Please note that fines are charged on ALL overdue items.
Radical Synthesis of Quinazolinone Natural Products

By

Tobias Stein

A Doctoral Thesis

Submitted in fulfilment of the requirements for the award of

PhD at Loughborough University

March 2007

© Tobias Stein 2007
For Babcia, Dziadek and Joan who will sadly never read this and Masood who perhaps one day might.

Acknowledgments

The main thanks goes to Russ Bowman and George Weaver for giving me the opportunity to do this work, offering advice and their time. A special thanks to Ed and Ellie for their assurances, interest, support and all the things brilliant parents do. Cheers to the best brother and sister in the world Hazel and Tom. And thanks for the support from all the Steins, Fischer’s, Roos’s, Bobers and Stutz’s. This work was completed with the help of project students Gurdeep, Josh and Robin.

Thanks to the friends I have made at University, in labs and the department: (in no special order) Curly, Rao, Sean, Gaz, Vinny, Fogey, Laura, Jess, Jan, Fletchy, Grezza, Farah, Polts, Wozza, Van, young Paul, Louise B (and A), Nick, Dee, Jaime, Liz, Jag, Ritz, Frank, Phil Pearson, Phil Parker, KC, Celine, Yohan, Eric, Liam, Gav, Stani, Keyman, Landon, Victoria, Ryan, Duncan, Ben, Chriss T, Sylvain, Carlos and many many more. Thanks to the numerous footballers who have been part of Lithuanian-Scandinavian Football Club while I was in manager and currently playing.

Special thanks to lecturers at Loughborough for advice or help over the years from Phil Page, Steve C, Gaz P, Ray, Sandie, Paul K, Morty, Harry, Martin and Peter Warwick.

Thanks to all technical help from the two Marks, John K, Alistair, and safety Dave, Trevor and Mrs Stein (Swansea Mass Spec service). Special thanks to Jon for all his glass blowing and fun conversations as well as Wendy and Andy in the 4th floor. Thanks to all those who have made me coffee in the EHB plus my two favourite ladies from Sophies.

Plus thanks to the support of the girls who put up with me at various points over the years at university and all the other people who’s names I should have put in, sorry!
“Follow those dreams as far as possible and try to do that thing that really interests you and you feel is worthwhile”

Fred Sanger the only two-time winner of the Noble Prize for chemistry (1958 and 1980)
Abstract
Investigations into radical and palladium (0) cyclisations onto the C-2 position of the 3H-quinazolin-4-one moiety have been made. This has led to the syntheses of a number of biologically active quinazolinone natural products using alkyl, heteroaryl and acyl radical cyclisations. The reactions proceeded via a homolytic aromatic substitution mechanism. As such, fully rearomatised products were recovered.

A C-2 radical 3H-quinazolin-4-one building block was also prepared. This turned out to have only limited synthetic applications. Radical cyclisations onto aryl groups were carried out using this building block.

Keywords
Radical, cyclisation, 3H-quinazolin-4-one, deoxyvasicinone, mackinazolinone, luotonin A, rutaecarpine, tryptanthrin
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Å</td>
<td>ångström</td>
</tr>
<tr>
<td>Ac.</td>
<td>Acetyl</td>
</tr>
<tr>
<td>ABCN</td>
<td>1,1'-azobis-(cyclohexanecarbonitrile)</td>
</tr>
<tr>
<td>AIBN</td>
<td>azobisisobutyronitrile</td>
</tr>
<tr>
<td>AMBN</td>
<td>2,2'-azobis-(methylbutyronitrile)</td>
</tr>
<tr>
<td>aq.</td>
<td>aqueous</td>
</tr>
<tr>
<td>Ar</td>
<td>aryl</td>
</tr>
<tr>
<td>atm.</td>
<td>Atmospheres</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>b</td>
<td>broad</td>
</tr>
<tr>
<td>BDE</td>
<td>bond disassociation energy</td>
</tr>
<tr>
<td>bp</td>
<td>boiling point</td>
</tr>
<tr>
<td>Boc</td>
<td>tert-butyloxycarbonyl</td>
</tr>
<tr>
<td>Bu</td>
<td>butyl</td>
</tr>
<tr>
<td>Bn</td>
<td>benzyl</td>
</tr>
<tr>
<td>BEB</td>
<td>(2-bromoethyl)benzene</td>
</tr>
<tr>
<td>ºC</td>
<td>Celsius</td>
</tr>
<tr>
<td>cat.</td>
<td>catalytic</td>
</tr>
<tr>
<td>CoA</td>
<td>coenzyme A</td>
</tr>
<tr>
<td>coe</td>
<td>cyclooctene</td>
</tr>
<tr>
<td>COX</td>
<td>cyclooxygenase</td>
</tr>
<tr>
<td>COSY</td>
<td>correlation spectroscopy</td>
</tr>
<tr>
<td>Cp</td>
<td>cyclopentadienyl</td>
</tr>
<tr>
<td>Cy</td>
<td>cyclohexyl</td>
</tr>
<tr>
<td>d</td>
<td>doublet</td>
</tr>
<tr>
<td>DAHP</td>
<td>D-arabino-heptulosonic acid 7-phosphate</td>
</tr>
<tr>
<td>DIAD</td>
<td>diisopropyl azodicarboxylate</td>
</tr>
<tr>
<td>dba</td>
<td>dibenzylidene acetone</td>
</tr>
<tr>
<td>DCM</td>
<td>dichloromethane</td>
</tr>
<tr>
<td>DDQ</td>
<td>2,3-dichloro-5,6-dicyano-1,4-benzoquinone</td>
</tr>
<tr>
<td>dig.</td>
<td>digonal</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-(dimethylamino)pyridine</td>
</tr>
</tbody>
</table>
DME ethylene glycol dimethyl ether
DMF dimethylformamide
DMSO dimethyl sulfoxide
dppf diphenylphosphinoferrocene
EDG electron donating group
E4P erythrose 4-phosphate
EPSP 3-enolpyruvylshikimic acid 3-phosphate
equiv. equivalent
Et ethyl
EWG electron withdrawing group
GC gas chromatography
h hour(s)
HMBC Heteronuclear multiple bond correlation
HMQC Heteronuclear multiple quantum correlation
HPLC high performance liquid chromatography
IBX iodoxybenzoic acid
IR infra-red
J Joules
k kilo
k_{Cyc} rate of cyclisation
k_{H} rate of H-abstraction
LDA lithium diisopropylamide
lit. literature
m multiplet
Me methyl
min minute(s)
mol moles
mp melting point
Ms mesyl
MS mass spectrum
N Molar
NAD nicotinamide adenine dinucleotide
NADPH nicotinamide adenine dinucleotide phosphate
NBS N-bromosuccinimide
NIS
NMR
NOE
NOESY
o
OATB
p
P
Pd
PEPA
Ph
Phe
PPA
ppm
pr
q
rt
s
SEM
S_{\text{H}2}
SM
S_{\text{N}2}
S_{\text{NAr}}
subst.
t
TBDMS
TBDMSCl
TBAF
THF
Tf
TFA
TLC
TMP
TMS

N-iodosuccinimide
nuclear magnetic resonance
Nuclear Overhauser Effect
Nuclear Overhauser Effect Spectroscopy
ortho
organic ammonium tribromide species
para
phosphate
palladium
phosphoenol pyruvate
phenyl
phenylalanine
polyphosphoric acid
parts per million
propyl
quartet
room temperature
singlet
2-(trimethylsilyl)-ethoxymethyl
substitution, homolytic, second order
starting material
substitution, nucleophilic, second order
substitution, nucleophilic, aromatic
substituted
triplet
tertiary-butyldimethylsilyl
tertiary-butyldimethylsilylchloride
tertiary-butylammoniumfluoride
tetrahydrofuran
triflate
trifluoroacetic acid
thin layer chromatography
2,2,6,6-tetramethylpiperidide
trimethylsilyl
<table>
<thead>
<tr>
<th>Short Form</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tol</td>
<td>toluoyl</td>
</tr>
<tr>
<td>Tos</td>
<td>tosyl</td>
</tr>
<tr>
<td>trig.</td>
<td>Trigonal</td>
</tr>
<tr>
<td>Trp</td>
<td>tryptophan</td>
</tr>
<tr>
<td>Tyr</td>
<td>tyrosine</td>
</tr>
<tr>
<td>TTMSS</td>
<td>tris(trimethylsilyl)silane</td>
</tr>
<tr>
<td>UV</td>
<td>ultra violet</td>
</tr>
<tr>
<td>W</td>
<td>Watt</td>
</tr>
<tr>
<td>X</td>
<td>leaving group</td>
</tr>
</tbody>
</table>
Table of Contents

Chapter 1. Introduction

1. **Free radicals**
1.1 Free radicals
1.2 Radical stability
1.3 Radical polarity
1.4 Regioselectivity of intramolecular radical cyclisations
1.5 Tin hydrides and azo initiators
1.6 Trialkyl boranes as radical initiators
1.7 Silicon and germanium hydrides
1.8 Intramolecular homolytic oxidative radical cyclisations
1.9 Heterocyclic synthesis via intramolecular radical cyclisations
1.10 Introduction to quinazolines and quinazolinones
1.11 Biosynthesis of quinazolines and quinazolinones
1.12 Synthetic developments in quinazoline and quinazolinone chemistry
1.13 Conclusion
1.14 Project objective

Chapter 2. Aryl and Alkyl radical cyclisations onto 3H-quinazolin-4-one

2.1 Aryl radical cyclisations onto 3H-quinazolin-4-one
2.2 Palladium cyclisations onto 3H-quinazolin-4-one
2.3 Radical cyclisations from 3H-quinazolin-4-one onto aryl groups
2.4 Alkyl radical cyclisations onto 3H-quinazolin-4-one
2.5 Introduction to deoxyvasicinone and mackinazolinone
2.6 Radical synthesis of deoxyvasicinone and mackinazolinone
2.7 Investigations onto indium-mediated cyclisations onto 3H-quinazolin-4-one
2.8 Conclusion

Chapter 3. Heterocyclic radical cyclisations onto 3H-quinazolin-4-one

3.1 Introduction to luotonin A
3.2 Radical synthesis of luotonin A
3.3 Introduction to rutaecarpine
3.4 Radical synthesis of rutaecarpine
3.5 Conclusions
Chapter 4. Acyl and alkenyl radical cyclisations onto 3H-quinazolin-4-one
4.1 Introduction to tryptanthrin
4.2 Radical synthesis of tryptanthrin
4.3 Radical synthesis of six-membered ring tryptanthrin analogue
4.4 Investigations into alkenyl and vinyl radical cyclisations onto
 3H-quinazolin-4-one
4.5 Conclusions

Chapter 5. Syntheses of 2-bromo-3H-quinazolin-4-one
5.1 Investigation into syntheses of a C-2 radical quinazolinone building block
5.2 Introduction to bromination of thioamides and thioureas
5.3 Reactions and bromination of 2-mercapto-3H-quinazolin-4-one
5.4 Conclusion

Chapter 6. Experimental
6.1 General experimental
6.2 Experimental for Chapter 2
6.3 Experimental for Chapter 3
6.4 Experimental for Chapter 4
6.5 Experimental for Chapter 5

Appendix A. X-ray crystallography
Appendix B. Copies of publications
References
Chapter 1. Introduction

The research described in this thesis involves the use free radicals as reactive intermediates in the synthesis of 3H-quinazolin-4-one natural products. Therefore, the following introduction will include a review of free radical chemistry in organic syntheses, followed by a description of quinazolinone natural products, drugs, biosynthesis and organic syntheses of this moiety.

1.1 Free radicals

Radicals are usually defined as atoms or compounds containing an unpaired electron. Hence by definition radical species contain an odd number of electrons (e.g. H· and Br· contain 1 and 7 electrons in their outer valence shell respectively). This single unpaired electron is denoted by a dot. They are usually very unstable and highly reactive intermediates. This is due to their strong desire to pair with another electron to form a 2-electron covalent bond or lone pair.

However, not all radicals are highly reactive and NO· or O₂ are good examples of naturally occurring non-reactive radicals. Molecular oxygen is best thought of as a diradical, containing two unpaired radicals and is usually considered as \(-\cdot O--O\cdot\). Being a diradical O₂ contains 12 valence electrons i.e. an even number of electrons unlike the earlier definition.

Radicals can be formed by the homolysis or homolytic cleavage of a chemical bond. The bonding electrons are divided evenly and represented by single headed arrows (scheme 1).

\[
\begin{align*}
\text{X} & \text{Y} \\
\text{X} & \rightarrow \\
\text{Y} & \rightarrow
\end{align*}
\]

Scheme 1. Radical formation and combination.

As radicals are inherently neutral, they do not suffer from solvent effects that are observed in ionic reactions. It is this inherent neutrality that gives radicals a major advantage over ionic intermediates, as a result high functional group tolerance is often observed. A radical can become charged though if reduced by an electron source to an anion, or loss of an electron producing an oxidised cation. Being uncharged radicals don’t have surrounding solvent shells. The exception to this is radical anions and cations that have counter ions.
1.2 Radical stability

The formation of a radical is dependant on its thermodynamic stability. This can be empirically considered as its bond dissociation energy (BDE), i.e. the energy required for homolysis of the bond. An understanding of the BDE is crucial in organic synthesis in predicting a radical reactions outcome. The lower the BDE value the more easily the bond is cleaved. Some BDE values are given (table 1).

Table 1. Bond dissociation energy values.¹

<table>
<thead>
<tr>
<th>Bond type</th>
<th>H–H</th>
<th>H–F</th>
<th>H–Cl</th>
<th>H–Br</th>
<th>H–I</th>
<th>H–OH</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDE (kJ mol⁻¹)</td>
<td>435</td>
<td>565</td>
<td>431</td>
<td>364</td>
<td>297</td>
<td>498</td>
</tr>
</tbody>
</table>

Although radicals are considered electronically neutral, they can still be thought of as electron deficient. As a result, they are generally stabilized by electron donating substituents. This means they display the same trend in stability as carbocations (figure 1).

![Stability of carbocations and radicals.](image)

1.3 Radical polarity

The polarity of a radical is different to that of an ion. For an ion an EDG would aid the formation of an electrophilic centre and an EWG would aid the formation of a nucleophilic centre (figure 2). For radicals both electron withdrawing and donating groups can be used to stabilize the radical. The substituents then play a vital role in influencing the polarity of the radical. Electron donating groups cause the radical to be nucleophilic in nature ¹, whereas an EWG creates an electrophilic radical ². This reversal of reactivity can be described by the term *umpolung*.
1.4 Regioselectivity of intramolecular radical cyclisations

The reaction of a hex-5-en-1-yl radical 3 has two regio possibilities for cyclisation (scheme 2).\(^1\) However it is the 5-exo-trig cyclised product 6 which predominates over the 6-endo-trig cyclised product 7. The 6-endo-trig cyclisation is the thermodynamic product, because the secondary intermediate radical 5 is more stable than the primary intermediate radical 4 (which forms the 5-exo-trig product).

Scheme 2. Relative product ratios from hex-5-en-1-yl radical 5-exo: 6-endo (49:1).
This appears to be a contradiction. We know that the 5-exo cyclisation is the major reaction product. The explanation for this lies in the more favoured transition state of the 5-exo radical. This transition state is described as the 'Beckwith model' (figure 3).²

![Figure 3. Favoured 5-exo chair like transition state 'Beckwith model'.](image)

This mode of cyclisation is observed for many other related systems. Baldwin's rules can be used to predict the size of ring formation.³ Cyclisations onto alkynes are often slower than those onto alkenes. If a heteroatom is placed into the carbon chain this can greatly affect the regio selectivity. For example if nitrogen is inserted in the cyclising chain then the bond angle C—N—C becomes smaller (107.8 °) compared to the tetrahedral C—C—C angle (109 °). The C—N carbon bond length is also shorter (1.47 Å) than the C—C bond length (1.52 Å). As a result the radical is closer to the internal carbon providing an even better overlap in the 5-exo transition state and higher yield of the 5-exo product.

1.5 Tin Hydrides and azo initiators

There are a great variety of the reagents that are used in radical reactions. Commonly group 14 organometallic hydride reagents (often tin hydrides) are used in conjunction with azo initiators. The most common radical reagent is tributyltin hydride. This reagent readily facilitates either inter or intra-molecular radical reactions. Aryl and alkyl radicals are commonly generated from halides, selenides or sulphides. To minimize any undesired termination steps, low concentrations of radicals are used. This can be achieved by addition of Bu₃SnH with a syringe pump, for example.

