S$_4$ electrolyte failed to indicate any ionic conduction.

In summary, Ba$_2$In$_2$S$_5$ remains the most thermally stable electrolyte based on its the high onset temperatures, higher than 950°C, hence it has potential to be used in very high temperature applications. The bulk conductivity for doped and undoped Ba$_2$In$_2$S$_5$ remained independent of H$_2$S concentration varying from 0vol%H$_2$S/Ar to 1vol%H$_2$S/Ar, suggesting ionic conduction stability over this very large concentration range. The Nyquist plot for BaIn$_2$S$_5$ has the Warburg impedance at low frequencies, thereby identifying this electrolyte as a pure ionic conductor. Doping of BaIn$_2$S$_5$ showed a slight increase in thermal stability as well as the bulk conductivity. However the onset of electronic in 20mol%ZrS$_2$ doped Ba$_2$In$_2$S$_5$ at high H$_2$S concentration suggests that reducing the level of doping should be used to improve ionic conducting properties without introducing electronic conduction.

While Ba$_3$Zr$_2$S$_7$ has a bulk conductivity higher than Ba$_2$In$_2$S$_5$, the presence of electronic conduction was detected by the decrease in bulk conductivity with increasing H$_2$S concentration. However the similarity between time constants for Ba$_3$Zr$_2$S$_7$ and Ba$_2$In$_2$S$_5$ may indicate some ionic conductivity within the Ba$_3$Zr$_2$S$_7$ electrolyte. Jamnik's mixed ionic-electronic conducting was used to Ba$_3$Zr$_2$S$_7$, and my doing so, this model implicitly characterises as a predominant ionic conductor. Also, other models such as Jamnik's predominant electronic conductor did not fit the experimental impedance spectroscopy of Ba$_3$Zr$_2$S$_7$.

The absence of the capacitive component of the impure BaBi$_2$S$_4$ identifies this material to have a conductivity mechanism similar to that of metals, hence it material is predominantly an electronic conductor.
6.4 Chapter 6 References

8. Kakinumaa, K., Yamamuraa, H., Hanedab, H., and Atakec, “Oxide-ion conductivity of (Bal-xLax)2In$_2$O$_5$+x system based on brownmillerite structure”, Solid State Ionics, 140, 301 (2001)

12. Shimura, T., Suzuki, K., and Iwahara, h., “Protonic and oxide–ionic conduction in Sr$_{m+1}$(Tl$_{1-x}$In$_x$)$_m$O$_{3m+1}$ (m=1, 2 and) at high temperature”, Solid State Ionics, 113, 355 (1998)

Chapter 7
7. Conclusions

This research applies existing experimental techniques to characterise the selected electrolytes. The generic uses and limitations of each technique applied to characterisation of sulphide electrolytes are:

- Mass Spectroscopy assisted TPO and TPR establishes the thermal stability of the electrolytes in an oxidising and reducing atmosphere.

- Mass Spectroscopy assisted TPO also gives the thermal activation energy for the oxidation reaction of electrolyte; however no correlation was established between the thermal activation energy and the activation energy for ionic hoping/conduction.

- Determination of the thermal activation energy using Mass Spectroscopy assisted TPO requires less than 5°C accuracy in defining the peak temperature. This translates into more than 99% accuracy for the peak temperature. The accuracy of the peak temperature was improved by reducing the volume of the reactor, so the distance between the thermocouple and the sample is minimised, to allow easy and repeatable location of the sample. Reducing the reactor volume also leads to a sharp and narrow TPO trace, which facilitates easy interpretation of the peak temperatures.

- Integration of the SO₂ and O₂ peaks of the Mass Spectroscopy assisted TPO allows for the complete mass balance of the oxidation process, thereby establishing the extent of oxidation of the electrolyte at 1000°C, which is the maximum temperature of the Mass Spectroscopy TPO. This leads to the general observation that some sulphides oxidises to form a mixture of sulphates and oxides.

- No clear relationship was observed between the extent of oxidation and the ionic conducting property of the electrolyte. However the sulphur and oxygen mass balance was done on the CaNd₂S₄ series identifies CaNd₂S₄+0.1Nd₂S₃ as the electrolyte that released the highest percentage of sulphur which formed SO₂ in the TPO; this electrolyte was previously reported as having the highest ionic conductivity in the series of doped CaNd₂S₄ compounds.

- Electrochemical impedance spectroscopy was successful in determining the bulk conductivity under the following experimental conditions:
 - Using platinum electrodes and current collectors in an inert atmosphere such as argon
 - Using a graphite electrodes in various concentrations of H₂S in Ar mixture

- The use of gold electrodes in an argon atmosphere failed due to an apparent reaction with the electrolyte. This was presumed to be the formation of a covalent gold
sulphide, AuS₂ because the gold electrode sputtered onto the electrolyte changed colour from gold to reddish-brown. Also the surface resistance of the electrode increased from less than 10Ω (before EIS experiments) to more than 2MΩ (after EIS experiments). The sputtered gold electrode changed colour and resistance either after an EIS experiments by using a maximum temperature of 400°C or after several weeks at room temperature in air. Since electrolytes sputtered with gold forms stable reaction products, their use as electrodes were discontinued.

- Published experimental results of impedance characterisation of oxide ion conducting materials have used either argon or an oxygen rich atmospheres, therefore EIS of sulphide electrolytes were done in both H₂S rich atmosphere and argon which led to the following conclusions:
 - EIS of sulphide electrolytes with a H₂S/H₂ atmosphere using a platinum electrodes lead to unstable results seen as severe scattering of data and the data were also unrepeatable. This could have been due to an electrochemical reaction between the platinum and H₂ or platinum and H₂S, therefore the gas was changed to an inert gas.
 - EIS of sulphide electrolytes with argon and platinum electrodes gave stable and repeatable results at lower temperatures. For temperatures in excess of 250°C, the EIS results were not repeatable. This was attributed to an electrochemical reaction between the platinum and sulphide electrolyte rather than to the thermal decomposition of the electrolyte. The oxidation and reduction onset temperatures previously established were in excess of 200°C of the EIS experiment temperature. Therefore platinum electrodes were changed to the inert graphite plates.
 - EIS of sulphide electrolytes with graphite electrodes gives stable and repeatable results in both argon and H₂S/Ar mixtures.
- The frequency range from 0.01Hz to 1x10⁶Hz is suitable to observe all the phase changes associated with the conduction mechanism in the electrolyte and the electrode-electrolyte interface. Measurement at a lower frequency than 0.01Hz does not lead to any further phase angle change. Using a perturbation signal of 0.1Vrms is sufficient to cause the excitement of mobile ions, while reducing the signal to 0.01Vrms leads to significant scattering of the resulting impedance data, suggesting that the amplitude of the perturbation signal is insufficient.
The choice of the suitable equivalent circuit differentiates pure ionic conducting electrolytes from mixed ionic-electronic conducting to electronic conducting electrolytes.

