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Controllable regioselective strategy for the asymmetric functionalization at the
active sites and the K-region of pyrene.

This type molecules exhibited thermal stability (> 256 °C) and wide-range color
tuning (> 100 nm)

All the compounds exhibited high quantum yield in organic solution.
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A set of dipolar molecules 1,3-diphenyl-5,9-diarylethynyl)pyrenes which exhibit a wide visible emission ranging from blue to orange-red
were synthesized by employing a controllable regioselective approach at the active sites and K-region of pyrene.

Step 1: Suzuki-Miyaura coupling reaction

CHX THF DCM ACN DMF

“ Solvatochromism”

Step 2: Sonogashira coupling reaction
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ABSTRACT: A controllable regioselective approach to achieve dipolar functionalization at
the active sites (1,3-positions) and K-region (5,9-positions) of pyrene is demonstrated.
Following this strategy, a set of dipolar 1,3-diphenyl-5,9-di(4-R-phenylethynyl)pyrenes were
synthesized and systematically investigated by 'H/'3C NMR spectroscopy, X-ray
crystallography, electronic spectra, as well as by theoretical calculations. Especially, by
adjusting the substituents at the 5,9-positions of pyrene, the pyrene-based dipolar molecules 4

exhibit tunable optical properties with a wide emission band from blue to orange-red.

Keywords: Regioselective Synthesis; Pyrene Chemistry; K-region; Tunable Emission; Dipolar

Molecules

1. Introduction

The design and synthesis of tunable emission materials have been an attractive research topic
in both academic and commercial arenas, for example, multicolored emission materials have
an extremely wide range of potential applications in light emitting displays [ 1], multicolor
lasers [2], and organic light emitting diodes (OLEDs) [3]. On the other hand, the construction

of novel fluorophores with tunable emission colors is achieved by adjusting the structure and



60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

thereby altering the transition-energy levels as evidenced by chemical/physical methods [4].
Generally, most strategies have relied on fine-tuning of the host materials for the wide-range
altering of the emission colors, which involves the introduction of various electron donating or
withdrawing groups to the host compounds [5], tuning the intramolecular charge-transfer [6]
or molecular weight (for polymers) [7] or by voltage-controlled electroluminescence (EL)
technology [8]. Nevertheless, to achieve a tunable emission material with satisfactory
properties for high-performance devices remains a challenge. Moreover, understanding of the
underlying structure-property relationship of such systems is still a topic of on-going interest.
For conventional organic synthetic approaches, push-pull chromophores (dipolar molecules)
play a significant role in constructing tunable emission molecules which can exhibit a wide
emission range from deep blue to red, and even to the near infrared (NIR) region [6.9].

Generally, the pyrene exhibits strong positional dependence along the long Y-axis (the active
site of 1-, 3-, 6- and 8- positions and plane node of 2,7-positions) and the short Z-axis (K-region
of 4-, 5-, 9- and 10-positions). Theory and experimental studies show that the substitution
position can affect the intramolecular electron-transfer process [ 10]. Theoretically, since the S;
«— Sy and S; « S, transitions are polarized along the short axis of pyrene, introducing
appropriate moieties into the K-region of pyrene may lead to a distinct change of the energy of
the S; «— Sp and S; «— S excitations [ 10]. While our experiment confirmed pyrenes derivatives
show a signficant effect to the emission with large red-shifed depending on the position-
substitution at the long axis or K-regions [11]. So, it seems that the pyrene-based dipolar
molecules would exhibit interesting optical properties when functionalization of pyrene both
at long axis and K-regions has occurred [12].

To date, there are challenging issues regarding controllable regioselectivity for modifying
the pyrene core. In an effort to conquer these difficulties, a number of reliable strategies were
established to modify the active sites of pyrene [13]. By contrast, functionalization at the K-
region of pyrene is attractive but difficult to carry out. Several attempts have been made to
exploit this region, including oxidation [ 14|, bromination [ 1 5], nitration [ 16|, formylation [ 17],
and borylation [ | 8] reactions. However, multistep routes, low selectivity, and harsh conditions
have driven us to explore more effective strategies for regioselective substitution at the K-

region of pyrene.
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2. Experimental section

2.1. General procedures

All reactions were carried out under a dry N, atmosphere. Solvents were Guaranteed reagent
(GR) for cyclohexane, tetrahydrofuran (THF), dichloromethane (CH,Cl,), acetonitrile
(CH;CN), and dimethylformamide (DMF), and stored over molecular sieves. Other reagents
were obtained commercially and used without further purification. Reactions were monitored
using thin layer chromatography (TLC). Commercial TLC plates (Merck Co.) were developed
and the spots were identified under UV light at 254 and 365 nm. Column chromatography was
performed on silica gel 60 (0.063-0.200 mm). All synthesized compounds were characterized
using '"H-NMR and '*C-NMR spectroscopy, and by HRMS (FAB) mass analysis. Fluorescence
spectroscopic studies were performed in various organic solvents in a semimicro fluorescence
cell (Hellma®, 104F-QS, 10 x 4 mm, 1400 uL) with a Varian Cary Eclipse spectrophotometer.
Fluorescence quantum yields were measured using absolute methods.
2.2. Synthetic Procedures
2.2.1. Synthesis of compounds 3

A series of precursors 3a, 3b, 3¢ were synthesized from 7-fert-butyl-1,3-diphenylpyrene 2
[19] with the corresponding equiv. of Br, in the presence of iron-powder. 'H NMR spectra of
these three precursors were investigated. We also carried out this type of reaction in the absence
of iron powder, and only a trace amount of precursor 3a was detected. In this work, preferred
candidate 3b was fully characterized by '"H NMR spectroscopy and mass analysis.
2.2.2. Synthesis of 7-tert-butyl-1,3-diphenyl-5-bromopyrene 3a

A mixture of 7-tert-butyl-1,3-diphenylpyrene 2 (0.5 g, 1.2 mmol), and Fe powder (0.1 g, 1.8
mmol) were added in CH,Cl, (5 mL), and the mixture was stirred at room temperature for 15
minutes under an argon atmosphere. A solution of Br, (0.09 mL, 1.8 mmol) in CH,CI, (6 mL)
was slowly added dropwise with stirring, and the mixture was continuously stirred for 24 h at
room temperature. Then the mixture was quenched with a 10% aqueous solution of Na,S,0s.
The mixture solution was extracted with CH,Cl, (2 x 20 mL), the organic layer was washed
with water (2 x 10 mL) and brine (30 mL), and then the solution was dried (MgSQO,), and the

solvents were evaporated. The crude compound was washed with hot hexane to obtained 3a as
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a light-yellow solid (381 mg, 65%). M.p. 110-112°C; 'H NMR (400 MHz, CDCly): &y = 1.63
(s, 9H, rBu), 7.48-7.53 (m, 2H, Ar-H), 7.57 (d, J= 7.7 Hz, 4H, Ar-H), 7.65-7.69 (m, 4H, Ar-
H), 7.96 (s, 1H, pyrene-H), 8.03 (d, /=9.2 Hz, 1H, pyrene-H), 8.19 (d, /=9.2 Hz, 1H, pyrene-
H), 8.27 (s, 1H, pyrene-H), 8.54 (s, 1H, pyrene-H), 8.66 (s, 1H, pyrene-H) ppm. Due to poor
solubility in organic solvents it was not further characterized by '3C NMR spectroscopy. FAB-
MS: m/z calcd for C5,H,sBr 488.1140 [M*]; found 488.1140 [M*].
2.2.3. Synthesis of 7-tert-butyl-1,3-diphenyl-5,9-dibromopyrene 3b