As stated, initiation is commonly carried out using azo compounds such as AIBN (scheme 3). Usually 5-10% initiator is required. There are examples where high concentrations of initiator must be used, and these are discussed later. AIBN can be thermally cleaved and has a half life of 1 h at 81 °C.¹ This half life drops to 30 min in refluxing toluene (110 °C). The rate of forming the isobutyronitrile radical is much slower than rates of other radical propagation steps in the chain reaction. The isobutyronitrile radical abstracts hydrogen from Bu₃SnH. This
is a strongly favoured reaction as a strong C—H bond is formed at the expense of a weak Sn—H bond.

Scheme 3. Initiation of azo compounds and their resonance stability.

Importantly, the isobutryronitrile radical is tertiary and resonance stabilized. This decreases its expected reactivity. As a result, the abstraction of the hydrogen occurs solely from the Bu₃SnH and not any other organic compounds in the reaction containing stronger C—H bonds. This gives a good functional group tolerance, compared with many other ionic reaction processes.

The newly formed tributyltin radical can react with alkyl or aryl halides (except fluorides), selenides and sulphides. Formation of a strong tributyltin halide bond over a weaker carbon halide makes this reaction a highly favoured reaction (scheme 4). Depending on the leaving group on the carbon the rate of abstraction can vary widely. Stronger bond strengths in aryl and vinyl halides, means chlorides are rarely used as precursors.
Scheme 4. Chain reaction sequence of isobutyronitrile radical and Bu₃SnH.

Unwanted side reactions may occur, for instance, with terminal alkynes, Bu₃Sn· addition is commonly observed and can disrupt the chain reaction.

Step v) is known as reduction and can be minimized by using low concentrations of Bu₃SnH (scheme 5). In the case of intramolecular reactions this is less of a problem. Here entropy will favour a unimolecular reaction over a bimolecular one with the Bu₃SnH. In practical terms the concentration of Bu₃SnH in the reaction can be kept low by slow addition using a syringe pump over several hours. At first glance step vi) looks like a problem, as we do not want to reform a carbon halogen bond. However, the reaction of R· with a halide causes no problem. This is because a further reaction with Bu₃Sn· will lead to the initial starting radical being reformed. Organohalide products are rarely isolated when using Bu₃SnH.

Scheme 5. Undesired propagation reactions.
There are some major drawbacks to using Bu₃SnH. Breakdown products can be very difficult to separate from the reaction. There are ways of avoiding stoichiometric amounts of Bu₃SnH. Using a reducing agent such as NaBH₄ (scheme 6) means Bu₃SnH can be used catalytically. This readily reduces the tin-halogen bond to a tin-hydrogen bond. However this isn’t always a viable option if sensitive functional groups are present in the reaction. Corey and Suggs first described this reaction in 1975. They found that Bu₃SnH (10 mol%) and stoichiometric amounts of NaBH₄ were suitable to dehalogenate bromides and iodides in good yield.⁴

\[
\begin{array}{c}
\text{RH} \quad \text{NaBH}_4 \\
\text{Bu}_3\text{SnX} \\
\text{RX} \quad \text{Bu}_3\text{SnH} \\
\text{NaX} + \text{BH}_3
\end{array}
\]

\textbf{Scheme 6.} Regeneration of Bu₃SnH using NaBH₄.

1.6 Trialkylboranes as radical initiators

Azo compounds such as AIBN, ABCN and AMBN have proved to be very popular free radical initiators for a long time. However, the use of organoborane species has been pioneered by Brown.⁵ They pioneered the use of organoborane species in radical mediated reactions. Brown later went on to win the Nobel Prize in 1979 for his work on organoborane reagents in organic synthesis.

Trialkylborane species are now very popular initiating reagents as they easily undergo bimolecular homolytic substitution at the boron atom by oxygen.⁶ The alkyl radical can be displaced by a range of radicals such as peroxyl or thyl radicals.⁶ They are thermodynamically favoured due to the high bond strengths of the newly formed B—X bond (table 2).
Table 2. Relative BDE for various borane species.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Bond</th>
<th>BDE (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Et₃B</td>
<td>B—C</td>
<td>344</td>
</tr>
<tr>
<td>(EtO)₃B</td>
<td>B—O</td>
<td>519</td>
</tr>
<tr>
<td>[(CH₃)₂N]₃B</td>
<td>B—N</td>
<td>422</td>
</tr>
<tr>
<td>(Et₅S)₃B</td>
<td>B—S</td>
<td>377</td>
</tr>
</tbody>
</table>

One of the most common organoborane reagents used in radical chemistry is triethylborane, which readily undergoes auto-oxidation in air.⁶ Renaud has proposed a mechanism of this auto-oxidation. Alkyl radical 9 is liberated after a homolytic substitution reaction between triplet oxygen and triethylborane 8 (scheme 7). The alkyl radical 9 is then believed to react with oxygen to form a peroxyl radical 10. This radical can undergo a S₁₂ reaction producing a monoperoxyborane species 11 (the rate constant for this reaction has been recorded) can also occur. The monoperoxyborane 11 species can then react with oxygen to produce the diperoxyborane species 12, which is believed to be inert to oxygen. Alternatively, a reaction can take place where the monoperoxyborane species 11 reacts with Et₃B yielding a dialkyl borinate species 13 which can undergo a further reaction with oxygen to yield the trialkyl borate species 14.

\[
\begin{align*}
\text{Initiation} & : & \text{R}_3\text{B} + \text{O}_2 \rightarrow \text{R}_2\text{BOO}^- + \text{R}^- \\
\text{Propagation} & : & \text{ROO}^- + \text{R}_3\text{B} \rightarrow \text{ROO}^- \text{BR}_2 + \text{R}^- \\
\text{Further reactions} & : & \text{(ROO)BR}_2 + \text{O}_2 \rightarrow \text{ROO}^- \text{BR}_2 + \text{R}^- \\
\end{align*}
\]

Scheme 7. Proposed mechanism for auto-oxidation of trialkylborane species.
Trialkylborane reagents have a number of advantages over azo-initiators such as AIBN. For instance, reactions can be carried out at low temperatures (down to \(-78^\circ\text{C}\)). This allows enantioselective reactions to be carried out. Residual AIBN can make purification difficult, this is not so using trialkylborane species.

1.7 Silicon and Germanium hydrides

Due to the toxicity problems and purification problems of \(\text{R}_3\text{SnH}\) an attractive alternative is to use tri-organosilicon hydrides instead. Like tri-organotin hydrides the \(\text{R}_3\text{Si}\) radical will react in the same fashion with organohalides, selenides and sulphides at similar rates. The \(\text{Si}--\text{H}\) bond is 65 kJ mol\(^{-1}\) stronger than the \(\text{Sn}--\text{H}\) bond. As a result their reaction with alkyl radicals is slower. This can be overcome in two separate ways.

The first involves the addition of a catalytic amount of alkyl thiol to the reaction. Alkyl radicals can more easily abstract hydrogen from the thiol.\(^7\) This results in a stronger carbon hydrogen bond over a weaker sulfur hydrogen bond. The silicon hydrogen bond is similar in strength to the thiol hydrogen bond. This means that it is not the BDE here that is playing the crucial role. It is by looking at polarities that we can gain insight into how the reaction proceeds. The hydrogen of the thiol can be thought of as electron poor due to the electronegative sulfur. As a result a nucleophilic alkyl radical will rapidly extract this hydrogen. The hydrogen in the \(\text{Si}--\text{H}\) can be thought of as electron rich because electropositive nature of silicon. This means the electrophilic thiyl radical will look to abstract the hydrogen from the \(\text{Si}--\text{H}\). This reaction proceeds despite not being an exothermic one. The silyl radical can then undergo halogen abstraction forming a strong silicon halide bond.

Secondly, the silicon hydride bond can be weakened by the addition of bulky substituents. This forms a more hindered and stable silyl radical. The most common reagent of this type is \(\text{tris}-(\text{trimethylsilyl})\text{silane (TTMSS)}\) and is often used over \(\text{Bu}_2\text{SnH}\) (scheme 8).

The slower rate of hydrogen abstraction of \(\text{Si}--\text{H}\) compared to the \(\text{Sn}--\text{H}\) can help lower amounts of reduced product in a reaction. Silicon by products are easier to remove than their tin counter parts during purification. As with tri-organotin hydrides, the addition of a reducing agent like \(\text{NaBH}_4\) can be used. This allows silicon hydrides to be used catalytically.
Another reagent of much interest is tributylgermanium hydride. Like silicon hydrides they have lower toxicity than tin hydrides, ease of work up and good stability. Tributylgermanium hydride has recently been used to generate radicals from iodides, bromides, activated chlorides and phenyl selenides. Bowman has shown similar yields of cyclised product can be obtained using Bu₃GeH as compared with Bu₃SnH (scheme 9). Initial studies indicate as with tin and silicon, the use of NaBH₄ enables catalytic amount of the Bu₃GeH to be used. The rate of hydrogen abstraction from the germanium is 20 times slower than Bu₃SnH. As with silicon hydrides, polarity reversal catalysis using thiols can also be use.

Scheme 9. Comparison between Bu₃GeH and Bu₃SnH.

1.8 Intramolecular homolytic oxidative radical cyclisations

Our work is concerned with studying intramolecular radical cyclisation reactions onto the quinazolinone moiety 16 (scheme 10) from halide precursors such as 15. Importantly, we hope to achieve rearomatisation of the quinazolinone radical intermediate 17, in the presence of reagents such as Bu₃SnH. These reaction conditions are reductive, yet we are aiming for rearomatisation. This would involve oxidation to form quinazolinone 18.
However, Bu₃SnH mediated radical cyclisations of arenes and heteroarenes can produce rearomatised products in good yield. The mechanism of such reactions can be described as intramolecular homolytic aromatic substitution. Reactions like these proceed with the initial Bu₃Sn· producing the R· radical, which then adds onto an aromatic ring. This yields an intermediate substituted cyclohexadienyl radical 19 (figure 4). It has been widely debated the exact mechanism that leads to fully aromatic products 21. Bowman et al. has extensively investigated this mechanism.⁹ There have been many possible explanations such as disproportionation of 19 or hydrogen-atom transfer by the Bu₃SnH producing rearomatised 21. Some have argued the reaction may go via a dihydro compound such as 20, which becomes oxidised on work up. However, dihydro compound 20 does not readily oxidize in air.¹⁰

Figure 4. Key structures in rearomatisation arguments.

One fact is common to many of the reported examples of intramolecular homolytic aromatic substitution is the need for stoichiometric amounts of the radical initiator. Bowman et al. have carried out detailed work in this field and correlated reaction products of imidazole 22 to
amounts of initiator used (scheme 11). The use of 1H NMR spectroscopy with an internal standard revealed a clear relationship between the ratio of AMBN added and the amount of cyclised product (e.g. AMBN: 1.0 equiv, cyclised 23 [92%], reduced 24 [0%]; 0.5 equiv, cyclised 23 [43 %], reduced 24 [53%]; 0.25 equiv, cyclised 23 [8%], reduced 24 [9 %]). This suggests along with work carried out by Curran et al. that it is the initiator that acts as the oxidizing agent in these reactions. However the exact mechanism is still unknown.

1.9 Heterocyclic synthesis via intramolecular radical cyclisations
There is a rich history of radical cyclisations being employed in the synthesis of a wide range of heterocycles. Some noteworthy examples will now be discussed in relation to various heterocyclic systems. A wide ranging type of radical reagents will be shown. Some of these can be described as nucleophilic aromatic homolytic substitutions radical reactions.

The chemistry of pyridines has been studied for over a hundred years and examples of intermolecular oxidative radical substitution reactions have been reported by Minisci. Murphy et al. has reported an intramolecular radical substitution reactions of pyridinium rings (scheme 12). Murphy reached [6,6]-bicyclic rearomatised pyridinium 26 from the simple alkylated pyridinium salt 25. He noted the need for excess initiator to reach rearomatised pyridinium 26.
Scheme 12. Murphy’s radical cyclisations onto pyridinium salts.

This reaction was extended to formation of a [6,5]-bicyclic system 28 from pyridinium salt 27 (scheme 13). On hydrogenation of the [6,5]-bicyclic system 28, the indolizidine backbone 29 is formed. This is an important backbone for anti-viral drugs such as castanospermine 30. Analogous [6,7]-bicyclic ring systems were also formed by Murphy.

Jones et al. has carried out work using pyridine centred radicals from 2-bromo-N-alkyl pyridinium salts 31 and 34 (scheme 14). Pyridinium salts 31a and 31b gave rise to 5-exo-trig cyclisation, to give [6,5]-bicycle 32 and 6-exo-trig cyclisation to give [6,6]-bicycle 33 products. These cyclisations again allowed easy access to indolizine and quinolizidine skeletons with subsequent hydrogenation. When steric bulk was added to the alkene 34, a mixture of 5-exo-trig product 35 and 6-endo-trig product 36 and were obtained.
Scheme 14. Radical cyclisations of 2-bromopyridinium salts.

Cyclisation of pyridinium radical 37 onto an aromatic ring proceeded in moderate yield (scheme 15). This reaction produced the fully rearomatised benzene ring 38 and reduced product 39. Jones could not successfully extended this work to include cyclisations onto alkynes.14

Scheme 15. 5-Membered radical cyclisation onto benzene.

An unusual radical double ipso substitution reaction on pyridine has been used by Zhang and Pugh in the synthesis of azacoumarins 45 from bromoaryl benzoate pyridine precursor 40 (scheme 16).15 The mechanism proposes an initial 1,5 ipso attack of the aryl radical 41 at the 2-position of the pyridine. This is followed by the opening of the lactone 42 to form the acyl oxy radical 43. This acyl oxy radical then undergoes a 1,6 ipso attack displacing the methoxy group on the pyridine ring to form the tricycle 45. The displacement of the methoxy group was found to be crucial in reaching the azacoumarin core. Further studies on unsubstituted
methoxy pyridines predominantly revealed reduced products, and a substantial fall in yields of azacoumarins.

Scheme 16. Zhang and Pugh's unusual radical double ipso substitution reaction on pyridine.

Radical cyclisations of pyrroles have also been extensively investigated. De La Cruz et al. showed that aryl radicals cyclise onto pyrroles 46 (scheme 17).16 The pyrrole nucleus requires activation with an electron withdrawing group (aldehydes or sulfones) without which cyclised pyrrole 47 was not observed and only the reduction product 48 isolated.

Scheme 17. Aryl radical cyclisations onto pyrroles.

Likewise it was found that by moving the EWG on the pyrrole ring to C-3 49 no cyclisation occurred only reduction to pyrrole 50 (scheme 18). This demonstrates how finely balanced radical cyclisations can be. De La Cruz also postulates the mechanism of oxidative radical cyclisation is likely to be that proposed by Bowman.9
Scheme 18. Failed radical cyclisation onto pyrrole.

The cyclisation of aryl radicals onto pyrroles has been further investigated by Jones et al.17 It was the interest in synthesis of the potent gastric ATPase inhibitor 51 that led to this work (figure 5).

Figure 5. Pyrrole containing gastric inhibitor.

The regiochemistry of aryl radical cyclisations onto pyrrole rings proved interesting (scheme 19).17 The two nitrogen protecting groups \(R \) and \(R^1 \) proved to be very influential to reaction products. When the pyrrole nitrogen was unprotected (\(R^1 = H \)) 52a, a mixture of pyrroloquinoline regioisomers 53a and 54a from a 6-\textit{endo} cyclisation were isolated. When \(R^1 \) was electron withdrawing, as in ester 52b, a spiropyrrolidinyloxindole product 55b (the result of a 5-exo reduction radical cyclisation) and the 6-\textit{endo} product 53b were observed. When the pyrrole was protected with an EDG, as in methyl 52c only one regioisomer product 53c was recovered.
Scheme 19. Jone's regioselective radical cyclisations onto pyrroles.