- The Bauerle equivalent circuit is suitable to model sulphide electrolytes which exhibit pure ionic conduction which leads to the low frequency arc that indicates ionic blocking at the electrolyte-electrode interface.

- Sulphide electrolyte which have capacitive components to their impedance but not phase angle change at low frequencies are suitably modelled using Jamnik equivalent circuit for mixed ionic-electronic conduction with predominant ionic conduction. However the derived parameters, conductivity, time constants and activation energies, have not been verified independently my alternative characterisation methods.

- Sulphide electrolytes without a capacitive component and no phase angle change at low frequencies are best modelled by using a series combination a resistor and an inductor that infers predominant electronic conduction.

The measurement of the resistivity using the 4-point DC Danbridge Resistance meters gives unstable and unrepeatable results. This is possibly because the Danbridge resistance meter selects the appropriate voltage by pulsing (1-10 V/sec) various voltages, which makes the applied DC voltage frequency dependent. This applied DC voltage could be considered pseudo AC voltage, which may cause ionic conduction resulting in scattering of the DC resistance. Therefore the scattering of the DC current could be due to ionic motion. The Danbridge resistance meter was not useful to measure the DC resistivity of sulphides. The resistivity, cross-sectional, was measured by using a 2-point DC multi-meter. This identifies electrolytes with significant electronic conduction.

- Electrochemical pumping experiments can detect the presence or absence of sulphide ion conduction by using \(\text{H}_2\text{S}/\text{Ar}/\text{electrolyte}/\text{Ar} \). Changing the carrier gas from argon, i.e. \(\text{H}_2\text{S}/\text{H}_2/\text{Pt/} \text{electrolytePt}/\text{H}_2 \) does not differentiate sulphide ion conduction from hydrogen ion conduction, assuming no electronic conduction. Hydrogen ion conduction is a common feature for perovskite structure, which is the structure that many of the electrolytes adopt. Many electrochemical-pumping experiments had short-circuiting because of either the method of applying the electrode or the cementing of the reactor. Either source of short-circuiting was mitigated by modification to the experimental procedure; hence the successful identification of the presence or absence sulphide ion conduction is possible.
Applying a voltage of 1-2V and using an operating temperature of 100°C lower than the onset temperature for reduction leads to repeatable experiments, thereby confirming the stability of the electrolyte under these conditions. Increasing the applied volts to 5-10V introduces the possibility of an electrochemical reduction of the electrolyte.

The open circuit voltage, OCV, of the concentration cell should be measured, since this parameter can be used to determine the transport number for the electrolyte. It can also indicate if the concentration is leaking, since this would lead to the OCV tending to zero, because of the disappearance of a concentration difference.

This research investigated selected sulphide electrolytes based on the electrochemical properties of the oxide ion conducting properties of their oxide analogues. Improving the conduction of these selected sulphides by doping was attempted when possible. The thermal and electrochemical characterisation for series of compounds led to the following conclusions:

- TPO and TPR of doped CaNd$_2$S$_4$ compounds are stable up to 700°C in an oxidising and reducing atmosphere. Three electrodes, gold, platinum and graphite were used in EIS experiments; only the graphite electrode gives stable and repeatable EIS results. The presence of an ionic blocking arc is detected only for CaNd$_2$S$_4$+10mol%Nd$_2$S$_3$; it means that this compound is a pure ionic conductor. Both Bauerle and Jamnik equivalent circuits for pure ionic conductors or mixed ionic-electronic conductors are suitable to model EIS data for CaNd$_2$S$_4$+10mol%Nd$_2$S$_3$. However, only Jamnik equivalent circuit for mixed ionic-electronic conductor is suitable to model all the compounds in this series of compounds, except for CaNd$_2$S$_4$+10mol%Nd$_2$S$_3$; therefore they are at best mixed ionic-electronic conductors. The Jamnik mixed ionic-electronic equivalent circuit identifies CaNd$_2$S$_4$+10.0mole%Nd$_2$S$_3$ with a bulk conductivity of 1.09×10^{-6} S cm$^{-1}$ agreeing with Kalinina bulk conductivity determined through galvanic cells. However all other bulk conductivities were several orders of magnitude larger than the ones obtained by Kalinina galvanic cell method. This increased conductivity with increased doping results from the onset of electronic type conduction. EIS experiments in varying H$_2$S concentration from 0vol%H$_2$S/Ar to 2vol%H$_2$S/Ar confirm the following:
 - Undoped CaNd$_2$S$_4$ exhibits hole conduction
 - CaNd$_2$S$_4$+10mol%Nd$_2$S$_3$ exhibits ionic conduction
 - CaNd$_2$S$_4$+20mol%Nd$_2$S$_3$ exhibits electronic conduction
CaNd$_2$S$_4+30\text{mol}\%\text{Nd}_2\text{S}_3$ exhibits ionic conduction only at elevated temperatures.

- Electrochemical pumping of the type compound CaNd$_2$S$_4+x\text{Nd}_2\text{S}_3$ using the cell $\text{H}_2\text{S}/\text{H}_2/\text{Pt/electrolyte/Pt/H}_2$ had inherent experimental limitations in terms of short circuiting of system as well as possible by H_2S by passing through the electrolyte in to the argon chamber. Therefore the results from these experiments do not supersede previously established data. Electrochemical pumping experiments supports the previously attained results as follows:
 - Undoped CaNd$_2$S$_4$ exhibits ionic – electronic conduction and possibly cationic conduction
 - CaNd$_2$S$_4+0.2\text{Nd}_2\text{S}_3$ indicates predominant electronic conduction

Absolute conclusions on differentiating cationic, anionic from electronic conduction were not possible due to possible experimental errors leading to short-circuiting of the resulting cell.