A mixture of 7-tert-butyl-1,3-diphenylpyrene 2 (2.0 g, 4.8 mmol), and Fe powder (0.82 g,
14.4 mmol) were added in CH,Cl, (30 mL), and the mixture was stirred at room temperature
for 15 minutes under an argon atmosphere. A solution of Br, (0.75 mL, 14.4 mmol) in CH,Cl,
(50 mL) was slowly added dropwise with stirring, and the mixture was continuously stirred for
24 h at room temperature. Then the mixture was quenched with a 10% aqueous solution of
Na,S,0;. The mixture solution was extracted with CH,Cl, (2 x 100 mL), the organic layer was
washed with water (2 X 50 mL) and brine (50 mL), and then the solution was dried (MgSO,),
and the solvents were evaporated. The crude compound was washed with hot hexane to
obtained 3b as a yellow solid, which was recrystallized from hexane:CHCl; (v/v=_8:1) to afford
3b as a light yellow solid (2.3 g, 83%). M.p. 115-116°C; '"H NMR (400 MHz, CDCl5): 8 =
1.64 (s, 9H, tBu), 7.51-7.54 (m, 2H, Ar-H), 7.58 (t,J=7.3 Hz, 4H, Ar-H), 7.64 (d, J= 7.4 Hz,
4H, Ar-H), 7.96 (s, 1H, pyrene-H), 8.53 (s, 2H, pyrene-H), 8.73 (s, 2H, pyrene-H) ppm. Due
to poor solubility in organic solvents it was not further characterized by '*C NMR spectroscopy.
FAB-MS: m/z calcd for C3,Hp4Br; 568.0224 [M*]; found 568.0227 [M*].
2.2.4. Synthesis of 7-tert-butyl-1,3-di-(para-bromophenyl)-5,9-dibromopyrene 3¢

A mixture of 7-fert-butyl-1,3-diphenylpyrene 2 (0.5 g, 1.2 mmol), and Fe powder (0.4 g, 7.2
mmol) were added in CH,Cl, (10 mL), and the mixture was stirred at room temperature for 15
minutes under an argon atmosphere. A solution of Br, (0.55 mL, 11.1 mmol) in CH,Cl, (30
mL) was slowly added dropwise with stirring, and the mixture was continuously stirred for 24
h at room temperature. Then the mixture was quenched with a 10% aqueous solution of
Na,S,0;. The mixture solution was extracted with CH,Cl, (2 x 30 mL), the organic layer was
washed with water (2 x 15 mL) and brine (50 mL), and then the solution was dried (MgSOy,),

and the solvents were evaporated. The crude compound was purified by column
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chromatography eluting with a 1:6 CH,Cl,/hexane mixture to obtained 3¢ as a yellow solid
(653 mg, 71%). M.p. 202-203°C; 'H NMR (400 MHz, CDCls): 8y = 1.64 (s, 9H, Bu), 7.50
(d, J=8.1 Hz, 4H, Ar-H), 7.72 (d, /= 8.2 Hz, 4H, Ar-H), 7.86 (s, 1H, pyrene-H), 8.45 (s, 2H,
pyrene-H), 8.75 (s, 2H, pyrene-H) ppm. Due to poor solubility in organic solvents it was not
further characterized by '*C NMR spectroscopy. FAB-MS: m/z calcd for C;,H,,Bry 725.8414
[M]; found 725.8414 [M™].

2.2.5. Synthesis of 7-tert-butyl-1,3-diphenyl-5,9-diarylethynylpyrenes (4a—f)

A series of compounds 4a—f were synthesized from 7-tert-butyl-1,3-diphenyl-5,9-
dibromopyrene 3 with the corresponding aryl alkyne by a Sonogashira coupling reaction.
7-tert-Butyl-1,3-diphenyl-5,9-bis-(4’-cyanophenylethynyl)pyrene (4d)

A mixture of 7-tert-butyl-1,3-diphenyl-5,9-dibromopyrene 3 (150 mg, 0.26 mmol), 4-
cyanophenyl acetylene (100 mg, 0.79 mmol), PdCl,(PPh;); (18 mg, 0.03 mmol), Cul (10 mg,
0.52 mmol), PPh; (8 mg, 0.03 mmol) were added to a degassed solution of Et;N (6 mL) and
DMF (6 mL). The resulting mixture was stirred at 100 °C for 24 h. After it was cooled to room
temperature, the reaction was quenched with water. The mixture was extracted with CH,Cl, (2
% 500 mL), the organic layer was washed with water (2 x 30 mL) and brine (30 mL), and then
the solution was dried (MgSQO,), and evaporated. The residue was purified by column
chromatography eluting with a 1:2 CH,Cl,/hexane mixture to give 4d as a yellow floccule (115
mg, 66%). M.p. 351-353°C; 'H NMR (400 MHz, CDCly): 6 = 1.68 (s, 9H, tBu), 7.52-7.56
(m, 2H, Ar-H), 7.62 (t, J = 7.5 Hz, 4H, Ar-H), 7.66-7.73 (m, 8H, Ar-H), 7.77 (d, J = 8.2 Hz,
4H, Ar-H), 8.00 (s, 1H, pyrene-H), 8.53 (s, 2H, pyrene-H), 8.86 (s, 2H, pyrene-H) ppm; 3C
NMR (100 MHz, CDCl;): &¢ = 31.05, 34.76, 91.66, 92.13, 110.14, 110.81, 117.61, 117.98,
118.73, 120.75, 122.20, 124.22, 125.77, 126.03, 126.93, 127.26, 127.78, 128.57, 129.13,
129.26, 129.69, 129.81, 130.87, 131.20, 131.33, 131.61, 131.79, 132.12, 138.24, 139.30,
140.28, 149.23 ppm; FAB-MS: m/z calcd for CsoH3,N, 660.2565 [M*]; found 660.2565 [M™].

A similar procedure using phenylacetylene, 4-fluorophenyl acetylene, 4-methoxyphenyl
acetylene, 4-formylphenyl acetylene, 4-N,N-dimethylphenyl acetylene, was followed for the
synthesis of 4a—c, and 4e, 4f.