Bicyclic heterocycles such as quinolines have provided interesting results to radical chemists over the years. Harrowven et al. has investigated radical cyclisations onto the C-2, C-3 and C-4 of quinolines (scheme 20).18 Radical cyclisation of the 2-substituted quinoline 56 resulted in selective cyclisation onto the C-3 position, forming pentacycle 57 in good yield. With 4-substituted quinoline 58 the sole reaction product was cyclisation onto C-3, resulting in pentacycle 59. The cyclisation of 3-substituted quinoline 60 in contrast produced a mixture of cyclisation onto C-4 and C-2, resulting in pentacycles 57 and 59. In all cases fully rearomatised products were observed. This work also highlights how radical methodology can be used to create large polycyclic heterocyclic compounds.
Scheme 20. Harrowven's quinoline radical cyclisations using Bu₃SnH/AIBN.

Quinoline centred radicals have also been studied. Formal synthesis of the natural product target camptothecin 61 (figure 6) has been completed by Bennasar et al. using a quinoline radical.¹⁹

Figure 6. Important anticancer drug camptothecin.

This simple approach allowed access to the analogue of camptothecin, 20-deoxycamptothecin 64 (scheme 21). The key step involved generation of a C-2 quinoline radical from 62 followed by a 5-exo-trig intramolecular radical cyclisation forming tetracyclic quinoline pyridone 63. Use of TTMSS and AIBN brought about radical arylation and desulfurisation in high yield.

One of the most common heterocyclic systems to be investigated by radical chemists are indoles. With so many natural products containing the indole core this is not surprising. Bremner and Sengpracha have utilised an iodoacetamide based radical in the synthesis of paullone type natural product 66 which is a potent cyclin dependant kinase inhibitors (scheme 22). These natural products are traditionally made using a nitrogen carbon bond forming reaction between C-6 and N-5. Bremner’s route involved employing a radical cyclisation onto the C-3 carbon of indole core 65. The desired paullone product 66 was produced in high yield (53%) using mesitylene as a solvent (high boiling).

Scheme 22. Bremner and Sengpracha’s indole cyclisations.

When using toluene a mixture of cyclised 66 and spiro compound 67 were retrieved from the reaction (scheme 23). The formation of the spiro type indole 67 products is not unique in radical cyclisations onto indoles. Further examples will be shown later.
Scheme 23. Spiro cyclic indole product in toluene.

Miranda et al. have used a tandem carbonylation/radical cyclisation onto an indole core (scheme 24).21 By treating indole 68a under the radical conditions and 80 atmospheres of CO pressure, Miranda successfully generated an acyl radical. Cyclisation of the acyl radical onto the C-2 position of the indole core 69a was then observed, along with reduction and carbon monoxide trapped product 71. Addition of an aldehyde at the C-3 position of indole 68b increased the yield of cyclised indole 69b along with only reduced product 70. In this respect the work shares similarities with De La Cruz’s pyrrole cyclisations previously discussed (scheme 17 and 18). The two reduced products 70a and 70b were also isolated along with alkyl carbonylated indole 71.

Scheme 24. Miranda’s tandem carbonylation/radical cyclisation onto indole.

Although not nucleophilic homolytic aromatic substitution reactions, the next two examples are applicable in this general discussion through there use of radical indole synthesis. The first
example by Murphy employs a radical synthesis of indole core in the formal synthesis of pentacyclic (±)-aspidospermidine 74 (scheme 25). The aryl radical precursor 72 underwent a 5-exo radical cyclisation onto the nearby alkene. This was followed by another 5-exo cyclisation onto the azide, with the elimination of nitrogen gas. The resulting aminyl radical picks up a hydrogen atom to yield tetracycle 73. Minor elaboration then lead to a formal synthesis of (±)-aspidospermidine 74.

![Scheme 25. Key tandem radical cyclisation reaction leading to (±)-aspidospermidine.](image-url)

Generation of an indol-2-yl radical is of great interest and has been described many times in the literature. Gribble et al. has successfully used an indol-2-yl radical to generate hexahydropyrrolo[3,4-b]indole 79 (scheme 26). The bromination of the C-2 carbon of indole precursor 75 was achieved using the Bergman methodology for N-carboxy-indoles. The radical cyclisation proceeds via a 1,5 H-abstraction of the indol-2-yl radical 76 to create the α-amidoyl radical 77 which then undergoes a 5-endo-trig cyclisation onto the indole double bond to form 78. Reintroduction of the double bond in indole 78 was carried out using DDQ to form the fully aromatic indole 79. The reduced indole product 80 was also obtained (42%).
Scheme 26. 1,5 Radical translocation followed by 5-endo-trig cyclisation to the indole C-2 position.

Bennasar has extended the interest of this work by examining the behaviour of 2-indolylacyl radicals onto aromatic rings (scheme 27). The 2-indolylacyl radical was generated from the corresponding seleno esters 81. Crich has reported the use of seleno esters in radical chemistry before. The 2-indolacyl radical doesn’t undergo decarbonylation. This is because of stabilization provided by the indole core. Cyclisations of the 2-indolylacyl radical was limited to the formation of the 6-membered ring product 82. Use of Bu₃SnH gave rise to only reduced product 83 (90%). By using (Bu₃Sn)₂ (0.2 mol%) the yield of indole tetracycle 82 was increased (40%), although reduced product 83 (10%) and starting material (25%) were also recovered. The desired tetracycle 82 was formed as the sole reaction product (65%) after increasing the amount of (Bu₃Sn)₂ in the reaction to 2.2 mol equivalent % with respect to starting material.

Scheme 27. 2-Indolylacyl radical cyclisation to form indole tetracycle.
Despite considerable effort by Bennasar, the work could not be extended to form 5 or 7-membered tetracycles from the precursors 84 and 85 (scheme 28). There was no apparent reason for these failures. 27

Scheme 28. Failed cyclised starting materials.

An example of a spirocyclic heterocycle has already been shown by Bremner and Sengpracha's indole cyclisations forming the spirocycle 67 as an unwanted side product (scheme 23). 20 These spirocyclic indole cores constitute a wide range of natural products. One such is mytraginine pseudoindoxyl 86 (figure 7).

Figure 7. Spirocyclic indole natural product.

Baldwin et al. recently investigated radical dearomatisation of indoles and benzofurans to access these heterospirocyclic cores in high yield (scheme 29). 28 When indole 87a and benzofuran 87b were treated with Bu₃SnH, the resulting aryl radicals formed the desired ipso-type spirocyclic indole product 88a and benzofuran 88b in good yield.
Scheme 29. Aryl radical ipso 5-exo-trig cyclisation to reach spirocyclic cores.

Formation of a stable intermediate benzylic radical on the indole and benzofuran C-3 aided formation of the desired products. Baldwin then investigated cyclisation of vinyl groups onto these systems, an unexpected result appeared. The cyclisation of the indole 89 proceeded well although the spirocyclic indole 90 was formed in lower yield than previous aryl analogue 88a (scheme 30). 28

Scheme 30. Vinyl radical ipso 5-exo-trig cyclisation onto indoles and benzofuran.

Cyclisation of the benzofuran 91 yielded the unexpected phenol 92 (scheme 31). 28 A mechanism for this product 92 was proposed involving a fragmentation of the spirocyclic intermediate forming a stable phenoxy radical. The authors attribute the difference in the reaction pathways of indole 89 and benzofuran 91 to the extra lone pair stability provided by the nitrogen in indole.
Examples of radical cyclisations onto sulphur containing heterocycles have also been carried out. For instance Ganguly et al. compared radical cyclisations onto thiophenes, carboxamides, furans and indoles to obtain a range of products.29 Aryl radical cyclisation onto thiophene and alkene substituted 93 resulted in the spiro thiophene reduced product 94 (62\%) and the 5-exo-trig product 95 onto the alkene (20\%) (scheme 32). This indicated that addition of the radical to the vinyl group or thiophene proceeded well, but possible rearrangement to fused aromatic compound 96 was unfavourable.

In the case of cyclisation onto the carboxyamide furan 97 only the spiro reduced furan compound 98 was obtained (scheme 33). The spiro furan is formed in similar yield to the previous thiophene cyclisation 94, even though there is no competing pendant alkene for the radical to cyclise onto.29
These results contrast with cyclisations carried out onto indole 99 (scheme 34). Here the major product was the fused tetracycle compound 100 (47%). Minor products from this reaction included the cyclised reduced products 101 (20%) and 102 (16%) as well as the spiro compound 103 (8%).

Scheme 34. Aryl radical cyclisation onto indole.

Heterocycles containing three heteroatoms have also been the subject of investigations by radical chemists. Marco-Contelles et al. have made sugar templates using 5-exo-trig radical cyclisations onto the triazole 104 (scheme 35). The 5-exo-trig cyclisation of the triazole 104 was only feasible with the activation of the triazole with an ester group, yielding the cyclized triazole 105 and the reduced triazole 106.

Scheme 35. 5-Membered ring radical cyclisations onto triazole.
In the case of 6-exo-trig cyclisation of the triazole 107 no activation was required (scheme 36). 6-Exo-trig cyclisation was found to be more favourable than 5-exo-trig ones. Here higher yields of the cyclised triazole 108 were recovered over the reduced triazole 109 (the yields for this reaction were based on hydrolysis of the AcO group).

Scheme 36. 6-Membered ring radical cyclisation onto triazole.

Chemists have often turned to radical methodology when other synthetic methods have failed, without the need to alter precursors. When a key Heck reaction of the aryl iodide 110 could only be carried out in poor yield, Cossy et al. quickly altered their strategy towards (±)-γ-lycorane by using radical methodology (scheme 37).31 Although the final 6-exo-trig radical cyclisation was achieved in only a modest yield to (±)-γ-lycorane template 112 (30%) it was higher than previous palladium Heck conditions. Reduced compound 111 was also recovered from the reaction.

Scheme 37. Synthesis of (±)-γ-lycorane using an unplanned radical cyclisation.
Formation of a radical on a heteroatom can be very advantageous in organic synthesis. In the synthesis of (±)-γ-lycorane Cossy also used a 5-exo-trig aminyl radical cyclisation to form the octahydro indole 114 from aminyl chloride 113 in the syntheses (scheme 38).

\[\text{Scheme 38. Aminyl radical cyclisation.} \]

Steric bulk can play an important role in the formation of products under radical cyclisations (shown in Jones work scheme 14). Orito et al. have shown how a favourable 6-endo cyclisation can be made to undergo the less favourable 5-endo radical cyclisation (scheme 39) by the use of steric bulk. With 3,4-dihydroisoquinoline 115 the effect of two neighbouring methoxy groups resulted in just one product 5,6-dihydroindolo[2,1-a]-isoquinoline 116.

\[\text{Scheme 39. Use of steric bulk to form the unfavoured 5-endo product.} \]

By removal of one of these methoxy groups 117 two products were achieved, the fully rearomatised 6a,7-dehydroaporphine 118 resulted via a 6-endo cyclisation and a small amount of 5,6-dihydroindolo[2,1-a]-isoquinoline 116 was obtained (scheme 40). Examples of such unfavoured 5-endo radical cyclisations onto nitrogen atoms of a CN double bond have been reported before, although rare.
Scheme 40. Removal of steric bulk to give two radical cyclisation products.

Heterocycles containing 7-membered rings have also been formed by radical cyclisation reactions. Nadin et al. have shown 5, 6 and 7-membered ring formation of tricyclic pyridones (scheme 41). The yields of tricyclic 120 appeared to be remarkably independent of ring size. Unfortunately this work could not be carried out using the alkyl radical analogues of 119. This could be attributed to the greater drive to rearomatise by aryl radicals.

Scheme 41. 5-, 6- and 7-membered ring formation.

The ability to form several bonds in one step has attracted synthetic chemists to cascade reactions for a long time. There are numerous examples where cascade reactions have been carried out using radical cyclisations. One such example is the synthesis of the natural product (S)-mappicine 123 (scheme 42) by Curran et al. The key radical reaction involved a [4+1] cascade reaction of isonitrile 121 and bromo pyridone 122. This is a rare example in radical cascade chemistry, as the initial step is inter-molecular. The addition onto the isonitrile has been utilized by Curran for several other notable natural product syntheses including the anticancer agent camptothesin. Interestingly, when the reaction was carried out using a ketone (in place of the hydroxy group) on bromopyridone 122 the reaction yield was lower.
Nanni \textit{et al.} have carried out the synthesis of cyclpentaquinoloxaline 126 using a radical cascade reaction (scheme 43).36 Alkyl iodide 124 and biphenyl isonitriles 125 were found to cyclise using \((\text{Me}_3\text{Sn})_2\) to form cyclopentaquinoloxaline 126. The associated amine 127 was also isolated from the reaction.

The formation of amine 127 is not obvious. It is postulated that intermediate imidoyl radical 128 (arising from electron then proton transfer) picks up a radical species and then hydrolyses to the amine 127 (scheme 44).36
Bowman et al. has also used a radical cascade reaction in the total synthesis of ellipticine 135 (scheme 45). The key radical intermediate was the imidoyl radical 130. This was generated from the imidoyl selenide 129, which is stable and easy to handle. The imidoyl radical firstly undergoes a 5-exo-dig cyclisation to form the alkenyl radical 131. This radical may then proceed either by a 5-ipso-trig cyclisation to form spiro intermediate 133 followed by neophyl rearrangement reaction or a 6-endo-trig cyclisation to form intermediate 132. Both routes lead to the tetracycle intermediate 134. On tautomerism this leads to ellipticine 135. The mechanism of H-abstraction has previously been discussed (section 1.8).

Scheme 45. Radical cascade synthesis of ellipticine.
1.10 Introduction to quinazolines and quinazolinones

We are interested in developing and testing radical methodology to form 2,3-cyclised-3H-quinazolin-4-ones 18 (figure 8). 3H-Quinazolin-4-ones 136 comprise of a 3H-pyramidin-4-one (A) ring and fully aromatic benzene (B) ring. It closely relates to quinazoline 137, which also appear in many natural products and pharmaceutical drugs substitution. While it can be said that the A ring of a quinazoline is fully aromatic, the same cannot be said of 3H-quinazolin-4-ones. During the course of our studies we have found few examples of radical methodology being employed in the synthesis of quinazolines or quinazolinones. We therefore feel our investigations are timely. Syntheses of quinazolines and quinazolinones have recently been reviewed by Guiry. 38

Figure 8. 3H-Quinazolin-4-ones and quinazoline structures.

Both 3H-quinazolin-4-ones and quinazolines have shown a vast array of biological activity over the years. 39 The 2,3-disubstituted-3H-quinazolin-4-one skeleton therefore, has become particular interest, and provides a rich source of synthetic targets. Herein, we concentrate on the chemistry of quinazolines and quinazolinones.

The 3H-quinazolin-4-one moiety has been extensively used as a drug like scaffold in medicinal chemistry and is therefore, considered ‘privileged’. 39 The term ‘privileged’ was first coined by Evans et al. in 1988 and was defined as “a single molecular framework able to provide ligands for diverse receptors”. 40

The rich variety of quinazoline drugs stem from the countless natural products that contain the quinazoline moiety. The chemistry of recently isolated naturally occurring quinazolinones has been reviewed by Mhaske and Argade. 41 One of the earliest isolated quinazoline natural products was vasicine 138. It was first isolated by Hooper in 1888, from Adhatoda vasica (an Indian plant) and the seeds of Peganum harmala. It is unsaturated at the C-4 position of the quinazoline (figure 9). 42 Febrifugine 139 (first fully characterised by Koepfli et al.) was one of the first 3H-quinazolin-4-ones to be isolated. 43 Contained within the powdered root of

32
Dichroa febrifuga, which had a long history of being used in Chinese medicines such as Ch’ang Shan. Febrifugine and was shown to possess anti-malarial properties.43

![(+)-vasicine](image1.png) \hspace{1cm} ![(+)-febrifugine](image2.png)

Figure 9. Early quinazoline and quinazolinone natural products.

A large amount of structural diversity is seen in quinazoline natural products, dictoquinazol B 140 (figure 10), for instance, contains the unusual \textit{N}-formyl substituents at the N-1 position, and the rare 1,2,3,4-tetrahydroquinazoline moiety.44 The continual discovery of new quinazolinones is highlighted by discovery in 2005 of complex plant metabolite lapatins A 141.45

![dictoquinazol B](image3.png) \hspace{1cm} ![lapatins A](image4.png)

Figure 10. Unusual quinazoline and quinazolinone natural products.