- TPO and TPR of doped SrNd$_2$S$_4$ compounds are stable up to 700°C in an oxidising and reducing atmosphere. Only Jamnik equivalent circuit for mixed ionic-electronic conductor is suitable to model all the compounds in this series, therefore they are at best mixed ionic-electronic conductors. The Jamnik mixed ionic-electronic equivalent circuit identifies SrNd$_2$S$_4+0.1\text{Nd}_2\text{S}_3$ with a bulk conductivity of $3.39\times10^{-3}\text{S.cm}^{-1}$ at 500°C, which is three orders of magnitude greater than the calcium sulphide analogue compound. Similarly, all other bulk conductivities of SrNd$_2$S$_4$ type compounds were several orders of magnitude larger than their equivalent CaNd$_2$S$_4$ type. This increased conductivity with increased doping results from the onset of electronic type conduction. EIS experiments in varying H_2S partial pressure from $0\text{vol}\%\text{H}_2\text{S}/\text{Ar}$ to $2\text{vol}\%\text{H}_2\text{S}/\text{Ar}$ confirm the following:
 - Undoped SrNd$_2$S$_4$ exhibits ionic conduction at elevated temperatures
 - SrNd$_2$S$_4+0.1\text{Nd}_2\text{S}_3$ exhibits electronic conduction
 - SrNd$_2$S$_4+0.2\text{Nd}_2\text{S}_3$ exhibits ionic conduction
 - SrNd$_2$S$_4+0.3\text{Nd}_2\text{S}_3$ exhibits electronic conduction with possible ionic conduction at elevated temperatures.

- Electrochemical pumping of the type compound SrNd$_2$S$_4+x\text{Nd}_2\text{S}_3$ by using the $\text{H}_2\text{S}/\text{H}_2/\text{Pt/electrolyte/Pt/H}_2$ had inherent experimental limitations, therefore the data cannot be used conclusively, led to following possibilities:
 - Undoped SrNd$_2$S$_4$ exhibits ionic – electronic conduction; possibly cationic conduction
SrNd$_2$S$_4$+0.2Nd$_2$S$_3$ exhibits electronic conduction at low temperatures: possibly anionic conduction at elevated temperatures. Absolute conclusions on differentiating cationic, anionic from electronic conduction were not possible due to possible experimental errors leading to short-circuiting of the resulting cell.
TPO and TPR of doped CaSm$_2$S$_4$ compounds are stable up to 720°C in an oxidising and reducing atmosphere. McDonald's model consisting of five series connection of RC elements which models perfectly ionic conducting electrolytes, fitted experimental impedance spectroscopy in the frequency range of 10^{-1}Hz to 10^6Hz. The McDonald's model for pure ionic conductors identifies CaSm$_2$S$_4$+0.1Sm$_2$S$_3$ with a bulk conductivity of 3.51×10^{-4}S.cm$^{-1}$, at 500°C, which is two orders of magnitude greater than the CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ analogue compound. A further increase in doping leads to a reduction in bulk conductivity, therefore the optimum doping for maximum conductivity is less than 10mol%. EIS experiments in varying H$_2$S partial pressure from 0vol%H$_2$S/Ar to 2vol%H$_2$S/Ar confirm the following:

- Undoped CaSm$_2$S$_4$ exhibits ionic conduction up to 1vol%H$_2$S/Ar, 2vol%H$_2$S/Ar causes hole conduction
- CaSm$_2$S$_4$+0.1Sm$_2$S$_3$ shows ionic electronic conduction up to 1vol%H$_2$S/Ar; at 2vol%H$_2$S/Ar it shows electronic conduction
- CaSm$_2$S$_4$+0.2Sm$_2$S$_3$ and CaSm$_2$S$_4$+0.3Sm$_2$S$_3$ exhibit hole conduction.

Electrochemical pumping of the type compound CaSm$_2$S$_4$+xSm$_2$S$_3$ by using the H$_2$S/H$_2$/Pt/electrolyte/Pt/H$_2$ had inherent experimental limitations, therefore the data cannot be used conclusively, led to following possibilities:

- Undoped CaSm$_2$S$_4$ exhibits ionic – electronic conduction; possibly cationic conduction
- CaSm$_2$S$_4$+0.2Sm$_2$S$_3$ exhibits anionic conduction at elevated temperatures.

Differentiating cationic, anionic from electronic conduction was not possible due to possible experimental errors leading to shorting circuiting of the resulting cell.

TPO and TPR of doped SrSm$_2$S$_4$ compounds are stable up to 800°C in an oxidising atmosphere and at 690°C in a reducing atmosphere. Bauerle equivalent circuit for pure ionic conductors fits experimental impedance spectroscopy in the frequency range of 10^{-1}Hz to 10^6Hz. The Bauerle model for pure ionic conductors identifies SrSm$_2$S$_4$+0.1Sm$_2$S$_3$ with a bulk conductivity of 6.12×10^{-6}S.cm$^{-1}$, at 500°C, which is six times greater than the CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ analogue compound. A further increase in doping leads to 30mol% and it causes a reduction in bulk conductivity, therefore the optimum doping for maximum conductivity is less than 10mol%. EIS experiments in varying H$_2$S concentration from 0vol%H$_2$S/Ar to 2vol%H$_2$S/Ar confirm the following:

- Undoped SrSm$_2$S$_4$ exhibits predominant ionic conduction
- SrSm$_2$S$_4$+0.1Sm$_2$S$_3$ exhibits predominant ionic conduction but with the onset of hole conduction at high H$_2$S concentrations
- SrSm$_2$S$_4$+0.2Sm$_2$S$_3$ exhibits ionic conduction
- SrSm$_2$S$_4$+0.3Sm$_2$S$_3$ exhibits electronic conduction

- Electrochemical pumping of the type compound SrSm$_2$S$_4$+xSm$_2$S$_3$ using the H$_2$S/H$_2$/Pt/electrolyte/Pt/H$_2$ had inherent experimental limitations, therefore the data cannot be used conclusively, led to following possibilities:
 - SrSm$_2$S$_4$+0.1Sm$_2$S$_3$ and SrSm$_2$S$_4$+30mol%Sm$_2$S$_3$ exhibit sulphide ion conduction; these electrolytes are not stable at 550°C and 650°C with the application of 1Vdc without a positive pressure of H$_2$S.

Differentiating cationic, anionic from electronic conduction was not possible due to possible experimental errors leading to shorting circuiting of the resulting cell as instability of the electrolyte.

- Several barium containing compounds were synthesised and characterised; namely the doped and undoped analogues to the orthorhombic fast ion conducting Ba$_2$In$_2$O$_5$; Ba$_3$Zr$_2$S$_7$ with a Ruddlesden-Popper crystal having open structure which favours anionic conduction. Also a BaBi$_2$S$_4$ electrolyte, which is the analogue to Bi$_2$O$_3$, the excellent oxide ion conductor, was attempted but it failed to form the desired BaBi$_1$S$_4$.