7-tert-Butyl-1,3-diphenyl-5,9-bis-(phenylethynyl)pyrene 4a was obtained as an orange solid
(recrystallized from hexane:CH,Cl,=3:1, 87 mg, 54%). M.p. 352-353°C; '"H NMR (400 MHz,
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CDCly): 0y = 1.68 (s, 9H, tBu), 7.42 (t, J= 7.7 Hz, 6H, Ar-H), 7.53 (d, J= 6.7 Hz, 2H, Ar-H),
7.61 (t,J=17.5Hz, 4H, Ar-H), 7.70 (d, J= 7.3 Hz, 8H, Ar-H), 7.95 (s, 1H, pyrene-H), 8.48 (s,
2H, pyrene-H), 8.93 (s, 2H, pyrene-H) ppm; 3C NMR (100 MHz, CDCly): 6c=31.97, 35.64,
88.31, 94.69, 120.62, 121.80, 123.42, 124.67, 126.91, 127.57, 128.40, 128.48, 128.53, 128.56,
129.59, 129.79, 130.43, 130.65, 131.71, 138.30, 140.58, 149.87 ppm; FAB-MS: m/z calcd for
C4gH34 610.2661 [M*]; found 610.2661 [M™].
7-tert-Butyl-1,3-diphenyl-5,9-bis-(4’-fluorophenylethynyl)pyrene 4b was obtained as a
pale-yellow solid (recrystallized from hexane:CH,Cl,=3:1, 104 mg, 61%). M.p. 286-287°C;
'"H NMR (400 MHz, CDCl5): 6y = 1.68 (s, 9H, Bu), 7.13 (t, J = 8.6 Hz, 4H, Ar-H), 7.53 (t, J
= 7.5 Hz, 2H, Ar-H), 7.60 (t, J = 7.4 Hz, 4H, Ar-H), 7.68 (d, J = 7.3 Hz, 8H, Ar-H), 7.96 (s,
1H, pyrene-H), 8.47 (s, 2H, pyrene-H), 8.89 (s, 2H, pyrene-H) ppm; 3C NMR (100 MHz,
CDCly): 8¢ = 32.02, 35.82, 88.02, 93.64, 110.02, 115.82, 116.04, 120.50, 121.77, 126.94,
127.67, 128.64, 129.70, 129.89, 130.44, 130.69, 133.59, 133.68, 138.44, 140.59, 149.79,
161.44 ppm; FAB-MS: m/z calcd for C4gH3,F, 646.2472 [M*]; found 646.2472 [M™].
7-tert-Butyl-1,3-diphenyl-5,9-bis-(4’-methoxyphenylethynyl)pyrene 4¢ was obtained as a
yellow solid (recrystallized from hexane:CH,Cl,=4:1, 101 mg, 57%). M.p. 335-336°C; 'H
NMR (400 MHz, CDCl;): 8y = 1.68 (s, 9H, tBu), 3.87 (s, 6H, OMe), 6,92—6.98 (m, 4H, Ar-H),
7.51 (t,J="7.3 Hz, 2H, Ar-H), 7.57-7.66 (m, 8H, Ar-H), 7.70 (d, J = 7.3 Hz, 4H, Ar-H), 7.94
(s, 1H, pyrene-H), 8.45 (s, 2H, pyrene-H), 8.92 (s, 2H, pyrene-H) ppm; *C NMR (100 MHz,
CDCl5): 8¢=31.94,35.59,55.33, 87.03,94.71, 114.16, 115.47, 120.86, 121.74, 123.11, 124.39,
126.93, 127.47, 128.51, 129.02, 129.71, 130.40, 130.63, 133.14, 137.94, 140.62, 149.66,
159.79 ppm; FAB-MS: m/z caled for C5oH330, 670.2872 [M*]; found 670.2872 [M*].
7-tert-Butyl-1,3-diphenyl-5,9-bis-(4’-formylphenylethynyl)pyrene 4e was obtained as an
orange solid (recrystallized from hexane:CH,Cl,=2:1, 81 mg, 46%). M.p. 256-257°C; 'TH NMR
(400 MHz, CDCl;): 6y =1.70 (s, 9H, tBu), 7.55 (d, J = 6.3 Hz, 2H, Ar-H), 7.61 (t, J = 6.8 Hz,
4H, Ar-H), 7.70 (d, J = 7.4 Hz, 4H, Ar-H), 7.80 (d, J= 7.9 Hz, 4H, Ar-H), 7.90 (d, /= 7.0 Hz,
4H, Ar-H), 7.98 (s, 1H, pyrene-H), 8.50 (s, 2H, pyrene-H), 8.88 (s, 2H, pyrene-H), 10.03 (s,
2H, CHO) ppm; *C NMR (100 MHz, CDCls): 8c=31.80, 35.53, 92.16, 93.71, 121.53, 126.51,
127.62, 128.50, 128.74, 129.37, 129.56, 129.84, 130.02, 130.34, 130.46, 131.95, 135.37,
138.77,149.71, 191.16 ppm; FAB-MS: m/z calcd for C5oH3,0, 666.2559 [M*]; found 666.2559
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[M].

7-tert-Butyl-1,3-diphenyl-5,9-bis-(4’-N, N-dimethylphenylethynyl)pyrene 4f was obtained
as a yellow solid (recrystallized from hexane:CH,Cl,=4:1, 107 mg, 58%). M.p. 346-347°C; 'H
NMR (400 MHz, CDCl;): 6y = 1.68 (s, 9H, Bu), 3.03 (s, 12H, Me), 6.74 (d, J = 8.4 Hz, 4H,
Ar-H), 7.50 (t, J= 6.9 Hz, 2H, Ar-H), 7.59 (t, J= 7.7 Hz, 8H, Ar-H), 7.70 (d, /= 7.7 Hz, 4H,
Ar-H), 7.92 (s, 1H, pyrene-H), 8.42 (s, 2H, pyrene-H), 8.94 (s, 2H, pyrene-H) ppm; *C NMR
(100 MHz, CDCly): 6c=32.35, 35.97,40.43, 40.55, 73.01, 82.73, 86.82,96.51, 108.93, 110.44,
112.02, 112.28, 121.78, 122.18, 123.51, 124.46, 127.45, 127.74, 128.64, 128.85, 130.02,
130.86, 131.04, 133.19, 133.95, 137.86, 141.16, 149.84, 150.56, 150.65 ppm; FAB-MS: m/z
calcd for Cs,Hy4N, 696.3504 [M*]; found 696.3504 [M™].
2.3. X-ray Crystallography

A crystal of 4c¢ suitable for X-ray diffraction study was obtained from CHCI; /hexane
solution, sealed in glass capillaries under argon, and mounted on a diffractometer. The
preliminary examination and data collection was performed using a Bruker APEX 2 CCD
detector system single-crystal X-ray diffractometer equipped with a sealed-tube X-ray source
(50 kV x 30 mA) using graphitemonochromated Mo Ka radiation. Data were corrected for
Lorentz and polarisation effects and for absorption [20]. The structure was solved by charge
flipping or direct methods algorithms and refined by full-matrix least-squares methods, on F?
[21]. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using
the full covariance matrix. The cell esds are taken into account individually in the estimation
of esds in distances, angles and torsion angles; correlations between esds in cell parameters are
only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of
cell esds is used for estimating esds involving l.s. planes. The final cell constants were
determined through global refinement of the xyz centroids of the reflections harvested from
the entire data set. Structure solution and refinement were carried out using the SHELXTL-
PLUS software package [22]. CCDC-1547621 (4¢) contain supplementary crystallographic
data for this paper. Copies of the data can be obtained, free of charge, on application to CCDC,
12 Union Road, Cambridge CB2 1EZ, UK [fax: 144-1223-336033 or e-mail:

deposit@ccdc.cam.ac.uk].
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3. Results and discussion

Scheme 1
Table 1

To fulfil these requirements, we present herein a direct strategy to eliminate the problematic
issues discussed above, see Scheme 1, by constructing a new push-pull structure (dipolar
molecules) to achieve functionalization at the active sites (1,3-positions) and K-region (5,9-
positions) of pyrene based on the activity of the bromination reaction. Using 7-fert-butyl-1,3-
diphenylpyrene (2) [23] as the key starting material, 7-tert-butyl-1,3-diphenyl-5,9-
dibromopyrene 3b was then prepared from 2 with 3.0 equiv. bromine in CH,Cl, in the presence
of iron-powder in high yield (up to 83%).1It is worth noting that this type of reaction did not
occur in the absence of iron powder and only a trace amount of 3a was detected (entry 1).
Moreover, in order to optimize and improve this practical strategy, we carried out this reaction
under different conditions, and an efficient, controllable bromination strategy was established.
These optimized conditions and results are summarized in Table 1. Generally, the selectivity
of functionalization bewteen the K-region and para position of phenyl ring could be achieved
by adjusting the amount of bromine and iron powder, which depends on the activity in different
sites. This is the first reported example of the controllable, regioselective, and highly efficient
bromination of pyrene at the K-region positions, and this highlighting methodology indeed
exhibited the significance to stimulate new fundamental and theoretical studies, which is
helpful to understand the mechanism of the molecular structure and photophysical properties.
A set of dipolar fluorophores 4, based on this intermediate bromopyrene 3b, were then obtained,
in considerable yields, by a Sonogashira coupling reaction (Scheme 2). The detailed synthetic
procedures are described in the supporting information (ESIT); all the new compounds 3 and 4
were fully characterized by 'H/'3C NMR spectroscopy and high resolution mass spectrometry
(Figs. S1-15, ESIt). The thermal properties of 4a—f were studied using thermogravimetric
analysis (TGA) under a nitrogen atmosphere at a heating rate of 10 °C min™!, as shown in Table
2 and Fig. S16. It can be seen that fluorophores 4 showed very high thermal stability with

decomposition temperatures (73) of 356 to 527 °C and melting temperatures (7;,) of 256 to 352
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°C. These results revealed that the fluorophores 4 showed high thermal stabilities, which

suggest great potential application in organic electronics applications.