Indeed, some structures are so complex they have yet to be fully synthesized. Hinckdentine A 142, is such a structure. Synthetic routes to hinckdentine A have been reviewed by McWhorter Jr (figure 11).46 One of the most powerful and famous non-protein neurotoxins in the world, tetrodotoxin 143, is worth mentioning here. It is famous for being found in the ovaries of the Japanese puffer fish \textit{Sphoerides rubripes} and \textit{S. phyreus} as well as the Californian salamander \textit{Taricha torosa}.47 Stripped of its hydroxy and ether bridges it is a fully saturated 2-amino substituted quinazoline.
Figure 11. Other natural products containing the quinazolinone and quinazoline skeleton.

The total synthesis of 3H-quinazolin-4-one natural products luotonin A 144, rutaecarpine 145, tryptanthrin 146, deoxyvasicinone 147 and mackinazolinone 148 and will be discussed in more detail later in this thesis (figure 12).

Figure 12. 3H-quinazolin–4-one natural product targets.

So far, only natural products have been discussed. There are also a myriad of pharmaceutical drugs available and in clinical trials containing the 3H-quinazolin-4-one core skeleton (figure 13). Raltitrexed 149 (Tomudex®), is substituted at the C-2 and C-6 (on the B ring), and is marketed as a colorectal cancer treatment. Ispinesib 150, is substituted at C-2 and N-3, and is currently in nine different phase two clinical trials for various cancers.
Di-keto quinazolines such as Kentanserin 151 (figure 14), have found applications as selective serotonin receptor antagonist. Quinazolinones such as Quinethazone 152, are used as diuretics and contains the thiazide functional group at C-6 (on the B ring).

The drug Tempostatin™ 153 (figure 15), is in phase II clinical trials for bladder, liver and others cancers. Tempostatin™ 153 bears a remarkable structural similarity with febrifugine 139 (figure 9). The side arm of febrifugine has been moved from the N-3 position to the C-2 position in Tempostatin™. The generic drug methaqualone 154 (Revonal®) has been available since the 1960's as a sedative. Its biological activity should not be surprising given its structural similarities to barbiturates which, are largely pyrimidinone in structure.
Another common functional group found attached to quinazolines is the amino group. Prazosin 155 (figure 16), which is used to lower high blood pressure, is a di-amino substituted quinazoline. Gefitinib 156, which is a new class of lung cancer treatment drugs and is only a mono-amino substituted quinazoline.

![Prazosin 155](image)

![Gefitinib 156](image)

Figure 16. 4-Amino substituted quinazoline drugs.

It is the vast collection of drugs and natural products that has caught our imagination. We want further expand the interest within the field of 3H-quinazolin-4-ones by carrying out further investigations into the field.

1.11 Biosynthesis of quinazolines and quinazolinones

Natural products containing the quinazolin-4-one moiety are most likely all derived from the amino acid anthranilic acid, which is a product of the shikimic acid pathway. This pathway also provides routes to other amino acids and heterocyclic compounds. Solely microorganisms and plants carry it out. Thus it is no surprise that the amino acids derived from this sequence are considered essential to humans. There are very few studies reported for the biosynthesis of quinazolinones natural products. As mentioned those that do exist all derive from anthranilic acid, whose biosynthesis will now be discussed.

The shikimic acid pathway begins with the coupling of phosphoenol pyruvate 157 (PEPA) and D-erythrose 4-phosphate 158 (E4P) producing the seven carbon compound D-arabino-heptulosonic acid 7-phosphate 159 (DAHP) (scheme 46). Although at first glance this reaction appears to be an aldol type condensation, the enzyme catalysed mechanism is known to be more complex. The first carbocyclic structure 3-dehydroquinic acid 161 is formed after elimination of the phosphoric acid from DAHP, yielding intermediate 160 which then undergoes an intramolecular aldol type reaction to form 3-dehydroquinic acid 161. Again, this mechanism is more complex than stated. It is known NAD⁺ plays a key role in the oxidation of the central hydroxyl group. A single enzyme controls all these changes. Dehydration of 3-
dehydroquinic acid 161 leads to 3-dehydroshikimic acid 162, which is then reduced leading to shikimic acid 163.

Scheme 46. Biosynthesis of shikimic acid.

A key intermediate from the shikimic acid pathway is chorismic acid 167 (scheme 47). When shikimic acid 163 is phosphorylated by ATP 164, it then reacts with PEPA via an addition reaction forming intermediate 165. This is followed by a 1,2-elimination reaction of phosphoric acid yielding 3-enolpyruvylshikimic acid 3-phosphate (EPSP) 166. The enzyme EPSP synthase, catalyses this reaction. 1,4-Elimination of phosphoric acid of EPSP then leads to chorismic acid 167. Chorismic acid can then be further transformed to a number of amino acids such as L-phenylalanine and L-tyrosine.
When glutamine acts to aminate at the C-2 position of chorismic acid, 2-amino-2-deoxyisochorismic acid is formed (scheme 48). Elimination then leads to the formation of anthranilic acid. This is the key intermediate to the formation of quinazolinone natural products, the amino acid L-tryptophan and other related indole alkaloids.

The exact biosynthesis of quinazoline alkaloids varies and not many have been studied in great detail. The proposed biosynthesis of the bronchodilator vasicine (already shown in figure 9) is shown (scheme 49). The anthranilate nitrogen of anthraniloyl-CoA undergoes nucleophilic attack of the pyrrolinium cation derived from L-ornithine which is

Scheme 47. Biosynthesis to chorismic acid.

Scheme 48. Final biosynthesis steps to anthranilic acid.

Scheme 49. Proposed biosynthesis of vasicine.
followed by amide formation 171 to form tricycle 172. Vasicine 138 is found in the *Peganum harmala* plant and this proposed biosynthesis is specific to this species only.56

![Scheme 49. Biosynthesis of vasicine.](image)

Yamazaki *et al.* has reported a possible biosynthesis of rutaecarpine 145 (already shown in figure 12) and its analogue evodiamine 174 (scheme 50).58 Using feeding experiments with radio-labelled 14C-tryptophan, sodium 14C-formate (or methionine) and anthranilic acid, Yamazaki showed all three units to be fully incorporated into the *Evodia rutaecarpa* plant. The 3,4-dihydro-β-carboline intermediate 173 has not been proven. Yamazaki showed that position 13-b of both rutaecarpine and evodiamine come from the incorporation of formate or methionine. Incorporation of this unit into evodiamine was slower than for rutaecarpine 145 and so the suggestion is that evodiamine 174 is not formed as result of *N*-methylation of rutaecarpine.
Takagi has also argued a role for N-methylamino acid 175 in the biosynthesis of evodiamine 174 (scheme 51). It seems possible this could be derived from methylation of anthranilic acid 169. This could not be proven but provides an answer into how the nitrogen is methylated in evodiamine 174.

It has also been noted that 7-carboxyevodiamine 177 but not 7-carboxyrutaecarpine 176 have been isolated from *Evodia rutaecarpa* (figure 17). There is still much work to be done in this field to fully understand the biosynthesis of rutaecarpine 145 and other quinazolinone natural products.
1.12 Synthetic developments in quinazoline and quinazolinone chemistry

There is an expanding interest in quinazolines and quinazolinones and thus, new synthetic methodology is growing rapidly in this field. Some of these novel approaches to quinazoline and quinazolinone synthesis are now discussed.

Bergman et al. recently demonstrated a novel rhodium(I) catalysed route involving unactivated alkene additions to 3,4-dihydroquinazolines (scheme 52).\(^6\) Both inter and intramolecular couplings from similar heterocycles 178 had been previously carried out by the group. It was proposed that the reaction proceeds via a catalytic-substrate, complexed with the aromatic heterocycle 179. This could occur through rhodium acting as a \(N\)-heterocyclic carbine ligand. Once the alkene is complexed to the Rh, heterocyclic coupling to the alkene 180 can occur.

By coupling the 3,4-dihydroquinazoline 181 with a range of alkenes, quinazoline products like 182 were formed in good yield (scheme 53). An oxidative workup using \(\text{MnO}_2\) was required.
Couture et al. have used nitriles and lithiated 2-aminobenzamides to form 2-aryl and 2-alkylquinazolin-4-ones 189 (scheme 55).61 It was shown that anthranilamide 187 forms the lithium 2-(diethylaminocarbonyl)anilide 188 species which reacts rapidly with the appropriate nitrile. Even for alkyl nitriles containing an acidic α-proton, conversion was good. One may have expected that an acidic α-proton could undergo a reaction with the lithium intermediate. Couture demonstrated a large range of alkyl and aryl nitriles were compatible with this reaction and so allows a very simple route to 2-aryl and 2-alkylquinazolin-4-ones 189.
Scheme 55. Use of lithiated 2-aminobenzamides in quinazolinone synthesis.

Kundu and Chaudhuri have developed a very mild method using copper catalysis in synthesis of C-2 substituted quinazolinones (scheme 56).62 The terminal alkyne 190 was initially reacted with aryl iodides under Sonogashira-Hagihara conditions to yield the alkyne 191. The substituted alkyne 191 then underwent a highly regio and stereo selective reaction in the presence of CuI, K₂CO₃ and n-Bu₄NBr in acetonitrile to yield the quinazolinone 193. E-Stereochemistry was observed at the vinylic group. The proposed CuI mechanism suggests the alkyne 191 can rearrange to form the allene 192. Attack by the amide nitrogen then leads to ring closure.

Scheme 56. Palladium/copper catalysed cyclisation quinazolinone synthesis.

Larksarp and Alper have developed a Pd system for the carbonylation of the o-iodoanilines 194 (scheme 57).63 Under an atmosphere of CO, the carbodiimide 195 and the ketenimine 196 were found to react with o-iodoanilines to form either the 2-amino quinazolinones 197 or the 2-alkyl quinazolinones 198. The reaction tolerated hydroxy and nitrile groups on the o-
iodoaniline 194 (R^1), but not electron donating groups. There was found to be some sensitivity issues regarding the substitution of carbodiimide 195 ketenimine 196.

![Diagram of chemical structures](image)

Scheme 57. Palladium catalysed cyclocarbonylation to quinazolinones; i) CO, Pd(OAc)_2, dppf, THF, K_2CO_3, 100 °C.

A mechanism was proposed for the reaction of the carbodiimide 195 and can easily be considered analogous for the ketenimine 196 (scheme 58). Initially the o-iodoaniline 194 and the carbodiimide 195 form the guanidine intermediate 199. Analogously in the case of the reaction with ketenimine 196 one of two amidine intermediates can be formed. Oxidative addition of Pd(0) to the C-I bond gives the intermediate palladium complex 200. Insertion of carbon monoxide and coordination of NHPh could give rise to the palladium carbocycle 202. This could be followed by reductive elimination forming the 2-imine quinazolinone 202, which could rearrange to the more stable 2-amino quinazolinone 197.
The intramolecular aza-Staudinger-Wittig reaction has lent itself well to heterocyclic synthesis.\(^{64}\) Eguchi et al. have increased the scope of this reaction by applying it in quinazolinone synthesis (scheme 59).\(^{65}\) From condensation of o-azidobenzoyl chloride 203 with a lactam, Eguchi formed the key azide intermediate 204. The intramolecular aza-Staudinger-Wittig reaction was carried out using tri-n-butylphosphine. The silyl protected l-vasicinone quinazolinone 205 was obtained in excellent yield.

Scheme 59. Aza-Staudinger-Wittig route to l-vasicinone quinazolinone.

Hetero Diels Alder approaches to quinazolinones have been carried out by Croce et al. (scheme 60).\(^{66}\) The yields of 2-substituted quinazolinones such as 210 were good for a range
of the dienes 206. The presence of the electron rich dimethyl amino group on the diene 206 was crucial in facilitating the elimination of the N,N-dimethylformamidine 207 as a side product by destabilizing the cycloaddition adduct. The authors recognised the mechanism of this reaction could proceeds via an initial [2+2] cycloaddition instead of the [4+2] routes. Either route can go through a 4-membered ring diazidinone 208 which could open up to the imidoysocyanates 209. These are well known to thermally cyclise to form quinazolinones.

![Reaction Mechanism Diagram](image)

Scheme 60. Diels Alder approach to quinazolinone products.

Simple thermolysis of the benzotriazin-4-ones 211 has been used by Smalley et al. in the synthesis of the 2-arylquinazolinones 214 (scheme 61). During the thermolysis of benzotriazin-4-ones loss of nitrogen is observed followed by a 1,3-hydrogen shift in the intermediate 212 with the loss of aryl cyanide. The aryl cyanide then participates in a [4+2]
cycloaddition of the imino ketene 213. The reaction tolerated a wide range of substituted aryl substituents in good yield.

Scheme 61. [4+2] Cycloaddition route to quinazolinones from benzotriazin-4-ones.

A number of synthetic strategies to quinazolinone can be started from anthranilic acid 169. Much of this work was started in the 1960's by Reid et al.68 Continuation of this work has been carried out by Guiry et al. who successfully reacted a range of alkyl and aryl imidates with anthranilic acid to form the 2-substituted quinazolinones 215 in good yield (scheme 62).69 The imidates were prepared by reacting nitriles with gaseous HCl in MeOH. These imidate salts were then neutralized by an equivalent of base. Although not high yielding this route allows access to rapid synthesis of simple quinazolinone from cheap starting materials.

Scheme 62. Imidate condensation with anthranilic acid to form quinazolinones.
1.13 Conclusion
This introduction has covered a variety of chemistry. An overview into radical reactions and the types of reagents commonly used have been shown. This has been followed by a review of some notable radical cyclisations to form heterocycles, some of which can be described as aromatic homolytic substitution reaction. A summary of common quinazoline and quinazolinone natural products and drugs has been followed by a discussion of the biosynthesis of some of these natural products. Finally time has been taken to demonstrate some of the other approaches chemists have used to quinazolinone and quinazoline synthesis.

1.14 Project Objective
Heterocyclic syntheses have been of great interest for many years to organic chemists. Many different heterocyclic systems are seen within natural product compounds isolated from plants and animal species. The pharmaceutical industries rely on seeking inspiration from such natural products to develop new drug candidates. Some heterocyclic systems are considered “privileged” because of their ability to bind to many types of receptor sites in the human body. One such “privileged” heterocyclic structure is the 3H-quinazolin-4-one system. There are a great number of natural products that contain this moiety. To date there are only sporadic reports of free radical chemistry being employed as a synthetic tool in the syntheses of such natural products.

The aim was to develop a new synthetic methodology to apply to the syntheses of our chosen quinazolinone natural product targets. We have attempted and completed the synthesis of a number of biologically active 3H-quinazolin-4-one targets via radical chemistry. The feasibility of radical cyclisation onto the C-2 position of the quinazolinone template was tested, and used as the basis for this work. Determination of mechanisms of these radical reactions has been carried out. Where possible non-tin radical reagents were used to avoid the toxicity and purification issues surrounding tin reagents.

Pharmaceutical companies are particularly interested in heterocyclic building blocks, as they can apply combinatorial chemical methods to access new compound libraries. We were keen to make use of a C-2 indole radical building block of which there are reports in the literature. We also felt preparation of a C-2 radical quinazolinone building block would be of much interest. At our initial outset, there were no reports in the literature of C-2 radical quinazolinone building blocks. We hoped this work would open a new door to the syntheses of many quinazolinone natural products using radical or palladium chemistry.
Chapter 2. Aryl and Alkyl radical cyclisations onto 3H-quinazolin-4-one

In this chapter work describing investigations of aryl radical cyclisations onto the 3H-quinazolinone moiety are presented. This will be followed by a discussion of alkyl radical cyclisations carried out which led to the synthesis of the two quinazolinone natural products deoxyvasicinone and mackinazolinone. A brief introduction to each natural product is given. Unsuccessful cyclisations of organometallic species onto the 3H-quinazolin-4-one template are also shown.

2.1 Aryl radical cyclisations onto 3H-quinazolin-4-one

Before undertaking the synthesis of the quinazolin-4-one derived natural products, investigation of simple aryl radical cyclisations onto the C-2 position of 3H-quinazolin-4-one was carried out. It was hoped to rapidly access quinazolinone tetracycles 216 (scheme 63). The first aim was to learn more about the reactivity of aryl radicals 217 towards the commercially available 3H-quinazolin-4-one 219. The required aryl building blocks 218 had been prepared previously.70 A number of examples using these building blocks in aryl radical cyclisations are detailed in the introduction. This work has now been extended.

\[
\begin{align*}
\text{N} & \quad \text{N} \\
\text{216} & \quad \text{217} \\
\text{218} & \quad \text{219}
\end{align*}
\]

Scheme 63. Retrosynthesis of quinazolinones 216 using aryl radical cyclisations.