TPR of Ba$_2$In$_2$S$_5$, Ba$_3$Zr$_2$S$_7$ and BaBi$_2$S$_4$ varied from 950°C, 670°C and 620°C respectively. TPR of these compounds showed that they were less stable in a reducing atmosphere. Bauerle equivalent circuit for pure ionic conductors fits experimental impedance spectroscopy for BaIn$_2$S$_5$ and ZrS$_2$ doped BaIn$_2$S$_5$ while Jamnik model fits the EIS data of Ba$_3$Zr$_2$S$_7$. Impure BaSi$_2$S$_4$ exhibited metallic type conduction. The Bauerle model for pure ionic conductors identifies BaIn$_2$S$_5$ with a bulk conductivity of 2.61×10$^{-6}$S.cm$^{-1}$, at 500°C, which is two times greater than the CaNd$_2$S$_4$+0.1Nd$_2$S$_3$ reference compound. Doping with 20mol% ZrS$_2$ causes a marginal improvement in conductivity at this temperature. Ba$_3$Zr$_2$S$_7$ has a bulk conductivity of 5.41×10$^{-3}$S.cm$^{-1}$, at 500°C. EIS experiments in varying H$_2$S partial pressure from 0vol%H$_2$S/Ar to 2vol%H$_2$S/Ar confirms the following:
 - Undoped Ba$_3$In$_2$S$_5$ exhibits ionic conduction up to 1vol%H$_2$S/Ar but with the onset of hole conduction at high H$_2$S concentrations
 - BaIn$_2$S$_5$+0.2ZrS$_2$ exhibits ionic conduction up to 1vol%H$_2$S/Ar but with the onset of electronic conduction at high H$_2$S concentrations
 - Ba$_3$Zr$_2$S$_7$ exhibits the presence of significant electronic conduction.
Electrochemical pumping of Ba$_2$In$_2$S$_5$ by using the H$_2$S/Ar/Pt/electrolyte/Ar$_2$ leads to following:

- BaIn$_2$S$_5$ exhibits sulphide ion conduction from 600°C up to 700°C with the application of 1Vdc.
Chapter 8

8. Recommendations and Future Work

1. Applying the established experimental procedure, TPO and TPR to novel compounds allows for quick and reliable determination of thermal properties. Therefore the technique should be used to complement the electrochemical characterisation of CaSm$_2$S$_4$, SrSm$_2$S$_4$ and BaIn$_2$S$_5$ (doped and un-doped) materials.

2. Applying ambient 4-point-d.c measurement to ionic conducting material, may give unrepeatable results and as such this method has the potential to be used as a screening tool to differentiate ionic conductors from electronic conductors. Therefore this technique may be used to screening method.

3. EIS should be carried out in an inert atmosphere with un-reactive electrodes accurately characterise the electrolyte. Therefore gold electrodes should not be used with sulphide electrolytes. Platinum electrodes maybe used with sulphide electrolytes, however gases that react with platinum should be avoided, such as H$_2$ or H$_2$S but use inert gases such as Ar or He. Graphite electrodes are compatible with sulphide electrolytes as well as reactive gases such as H$_2$S. Future EIS characterisation should be carried out ionic conducting electrolytes in varying H$_2$ partial pressure to establish proton ion conduction.

4. CaNd$_2$S$_4$ series should ionic conduction at 10mol%Nd$_2$S$_3$ doping; increasing beyond this level did not lead to any significant improvement in ionic conductivity. Therefore reducing the dopant to less then 10mol%Nd$_2$S$_3$ should be done to optimise the ionic conductivity of the series of compounds.

5. SrNd$_2$S$_4$ series does appear to be ionic conducting; therefore these materials should be examined as electrode materials.

6. CaSm$_2$S$_4$ exhibits peculiar impedance spectra, therefore future electrochemical characterisation in terms of, EIS with various H$_2$ partial pressures, should be established.

7. SrSm$_2$S$_4$ appears to exhibited pure ionic conduction, therefore these materials could be characterised by developing sensor type experiments.

8. Similarly, both Ba$_2$In$_2$S$_5$ and BaIn$_2$S$_4$+0.2ZrS$_2$ appears to be a sulphide ion conductor and therefore application experiments, such sensors, should be developed for this compound.
9. APPENDIX A
SrNd2S4-Nd2S3 Series
10. APPENDIX B
Calibration Compounds for TPO/TPR

Bismuth sulphide (Bi$_2$S$_3$) was selected as the calibration compound, because it is known to be completely reduced in the presence of hydrogen at elevated temperatures. This is the main method of producing the metal commercially. Through experimenting, Neodymium Sulphide, Nd$_2$S$_3$, was found to react completely with oxygen (at least the same extent as Bismuth Sulphide based on the peak_area:molar_sulphur ratio), hence its selection as a reference compound. The oxidation of Nd$_2$S$_3$ and Bi$_2$S$_3$ resulted in similar peak areas (based on the same molar sulphide calibration), even though the shapes of the oxidation curves were completely different.

SO$_2$ Calibration

The material used for SO$_2$ calibration was Bi$_2$S$_3$, a typical TPO-S is shown in Figure 1A Complete oxidation of Bi$_2$S$_3$ was assumed. The varying experimental conditions used are given below.

![Figure 1A. TPO-S of Bi$_2$S$_3$](image)

SEM VOLTAGE EFFECT

Calibration at different voltages was done in order to overcome technical difficulties with the software. It was noted that an increase in the electron multiplier voltage leads to a reduction in the moles-of-sulphur per area ratio (gradient of graph), Figure 3A.
SO₂ calibration, EM = 2400V, using Bi₂S₃ and Nd₂S₃

\[y = 439.93x \]
\[R^2 = 0.9764 \]

Figure 2A. SO₂ calibration, SEM = 2400V

SO₂ calibration at 1800V and 2100V is shown in Figures 3A and 4A below.

SO₂ calibration, EM = 1800V

\[y = 3237.8x \]
\[R^2 = 0.8784 \]

Figure 3A. SO₂ calibration, SEM = 1800V
TPO Experimental conditions used in the calibration experiment are as follows:

Table 1A. TPO calibration conditions for SO₂

<table>
<thead>
<tr>
<th>Graph</th>
<th>Flowrate (ml/min)</th>
<th>Mass range (mg)</th>
<th>MassSpec pressure (mbar)</th>
<th>Heating Rate (K/min)</th>
<th>Purge flowrate (ml/min)</th>
<th>Particle size (μm)</th>
<th>EM voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>51</td>
<td>4-33</td>
<td>15K/min</td>
<td>40-115</td>
<td>38-50</td>
<td>1800V</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>51</td>
<td>8-27</td>
<td>20K/min</td>
<td>12</td>
<td>38-50μm</td>
<td>2400V</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>51</td>
<td>5-27</td>
<td>20K/min</td>
<td>12</td>
<td>38-50μm</td>
<td>2100V</td>
</tr>
</tbody>
</table>

Mass Flow Controller Calibration

Mass flow controllers were calibrated for, argon, helium, hydrogen and air, using a bubble flow meter and a stop watch. The results are presented below.