Scheme 2

After numerous attempts, a crystal suitable for single crystal X-ray diffraction of the
fluorophore 4c was cultivated from a CHCls/hexane solution, and the exact conformation was
unambiguously established (Fig. 1a). The crystal structure of 4c reveals that the molecule
displays a more planar conformation with a tightly layered arrangement, which was attributed
to the twist angles between the central pyrene (C1 > C 16) and terminal phenyl moieties at the
1,3-positions (61.09(8)°, 48.83(7)°), and the C4 aromatic rings at the 5,9-positions (27.78(7)°,
24.65(6)°); the latter is less than previously reported between the pyrene core and substituents
at the 1,3,5,9-positions [23,24]. Pairs of short 71 interactions were observed (3.25-3.35 A)
between the pyrene core and both C¢H4OMe rings (shown in blue dashed lines). The
intermolecular 7w interactions combined with weak intermolecular hydrogen bonded

interactions (green dashed lines) result in sheet-like stacks (Fig. 1b).

Fig. 1.

Fig. 2.
Density functional theory (DFT) calculations (B3LYP/6-31 g*) were performed in order to

gain a deeper insight into the relationship between the structures and properties. The value and
contours of the highest occupied molecular orbitals (HOMOs) and the lowest unoccupied
molecular orbitals (LUMOs) of 4 are provided in Table 2 and Fig. 2. As depicted in Fig. 2, the
contours of the HOMOs and LUMOs of 4 present a reasonable difference. The HOMOs of
4a—e are mainly distributed on the pyrene core, which resulted from the weak electron-donating
ability of the phenyl moiety, while the HOMOs of 4f are spread over the arylethynyl moiety
and the pyrene core, which was attributed to the strong electron-donating nature of the N, N-
dimethylamino groups. The LUMOs are mostly localized on the pyrene core and alkynyl
moiety, especially for 4d, 4e, because of the strong electron-withdrawing ability of the -CN

and -CHO moieties. The theoretical results demonstrate that the ability for intramolecular
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charge transfer of 4d—f allows them to exhibit enhanced ICT character versus 4a—c. In other
words, the emission behavior is sensitive to environmental change, which impacts on the

separation of the HOMOs and LUMOs, particularly polarity [25].

Table 2.

Fig. 3.

Further investigations of the photophysical properties were carried out both in solution and
in the solid state based on our preliminary theoretical guidance. As depicted in Fig. 3 and Table
2, two sets of pronounced absorption bands were observed for fluorophores 4, mainly centered
at 334-354 nm (high-energy band), and 375-395 nm (low-energy band). More specifically, the
high-energy band is mainly associated with the S, «— Sy and S; « S, absorption transitions of
the arylethynyl and pyrene core with high molar absorption coefficients (34481—-73883 cm™!
M). The values exhibit an increasing trend following the order from 4a to 4f, while the molar
absorption coefficient of low-energy (34066—81269 cm~! M) also follow this trend. Further,
a weak band in the high-energy absorption region (299—308 nm) can be ascribed to the S; «—
Sy transitions of the phenyl and pyrene core with low molar absorption coefficients
(31608—55690 c™! M) [10]. This low-energy absorption band for 4 indicates that their
excited states possess significant charge transfer (CT) absorption associated with the ICT from
the 1,3-diphenyl to the 5,9-diarylethynyl terminal substituents via the pyrene core, which is
also consistent with the separation of the HOMO and LUMO distributions as determined by

the DFT calculations.

Fig. 4.

Enough interest was aroused to investigate the emission properties because of their sensitive
molar absorption coefficients, arising from the small differences in their substituents at the para

position of the arylethynyl group. For example, these six fluorophores 4 exhibit distinct
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emission properties and solvatochromic effects between fluorophores 4a—c¢ and fluorophores
4d—f. The fluorescence profiles in dilute dichloromethane solution exhibit a tunable emission
wavelength in the range 426—520 nm. There was no observable bathochromic shift trend (< 5
nm) between 4a—c, while 4d—f exhibited a distinct bathochromic shift (26-94 nm) compared
with the former. The emission maxima of this set of fluorophores follow the order 4a =~ 4b =
4c < 4d < 4e < 4f (Fig. 4a). To further verify the tunable wide visible emission of this system,
their emission properties in the solid state were also investigated (Fig. 4b). The emissions of
4a—c are drastically red-shifted by more than 78 nm (139 nm for 4a, 78 nm for 4b and 80 nm
for 4¢), these distinctions in solution and in the solid state are mainly due to enhanced electronic
coupling with the restriction of the intramolecular rotation and the - interaction between the
phenyl rings and the pyrene core in the solid state, because the planar structures tend to form
dimers. On the other hand, the emissions of 4d—f present minor red- or blue-shifts compared
with those in CH,Cl, solution (red-shift 22 nm for 4d, 17 nm for 4e and blue-shift 7 nm for 4f),
presumably, which is ascribed to the bulky substituents at the para position of the arylethynyl
group, which could suppress the aggregation in the solid state and tune the energy gap via the
effect of the conformation of the electronic structures [26]. By comparison, this type of dipolar
molecules exhibited more tunable and sensitive emission properties than do the 1,3,5,9-
tetraarylpyrenes and 1,3,6,8-tetraalkynylpyrenes both in solution and in the solid state [24,27],
which was attributed to the enhancement of the intramolecular charge-transfer for the “push-

pull-type” systems.

Fig. 5.

In order to study the solvatochromism of these systems, solvents of various polarities,
namely cyclohexane (CHX), tetrahydrofuran (THF), dichloromethane (DCM), acetonitrile
(ACN), and dimethylformamide (DMF), were selected, and the absorption and emission
spectra were recorded (Fig. 5a, and Figs. S17-18, ESI{). The absorption spectra of 4 manifest
none or minimum solvent dependence. On the contrary, the solvatochromism could also be
divided into two groups. For 4a—c, there was little effect on the A, for the emission profiles

from CHX to DMF (7 nm for 4a, 7 nm for 4b and 11 nm for 4¢). In sharp contrast, the emission
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profiles of 4d—f exhibited a significant red-shift as large as 134 nm for 4f. Take 4f as example,
the fluorophore 4f exhibited distinct color change from deep blue in cyclohexane to green,
yellow, or even orange-red in DMF, which was observed under a UV light (365 nm), as shown
in Fig. 5b. This further indicates that fluorophores 4 are favorable, tunable fluorescent materials.
This phenomenon of solvatochromism was further confirmed by the relationship between the
Stokes shifts in various solvents and the Lippert equation [28], Lippert-Mataga plot showed
the linear correlation together with an increasing slope from 4a to 4f, meaning the
intramolecular excited state with an increasing dipolar moment than the ground state due to the
substantial charge redistribution (Fig. S19). The value of the slope for 4f (16681) is far larger
than that for 4a (1046). Moreover, compared with the other five compounds, the absorption
spectra of fluorophore 4f presents obvious red-shift with increase of solvent polarity (Apax: 371
nm in cyclohexane — 382 nm in DMF), so the twisted intramolecular charge transfer (TICT)
might plays an important role in the solution state [29]. In nonpolar solvent, the more planar
conformation of 4 is stabilized by electronic conjugation, which results in a sharp fluorescence
spectrum on its locally excited (LE) state. The trend for intramolecular twisting in the polar
solvent, however, transforms 4 from the LE state to the TICT state. The twisted conformation
of 4 is stabilized due to the solvating effect of the polar solvent. Furthermore, this generates a
smaller energy gap, hence bathochromically shifting its PL spectrum, especially for compounds
4d—f, due to the substituents at the para position of the arylethynyl group. This is now the
highest tunable system bearing of 1,3-diphenyl-5,9-di-substituents at pyrene. As a control,
more distinct charge separations and higher tunability were observed versus the 1,3-diphenyl-
6,8-di-substituents pyrene systems [ 10b].