The first concern was to avoid the competition between O- and N-alkylation and to develop a methodology to obtain selective alkylation onto the N-3 position of the 3H-quinazolin-4-one 219 to yield quinazolinone 220 and not quinazolinone 221.
Alkylation on \(N-1\) is possible but there are few reports indicating that this regioisomer is favourable. Previous work has shown that alkylations of pyridinone 222 yielded \(O\)-substituted pyridinones 224 and \(N\)-substituted pyridinones 223 (scheme 64).\(^7^1\) It was unclear whether this problem would be encountered for the alkylation of \(3H\)-quinazolin-4-one 219.

![Scheme 64. Pyridinone alkylation problems.](image)

Alkylation of quinazolinones has been carried out in one-pot using lithium bromide, dry ethylene glycol dimethyl ether and NaH in DMF.\(^7^2\) Reports in the literature suggest that under these conditions, lithium can chelate to the oxygen atom, hence directing the alkylation towards \(N-3\).\(^7^2\) The ethylene glycol dimethyl ether can bind to the lithium, increasing the steric hindrance, which should favour the alkylation onto \(N-3\). Using these conditions, methylation of \(3H\)-quinazolin-4-one 219 (scheme 65) gave 3-methyl-\(3H\)-quinazolin-4-one 225. Yields for \(3H\)-quinazolin-4-one alkylation reported in the literature are rarely greater than 60%.

![Scheme 65.](image)
Difficulties were encountered in distinguishing whether alkylation had taken place on the nitrogen or the oxygen atom using standard NMR spectroscopic techniques. In theory, the IR spectrum of the final product should have shown the disappearance of the NH bond in the wavelength range of \(\approx 3000 \text{ cm}^{-1} \). However, the NH and OH bond wavelengths in the IR spectrum of the starting material were close, and therefore it was not distinguishable which heteroatom was alkylated in the product. A NOE NMR spectroscopic experiment was carried out. The three hydrogen atoms (Hb) on the methyl group of quinazolinone 225 were irradiated and a slight change in intensity was noticed for the signal of the hydrogen atom on the C-2 position (Ha) of 3-methyl-3H-quinazolin-4-one 225 suggesting that the product was alkylated at N-3.

The alkylation reaction using cinnamyl bromide was carried out and quinazolinone 226 was obtained (scheme 66). A similar \(^1\)H NMR spectroscopic experiment was carried out to prove the structure. The alkylation of N-1 can be ruled out. Previous work has shown that if alkylation occurs on N-1 there is a strong NOE correlation between the CH\(_2\) hydrogen atoms and the hydrogen atom at C-8 227 (figure 18). Analysis of the NOE spectra of quinazolinones 225 and 226 showed no such correlation. The synthesis of quinazolinone 227 was undertaken by an alternative route involving ring synthesis to rule out the formation of side reaction products from the radical cascade approach to luotonin A (scheme 93).

![Scheme 66.](image)

Figure 18.
The use of t-BuOK as a base was reported to give selective alkylation onto N-3 of 3H-quinazolin-4-one 219. This procedure did not require any additional reagents such as LiBr. The alkylation was carried out using methyl iodide and 3-methyl-3H-quinazolin-4-one, 225 was obtained in good yield (scheme 67). The O-alkylated product was also isolated in a low yield (less than 5%). As a result, it was chosen to use the latter method instead of the previously described lithium bromide reaction.

\[
\begin{align*}
\text{O} & \\
\text{N} & \\
\text{219} & \\
\text{t-BuOK, Mel, DMF} & \\
\text{225 (36\%)} & \\
\end{align*}
\]

Scheme 67.

Attention was then turned to the synthesis of the first aryl radical precursors (scheme 68). Alkylation of 3H-quinazolin-4-one 219 using 2-iodobenzyl bromide proceeded in good yield giving the desired quinazolinone 228.

\[
\begin{align*}
\text{O} & \\
\text{N} & \\
\text{219} & \\
\text{t-BuOK, DMF} & \\
\text{228 (63\%)} & \\
\end{align*}
\]

Scheme 68. Synthesis of the aryl radical precursor.

In order to prepare the six-membered ring precursor 231, 2-(2-bromophenyl)ethanol 229 was converted to the mesylate 230 (scheme 69). However, alkylation of the quinazolinone 219 using the mesylate 230 did not proceed in as high a yield as the synthesis of the quinazolinone 228.
The initial radical investigations began with the quinazolinone 228. The radical cyclisations were investigated using Bu$_3$SnH and a range of initiators (table 3). No traces of the desired five-membered cyclised quinazolinone 233 were observed and the only product isolated was the reduced quinazolinone 232.

Table 3. Radical reactions of quinazolinone 228 with Bu$_3$SnH.

<table>
<thead>
<tr>
<th>Initiator (equiv.)</th>
<th>Radical reagent (equiv.)</th>
<th>Reflux</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Et$_3$B (0.1)</td>
<td>Bu$_3$SnH (fast) (2.0)</td>
<td>No</td>
<td>232 (96%)</td>
</tr>
<tr>
<td>Et$_3$B (0.1)</td>
<td>Bu$_3$SnH (slow) (2.0)</td>
<td>No</td>
<td>232 (30%)</td>
</tr>
<tr>
<td>AIBN (2.0)</td>
<td>Bu$_3$SnH (slow) (2.0)</td>
<td>Yes</td>
<td>232 (45%)</td>
</tr>
</tbody>
</table>

Initially, triethylborane was chosen as the initiator. The advantages of triethylborane over AIBN have already been described previously. When triethylborane is used, the solvent was purged for 30 min with nitrogen to remove any traces of oxygen. Once the triethylborane is added, a needle was placed through the septum on the flask and atmospheric oxygen allowed to re-enter. It is not known how quickly the
triethylborane is consumed in these reactions. This depends on the rate of diffusion of oxygen through the needle into the vessel. In an attempt to slow down the rate of the ethyl radical generation from triethylborane, cotton wool was placed in the needle head. During the course of the work, additional triethylborane was added to radical reactions at different time intervals. The reaction mixtures were purged for 30 min with nitrogen before additional triethylborane was added, to remove unwanted oxygen which had re-entered the reaction vessel.

These results show that the rate of H-abstraction (k_H) by the intermediate aryl radical from Bu$_3$SnH is faster than the rate of cyclisation ($k_\text{cy}c$). Hydrogen atom is most likely extracted from Bu$_3$SnH, however a possible explanation for the lack of cyclisation was that a 1,5-hydrogen shift could be occurring in radical 234 (scheme 70). If a 1,5-hydrogen shift had taken place, to form the radical 235 this radical could then have abstracted a hydrogen atom from Bu$_3$SnH or another molecule within the reaction mixture.

![Scheme 70. Possible 1,5-H abstraction.](image)

In order to determine whether this 1,5-hydrogen shift was taking place, a simple experiment was devised. The quinazolinone 228 was treated with Bu$_3$SnD in place of Bu$_3$SnH (scheme 71). The 1H NMR spectrum showed that the hydrogen atom on the C-2 position of the quinazolinone 228 was still present on the reduced product (as were the CH$_2$ protons). It therefore appeared as though the intermediate radical 234 had abstracted a deuterium atom from Bu$_3$SnD. We hoped that the 13C NMR spectrum of the quinazolinone 236 would indicate a triplet for the carbon bearing the deuterium atom. However, even after increasing the number of scans for the 13C NMR analysis, this triplet was not detected. Mass spectral analysis confirmed the formation of the quinazolinone 236. The major benzyl ion produced had an increased mass of 92,
indicating a deuterium atom replacing a hydrogen atom on this fragment. This experiment eliminated the possibility of a 1,5-hydrogen shift (scheme 70).

Scheme 71.

Once it had been established that \(k_H \gg k_{\text{cycl}} \), it was chosen to use reagents where the rate of hydrogen abstraction would be lower than that for \(\text{Bu}_3\text{SnH} \). The first reagent used was TTMSS, which is a poorer H-donor than \(\text{Bu}_3\text{SnH} \). Again, triethylborane was used as the initiator. However, only the reduced quinazolinone 232 (35%) was isolated, although GC-MS did reveal a trace amount of a compound with a molecular ion corresponding to the cyclised product.

To minimise the opportunity for the intermediate phenyl radical to abstract a hydrogen atom, it was decided to use hexamethylditin \([\text{Me}_3\text{Sn}]_2\). The proposed mechanism of this reagent is shown below (scheme 72). Homolysis of the tin-tin bond is caused by heat and light irradiation, leading to the formation of \(\text{Me}_3\text{Sn} \) radicals, which can then go on to carry out the desired radical reaction. Alternatively, it can break down to form a stanylene and \(\text{Me} \) radical. In reactions where homolytic aromatic substitution takes place, \(\text{Me} \) radicals have been suggested to facilitate the hydrogen abstraction step.\(^{75}\) The dimethyl tin polymer is often seen as a sticky yellow residue on the inside of the reaction vessel.
Scheme 72. Mechanism of (Me₃Sn)₂ homolysis.

The reaction between the quinazolinone 228 and (Me₃Sn)₂ showed only one spot by TLC (table 4) but GC-MS analysis of the crude reaction mixture showed the reduced and cyclised product in a ratio of ca. 4:1. A closer inspection of the ¹H NMR spectra also revealed that quinazolinones 233 and 232 were present. The two compounds could not be separated using column chromatography (attempts were made using silica and alumina gel as absorbent). However, having already obtained a clean ¹H NMR spectrum of the reduced compound, calculation for the reactions yields could be carried out.

Table 4. Radical reaction between 3-(2-iodobenzyl)-3H-quinazolin-4-one 228 and (Me₃Sn)₂.

<table>
<thead>
<tr>
<th>Initiator</th>
<th>Reflux</th>
<th>Solvent</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>hu</td>
<td>Yes</td>
<td>t-Butylbenzene</td>
<td>233 (18%) 232 (65%)</td>
</tr>
<tr>
<td>Et₂B</td>
<td>No</td>
<td>t-Butylbenzene</td>
<td>Trace 233</td>
</tr>
</tbody>
</table>

It is not known whether Et₂B can be used to initiate the (Me₃Sn)₂ reaction. The bond dissociation constants for Sn-Sn bonds are similar to those of Sn-Et. It seemed valuable to test whether triethylborane could be used to initiate the homolysis of the
Sn-Sn bond. So far, there is no mention in the literature of triethylborane and (Me₃Sn)₂ being used together (scheme 73). A ¹H NMR spectrum of the reaction using Et₃B and (Me₃Sn)₂ showed possible cyclised product 233 but in a trace amount. A reaction was also attempted using only triethylborane, with no (Me₃Sn)₂, heat or light irradiation. This resulted in only starting material being recovered which, was expected, due to the high bond strength of the aryl-halide bond.

\[
\text{Et}^* \rightarrow \text{Me}_3\text{Sn-SnMe}_3 \xrightarrow{\text{Et}_3\text{B}} \text{Me}_3\text{Sn}^* + \text{Me}_3\text{SnEt}
\]

Scheme 73. Possible mechanism for the formation of the radical Me₃Sn⁻.

Having obtained some cyclised product, attention was turned to the radical cyclisation of the quinazolinone 231 (scheme 74). From the initial studies it was shown that H-abstraction of intermediate aryl radical was favoured. Therefore, the cyclisation using (Me₃Sn)₂ was attempted first. An excellent yield of cyclised quinazolinone 237 was obtained with none of the reduced quinazolinone 238. The reaction was also carried out using fast Bu₃SnH/Et₃B conditions, which gave the cyclised quinazolinone 237 (8%) and the reduced quinazolinone 238 (50%). It was surprising that the quinazolinone 237 was obtained using these conditions. The increased yield and ease of cyclisation here can be attributed to ring strain. The amount of ring strain for the five-membered ring is higher than the six-membered ring. This is highlighted by the ability of the quinazolinone 231 to cyclise using Bu₃SnH.

\[
\begin{align*}
\text{N} & \quad \text{N} \\
\text{Br} & \quad \text{radical} \\
\text{231} & \quad \text{237} \\
\end{align*}
\]

Scheme 74. i, (Me₃Sn)₂, t-butylbenzene heated under reflux and hv; cyclised 237 (92%) and reduced 238 (0%); ii, Bu₃SnH/Et₃B and toluene; cyclised 237 (8%) and reduced 238 (50%).
The mechanism for this reaction is shown (scheme 75). Phenyl radicals are slightly nucleophilic and attack the electron deficient carbon of the imine. The reaction can be regarded as a 6-exo radical cyclisation onto an imine leading to an aminyl radical. A disproportionation reaction does not occur. The yield of cyclisation product was high when using (Me₃Sn)₂. The stability of the π-radical means the unpaired electron is delocalised over a large part of the molecule. Other species that could abstract the hydrogen include Me₃SnOO⁻ (Me₃Sn⁻ + O₂ always present in trace quantities). The strong drive for rearomatisation leads to the high yield of cyclisation using (Me₃Sn)₂.

Scheme 75. Mechanism of 6-exo aryl radical cyclisation onto 3H-quinazolin-4-one.

2.2 Palladium cyclisations onto 3H-quinazolin-4-one

Palladium(0) catalysed cyclisations on quinazolinone 228 should also be possible. A Heck type reaction could be used to form the desired cyclised tetracycle 233 (scheme 76).
Scheme 76. Proposed Heck reaction on 3-(2-iodobenzyl)-3\(H\)-quinazolin-4-one 228.

There are only a few examples of Heck reactions onto imines reported in the literature.76 Therefore, it was considered an investigation would be novel. Harayama has shown that Cy\textsubscript{3}P is an excellent ligand for Heck reactions onto quinazolinones.74 Despite trying a variety of conditions the tetracycle 233 could not be observed or isolated. In every attempt the starting material was recovered (table 5).

Table 5. Attempted Pd(0) cyclisations

<table>
<thead>
<tr>
<th>Pd source</th>
<th>Ligand</th>
<th>Base (2.0 equiv.)</th>
<th>Reflux</th>
<th>Reflux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd(OAc)\textsubscript{2} (5%)</td>
<td>PPh\textsubscript{3} (10%)</td>
<td>KOAc</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Pd(OAc)\textsubscript{2} (5%)</td>
<td>(n)-Bu\textsubscript{3}P (10%)</td>
<td>KOAc</td>
<td>Yes</td>
<td>Sealed tube</td>
</tr>
<tr>
<td>Pd(OAc)\textsubscript{2} (5%)</td>
<td>PCy\textsubscript{3} (10%)</td>
<td>KOAc</td>
<td>Yes</td>
<td>10 min*</td>
</tr>
<tr>
<td>Pd(OAc)\textsubscript{2} (5%)</td>
<td>PCy\textsubscript{3} (10%)</td>
<td>K\textsubscript{2}CO\textsubscript{3}</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Pd(PPh\textsubscript{3})\textsubscript{4} (5%)</td>
<td>ZnBr\textsubscript{2} (as Lewis acid)</td>
<td>K\textsubscript{2}CO\textsubscript{3}</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

* The reaction was carried out in a microwave reactor.

59
With no success in forming a five-membered ring, focus was turned to the quinazolinone 231 (table 6). The Cy3P ligand is extremely air sensitive and a 31P NMR spectrum of the ligand revealed that it was about 20% oxidised. The amount of Cy3P added was increased from 10% to 15%. Different bases, solvents, Pd sources and ligands were all investigated. These extensive investigations only lead to starting material being recovered and the tetracycle 233 was not isolated which was disappointing.

Table 6. Attempted Heck reactions of quinazolinone 231.