\[
Flow_{\text{rate}_{\text{Ar}}} (ml / s) = 0.0245 \times MFCS, \quad R^2 = 0.998
\]

\[
Flow_{\text{rate}_{\text{He}}} (ml / s) = 0.018 \times MFCS, \quad R^2 = 0.994
\]

\[
Flow_{\text{rate}_{\text{H₂}}} (ml / s) = 0.0172 \times MFCS, \quad R^2 = 0.9972
\]

Where MFCS = Mass Flow Controller Setting
Figure 5A. Deconvoluted SO$_2$ signal from Mass Spectrometer Oxidation and de-convolution of Bi$_2$S$_3$

Figure 6A. Deconvoluted O$_2$ signal from Mass Spectrometer Oxidation and de-convolution of Bi$_2$S$_3$

Table 2A. Area for Nd$_2$S$_3$ and Bi$_2$S$_3$ oxidation deconvoluted peaks

<table>
<thead>
<tr>
<th>Area located @ starting temperature (°C)</th>
<th>Nd$_2$S$_3$</th>
<th>Bi$_2$S$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3.8724e-8 @ 625</td>
<td>1.608e-8 @ 500</td>
<td></td>
</tr>
<tr>
<td>2 1.608e-8 @ 650</td>
<td>5.0637e-9 @ 625</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6.1476e-9 @ 780</td>
<td></td>
</tr>
</tbody>
</table>
Calibration of Mass Spectrometer

The number of moles of sulphur was calculated using:

$$\text{Number of Moles} = \frac{\text{Mass}}{\text{RMM} _ \text{sulphide}} \times \text{RMM} _ \text{H}_2 \text{S} \text{orRMM} _ \text{SO}_2$$

Where RMMₙ – the relative molecular weight of a compound

The area was calculated from an excel spreadsheet_integra2.2, which was validated by checking with an independent program.

H₂S Calibration

The mass spectrometer was calibrated for H₂S using two concentrations namely, 20% hydrogen and 80% Hydrogen in Argon. The sample of Bi₂S₃ was varied between 4-30mg of Bi₂S₃. The TPR-S results of Bi₂S₃ are shown in Figure 7A and the derived calibration line is given Figure 8A.(a) and (b). Both R^2 values are above 0.9, hence the calibrations are useful.

![H₂S Calibration using Bi₂S₃ at 80% Hydrogen Concentration](image)

Figure 7A. TPR-S of Bi₂S₃ at 80wt%Hydrogen
Figure 8A. H2S Calibration at different concentration

Table 3A Experimental conditions for H2S Calibration

<table>
<thead>
<tr>
<th></th>
<th>80% H2 calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flowrate</td>
<td>40ml/min</td>
</tr>
<tr>
<td>Mass range</td>
<td>5-36mg</td>
</tr>
<tr>
<td>MassSpec pressure</td>
<td>6-8e⁻⁶ mbar</td>
</tr>
<tr>
<td>Argon pressure</td>
<td>52 psi</td>
</tr>
<tr>
<td>Air pressure</td>
<td>50psi</td>
</tr>
<tr>
<td>Heating Rate</td>
<td>15K/min</td>
</tr>
<tr>
<td>Purge Flow rate</td>
<td>40-60 ml/min</td>
</tr>
<tr>
<td>Particle size</td>
<td>38-50µm</td>
</tr>
</tbody>
</table>
11. APPENDIX C
Figure 1. Typical experimental and modelling results for one R-CPE circuit element, weighted sum of squares of 32.67

Figure 2. Typical modelling results for R-CPE and R-C circuit element, weighted sum of squares of 1.869

Figure 3. Typical modelling results for two R-CPE circuit element, weighted sum of squares of 0.4659
12. APPENDIX D
Figure B1. Gold electrodes on CaNd$_2$S$_4$ and SrNd$_2$S$_4$ compounds (before and after EIS experiments)
13. APPENDIX E
Ceramic holder #1

Gas entry/exit

Thermocouple

BNC

Ceramic

Metal-ceramic joint

Gas entry/exit

Thermocouple
4 Point DC Room Temperature Resistance Sample Holder

BNC in PVC plate

4 Spring Loaded Pins

Ceramic Sample Holder

Brass Moving Plate
Structural Investigation of the High-Temperature \nConversion \nof F-Miller Sulfide Using TPD, \nXPS, and In situ \nTechniques

Electrochemical Reactor

Veletia Johnson
Structural Investigation of the High-Temperature Oxidation of Bismuth Sulfide Using TPO-MS and in Situ X-ray Diffraction Techniques

V. S. Johnson,¹ R. J. White,¹ S. E. Dann,¹ and K. Hellgardt*¹
Departments of Chemical Engineering and Chemistry, Loughborough University, Loughborough LEI 1 3TU, United Kingdom

The complete oxidation of Bi₂S₃ in the temperature range from 50 to 1000 °C was studied using a combination of temperature-programmed oxidation mass spectrometry (TPO-MS) and in situ X-ray diffraction (XRD). The TPO-MS oxygen consumption and SO₂ liberation profiles exhibit three peaks with onset temperatures at 440, 612, and 800 °C, when a heating rate of 10 °C/min is applied. On the basis of sulfur and oxygen molar balance (TPO-MS) augmented by species identification (XRD), two intermediate sulfates were determined. The following Bi₂S₃ oxidation mechanism is proposed: Bismuth sulfide (Bi₂S₃, orthorhombic) reacts at 440 °C to form a mixture of bismuth sulfide and bismuth oxysulfate (Bi₂S₃+ Bi₂O₂SO₄). This mixture reacts at 612 °C to form bismuth oxysulfate [Bi₉O₄(PO₄)₁₀, monoclinic]. At 800 °C, further oxidation occurs to yield bismuth oxide (Bi₂O₃, cubic).

Introduction

TPO/R-MS (temperature-programmed oxidation/reduction mass spectrometry) studies have been employed in the analysis of the decomposition of various compounds in oxygen/hydrogen atmospheres, such as investigations of carbon-containing compounds,¹² sulfide-containing catalysts,³ and various metal-sulfide-containing ores.⁴ The technique allows for a quasi in situ investigation of the oxidation/reduction behavior of compounds by monitoring the reactant/product profiles as a function of temperature using a mass spectrometer. That is, in the case of the oxidation of a sulfide, an SO₂ product profile (as well as an O₂ consumption profile) is observed. When the reduction of a sulfide is being studied, the evolution of H₂S is monitored as a function of temperature. Any peaks in the observed profiles correspond to a structural change caused by a chemical reaction or the loss/gain of sulfur.