The oxidative electrochemical behavior of fluorophores 4 was investigated by cyclic
voltammetry (CV) using ferrocene as the internal standard. All of the fluorophores 4 displayed
irreversible oxidation processes with distinct positive potentials ranging from 0.73 to 1.22 V in
CH,Cl,; solution, as shown in Fig. S20, and Table 2. This can be associated with the terminal
nature of the functional groups. The HOMOs of fluorophores 4a—f were estimated to be —5.55,
—5.57 eV, =5.52 eV, —5.64 eV, —5.61 eV, —5.15¢eV, respectively. The trend in the values is in
good agreement with the DFT calculation results. The LUMOs were also evaluated from CVs

and the UV-vis absorption to be in the range —1.90 eV to —2.41 eV. These results suggest that



709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767

these dipolar molecules possess good hole- and electron-transporting properties [30].

4. Conclusion

In summary, we present a facile, and controllable regioselective strategy for the
functionalization of pyrene both at the active sites (1,3-positions) by Suzuki cross-coupling
reaction and K-region (5,9-positions) by Sonogashira coupling reaction based on the
bromination reaction stepwise. Depending on the electron-donating/withdrawing groups with
an extended zm-conjugation, the resulting six dipolar molecules, namely 1,3-diphenyl-5,9-
diarylethynyl)pyrenes, exhibit thermal stability (> 256 °C) and wide-range color tuning.
Especially for compound 4f, a significant solvatochromism effect with a large red-shift (134
nm) were observed from non-polar solvent (cyclohexane) to polar solvent (DMF). The
combined experimental and computational results provide an increasing understanding of the
emission mechanism for introducing substitution at the K-region of pyrene. This work opens
up new avenues to explore strategy to functionalize pyrene and to greatly expand the scope for

developing highly efficient pyrene-based photoelectric materials.
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List of Scheme and Figure Captions

Scheme 1. Synthetic route of precursor molecules 3.

Scheme 2. Synthetic route of dipolar molecules 4.

Fig. 1. (a)The crystal structure of fluorophore 4c; (b) the principal intermolecular
packing interactions.

Fig. 2. Frontier-molecular-orbital distributions and energy levels diagram of 4a—4f by
DFT calculations.

Fig. 3. UV-vis absorption spectra of compounds 4 recorded in dichloromethane
solutions at ~10-° M at 25 °C.

Fig. 4. Emission spectra of fluorophores 4 in CH,ClI, solution (a) and in the solid state

(b).

Fig. 5. (a) Emission spectra of 4f in solvents with varying polarity; (b) color of 4f in
different solvents under 365 nm UV illumination.
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Scheme 1. Synthetic route of precursor molecules 3.
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Fig. 1. (a)The crystal structure of fluorophore 4c; (b) the principal intermolecular
packing interactions.
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Fig. 2. Frontier-molecular-orbital distributions and energy levels diagram of 4a-f by
DFT calculations.
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Fig. 3. UV-vis absorption spectra of compounds 4 recorded in dichloromethane
solutions at ~10-°> M at 25 °C.
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Fig. 4. Emission spectra of fluorophores 4 in CH,ClI, solution (a) and in the solid state

(b).
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different solvents under 365 nm UV illumination.



Tables

Table 1 Optimization of reaction conditions to precursors 3.

Entry Substrate 1 (equiv) Br; (equiv) Fe (equiv) Products [%]?
1 1.0 1.5 -- 3a [<5]°
2 1.0 1.5 1.5 3a [65]
3 1.0 3.0 3.0 3b [83]
4 1.0 6.0 6.0 3c [71]

a8 The isolated yields are shown in bracket.

bYield was determined by '"H NMR analysis.

Table 2. The physical properties of compounds of type 4a—f.

Aabs(MM) S0P Aem(m) T4  HOMO LUMO E; HOMO LUMO E, & (%)
[e(M"em'L)]  solffilmb  (°C)  (eV)d  (eV)  (eV)  (eV)e  (eV) (eV)e sola/film®

335 (34481), 392

4a 427/566 525 ~ -5.00 -1.93 307 -555 -2.39 278  89/9
(34066)
334 (38933), 393
4b 426/504 356  -5.06 -2.01 3.05 -557 —241 277  94/7
(38486)
354 (51366), 395
4c 431/511 477 484 -179 305 -552 -2.38 287  98/6
(42182)
336 (44478), 375
4d 452/474 527 541 247 294 -564 -233 278 9523
(49021)
339 (55292), 378
de 504/521 356  -5.33 -242 291 -561 -2.33 258  71/4
(54779)
354 (73883), 381
520/513 460 -454 -163 291 -515 -1.90 264  54/3
(81269)

a Measured in dichloromethane at room temperature.  As a thin film. ¢ Obtained from TGA measurements. ¢
DFT/B3LYP/6-31G* using Gaussian. ¢ Measured from the oxidation potential in CH,Cl; solution by cyclic voltammetry.
f Calculated from HOMO + Ej. 9 Estimated from the absorption edge of UV-Vis spectra.
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Table S1 Crystal data and structure refinement details for compound 4¢.* "

Comp. 4c
Empirical formula CsoH330,
Formula weight 670.80
Crystal system Monoclinic
Space group Ce
dA] 163212 (13)
BA] 13.2595 (1)
C[A] 18.230 (2)
ol°] 90.00
A 115.0330 (12)
] 90.00
Volume[A?] 3574.6 (6)
VA 4

Crystal size[mm®]

0.77 x 0.24 x 0.13

Dcaled[Mg/m?] 1.246
temperature [K] 150 2)
Measured reflns 21169
unique reflns 10490
obsd reflns 8919
parameters 474
R(int) 0.018
R[> 26(1)]™ 0.061
wR2[all data]™ 0.175
GOF on F* 1.02

IR, = S|IFo|-IFd| (based on reflections with F,>>26F ) PwR, = [S[W(F,-F /S [w(F.2 1" w

=1/[6*(F,}) + (0.095P)*]; P = [max (F,’, 0) + 2F.*]/3(also with F,>>2GF")
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Figure S17 Absorption spectra of 4a—e recorded in different solvents.
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DFT calculation data of 4

Table S2. atom coordinates and absolute energies for 4a

Standard orientation:

Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z

1 6 0 0.012044 3. 898020 0. 056749
2 6 0 1. 243065 3.240735  —-0.053476
3 6 0 1. 257401 1.819280  —0.028472
4 6 0 0.014184 1. 113001 0. 015988
5 6 0 -1. 229117 1.817634 0. 078259
6 6 0 —1. 215589 3. 234853 0. 143652
7 6 0 2.469793 1. 062668 0. 008083
8 6 0 0.012334 —-0.318060 —0.003847
9 6 0 1.235079  -1.052509 -0.012962
10 6 0 2.483515  —0. 311827 0.017854
11 6 0 1.208436  —2.455163 —0.032344
12 1 0 2.159622 -2.972454  -0. 038244
13 6 0 0.009634  —3.174880 —-0.039158
14 6 0 -1. 187141  -2.447871  —0. 036820
15 6 0 -1.213727 -1.049279 -0.016554
16 6 0 -2.462911  -0.306207 —0.022899
17 6 0 —2. 445181 1. 066965 0. 027665
18 1 0 -3. 387324 1. 601478 0.011503
19 1 0 3.414704 1. 590299 0. 054047
20 1 0 0.009444 4. 983963 0.063161
21 1 0 -2.140501 -2.966418 —-0. 062559
22 6 0 —-0. 036863 —4.713320 -0. 068993
23 6 0 -0.792412  -5.174271 —1.336317
24 1 0 —0. 844858 -6.269151 —1.378003
25 1 0 -1.816551  -4.787329 —1. 353660
26 1 0 -0.289085 -4.823147 -2.243501
27 6 0 -0. 781744  -5. 228319 1. 188735
28 1 0 —-0.837500 -6.323349 1.179243
29 1 0 -0.262002 -4.922651 2.102964
30 1 0 -1.804502 —4.843670 1. 239766
31 6 0 1.365531  —5.348113 —-0. 081521
32 1 0 1.926874  —5.082708 —0.982556
33 1 0 1.953107 —-5.040464 0. 790803
34 1 0 1.273851  -6.439320 —-0. 060521
35 6 0 -3.710183  -0.991843  —-0. 088307
36 6 0 3.731360 —1.001225 0. 065139
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81 1 0 3. 960206 6. 791931 1. 235158
82 1 0 5. 596280 6.380795  -0.597454
Total Enegy (RB3LYP) =-1849.56216723 Hartree
Table S3. atom coordinates and absolute energies for 4b
Standard orientation:
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z

1 6 0 0.013239 4.091414 0. 000167
2 6 0 1. 240654 3.427602 -0.077861
3 6 0 1. 253287 2.007210 -0. 042934
4 6 0 0.009174 1. 302297 0.001000
5 6 0 -1.233051 2.010931 0. 044533
6 6 0 -1.216743 3.430182 0. 078685
7 6 0 2. 466335 1. 252261 -0. 011506
8 6 0 0.007440 -0. 128547 0.001908
9 6 0 1.229165 -0.862110 0. 000948
10 6 0 2.480734  -0. 123378 0.010319
11 6 0 1.202100 -2.264733 0. 003807
12 1 0 2.153705 -2.781119 0. 006206
13 6 0 0.005679  -2.985217 0. 004857
14 6 0 -1.192078  -2. 257565 0.004169
15 6 0 -1.218789  -0. 859668 0. 004067
16 6 0 -2.468829  -0.115763 -0.007217
17 6 0 -2. 449240 1. 258978 0.013172
18 1 0 -3. 391659 1.792239 -0.009184
19 1 0 3.410738 1. 782045 0. 009437
20 1 0 0.014379 5.177553  —-0.000331
21 1 0 -2.144208  -2.777431 0. 002886
22 6 0 -0.036817  —4. 524621 0. 006646
23 6 0 -0. 782611 -5.018984 1. 255606
24 1 0 -0.831219 -6.114783  —1.264799
25 1 0 -1.808638 —-4.639017 —1.298596
26 1 0 -0.268539 -4.693942 -2.167253
27 6 0 -0.783070 -5.016121 1. 269709
28 1 0 -0.831308 —-6.111914 1. 281637
29 1 0 -0.269495 —4.688678 2. 180788
30 1 0 -1.809266  —4. 636483 1.311235
31 6 0 1.370629  -5.151518 0.007523
32 1 0 1.945187  -4.865289  —0. 880882
33 1 0 1. 944660 —-4.863729 0. 895803
34 1 0 1. 285691 —-6. 244027 0. 008500
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. 226148
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. 057554
. 256752
. 134236
. 491376
. 208101
. 365264
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. 420959
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. 698881
. 498581
. 184810
. 827761
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. 190964
. 001984
. 612175
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. 040641
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. 189081
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. 064197
. 271151
. 874056
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. 079327
. 420366
. 883436
. 720603

. 044533
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. 074227
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. 108301
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. 114918
. 1562918
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. 143764
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. 162181
. 168479
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. 231504
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. 342025
. 975406
. 638175
. 569835
. 406860
. 165964



79 1 0 4. 035785 6. 860267 1. 373219
80 1 0 5. 645040 6.513263  —0.493358
81 9 0 -9.728428  —-3.918227 -0.203168
82 9 0 9.720914 —-3.963639 0. 189768
Total Enegy (RB3LYP) =-2048.02862445 Hartree
Table S4. atom coordinates and absolute energies for 4¢
Standard orientation:
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
1 6 0 0.011134 4. 341969 0. 000994
2 6 0 1. 238769 3.678673  —0.076383
3 6 0 1. 252469 2.258282  —-0.036539
4 6 0 0. 008046 1. 553937 0.011937
5 6 0 —-1. 234873 2.261647 0. 054608
6 6 0 —-1. 218879 3. 681040 0. 083585
7 6 0 2. 465636 1.503513  —0. 005356
8 6 0 0. 006726 0.123073 0.017782
9 6 0 1.228712  -0.610048 0. 016047
10 6 0 2.481110 0. 127696 0. 019885
11 6 0 1.202134 -2.012825 0. 023293
12 1 0 2.154478  —2. 527869 0. 023972
13 6 0 0.005937 —2.733623 0. 030753
14 6 0 —-1.192042  -2.006462 0. 030042
15 6 0 -1.219269  —0. 608527 0. 024952
16 6 0 -2. 470606 0.133723 0.012679
17 6 0 -2. 450741 1. 508720 0. 027512
18 1 0 -3. 393547 2.041142 0. 003783
19 1 0 3. 410209 2. 033093 0.011626
20 1 0 0. 012003 5.428167 —0.003833
21 1 0 -2. 144516  —2.525695 0.031517
22 6 0 -0. 035523  —4.273129 0.036711
23 6 0 -0.781289  —4.771853  —1.223791
24 1 0 -0.829071  -5.867883 —1.23031bh
25 1 0 —-1.807486  —4.392480 —1.266764
26 1 0 -0. 268284  —4.448483 —2.13661b5
27 6 0 -0. 780881 4. 762508 1. 301227
28 1 0 -0. 828167  —5.858474 1. 316485
29 1 0 -0.267247 -4.431974 2.211181
30 1 0 -1.807232  —4. 383554 1. 342051
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. 898572
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75 6 0 3. 850967 6. 341765 0.622319
76 1 0 2.026148 5. 684673 1. 557109
7 6 0 4.757090 6. 140438 -0. 420081
78 1 0 5. 216757 4. 965671 -2.170032
79 1 0 4.024773 7. 128422 1. 351961
80 1 0 5.637151 6. 771571 -0.510123
81 8 0 -9.810979 -3.607087 —-0.207560
82 8 0 9.812806  —3. 634467 0. 112427
83 6 0 -9.949375 -5.019445 -0.190619
84 1 0 -9.532579  -5.454150 0. 727522
85 1 0 -11. 022340 5. 215073  —0. 229047
86 1 0 -9.466776  —5.482252  —1. 060887
87 6 0 9.951705 -5.046816 0. 123083
88 1 0 11. 025332  -5. 240556 0. 147056
89 1 0 9.484250 -5.491914 1.011042
90 1 0 9.519606 -5.501274 -0.778160
Total Enegy (RB3LYP) =-2078.60890074 Hartree
Table S5. atom coordinates and absolute energies for 4d
Standard orientation:
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z