<table>
<thead>
<tr>
<th>Pd source</th>
<th>Ligand</th>
<th>Base (2.0 equiv.)</th>
<th>Reflux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd(OAc)$_2$ (5%)</td>
<td>PCy$_3$ (10%)</td>
<td>KOAc</td>
<td>Yes</td>
</tr>
<tr>
<td>Pd(OAc)$_2$ (5%)</td>
<td>PCy$_3$ (15%)</td>
<td>KOAc</td>
<td>Yes</td>
</tr>
<tr>
<td>Pd(OAc)$_2$ (5%) *</td>
<td>PCy$_3$ (15%)</td>
<td>KOAc</td>
<td>60 °C</td>
</tr>
<tr>
<td>Pd(PPh$_3$)$_4$ (5%)</td>
<td>PCy$_3$ (15%)</td>
<td>K$_2$CO$_3$</td>
<td>Yes</td>
</tr>
<tr>
<td>Pd(PPh$_3$)$_4$ (5%)</td>
<td>Dppe (10%)</td>
<td>KOAc</td>
<td>Yes</td>
</tr>
<tr>
<td>Pd(OAc)$_2$ (5%)</td>
<td>None</td>
<td>KOAc</td>
<td>Yes</td>
</tr>
<tr>
<td>Pd(OAc)$_2$ (5%)</td>
<td>PCy$_3$ (10%)</td>
<td>K$_2$CO$_3$</td>
<td>Sealed tube</td>
</tr>
</tbody>
</table>

*The reaction was carried out in DMF as solvent.

As only starting material was recovered, it suggested to us that the insertion of Pd(0) into the carbon-halide bond was not happening and that the Pd(0) may coordinate to the N-1 of the quinazolin-4-one to form a carbene type complex. This may compete with the initial oxidative insertion into the carbon-halide bond. To test this hypothesis, a reaction was carried out using stoichiometric amounts of quinazolinone 231 and Pd(PPh$_3$)$_4$ in deuterated DMF. A blank 1H NMR spectrum of the catalyst enabled us to determine where the phenyl proton signal of the catalyst came in the 1H NMR spectrum. No additional ligands had to be added as Pd(PPh$_3$)$_4$ is a source of Pd(0). The reaction was heated, and 1H NMR spectra were taken of the crude reaction mixture at regular intervals. It was hoped to see shifting of signals to indicate Pd(0)
insertion into the carbon-halide bond or nitrogen coordination. However, no change in any signals was observed and therefore it could not be explained why cyclisation was not occurring using Pd(0).

It was decided to end these Pd investigations in order to follow the initial radical work. However the area is still open to more investigation and further catalysts, ligands, bases and solvents could be tested.

2.3 Radical cyclisations from 3H-quinazolin-4-one onto aryl groups

Having carried out radical cyclisations onto the quinazolinone moiety, it was decided to determine if the quinazolinone radical 239 could be cyclised onto aryl groups (scheme 77). The aim was to form a radical at the C-2 position of the 2-bromo substituted quinazolin-4-one 240. First, a synthesis of the 2-bromo-3H-quinazolin-4-one 241 building block needed to be developed.

Scheme 77. Retrosynthesis of radical cyclisation using a radical precursor from the 3H-quinazolin-4-one.

A synthesis of the 2-bromo-3H-quinazolin-4-one building block 241 was developed involving treating the 2-mercaptop-3H-quinazolin-4-one 242 with bromine. A detailed discussion of this building block, its uses and most importantly its limitations is reported in chapter 5. Firstly, the alkylation onto the N-3 position using benzyl bromide to yield the quinazolinone 240 was carried out (scheme 78). Only very limited O-alkylation was observed when t-BuOK or NaH were used and the N-alkylated quinazolinone 240 predominated.
As already described, cyclised and reduced products were obtained from attempts to carry out 5-membered ring cyclisation onto the quinazolinone. The highest yield of cyclisation onto quinazolinone to form a five-membered ring was 18% alongside the reduced quinazolinone (65%). It was felt that a comparison of yields obtained via both radical methodologies would be interesting.

Initially the radical reaction was carried out using slow addition of Bu3SnH/Et3B (table 7). As previously observed, only the reduced quinazolinone 232 was isolated. Slow addition of Bu3GeH/Et3B was then attempted. The rate of hydrogen abstraction from Bu3GeH is about twenty times slower than from Bu3SnH. Again, only the reduced quinazolinone 232 was obtained. The use of (Me3Sn)2 yielded an inseparable mixture of the cyclised quinazolinone 233 (27%) and the reduced quinazolinone 232 (41%). The overall recovery of the two products is similar to the recovery obtained from the cyclisation of 228.

Table 7. Radical cyclisations of quinazolinone 240.

<table>
<thead>
<tr>
<th>Radical reagent (equiv.)</th>
<th>Initiator (equiv.)</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bu3SnH (2.2)</td>
<td>Et3B (20)</td>
<td>232 (62%)</td>
</tr>
<tr>
<td>Bu3GeH (2.2)</td>
<td>Et3B (20)</td>
<td>232 (47%)</td>
</tr>
<tr>
<td>(Me3Sn)2 (3.0) *</td>
<td>hv and Δ</td>
<td>233 (27%) 232 (41%)</td>
</tr>
</tbody>
</table>

* The reaction was carried out using t-BuPh as solvent.
It was concluded that as before $k_{f} >> k_{Cyc}$ and that sources of accessible hydrogen needed to be removed. An investigation of Pd chemistry with the precursor was not carried out given previous failures.

Attention was turned to the synthesis of the six-membered ring precursor 243 (scheme 79). Alkylation of 2-bromo-3H-quinazolin-4-one 241 with (2-bromoethyl)benzene gave the quinazolinone 243 in very low yield. An extensive discussion concerning the attempts to improve the yield of quinazolinone 243 is given in chapter 5.

![Scheme 79. Synthesis of quinazolinone radical precursor.](image)

Although only a limited amount of the quinazolinone 243 was obtained, the radical reaction was attempted (scheme 80). From previous experience, it was chosen to carry out the radical cyclisation using (Me$_3$Sn)$_2$. The reaction gave the cyclised quinazolinone 237 in an excellent yield. Other radical conditions or possible Pd(0) catalysed cyclisations could have been attempted but were precluded by the difficulties in preparing the precursor 243.

![Scheme 80.](image)

In this section, the competition between H-abstraction and aryl radical cyclisation onto the 3H-quinazolin-4-one has been observed. Cyclisation was favoured when using the reagent (Me$_3$Sn)$_2$ and reduction when Bu$_3$SnH was used.
2.4 Alkyl radical cyclisations onto 3H-quinazolin-4-one

The synthesis of deoxyvasicinone 147 and mackinazolinone 148 were attempted using an alkyl radical cyclisation onto the 3H-quinazolin-4-one template (scheme 81). The aim was to carry out alkyl radical cyclisations using the methodology described in the previous section for aryl radicals. It was not known whether, unlike the previous aryl radical cyclisations, any cyclised reduced quinazolinone 244 would also be recovered from these reactions.

Scheme 81. Planned retrosynthesis of deoxyvasicinone and mackinazolinone.

2.5 Introduction to deoxyvasicinone and mackinazolinone

Although neither compound has shown great biological activity, they are interesting synthetic targets. Deoxyvasicinone 147 is found in the seeds of the *Peganum harmala* plant and has been used as an antiseptic in Iraq (figure 19). Careful studies of the plant showed that the antimicrobial behaviour is predominantly due to the compound harmine 246 which is more potent than the deoxyvasicinone 147, and is also found in the same plant. However, deoxyvasicinone 147 is also of interest as it can be used as a precursor to vasicinone 247 which is a bronchodilator.
There are many syntheses of deoxyvasicinone 147 in the literature. Hamid et al. have used an intramolecular aza displacement of a methylthio group as the key synthetic step (scheme 82). The spontaneous cyclodehydration of methyl anthranilamide and 5-methylsulfanyl-3,4-dihydro-2H-pyrrole 248 was shown to work in high yield, and utilised for a number of other closely related syntheses.

The other target, mackinazolinone 148, was first isolated by Johns and Lamberton from the Mackinlaya species of plants which are found in highlands of New Guinea. A closely related quinazoline, 6,7,8,9-tetrahydro-11H-pyrido[2,1-b]quinazoline 249, was also isolated from the same plant (figure 20). This natural quinazoline and mackinazolinone are both closely related in structure to vasicine 138. The biosynthesis of vasicine has already been described. It could easily be envisaged that the biosynthesis of mackinazolinone is very similar to that of vasicine. The major difference would be the condensation of anthranilic acid with lysine instead of ornithine. Mackinazolinone 148 has been shown to possess a broad range of pharmacological activities.
Figure 20. Vasicine and related alkaloids.

A number of syntheses of deoxyvasicinone 147 have been modified to access mackinazolinone 148. One such example has been carried out by Liu et al. using a microwave-assisted, three-component domino reaction (scheme 83). The one-pot process is carried with anthranilic acid 169, the protected amino acid 250, triphenyl phosphite and pyridine. Liu proposed an initial intermediate Boc-benzoxazinone 251. Deprotection and ring expansion would give the diamide intermediate 252. Upon ring closure mackinazolinone 148 would be formed.

Scheme 83. Three-component microwave-assisted synthesis of mackinazolinone.

2.6 Radical synthesis of deoxyvasicinone and mackinazolinone

The first step of the synthesis of deoxyvasicinone and mackinazolinone was the alkylation of 3H-quinazolin-4-one 219. In the aryl radical investigations t-BuOK was used to minimise the O-alkylation. Here NaH was used and no O-alkylation was observed (scheme 84). The alkylated quinazolinones 253a and 253b were treated under Finkelstein conditions to convert them to the iodoquinoxazolinones 254a and
254b. Unusually the yields for both Finkelstein reactions were low whereas the reaction is normally quantitative. Part of the products were lost during the workup of the reaction, this accounts for the good but not quantitative yields.

\[
\begin{align*}
\text{219} & \quad \text{i. a) 1-Chloro-3-iodopropane, NaH, DMF; b) 1-Chloro-4-iodobutane, NaH, DMF; ii. Nal, acetone, reflux.}
\end{align*}
\]

There was concern about the stability of the alkyl iodoquinazolinones 254a and 254b. For this reason, the synthesis of the alkyl phenylselanide 256 was carried out (scheme 85). The carbon-selenium bond is polarisable and can break under homolytic conditions but is stable to S_N1 and S_N2 reactions. The alkyl bromide 255 was converted to the phenylselanide 256 in good yield. This was followed by a Finkelstein reaction yielding the iodophenylselanide 257. Attempted alkylation of the 3H-quinazolin-4-one 219 was not carried out using the iodophenylselanide 257 because the alkyl iodides 254a and 254b proved to be stable.

\[
\begin{align*}
\text{255} & \quad \text{(PhSe)\textsubscript{2}, NaBH\textsubscript{4} in MeOH} \\
\text{256 (81\%)} & \quad \text{Nal! Acetone} \\
\text{257 (22\%)}
\end{align*}
\]

The first reaction investigated was between quinazolinone 254a and (Me\textsubscript{3}Sn)\textsubscript{2} to synthesise deoxyvasicinone (table 8). This reaction yielded three products, deoxyvasicinone 147, the cyclised reduced quinazolinone 259 and the reduced
quinazolinone 260 in moderate yields. It was reasoned that triethylborane could be used to form the alkyl radical without the need for other radical propagating reagents. The reaction was repeated using just triethylborane and increased yields were observed. Triethylborane is known to generate radicals from alkyl iodides. Unsurprisingly, when quinazolinone 254a was reacted with Bu$_3$SnH only the reduced quinazolinone 260 was obtained. As seen above, this showed that k_H>>k_{Ce}, and that the formation of a five-membered ring is not favoured in the case of alkyl and aryl radicals. It was proposed that the reduced cyclised quinazolinone 259 was obtained because the drive for rearomatisation is not as great as in the case of the aryl radical cyclisations. The source of the reducing hydrogen is not clear, possibly a small amount of disproportionation is occurring.

Table 8. Radical cyclisations to form deoxyvasicinone and other products

<table>
<thead>
<tr>
<th>Radical reagent</th>
<th>Initiator</th>
<th>Solvent</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Me$_3$Sn)$_2$</td>
<td>H$_2$ and Δ</td>
<td>t-BuPh</td>
<td>147 (20%) 259 (12%) 260 (6%)</td>
</tr>
<tr>
<td>Et$_3$B</td>
<td>O$_2$</td>
<td>t-BuPh</td>
<td>147 (40%) 259 (10%) 260 (30%)</td>
</tr>
<tr>
<td>Bu$_3$SnH</td>
<td>Et$_3$B</td>
<td>MePh</td>
<td>260 (78%)</td>
</tr>
</tbody>
</table>

To help with characterisation, the reduced quinazolinone 260 was prepared using a different route, via the alkylation of 3H-quinazolin-4-one 219 using 1-iodopropane (scheme 86).

Scheme 86.
A sample of the crude reaction mixture for the triethylborane reaction (2nd entry, table 8) was analysed by GC-MS. The analysis revealed two other minor products which appeared to result from the addition of ethyl radical onto the propyl chain and onto 3 propyl quinazolinone 261 (scheme 87). Both compounds have relative molecular masses of 216. The fragmentation pattern of one product had a large ion of m/z 145, due to the loss of pentane chain from quinazolinone 262. The other product had two major ions of m/z 187 (loss of ethyl) and m/z 173 (loss of propyl) from quinazolinone 263. However, these are only postulated structures which could not be further characterised. The reaction provides extra evidence that hydrogen abstraction is carried out by ethyl radical.

![Scheme 87. Possible by-products in the reactions with Et₃B.](image)

Attention was turned to the radical cyclisation of the quinazolinone 254b to form mackinazolinone 148. The radical reaction was carried out using only Et₃B because these conditions had proved successful in the deoxyvasicinone synthesis. Mackinazolinone 148 was formed in an excellent yield (61%) under these conditions (scheme 88). It was surprising to find the only other isolatable product to be the cyclised reduced quinazolinone 264. The reaction was also carried out using (Me₃Sn)₂ and again the same two products were isolated but in lower yields. These results are in stark contrast to the previous cyclisation of deoxyvasicinone where three products were isolated. The higher yields observed for mackinazolinone 148 and the cyclised reduced quinazolinone 264 show the preferential formation of six-membered rings over five-membered rings. The same trend was observed when studying aryl radical cyclisations.
Scheme 88. i. Et$_3$B; mackinazolinone 148 (61%) and cyclised 264 (17%); ii. (Me$_3$Sn)$_2$, hv, reflux; mackinazolinone 148 (30%) and cyclised 264 (23%).

It was proposed that the formation of the cyclised reduced quinazolinone 264 arises via a disproportionation reaction. In the case of the reaction using (Me$_3$Sn)$_2$ the two quinazolinone products 148 and 264 are formed in similar yield which suggests a disproportionation reaction (scheme 89). The reduced quinazolinone 266 was not obtained, indicating that cyclisation is highly favourable. The formation of reduced cyclised product was not observed in any other cyclisation reactions. The extra conjugation given by products with aryl and heteroaryl radicals may be important.

Scheme 89. Putative disproportionation mechanism.
2.7 Investigations into indium-mediated cyclisations onto 3H-quinazolin-4-one

With the iodoquinazolinones 254a and 254b in hand, organometallic reactions using these substrates were investigated. Heck reactions could not be carried out due to the presence of β-hydrogen atoms. However, we were curious to see if a reaction induced by indium would lead to Barbier type reactions on these substrates. Indium is relatively non-toxic and can also be used under aqueous conditions.83 It was hoped that indium would insert into the carbon iodine bond 269 and possibly cyclise onto the quinazolin-4-one (scheme 90). Indium powder was added to both the quinazolinones 254a and 254b. These reactions were carried out using a mixture of water and DMF or THF to get the quinazolin-4-one into solution. Reactions were also undertaken with gentle heating. However, only trace quantities of possible cyclised compound could be seen in the 1H NMR spectra and could never be isolated. As this was not the main focus of the work, no other organometallic investigations were carried out on alkyl halides.

![Scheme 90. Attempted indium mediated cyclisations.](image_url)
2.8 Conclusion

In this chapter, it has been shown the strong competition between hydrogen abstraction and cyclisation of aryl and alkyl radicals onto the C-2 position of the quinazolinone. The syntheses of deoxyvasicinone and mackinazolinone have been achieved. Attempts at using organometallic cyclisation chemistry proved unsuccessful.
Chapter 3. Heterocyclic radical cyclisations onto 3H-quinazolin-4-one

Having successfully carried out aryl and alkyl radical cyclisations onto 3H-quinazolin-4-one, focus was turned to heteroarene radical cyclisations. Many examples of heteroarene radical cyclisation are known and have been reviewed in chapter 1. The aim was to extend this work to the field of 3H-quinazolin-4-one chemistry.