Nanocrystalline Bi₂S₃ thin film structures are currently being studied for the formation of novel photoelectrochemical cells.⁵ Their optoelectronic properties are of great interest to the sensor and semiconductor industries.⁶ The structure of bismuth sulfide has been widely studied, and the compound has been found to have an orthorhombic unit cell with space group Pmcn.⁷ The compound has cell parameters of a=3.9811 Å, b=11.147 Å, and c=11.305 Å. Bi₂S₃ has been combined with other compounds such as InP and GaAs, and the thermal oxidation reactions of such semiconducting layers have been studied by infrared and X-ray emission spectroscopy.⁸ Interest in bismuth sulfide based systems also stems from the possibility of employing these compounds as sulfide-ion-conducting materials (fuel cells or sensors). In this context, it is important to establish the stability of the material against oxidation and, therefore, to understand the transformation of the sulfide into the oxide.

This study is focused on the investigation of the process of high-temperature oxidation of Bi₂S₃. The process of oxidation of Bi₂S₃ is thought to proceed via the path bismuth sulfide → sulfate → oxysulfate → oxide; however, the specific stoichiometries and reaction temperatures remain to be determined in an engineering context. A number of investigations have dealt with the different stoichiometries that can exist at equilibrium in the Bi-S-O system (different constant partial pressures), whereas the present contribution establishes the non-steady-state behavior of the system under one constant oxygen partial pressure. The combination of two in situ techniques (TPO/R-MS and X-ray powder diffraction) is employed in this work to elucidate the dynamic oxidation mechanism of Bi₂S₃ and, thereby, to show how powerful this methodology can be for the analysis of such systems.

Oxidation Chemistry

The oxidation of Bi₂S₃ can produce an oxide or a sulfate via the following general mass/electron balances

Oxide formation

\[S^2- \rightarrow S^{4+} + 6e^- \] (1)
\[4e^- + O_2 \rightarrow 2O^{2-} \] (2)
Combining eqs 1 and 2, one obtains
\[4S^{2-} + 6O_2 \rightarrow 4SO_2 + 4O^{2-} \] (3)
Hence, in the formation of an oxide from a sulfide, 1.5 mol of oxygen is required per mole of sulfur, and 1 mol of sulfur dioxide is liberated.

Sulfate formation and decomposition

\[S^{2-} \rightarrow S^{6+} + 8e^- \] (4)
\[8e^- + 2O_2 \rightarrow 4O^{2-} \] (5)
Combining eqs 4 and 5 yields

¹ Department of Chemical Engineering.
¹ Department of Chemistry.
Therefore, 2 mol of oxygen is needed to form 1 mol of the sulfate without the liberation of oxygen. If, subsequently, the sulfate decomposes, the following reaction occurs:

$$\text{SO}_4^{2-} + \frac{1}{2} \text{O}_2 + \text{O}_2^-$$ \(\text{(7)}\)

Experimental Section

Chemicals. Bi_2S_3 was obtained from three sources: STREM Chemicals U.K. (purity 99.99% metal basis), Aldrich Chemicals (99.9%), and through stoichiometric synthesis from the elements (99%). Argon and air were supplied by BOC, and their purities exceeded 99.9 vol %. Hydrogen was supplied via a hydrogen generator (electrolysis of water), and its purity exceeded 99.9 vol %.

Experimental Procedure. Bi_2S_3 was heated at a rate of 10 °C/min in a 20-mm-i.d. quartz furnace. A reactor (length = 300 mm, inside diameter = 3.8 mm, thickness = 2.5 mm, and volume = 6 mL) containing approximately 10–20 mg of Bi_2S_3 (particle size range = 38–52 μm) was heated either in the presence of a 14 vol % hydrogen/argon mixture (45 mL/min) or a 6 vol % of air/argon mixture (60 mL/min). The gas enters and leaves the reactor through 1/4-in. Swagelock fittings with graphite ferrules producing airtight seals, the Bi_2S_3 being supported by quartz wool as illustrated in Figure 1.

The above concentrations were selected such that the mass spectrometer signal was not saturated with the reactant gas, and the flow rates were chosen to optimize the response of the system (resolution of the peaks). All gases were controlled by Aalborg 0–200 mL/min mass flow controllers, which were calibrated using a bubble flow meter. The heating rate was controlled by a West 6400 temperature controller, the power to the furnace being supplied by a Wayne Kerr 0–70 V, 0–60 A dc power supply. This allowed for precise and accurate temperature ramping. The reactant and product gases were monitored by a quadruple mass spectrometer (Vacuum Generators). The mass spectrometer collects data in arbitrary units (au). Therefore, calibrations were performed whereby the signal for a known flow rate of O_2 was recorded for 1 min, and a correction for the background O_2 concentration was obtained. Air from BOC was used as the calibration gas for oxygen (21% air, 79% nitrogen). The signal (in au-min) for SO_2 was converted into moles according to the masses and stoichiometries of reference compounds such as Nd_2S_3 and CuS that were oxidized at the same heating rate.

The exhaust gases were scrubbed using sodium hydroxide solution before being discharged into a fume cupboard. The profiles of the monitored gas concentrations from the mass spectrometer were deconvoluted using nonlinear regression fitting of Gaussian peaks (Peakfit 4.1).

The oxidation profiles obtained from the TPO-MS experiments were used to designate nine temperature stages to record a series of in situ X-ray diffraction patterns. Powder X-ray diffraction was performed on a Bruker D8 powder diffractometer fitted with a PSD detector, using Cu Kα radiation. High-quality X-ray data were collected across a 2θ range of 10–90° over a period of 24 h using a 2θ step size of 0.015°. In situ high-temperature X-ray diffraction was performed on the Bi_2S_3 sample as it was being oxidized, the temperature being raised at 0.33 °C/min over a temperature range of 27–1000 °C. X-ray diffraction patterns were obtained over 4-h periods at 27, 400, 440, 490, 520, 570, 620, 800, and 910 °C.

Results and Discussion

Temperature Programmed Oxidation/Reduction. All three Bi_2S_3 samples showed very similar SO_2/ O_2 profiles (Figure 3). Three SO_2 peaks were observed with the following onset temperatures: 440 °C (±3 °C), 612 °C (±3 °C), and 800 °C (±10 °C). Three peaks were also observed in the corresponding O_2 profile, the first two peaks representing consumption reactions (depicted as negative peaks) and the third peak representing a liberation (positive peak). The concentration of O_2 is apparently much higher than that of the SO_2. The reason for this is that mass spectrometers always operate with some background oxygen present within the vacuum system (constant leak rate). The onset temperatures of the O_2 peaks were 410 °C (±30 °C), 610 °C (±3 °C), and 905 °C (±100 °C). The onset temperatures of the first and third peaks were difficult to determine as these peaks appear to have long tails (not sharp as the second peak). The oxygen substitution reaction appears to be complete at 988 °C.