1 6 0 0.010313 -2.876414 0. 005271
2 6 0 1.205746  -2. 154147 0. 000223
3 6 0 1. 230871 -0.751719  -0. 002657
4 6 0 0.008329  -0. 019647 0. 002255
5 6 0 -1.216761 -0. 752539 0. 008535
6 6 0 —-1. 188389  -2.150178 0. 008610
7 6 0 2.480089  -0.009150 0. 002852
8 6 0 0. 008215 1.411308 0.001118
9 6 0 1. 250475 2.119086  -0. 048351
10 6 0 2.464571 1.366802  -0.020129
11 6 0 1. 236283 3.539652  —0.084478
12 6 0 0. 008575 4.202178  -0. 000281
13 6 0 -1.219900 3.539024 0. 084698
14 6 0 -1. 234036 2. 119550 0. 050004
15 6 0 -2. 449253 1. 367062 0. 022443
16 6 0 -2.466431 -0. 008097 0.001377
17 1 0 -3.392174 1. 899539 0.003713
18 1 0 2.157320 -2.670477  —-0.000605
19 1 0 -2.139203 -2.672345 0.010568
20 1 0 3. 408074 1.898277  -0. 002569



21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

(oI er e lNe > Ne > ENer RN I NN e PR S e N e e T N e R i o DR i e M e > I e p I @ PRI =S i = e D I i e PRI = e M e NN e M N e IR

O O O O O O O O O O O O O O O O O O O O O O O O O oo oo oo oooocoooooocooc oo oo oo

O O1 = = W DD W w DN o

520

. 008270
. 474246
. 726911
. 385400
. 858050
. 036746
. 514830
. 192634
. 756756
. 038743
. 202125
. 637577
. 457623
. 367983
. 710829
. 497373
. 174636
. 841916
. 021186
. 739947
. 184094
. 023046
. 620685
. 029958
. 378406
. 294767
. 951327
. 953087
LT7T4217
. 260633
. 801330
. 820276
. 776561
. 264430
. 823219
. 803486
.727434
. 714183
. 800713
. 789151
. 062099
. 143864
. 257672
. 375853

S O B O O1 O W ok O RO RO 01 W R OO RO O

. 288169
. 3569259
. 383651
. 175169
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. 406812
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. 971908
. 831818
. 623806
. 359175
. 177382
. 381733
. 987406
. 410635
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. 530097
. 994638
. 835951
. 968702
. 624471
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. 752459
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. 581908
. 5321156
. 004907
. 909474
. 582621
. 005172
. 531589
. 691966
. 689806
. 266628
. 261494
.920710
. 329567
. 170820
. 966914

. 001032
. 195558
. 732412
. 250061
. 617055
. 558220
. 366859
. 993527
. 432842
. 300774
. 194672
. 524204
. 195094

1. 250658

.134744
. 366524
. 995647
. 620330
. 561285
. 430559
. 195129
. 355528
. 521237
. 006211

0. 005229

. 006494
. 884342
. 892988
. 269781
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. 255974
. 168023
. 266369
. 296965
. 036819
. 032708
. 063028
. 057994
. 091557
. 097606
. 113588
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65 1 0 5.229702  —3.914007 0.081145
66 6 0 8.490800 -1.805913 0. 139923
67 1 0 7.202863  —0.087189 0. 110031
68 6 0 8.561193 -3.210494 0. 144981
69 1 0 7.432060  —5.050630 0. 127981
70 1 0 9.406482  —1.223788 0. 156778
71 6 0 -6.053743 -1.909081 -0.091274
72 6 0 -6. 143495 -3.317331 -0.106717
73 6 0 —-7.245323 -1.152596 -0. 108601
74 6 0 —-7.378847  -3.947855  —-0.137982
75 1 0 -5.232742  -3.907110 -0.093721
76 6 0 -8.481863 -1.780748  -0.139922
7 1 0 -7.184581 -0.069341 -0.097586
78 6 0 -8.560011  —3.184862  —0. 154668
79 1 0 -7.440933 -5.031192  -0. 149562
80 1 0 -9.394317  -1.193491 -0. 153205
81 6 0 9.833830 -3.867335 0.171421
82 6 0 -9.836164 -3.834588  -0. 186250
83 7 0 10. 867855  —4.400938 0. 192540
84 7 0 -10.873029  —4. 362462 -0.211550
Total Enegy (RB3LYP) =-2034.04873800 Hartree
Table S6. atom coordinates and absolute energies for 4e
Standard orientation:
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
1 6 0 0.010393 -2.793115 -0.034350
2 6 0 -1. 189759  -2.077402 -0.011754
3 6 0 -1.223515  -0.675373 0. 002402
4 6 0 -0. 005827 0.064190 -0. 006575
5 6 0 1.223520  -0.660940 -0. 028311
6 6 0 1.204603 -2.059419 -0.041884
7 6 0 -2.477905 0. 058576 0. 006892
8 6 0 -0. 013626 1. 494674 0. 004244
9 6 0 -1.260221 2.194337 0. 068220
10 6 0 -2.470165 1. 434881 0. 038344
11 6 0 —-1.252234 3. 614287 0.113519
12 6 0 -0. 030202 4. 284674 0.018420
13 6 0 1. 201829 3.628408  —0. 080963
14 6 0 1. 223293 2.209974 -0.053214
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59 6 0 —-4.789458  —-1.217989  -0. 053680
60 6 0 4.794977 —-1.161891 0.011160
61 6 0 -6. 050518  —1.875285  —0. 087265
62 6 0 -6. 127946  —-3.279089  -0.239626
63 6 0 -7.245603  -1.133199 0. 030193
64 6 0 —-7.358256  —3.916039 —0.269617
65 1 0 -5.209416  —-3.850526  —0. 330704
66 6 0 -8.473979  -1.779955  —0.004942
67 1 0 —-7.188988  —0. 055397 0. 144030
68 6 0 —-8.544328 -3.173254  —-0. 153884
69 1 0 —-7.430700  —4.993457 —0. 382046
70 1 0 -9.392866  —1.204053 0. 083458
71 6 0 6. 055491  —1.827278 0. 034984
72 6 0 6.307705  —2. 849409 0.977081
73 6 0 7.066217  -1.475099  —0. 882408
74 6 0 7.533292  —3.497498 0.997040
75 1 0 5.529438  —-3.117328 1. 684707
76 6 0 8.292390 -2.128436  —0. 854370
77 1 0 6.873264 —-0.691313 -1.607748
78 6 0 8.536994  —3. 142998 0. 080996
79 1 0 7.741039  —4. 284408 1. 715723
80 1 0 9.070243 —1.853808 —1.563827
81 6 0 -9.859352  -3.851239  —0. 187880
82 1 0 —-10. 735740  -3.171947  —0. 093847
83 6 0 9.846594  —3.833322 0. 098072
84 1 0 10. 575677  —3.469069 —0.659735
85 8 0 —-10. 017424  -5.052329  —0. 304893
86 8 0 10. 145252  —4.730816 0.862917
Total Enegy (RB3LYP) =-2076.21215112 Hartree
Table S7. atom coordinates and absolute energies for 4f
Standard orientation:
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z

1 6 0 -0.005811  -2.604415 —0.014979
2 6 0 -1.202080 -1.883805 —0.005107
3 6 0 —-1.228720  —0. 481063 0. 000950
4 6 0 -0. 006621 0.252048  —0. 005460
5 6 0 1.219474  -0.479342 -0.016768
6 6 0 1.192209 -1.877312  -0. 020035
7 6 0 -2. 482089 0.255819  —0.000015
8 6 0 —-0. 007848 1.682935  —-0.001293
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. 251596
. 490809
. 206506
. 596993
. 412666
. 381973
. 831312
. 829849
. 905220
-10.
. 339491
. 519237
. 047886
. 910588
. 110217
. 127628
. 043962
. 100408
. 908582
. 125580
. 905326
. 348339