3.1 Introduction to luotonin A

Heterocyclic radical cyclisations onto the 3H-quinazolin-4-one moiety were investigated with the aim of natural product synthesis. One of the synthetic targets was the recently discovered pyrroloquinazolinequinoline alkaloids luotonins 144a A, B and E (scheme 91). These natural products have been isolated from Peganum nigellastrum, a Chinese medicinal plant that has been used in the treatment of rheumatism, inflammation and abscesses. They have proved to be popular targets for synthetic chemists, and, at the time of writing twelve syntheses in six years of luotonin A have been reported. It was envisaged a possible synthesis of the luotonin A by radical cyclisation of the quinoline radical 266 onto the C-2 position of a quinazolinone core. This could be achieved from the synthesis of the quinoline building block 267 and 3H-quinazolin-4-one 219.

Scheme 91. Retrosynthesis of the luotonins.
The biological activity of the luotonins is of particular interest and has recently been explored further by Hecht and coworkers.86 It was noted that luotonin A 145a exhibits reasonable potency as a topoisomerase I poison by stabilising the enzyme linked DNA, with the same selectivity as the anticancer drug camptothecin 61 (figure 21).87

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure21.png}
\caption{Camptothecin acting as topoisomerase I poison}
\end{figure}

The stereochemistry in the lactone E-ring for camptothecin is critical in its role to form a topoisomerase I-DNA covalent binary complex (figure 22). Hecht showed that removal of the hydroxyl group from the lactone E-ring (compound 268) resulted in complete loss of covalent binary complex stabilisation. Notably, luotonin A 145a has a very different E-ring to camptothecin 61. The other major difference between the two compounds is that luotonin A 145a contains an additional nitrogen in the D-ring at position C-14. Hecht has shown that removal of this extra nitrogen at N-14 leads to complete loss of activity for analogue 269.
Hecht has now reported the synthesis of 10,11-methylenedioxy-14-azacamptothecin 271, which incorporates the extra nitrogen in the D-ring of luotonin A into camptothecin (scheme 92). The compound represents another important step to the development of camptothecin analogues in anti-cancer treatment. Hecht employed a radical cyclisation in the synthesis from the quinoline 270 but in poor yield. The aim was to develop improved radical methodology for the synthesis of luotonin A.

Scheme 92.

There have been a number of syntheses of luotonin A to date. The Bowman group has previously used a radical cascade reaction via an iminyl radical in the synthesis of luotonin A (scheme 93). The reaction proceeds via an initial 5-exo-dig cyclisation of a vinyl radical formed from the substituted quinazolinone 272. The resulting intermediate iminyl radical, then undergoes a 6-endo or 5-exo (followed by neophyl rearrangement) yielding luotonin A 144a in a 21% yield. The radical reaction was carried out using (Me₃Sn)₂ to overcome H-abstraction which led to unwanted side products.
3.2 Radical synthesis of luotonin A

The synthesis of the radical precursor for luotonin A is shown in scheme 94. Attempts to formylate 2-chloroquinoline 273 at C-3 failed (scheme 94). It was hoped that deprotonation with LDA at the C-3 on the quinoline 273 would access the aldehyde 274 using DMF as the formylating agent. However, after several attempts this was abandoned as only starting material was recovered. Instead, aldehyde 274 was purchased from Sigma-Aldrich. Literature methodology by Harayama was followed to reach quinazolinone 277. Reduction of the aldehyde 274 to the alcohol 275, was followed by bromination and deoxybromination leading to the quinoline 276 in good yield. The dibromoquinoline 276 was used to alkylate 3H-quinazolin-4-one yielding the desired radical precursor 276.

Scheme 94. i. NaBH₄, EtOH (75%); ii. PBr₃, THF (55%); iii. t-BuOK, 3H-quinazolin-4-one, DMF (65%).
Studies were considered to optimise the dibromination step. Following the reaction by TLC, an initial spot was seen for the rapid deoxybromination of the alcohol 275. However, it took twenty-four hours before the nucleophilic aromatic substitution of the chlorine atom had taken place, yielding the dibromoquinazoline 276.

The results of cyclisation studies are shown in table 9. Initial attempts at the radical cyclisations of the quinazolinone 277 were carried out using (Me₃Sn₂). As discussed previously this was to minimise the possibility of H-abstraction by the intermediate quinol-2-yl radical. Luotonin A 144a was produced in good yield on the first attempt with only a small amount of the reduced quinazolinone 278.

Table 9. Radical synthesis of luotonin A.

<table>
<thead>
<tr>
<th>Radical reagent (equiv.)</th>
<th>Initiator (equiv.)</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Me₃Sn)₂ (3.0) *</td>
<td>hυ and Δ</td>
<td>144a (51%) 278 (15%)</td>
</tr>
<tr>
<td>Bu₃SnH fast (2.5)</td>
<td>Et₃B (20)</td>
<td>278 (53%)</td>
</tr>
<tr>
<td>Bu₃SnH slow (2.5)</td>
<td>Et₃B (20)</td>
<td>144a (14%) 278 (32%)</td>
</tr>
<tr>
<td>Bu₃GeH slow (2.5)</td>
<td>Et₃B (20)</td>
<td>144a (18%) 278 (11%)</td>
</tr>
</tbody>
</table>

* The reaction was carried out in t-BuPh

As expected, fast addition of Bu₃SnH (all added in one portion at the beginning of the reaction) yielded only the reduced quinazolinone 278. However, when slow addition of Bu₃SnH (with a syringe pump) was used a small amount of luotonin A 144a was also formed. This was the first time a five-membered ring cyclisation was carried out onto the quinazolinone using Bu₃SnH. The conclusion can be drawn that the cyclisation of the quinoline radical is more favoured than the aryl or alkyl radicals previously investigated. Slow addition of Bu₃GeH produced a mixture of both the reduced quinazolinone 278 and the cyclised luotonin A 144a. This slight increase in yield of luotonin A using Bu₃GeH can be attributed to the stronger bond between...
germanium-hydrogen compared to the tin-hydrogen bond, which means H-abstraction is less favourable when using Bu₃GeH.

From earlier investigations, there was concern that the separation of luotonin A 144a and reduced quinazolinone 278 may be difficult. Separation of products had been a major problem in the formation of five-membered rings from aryl radicals. Therefore, the synthesis of the reduced quinazolinone 278 was attempted by an alternative route (scheme 95). The conversion of the commercially available 3-bromoquinoline 279 to the quinoline-3-carbaldehyde 280 worked well using DMF as a formylating agent utilising a literature procedure by Doumachel et al. The authors proposed that the reaction proceeded via a tri-quinoyl co-ordinate magnesium ion to explain why only one third of an equivalent of BuMgCl is needed in the reaction. Reduction to the 3-hydroxymethylquinoline 281 proceeded smoothly. The aim was to convert the 3-hydroxymethylquinoline 281 to a suitable leaving group 282 and alkylate onto 3H-quinazolin-4-one to yield quinazolinone 278 unambiguously. However, this route was not further pursued after finding luotonin A 144a and quinazolinone 278 were separable by careful column chromatography.

Scheme 95.
3.3 Introduction to rutaecarpine

The next target synthesis was the indoloquinazolinone natural product rutaecarpine 145 (figure 23). This natural product can be considered a quinazolinone or indole alkaloid and its biosynthesis from tryptophan and anthranilic acid has been discussed.93

![Figure 23. Rutaecarpine 145 was first isolated in 1915.90 Ashina et al. reported the first synthesis another decade later.91 Rutaecarpine is isolated from the plants Evodia, Horita, Zanthoxyllum, Euxylophorea and Phellodendron which are all members of the Rutaceae family.92 The dried fruit of Evodia rutaecarpa has been used in traditional Chinese herbal medicines such as Wu-Chu-Yu and Shih-Hu.93 These medicines have been used to treat a number of medical conditions such as headaches, dysentery, cholera, worm infections and postpartum disturbances. Recent literature has also shown that rutaecarpine displays strong inhibitory activity against cyclooxygenase (COX-2) and suppression of platelet plug formation in mesenteric venules and increased Ca2+ concentration in endothelial cells.94, 95

There have been a number of different synthetic approaches to rutaecarpine. Recently Chavan et. al. have carried a total synthesis using the Fischer indole reaction (scheme 96).92 Although several steps were required to reach the indole precursor 283, the Fischer indole cyclisation using PPA afforded rutaecarpine 145 in excellent yield.
Scheme 96. Rutaecarpine synthesis using a Fischer indole reaction.

3.4 Radical synthesis of rutaecarpine

The key to the synthetic strategy to rutaecarpine 145 was to prepare the indole building block 284 which could be used to alkylate 3H-quinazolin-4-one 219 (scheme 97). It was considered that insertion of the required functionality at the C-2 position of indole 285 would be facile.

Scheme 97. Retrosynthesis of rutaecarpine.

The aim was to develop a synthesis of the indole building block 284 which would provide radical routes to other indole natural products, e.g. as shown in scheme 98.

Scheme 98.

There are two methods for C-2 halogenation of indole reported in the literature (scheme 99). Katritzky has shown that C-2 substitution of 1H-indole 286 can be
carried out using carbon dioxide as a temporary protecting group for nitrogen.96 Bergman and Venemalm elaborated this method to make 2-bromo-1H-indole 287.25 Cook \textit{et al.} have described a second method of C-2 halogenation, where NBS in CCl\textsubscript{4} is used to carry bromination of 3-methyl-1H-indole 288 to 2-bromo-3-methyl-1H-indole 289 at C-2.97 The latter method requires the C-3 position to be blocked, or bromination is directed onto C-3. The major problem for both these procedures is the instability of 2-haloindoles. Bergman and Venemalm noted the curious stability trend of 2-iodoindole > 2-chloroindole > 2-bromoindole.25 However, Jones who has carried out studies with 2-bromoindoles has shown that once pure, the stability of C-2 bromoindoles increases greatly.98

\begin{center}
\begin{tabular}{c}
\textbf{Katritzky approach} \\
\begin{align*}
\text{i. } & n-\text{BuLi} \\
\text{ii. } & \text{CO}_2 \\
\text{iii. } & t-\text{BuLi} \\
\text{iv. } & \text{BrCl}_2\text{CCl}_2\text{Br}
\end{align*}
\end{tabular}
\end{center}

\begin{center}
\begin{tabular}{c}
\text{286} \\
\begin{align*}
\text{287} & \text{(87\%)}
\end{align*}
\end{tabular}
\end{center}

\begin{center}
\begin{tabular}{c}
\textbf{Cook approach} \\
\begin{align*}
\text{NBS, CCl}_4
\end{align*}
\end{tabular}
\end{center}

\begin{center}
\begin{tabular}{c}
\text{288} \\
\begin{align*}
\text{289} & \text{(97\%)}
\end{align*}
\end{tabular}
\end{center}

\textbf{Scheme 99. C-2 Bromination of indole.}

It was chosen to use the NBS reaction which appeared experimentally simpler than the Katritzky method. Initially, the commercially available indole, tryptophol 290 was treated with NBS to form 2-(2-bromo-1H-indol-3-yl)ethanol 291 in low yield (scheme 100). This compound appeared quite stable in air once purified.
This chemistry obviously needed more investigation to optimise reaction conditions and yields. Therefore, initially a number of studies were carried out on 3-methyl-1H-indole 288 (scheme 101). 3-Methyl-1H-indole 288 was converted to 2-bromo-3-methyl-1H-indole 289a and 2-(phenylselanyl)-3-methyl-1H-indole 289b. Once pure both compounds proved stable. An attempt to replace NBS with NIS to form the 2-iodo-3-methyl-indole failed. The use of 2-(phenylselanyl)-3-methyl-1H-indole 289b was considered for radical reactions. However, there is no precedent in the literature of the homolysis of a sp²C-SePh bond in radical reactions.

It was thought that protection of the nitrogen indole might increase reaction yields for bromination. Therefore, the benzyl protected indole 292 was prepared in excellent yield from the 3-methyl-1H-indole 288 (scheme 102). However, once brominated indole 293 appeared very unstable in air.
A less bulky protecting group on the nitrogen might make a difference to the stability of the C-2 brominated indole. Therefore 1,3-dimethyl-1H-indole 294 was synthesised (scheme 103). Treatment of this compound with NBS gave a very poor yield of 2-bromo-1,3-dimethyl-1H-indole 295, which also proved very unstable in air. An attempt to insert phenylselanide at C-2 using PhSeCl and 1,3-dimethyl-1H-indole 294 failed. Only (PhSe)$_2$ and starting material were recovered from this procedure.

At this point, considering the results obtained, another pathway was investigated and the synthesis of C-2 oxindole was attempted that could then be halogenated (scheme 104). A literature procedure was used to prepare 3-methyl-1,3-dihydroindol-2-one 296 from 3-methyl-1H-indole 288. Subsequent chlorination to 2-chloro-3-methyl-1H-indole 297 was carried out using POCl$_3$ in poor yield. When the same pathway was tried using tryptophol 290, the oxindole 298 was not obtained. With poor results obtained, this route was abandoned.
The next direction followed was to use the precursor tryptophol 290, and try different methods of nitrogen protection and subsequent bromination. Methyl protection of the nitrogen was carried out to yield the 2-(1-methyl-1-H-indol-3-yl)ethanol 299 (scheme 105). A range of bases were used to deprotonate the nitrogen. Although KOH and NaOH were used, NaH proved to be the highest yielding. Minor amounts of the dimethylated indole 300 were also recovered.

The methylated indole 299 was successfully brominated using NBS to yield the bromoindole 301 (scheme 106). The yield of the bromoindole 301 was low but the compound appeared quite stable in air. Attempts at mesylation of this compound resulted in inseparable mixtures of unidentified products. Attempts to form the phenylselanide indole 302 using PhSeCl and N-(phenylselanyl)phthalimide also failed.
Scheme 106.

After the failure to convert the pendant alcohol of the bromoindole 301 to the mesylate, studies were carried out to see if the alcohol could be converted to a mesylate prior to bromination (scheme 107). The N-methyl tryptophol 299 was converted to the mesylate 303 in high yield. However, reactions with NBS and PhSeCl failed to produce either the bromoindole 304a or the selenylindole 304b.

Scheme 107.

With little success using N-methyl tryptophol the N-benzylated tryptophol 305, was prepared in good yield (scheme 108). However, no bromination of this compound could be achieved using NBS and bromotryptophol 306 was not obtained. When protection of the nitrogen atom of tryptophol 290 using (Boc)₂O was attempted, the Boc indole 307 was obtained in a poor yield, which precluded this route being explored further.
Scheme 108.

So far the studies had involved carrying out one synthetic transformation at a time. An attempt to protect the indole nitrogen and form a leaving group on the alcohol in one step was made. Both the di-tosyl indole 309a and di-mesyl indole 309b were isolated in low yield from tryptophol 290 (scheme 109) and as a result, no bromination was attempted with either compound to synthesise indole 310.

Scheme 109.

All attempts to brominate indole or tryptophol had involved using NBS. However, lithium bases can also be used to trap bromine and other electrophiles (e.g. the Katritzky method). The aim was to use indole 313 to trap electrophiles at C-2 (scheme 110). Firstly tryptophol 290 was protected with TBDMS to yield the
silylindole 311. The nitrogen was then tosyl protected to form the indole 312, and subsequent deprotection of the alcohol was carried out with TBAF yielding the indole 313.

Scheme 110. Stepwise protection and deprotection of tryptophol.

Insertion of iodine and bromine at the C-2 position of indole 313 was attempted using various bases according to a literature procedure (table 10). The halogenated products 315a and 315b were not obtained, and only starting material was recovered. In all cases, at least two equivalents of base were used to ensure the dianion was formed. We considered that this dianion may help facilitate chelation with the indolo lithium intermediate 314 to enable electrophiles to be trapped.
Table 10 Attempted conditions for halogenation of indole at the C-2 position.

<table>
<thead>
<tr>
<th>Base (equiv.)</th>
<th>Halogen source (equiv.)</th>
<th>Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDA (4.4)</td>
<td>I₂ (2.0)</td>
<td>MTBE</td>
</tr>
<tr>
<td>t-BuLi (4.0)</td>
<td>NIS (4.6)</td>
<td>MTBE</td>
</tr>
<tr>
<td>t-BuLi (8.0)</td>
<td>NIS (4.0)</td>
<td>MTBE</td>
</tr>
<tr>
<td>n-BuLi (4.6) refluxed</td>
<td>I₂ (8.0)</td>
<td>MTBE</td>
</tr>
<tr>
<td>t-BuLi (4.4)</td>
<td>1,2-dibromoethane (4.4)</td>
<td>THF</td>
</tr>
</tbody>
</table>

Literature procedures using iodine were carried out on substrate 313. However, these reactions failed. The reaction with 1,2-dibromoethane was unsuccessful. 1,2-Dibromotetrafluoroethane had been used in the literature and clearly contains a more reactive source of bromine, possibly explaining the failed attempts. No commercial source of 1,2-dibromotetrafluoroethane could be located. An excess of base with the NIS reaction was also used without success.