Previous literature reports concerning the liberation of $\text{H}_2\text{S}/\text{SO}_2$ from sulfides suggest that different peaks appearing in the TPO/R-MS profile can be associated with different sulfur bond strengths, typical sulfur species being described as excess sulfur, stoichiometric sulfur, and nonstoichiometric sulfur. Excess sulfur is usually liberated at low temperature, i.e., much less
Table 1. Typical Deconvoluted Areas and Reaction Times for \(\text{SO}_2 \) and \(\text{O}_2 \) Peaks for 25.29 mg of \(\text{Bi}_2\text{S}_3 \)

<table>
<thead>
<tr>
<th>peak</th>
<th>approximate temperature range (°C)</th>
<th>(\text{area (au-min)})</th>
<th>reaction time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>440–600</td>
<td>(2.186 \times 10^{-9})</td>
<td>(\text{O}_2) cons (^a)</td>
</tr>
<tr>
<td>2</td>
<td>600–690</td>
<td>(3.803 \times 10^{-9})</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>800–1000</td>
<td>(1.440 \times 10^{-9})</td>
<td>9</td>
</tr>
</tbody>
</table>

\(^a \) \(\text{O}_2 \) consumption. \(^b \) \(\text{SO}_2 \) liberation

Figure 3. Temperature-programmed oxidation of \(\text{Bi}_2\text{S}_3 \) at 10 °C/min, showing oxygen consumed and \(\text{SO}_2 \) liberated.

Figure 4. Deconvoluted \(\text{SO}_2 \) signal from mass spectrometer.

than 400 °C. To investigate whether the first peak seen in the TPO-MS profile is due to excess sulfur, temperature-programmed reduction (TPR-MS) was carried out. In this case, only one broad peak was observed, which exhibited an onset temperature of 504 °C, similar to the onset temperature in the TPO-MS experiment. The reduction was complete at 904 °C. These results clearly indicate that the first peak in the TPO profile could not result from the oxidation of excess amorphous sulfur, which is not detectable by XRD. Excess sulfur would have reacted at a much lower temperature to form \(\text{H}_2\text{S} \).

The TPO/TPR-MS data were deconvoluted using Peakfit 4.1. The deconvolution of the \(\text{SO}_2 \) signal (Figure 4) was possible with four peaks, with an \(R^2 \) value of 0.984. The second peak was deconvoluted into two peaks because it was very narrow and had a tail toward the higher temperature; this additional peak could not be attributed to a physical/chemical phenomenon and was combined with the major peak for peak area calculations.

The \(\text{O}_2 \) consumption profile from Figure 3 was inverted (Figure 5), because the Peakfit 4.1 software allows for more efficient data analysis when the major peaks identified are positive. Deconvolution gave six peaks, (the number of peaks affects the \(R^2 \) value), to give an \(R^2 \) value of 0.988, which is still lower than what was achieved in the deconvolution of the \(\text{SO}_2 \) profile. The lower \(R^2 \) value was expected because the background concentration of \(\text{O}_2 \) in the mass spectrometer is high. The first and second peaks were deconvoluted into three contributing peaks, because these peaks exhibited shoulders to either side. The third \(\text{O}_2 \) peak, where \(\text{O}_2 \) is liberated, represented by the negative area, could be fitted by one peak (symmetrical). The time required for each sequential reaction was estimated from the widths of the deconvoluted peaks (this also accounts for the shoulders), and the data are presented in Table 1. All areas were converted into moles (sulfur or oxygen) to elucidate on the intermediates and the mechanism involved in the oxidation process. The average results of five temperature-programmed experiments are given in Table 2.

In Situ X-ray Diffraction. Nine temperature stages were identified during the course of the TPO-MS experiments where the identification of the phases during the oxidation process would be of interest. The obtained X-ray diffraction patterns are shown sequentially in Figure 6. The XRD patterns obtained for each temperature stage were cross-referenced to the JCPDS powder diffraction pattern database \(^{10} \) and other literature sources, \(^{11-13} \) and each phase was assigned accordingly (Table 3).

The X-ray diffraction data show that complete oxidation occurs to \(\text{Bi}_2\text{O}_3 \) by the final heating stage. The TPO-MS profile was obtained at a heating rate of 10 °C/min, whereas the XRD patterns were all

Table 2. Average Number of Moles \(\text{SO}_2 \) Liberated and \(\text{O}_2 \) Consumed Normalized to 1 mol of \(\text{Bi}_2\text{S}_3 \)

<table>
<thead>
<tr>
<th>peak</th>
<th>(\text{SO}_2) (mol)</th>
<th>(\text{O}_2) (mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.091</td>
<td>2.762</td>
</tr>
<tr>
<td>2</td>
<td>1.274</td>
<td>1.981</td>
</tr>
<tr>
<td>3</td>
<td>0.635</td>
<td>0.243</td>
</tr>
</tbody>
</table>

\(^a \) \(\text{O}_2 \) liberated.
Bi2S3 exp 27°C

Figure 6. In situ X-ray diffraction patterns observed at different temperatures.

obtained at a heating rate of 0.333 °C/min. This difference in heating rate caused the onset temperature of the reflections to be shifted, with the first sign of oxidation appearing in the XRD patterns at 400 °C whereas the onset of the first reflection in the TPO-MS profile occurred at 520 °C; this difference was predicted because of the different heating rates used in the two experiments.

The first absorption of oxygen in the TPO-MS profile is a very minor peak, occurring just before the first main peak in the profile. The corresponding reflection was seen in the XRD pattern at 400 °C as the very first emergence of nonsulfide reflections at 30° and 51° (2θ), which correspond to an oxysulfate (Bi₂O₂SO₄), emerging within the Bi₂S₃ pattern. The fact that the XRD reflections do not correspond to the pattern of the sulfate suggests a disordered transition from the sulfide to the oxysulfate, as was observed in the pattern at 440 °C, rather than a smooth progression through the sulfate. The mass balance alone suggests a sulfate, which has been identified in the literature as the intermediate; however, a sulfate and (sulfide + oxysulfate) could not be distinguished from the mass balance alone.