946797

. 641381
. 318126
.737414
. 260759
. 434313
. 425901
. 011393
. 002015
. 665444
. 070718
. 930482
. 709423
. 666527
. 559669
. 154454
. 971567
. 792602
. 945676
. 653447
. 057003
. 917254
. 693214
. 653586
. 543867
. 166868
. 954729
. 774805
. 928531
. 604166
. 586330
. 047641
. 362645
. 555442
. 396188
. 823435
. 486018
. 308757
. 066074
. 795807
. 228080
. 460193
. 082977
. 018975
. 572444

. 236582
. 151521
. 243366
. 274678
. 031568
. 013545
. 056254
. 030745
. 086879
. 099911
. 099605
. 128013
. 083361
. 127948
. 083410
. 152826
. 130064
. 130183
. 047314
. 112576
. 004254
. 129478
. 155063
. 020218
. 038112
. 073746
. 187174
. 007724
. 206399
. 064928
. 069277
. 144892
. 850262
. 911648
. 062123
. 152873
. 909685
. 851755
. 171861

1. 114031

. 121752
. 658004
. 294423
. 471788



97
98

1 0 10. 948322  —5. 335599
1 0 9.510481  -5.312192

0. 236917
1. 279865

Total Enegy (RB3LYP) =-2117.49946072 Hartree
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check CIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE
FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED

CRYSTALLOGRAPHIC REFEREE.

No syntax errors found.

Datablock: 4¢

CIF dictionary

Interpreting this report

Bond precision:

C-C = 0.0041 A

Wavelength=0.71073

Cell: a=16.3212(13) b=13.2595(11) c=18.230(2)
alpha=90 beta=115.0330(12) gamma=90

Temperature: 150 K
Calculated Reported

Volume 3574.6(6) 3574.6(6)

Space group Cc C c

Hall group C -2yc C -2yc

Moiety formula C50 H38 02 C50 H38 02

Sum formula C50 H38 02 C50 H38 02

Mr 670.80 670.80

Dx,g cm-3 1.247 1.246

Z 4 4

Mu (mm-1) 0.074 0.074

F000 1416.0 1416.0

F000’ 1416.57

h,k,1lmax 23,18,26 23,18,26

Nref 10915[ 5462] 10490

Tmin, Tmax 0.979,0.990 0.945,0.990

Tmin’ 0.945

Correction method= # Reported T Limits: Tmin=0.945 Tmax=0.990
AbsCorr = MULTI-SCAN

Data completeness= 1.92/0.96

R(reflections)= 0.0612( 8919)

S =1.021

Npar= 474

Theta(max)= 30.550

wR2 (reflections)= 0.1750( 10490)

The following ALERTS were generated. Each ALERT has the format

test-name_ALERT alert-type_alert-level.

Click on the hyperlinks for more details of the test.


http://www.iucr.org/iucr-top/cif/cif_core/definitions/index.html
http://journals.iucr.org/services/cif/checking/checkcifreport.html

@ Alert level B

PLAT097_ALERT_2_B Large Reported Max. (Positive) Residual Density 0.85 eA-3
PLAT412 ALERT 2 B Short Intra XH3 .. XHn H27 .. H29C 1.72 Ang.
¥ Alert level C
DIFMX02_ALERT_1_C The maximum difference density is > 0.1*ZMAX*0.75

The relevant atom site should be identified.
STRVAO1l_ALERT 4_C Flack test results are ambiguous.

From the CIF: _refine 1ls abs_ structure_Flack 0.400

From the CIF: _refine 1ls_abs_structure Flack su 0.500
PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 3.21 Report
PLAT213_ALERT_2_C Atom C29 has ADP max/min Ratio ..... 3.3 prolat
PLAT220_ALERT 2 C Non-Solvent Resd 1 c Ueqg(max)/Ueq(min) Range 4.7 Ratio
PLAT222_ ALERT 3_C Non-Solvent Resd 1 H Uiso(max)/Uiso(min) Range 5.1 Ratio
PLAT230_ ALERT 2_C Hirshfeld Test Diff for o1 -- C29 7.0 s.u.
PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds ......cceeeee.. 0.00411 Ang.
¥ Alert level G
PLAT032_ ALERT 4 G Std. Uncertainty on Flack Parameter Value High 0.500 Report
PLAT063_ALERT_4_G Crystal Size Likely too Large for Beam Size .... 0.77 mm
PLAT066_ALERT_1_G Predicted and Reported Tmin&Tmax Range Identical ? Check
PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large 0.11 Report
PLAT333_ALERT 2 G Check Large Av C6-Ring C-C Dist. Cl -Cl4 1.43 Ang.
PLAT333_ALERT_2_G Check Large Av C6-Ring C-C Dist. Cl -C10 1.43 Ang.
PLAT371 ALERT 2 G Long C(sp2)-C(spl) Bond C8 - c21 .. 1.43 Ang.
PLAT371_ALERT 2 G Long C(sp2)-C(spl) Bond C16 - Cc42 . 1.43 Ang.
PLAT371_ALERT 2_G Long C(sp2)-C(spl) Bond C22 - c23 1.43 Ang.
PLAT371_ALERT 2_G Long C(sp2)-C(spl) Bond C43 - C44 1.43 Ang.
PLAT933_ALERT 2 G Number of OMIT Records in Embedded .res File ... 4 Note

0 ALERT level A = Most likely a serious problem - resolve or explain

2 ALERT level B = A potentially serious problem, consider carefully

8 ALERT level C = Check. Ensure it is not caused by an omission or oversight
11 ALERT level G = General information/check it is not something unexpected

2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
14 ALERT type 2 Indicator that the structure model may be wrong or deficient

2 ALERT type 3 Indicator that the structure quality may be low

3 ALERT type 4 Improvement, methodology, query or suggestion

0 ALERT type 5 Informative message, check



http://journals.iucr.org/services/cif/checking/PLAT097.html
http://journals.iucr.org/services/cif/checking/PLAT412.html
http://journals.iucr.org/services/cif/checking/DIFMX_02.html
http://journals.iucr.org/services/cif/checking/STRVA_01.html
http://journals.iucr.org/services/cif/checking/PLAT094.html
http://journals.iucr.org/services/cif/checking/PLAT213.html
http://journals.iucr.org/services/cif/checking/PLAT220.html
http://journals.iucr.org/services/cif/checking/PLAT222.html
http://journals.iucr.org/services/cif/checking/PLAT230.html
http://journals.iucr.org/services/cif/checking/PLAT340.html
http://journals.iucr.org/services/cif/checking/PLAT032.html
http://journals.iucr.org/services/cif/checking/PLAT063.html
http://journals.iucr.org/services/cif/checking/PLAT066.html
http://journals.iucr.org/services/cif/checking/PLAT072.html
http://journals.iucr.org/services/cif/checking/PLAT333.html
http://journals.iucr.org/services/cif/checking/PLAT333.html
http://journals.iucr.org/services/cif/checking/PLAT371.html
http://journals.iucr.org/services/cif/checking/PLAT371.html
http://journals.iucr.org/services/cif/checking/PLAT371.html
http://journals.iucr.org/services/cif/checking/PLAT371.html
http://journals.iucr.org/services/cif/checking/PLAT933.html

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the
minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement
strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more
serious problems it may be necessary to carry out additional measurements or structure
refinements. However, the purpose of your study may justify the reported deviations and the more
serious of these should normally be commented upon in the discussion or experimental section of a
paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify
outliers and unusual parameters, but every test has its limitations and alerts that are not important
in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no
aspects of the results needing attention. It is up to the individual to critically assess their own
results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs
submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied
Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta
Crystallographica Section C or E or IUCrData, you should make sure that full publication checks
are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to
CIF submission.

PLATON version of 27/03/2017; check.def file version of 24/03/2017


http://journals.iucr.org/services/cif/checking/checkform.html
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