Hence, the first relatively broad peak in the TPO-MS pattern corresponds to the initial structural transformation from the sulfide, with an orthorhombic structure, to a mixture of phases Bi₂S₃ + Bi₂O₂SO₄ at 440 °C. This first peak is followed immediately by a sharper more
Table 3. Assigned Phases for Each TPO Profile Position

<table>
<thead>
<tr>
<th>TPO profile position</th>
<th>temperature (°C)</th>
<th>phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27</td>
<td>bismuth sulfide (Bi$_2$S$_3$) 11</td>
</tr>
<tr>
<td>2</td>
<td>400</td>
<td>bismuth sulfide (Bi$_2$S$_3$) + minor oxysulfate peaks</td>
</tr>
<tr>
<td>3</td>
<td>440</td>
<td>mixture of phases (Bi$_2$S$_3$ + Bi$_2$O$_3$SO$_4$)</td>
</tr>
<tr>
<td>4</td>
<td>490</td>
<td>bismuth oxysulfate [Bi$_2$O$_3$(SO$_4$)$_3$] 12</td>
</tr>
<tr>
<td>5</td>
<td>520</td>
<td>bismuth oxysulfate [Bi$_2$O$_3$(SO$_4$)$_3$]</td>
</tr>
<tr>
<td>6</td>
<td>570</td>
<td>bismuth oxysulfate [Bi$_2$O$_3$(SO$_4$)$_3$]</td>
</tr>
<tr>
<td>7</td>
<td>620</td>
<td>bismuth oxysulfate [Bi$_2$O$_3$(SO$_4$)$_3$]</td>
</tr>
<tr>
<td>8</td>
<td>800</td>
<td>bismuth oxysulfate [Bi$_2$O$_3$(SO$_4$)$_3$] + peak shift</td>
</tr>
<tr>
<td>9</td>
<td>910</td>
<td>bismuth oxide (Bi$_2$O$_3$) 13</td>
</tr>
</tbody>
</table>

Observations

- The time for oxygen uptake was significantly longer than the time to release SO$_2$. According to both the oxygen and sulfur molar balances for several experiments, the following compound was proposed to have formed at the end of the second peak, i.e., at 700 °C: Bi$_2$S$_3$SO$_4$O$_4$$_{1.16}$ or Bi$_2$S$_3$O$_4$$_{1.27}$. According to eq. 10:

$$
\text{Bi}_2\text{S}_3\text{SO}_4\text{O}_4\text{.16} \rightarrow \text{Bi}_2\text{S}_3\text{SO}_4\text{.758} + 1.27\text{SO}_2
$$

(10)

In this case, XRD identified the formation of a new oxysulfide, and using the theoretical equations for sulfate formation, eq. 3, and oxide formation, eq. 6, the mass balance yields eq. 11:

$$
0.55\text{Bi}_2\text{O}_3(\text{SO}_4) + 0.45\text{Bi}_2\text{S}_3 + 2.0\text{O}_2 \rightarrow \frac{1}{14}\text{Bi}_2\text{O}_3\text{SO}_4\text{O}_4\text{.1} + 1.2\text{SO}_2
$$

(11)

The stoichiometric difference between the equations/compositions proposed via molar balances on sulfur and oxygen (TPO-MS) and those based on the observed reaction products (XRD) is on the order of 5%, which gives confidence in the developed stoichiometries and proposed reaction mechanisms. Literature reports suggest two possible high-temperature oxysulfates, namely, Bi$_2$O$_3$SO$_3$ or Bi$_2$O$_3$SO$_3$, which decomposes at 870 °C, and Bi$_2$O$_3$SO$_4$, which decomposes at 975 °C. The compound identified by TPO-MS and XRD best matches Bi$_2$O$_3$SO$_4$ or Bi$_2$O$_3$S.

Second Reaction Step. The second TPO peak was observed in the temperature range between 800 and 1000 °C. This peak exhibited significant shoulders. The oxygen release required 14 min, and the SO$_2$ release required 8 min. According to the oxygen and sulfur molar balances, the final compound produced is Bi$_2$O$_3$. The temperature at which Bi$_2$O$_3$ was produced in the in situ XRD system was observed to be lower than in the case of the TPO result (910 °C compared to 980 °C). This is again due to the significant difference in heating rates employed (10 °C/min for the TPO-MS compared to 0.333 °C/min for in situ XRD). Because of the low heating rate in the case of the XRD and the significant time required to collect the powder diffraction data, it is safe to conclude that the reaction temperatures as observed by TPO are the correct ones.

The data in Table 2 clearly indicate that a complete account could be made of the oxygen and the sulfur contained in the bismuth–sulfur–oxygen system at any time/temperature. The following final reaction can hence be proposed:

$$
\text{Bi}_2\text{S}_3\text{.635SO}_4\text{.758} \rightarrow \text{Bi}_2\text{O}_3 + 0.635\text{SO}_2 + 0.243\text{O}_2
$$

(12)

Using eq. 6, we obtain:

$$
\frac{1}{14}\text{Bi}_2\text{O}_3\text{SO}_4\text{O}_4\text{.1} \rightarrow \text{Bi}_2\text{O}_3 + 0.71\text{SO}_2 + 0.36\text{O}_2
$$

(13)

The stoichiometries of the intermediate sulfates identified in the above mechanism assume that all of the liberated sulfur was converted to SO$_2$ and detected by the mass spectrometer. This is a reasonable assumption given that, at these elevated temperatures, SO$_2$ is thermodynamically the most stable S-O compound.

Conclusions

TPO-MS data show that Bi$_2$S$_3$ has moderately good oxygen stability, being stable in the sulfide form up to...
a temperature of around 440 °C, at which point it begins to oxidize. Judging from overall and individual molar balances, Bi₂S₃ undergoes a three-step oxidation process to form Bi₂O₃ during which sulfate intermediates Bi₂O₂(SO₄) and Bi₂₈S₁₀O₇₂ are produced. The proposed sulfate intermediates are consistent with suggestions from the literature (with regard to stoichiometry) and corresponding X-ray diffraction patterns.

Molar balances alone cannot establish which intermediate compounds are formed during the solid-state transformation of Bi₂S₃; however, the combination of TPO-MS and XRD proves to be a powerful tool in detailing the reaction mechanisms of the dynamic oxidation process:

Bismuth sulfide (Bi₂S₃), orthorhombic, reacts at 440 °C to form a mixture of bismuth sulfide and bismuth oxysulfate (Bi₂S₃ + Bi₂O₂SO₄). This mixture reacts at 612 °C to form bismuth oxysulfate [Bi₂₈O₃₂(SO₄)₁₀] monoclinic. At 800 °C, further oxidation occurs to finally yield bismuth oxide (Bi₂O₃), cubic.

Acknowledgment

We acknowledge support of this work by the EPSRC under Grant GR/R04461.

Literature Cited

(10) PCPDFWIN v2.02, JCPDS (International Centre for Diffraction Data): Newton Square, PA, 2002.

Received for review May 11, 2004
Accepted May 11, 2004

IE049960A