A literature procedure of Smith et al. had successfully used lithium tetramethylpiperidide (LiTMP) to deprotonate protected indole 316 (scheme 111). It was interesting to note that Smith reported that bromoindole 291 was very unstable.

Scheme 111. Smith’s deprotonation using LiTMP.

It was chosen to use the protected alcohol 311 and convert it to the N-Boc protected indole 318, this was carried out in excellent yield (scheme 112). This compound was
then treated with LiTMP and phenylselanyl chloride to form the C-2 phenylselanide indole. Without further purification, the (phenylselanyl)indole was deprotected with TBAF in situ to yield (phenylselanyl)indole 319. An attempt to remove the phenylselanide group with Bu₃SnH failed which indicated that the sp²C-Se bond was too strong to undergo abstraction. The bromo analogue of indole 319 could not be prepared as the reagent Br₂F₄C₂ could not be acquired.

![Scheme 112. Use of LiTMP as a base](image)

At this point, Harayama et al. reported a Pd catalysed synthesis of rutaecarpine 145 which contained the required radical precursor 321 that was desired (scheme 113). Attempts to repeat Harayama’s procedure proved unsuccessful. Harayama reacted 3-(2-bromoethyl)-1H-indole with NBS and alkylated the crude C-2 bromo indole product with 3H-quinazolin-4-one 219. Realising that other groups may exploit the potential radical reaction of this precursor, Harayama’s reaction sequence was further developed.
Scheme 113. Harayama's Pd catalysed synthesis of rutaecarpine

The indole 320 was added onto the quinazolinone by alkylation and then the C-2 bromination was carried out. In effect, it was hoped to use the quinazolinone as a protecting group for the ethyl arm of tryptophol 322 (scheme 114). Conversion of tryptophol 290 to the 3-(2-bromoethyl)-1H-indole 320 worked well, and was followed by alkylation to yield the indoloquinazolinone 322. The alkylated product 322 was treated with NBS and the bromoindoloquinazolinone 321 was formed after 15 min, albeit it in poor yield.

Scheme 114.

Encouraged by this result a careful study was carried out to optimise the NBS reaction (table 11). A longer reaction time gave an increased yield of bromoindoloquinazolinone 321. Other products from side reactions that were showing
up on TLC were minimised by carrying out the reaction out 0 °C which slightly increased the yield. An attempt to carry out the reaction at -78 °C proved unsuccessful. In this reaction 1.0 equivalent of NBS was initially added and after 40 min a very faint new spot appeared on the TLC plate, so an additional 1.0 equivalent was added. However, this gave a completely inseparable mixture of products and bromoindoloquinazolinone 321 could not be isolated from this reaction mixture. The reaction appeared to be almost instantaneous at room temperature as shown when the reaction was halted after just one minute. Therefore, half an equivalent of NBS was used so that side reactions would be minimised. However, this made no real impact on the reaction yield. Optimum reaction conditions were found to be a reaction time of 30 min at 0 °C with exactly 1.0 equivalent of NBS. The NBS was recrystallised from hot water prior to use. The side reactions may be due to lack of protection of the indole NH. Unlike earlier 2-bromoindoles, the bromoindoloquinazolinone 321 was stable in air.

Table 11. Synthesis of the bromoindoloquinazolinone 321.

<table>
<thead>
<tr>
<th>NBS (equiv.)</th>
<th>Solvent</th>
<th>Time (min)</th>
<th>Temperature</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>CCl₄/DCM (1:1)</td>
<td>15</td>
<td>rt</td>
<td>15%</td>
</tr>
<tr>
<td>1.2</td>
<td>DCM</td>
<td>30</td>
<td>rt</td>
<td>27%</td>
</tr>
<tr>
<td>1.2</td>
<td>DCM</td>
<td>25</td>
<td>0 °C</td>
<td>34%</td>
</tr>
<tr>
<td>2.0*</td>
<td>DCM</td>
<td>40</td>
<td>-78 °C</td>
<td>decomposition</td>
</tr>
<tr>
<td>1.2</td>
<td>DCM</td>
<td>1</td>
<td>rt</td>
<td>15%</td>
</tr>
<tr>
<td>0.5</td>
<td>DCM</td>
<td>30</td>
<td>0 °C</td>
<td>5%</td>
</tr>
<tr>
<td>1.0</td>
<td>DCM</td>
<td>30</td>
<td>0 °C</td>
<td>39%</td>
</tr>
</tbody>
</table>

* A second equivalent was added after 40 min.

NBS was stirred with one equivalent of 3H-quinazolin-4-one for one week in DCM and revealed no new reaction products. Therefore, side reactions observed in table 11 are not due to the reaction between NBS and the quinazolinone moiety.
Having obtained the bromoindoloquinazolinone 321 in acceptable yield, the radical cyclisations were investigated. The first attempt at radical cyclisation was carried out using (Me₃Sn)₂ (table 12). Rutaecarpine 145 was produced as the sole product in good yield after 6 h. Increasing the reaction time lead to a mixture of inseparable products. The reaction was carried out using slow addition of Bu₃SnH which produced rutaecarpine 145 and reduced quinazolinone 322. Earlier six-membered aryl radical cyclisations had shown that Bu₃SnH could be used to form cyclised products and therefore the formation of rutaecarpine from the slow Bu₃SnH reaction was not unexpected. Due to time constraints no further radical reactions were attempted.

Table 12. Radical synthesis of rutaecarpine

```
 Radial reagent (equiv.)  Initiator (equiv.)  Time  Product
                              (3.0)                6 h   145 (55%)  
Bu₃SnH (2.4) *              Et₃B (46)               12 h  145 (15%) 322 (57%)
```

* The reaction was carried out in toluene.

3.5 Conclusions

In this chapter there has been a discussion of the syntheses of important natural products luotonin A and rutaecarpine. A brief introduction to each target has also been given along with previous syntheses and important biological effects. Luotonin A was successfully prepared using a variety of radical reagents. The planned procedure for the synthesis of rutaecarpine is the first radical synthesis of this natural product. The syntheses show that cyclisation of heteroaryl radicals on the C-2 of the 3H-quinazolin-4-one provide a productive route to natural products. Considerable effort was made to prepare a C-2 halogenated indole building block. Unfortunately time did not permit us to fully exploit this building block in the synthesis of other indole alkaloids.
Chapter 4. Acyl and Alkenyl radical cyclisations onto 3H-quinazolin-4-one

Having carried out alkyl, aryl and heteroaryl radical cyclisations onto quinazolinones the focus turned to the radical synthesis of two different natural products, tryptanthrin 146 and isaindigotone 323 (Scheme 115). Neither of these natural products have been prepared using radical chemistry. It was envisaged the synthesis of tryptanthrin 146 could be reached using the acyl radical 324 and isaindigotone via the alkenyl radical 325.

Scheme 115. Retrosyntheses of tryptanthrin and isaindigotone.

4.1 Introduction to tryptanthrin

Tryptanthrin 146 has been shown to have a rich and varied biological activity. It is isolated from *Isatis tinctoria* commonly known as woad. For many years this plant has been used as a herbal remedy. A recent report attributed anti-inflammatory activity from the leaves of woad to tryptanthrin as the principle source of this effect. In particular the HPLC-based activity profiling of tryptanthrin highlighted cyclooxygenase-2 (COX-2) inhibition. Hamburger has studied in great detail the biological activity of tryptanthrin.

In vitro tests on tryptanthrin implicated that it has key enzymatic effects in eicosanoids. It has shown almost a hundred fold selectivity to COX-2 inhibition over
COX-1, by suppressing 6-ketoprostaglandin F1α as well as inhibition of 5-lipoxygenase (*via* inhibition of leukotriene B4). This makes it a rare example of a plant metabolite that shows dual effects on prostaglandin and leukotriene synthesis.104

Tryptanthrin has also shown inhibition of interferon-γ and interleukin-2 I production of lymphocytes in response to Staphylococcal enterotoxin B. This means it has potential applications in control of food borne disease of the intestine.105

Hamburger observed that tryptanthrin could be absorbed through the skin when handling the leaves of *Isatis tinctoria*. However, in solution the pure alkaloid could not be absorbed through the skin.106 This is important to note for laboratory workers.

There are several syntheses of tryptanthrin in the literature. For example, Ajaykumur *et al.* have carried out a rapid synthesis of substituted tryptanthrin analogues 328 using the condensation of substituted isatoic anhydrides 326 and isatins 327 in boiling toluene with triethylamine (scheme 116). A library of analogues of tryptanthrin was prepared using this method.107

![Scheme 116. Rapid access to substituted tryptanthrin analogues.](image)

4.2 Radical synthesis of tryptanthrin

The planned synthesis involved acyl radical cyclisation onto C-2 of 3H-quinazolin-4-on (scheme 117). There was a reliance that the acyl radical would cyclise and not decarbonylate. It was envisaged that loss of CO from the acyl radical intermediate would not be a problem because of the strong sp² carbon bond. In the introduction, reports of reactions by Bennasar in which 2-acyl indolyl radicals were used in cyclisations without the loss of CO have been given (scheme 27).26 There are no examples of 5-exo/endo acyl radical cyclisations onto heteroarenes in the literature to our knowledge.108
Generation of the acyl radical 324 from the stable acyl selanide 329 was envisaged (scheme 117). Acyl selanides are easily formed from the respective carboxylic acids 330. Unlike the other syntheses the required carboxylic acid 330 could not be prepared by N-3 alkylation. Therefore, it was planned to synthesise the acid 330 using condensation chemistry derived from anthranilic acid 169.

Scheme 117. Retrosynthesis of tryptanthrin using an acyl radical cyclisation.

The intermediate 331, which has been reported by Khajavi et al. via the condensation of anthranilic acid and trimethyl orthoformate; looked a useful precursor (scheme 118). Reaction between the intermediate 331 and anthranilic acid 169 should give the acid 330. However, all attempts to make the intermediate 331 using the method reported by Khajavi failed and a new route was investigated to prepare the acid 330.

Scheme 118.
A literature method reported by Johne and Süsse involving the condensation of isatoic anhydride with anthranilic acid to form the amide 332 was used instead (scheme 119). The amide 332 was reacted crude after workup with triethyl orthoformate to yield the acid 330. An attempt to carry out the reaction neat in a one-pot procedure using isatoic anhydride, anthranilic acid and excess HC(OEt)₃ resulted in a mixture of unidentifiable products. The acid 330 was readily converted to the acyl selanide 329 yielding the desired tryptanthrin radical precursor.

Scheme 119. Synthesis of tryptanthrin acyl radical precursor

Bennasar has shown a number of unusual products arising from acyl selanide radical cyclisations onto heteroarenes. For example the reaction of the 2-acylselanide 333 with AIBN and light irradiation produced the addition product 334 and the over oxidised product 335 (scheme 120). As previously stated, it was believed there are no examples of 5-exo/endo acyl radical cyclisations onto heteroarenes.
An initial attempt at radical cyclisation of the acyl selanide \(329\) was carried out using \((\text{Me}_3\text{Sn})_2\) in \(t\)-BuPh (table 13). After careful workup and purification a trace amount of tryptanthrin \(146\) was recovered along with an unidentified compound. When the reaction was carried out in benzene which has a lower boiling point, and with irradiation, no \(\text{R}_3\text{Sn}\cdot\) species was required to obtain tryptanthrin in a higher yield. The reaction mixture turned yellow before the boiling point had been reached. With this in mind, a third reaction was carried out at rt with just irradiation from a 300 W sunlamp. This resulted in the highest yield of tryptanthrin \(146\) (15%). The yields are poor, but as already mentioned no examples of this type of acyl radical cyclisation have been reported in the literature. An attempt to carry out a reaction using h\(u\)/AIBN conditions as described by Bennasar lead to a mixture of unidentifiable products. A final reaction was carried out in the absence of light irradiation, and the acyl selanide \(329\) was heated under reflux in benzene. Only starting material was recovered from this reaction, showing light irradiation was crucial to radical cyclisation.
Table 13. Radical cyclisation of 329 yielding tryptanthrin 146.

<table>
<thead>
<tr>
<th>Reagent (equiv.)</th>
<th>Initiator</th>
<th>Time</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Me₃Sn)₂ (3.0) *</td>
<td>hv</td>
<td>4 h</td>
<td>Tryptanthrin 146 (3%) + unidentifiable</td>
</tr>
<tr>
<td>None</td>
<td>hv</td>
<td>10 h</td>
<td>Tryptanthrin 146 (13%) + unidentifiable</td>
</tr>
<tr>
<td>None **</td>
<td>hv</td>
<td>12 h</td>
<td>Tryptanthrin 146 (15%) + unidentifiable</td>
</tr>
<tr>
<td>None</td>
<td>No</td>
<td>24 h</td>
<td>SM</td>
</tr>
<tr>
<td>None</td>
<td>hv/AIBN</td>
<td>8 h</td>
<td>unidentifiable</td>
</tr>
</tbody>
</table>

* The reaction was carried out in t-BuPh.
** The reaction was carried out at rt.

The mechanism of the formation of tryptanthrin in the absence of any radical reagent is unclear. The reaction rapidly turns to a yellow solution under light irradiation and the major isolated product is (PhSe)$_2$. No characteristic smell was detected, indicating the formation of phenylselanol is unlikely. A putative mechanism, involving initial homolysis of the Se-CO bond of the acyl selanide 329 is shown in scheme 121. The subsequent acyl radical 324 can cyclise and the phenylselanyl radical can propagate the reaction by forming diphenyl diselanide either by abstraction of PhSe from the acyl selanide or by dimerisation. The rearomatisation step yielding tryptanthrin 146 could arise from disproportionation of the σ-radical 336. However, no products other than tryptanthrin and diphenyl diselanide were identified. The cyclised reduced quinazolinone 337 was not isolated.
Scheme 121. Putative radical mechanism for the synthesis of tryptanthrin.

Although the cyclised reduced quinazolinone 337 was not isolated, it may have been an unidentified reaction product. Its formation could be aided by the extra resonance stability from tautomer 338 which includes a weak hydrogen bonding interaction (scheme 122). It is stressed this is only a proposed mechanism based on observations from the reaction.

Scheme 122. Possible resonance stabilisation of dihydrotryptanthrin.

Although the yields of tryptanthrin 146 were low, the new protocol described gives a novel use of 5-exo/endo acyl radical cyclisation onto heteroarenes and a novel radical
synthesis of tryptanthrin. The reason for the success of the 5-exo/endo cyclisation may be explained by the 1-N to 2-C imine bond being localised, and not fully incorporated into the aromatic ring. This means the reaction could be envisaged as a 5-exo cyclisation onto an imine rather than 5-exo/endo cyclisation onto a heteroarene.

An authentic sample of tryptanthrin 146 was prepared using the method described by Ajaykumur et al. (scheme 123). The 1H and 13C NMR spectra were identical to the product of the radical syntheses of tryptanthrin. Mitscher et al. have shown NaH can be used instead of Et3N, but this method failed to yield tryptanthrin in our hands.

![Scheme 123. Non radical synthesis of an authentic sample of tryptanthrin.](image)

4.3 Radical synthesis of six-membered ring tryptanthrin analogue

The synthesis of the six-membered ring analogue 339 of tryptanthrin 146 was also investigated (scheme 124). The aim was to compare the 5-exo acyl radical cyclisation with the 6-exo acyl radical cyclisation of the intermediate 341. From previous studies it was presumed that the cyclisation of the acyl radical 340 would be more favourable, and give the tetracyclic compound 339 in good yield. Numerous examples have already shown that 6-exo cyclisation is strongly favoured over 5-exo/endo cyclisation onto aromatic rings. Similarly to the previous tryptanthrin synthesis, it was planned to access the acyl radical from the acyl selanide 341.

![Scheme 124. Planned 6-exo acyl radical cyclisation.](image)
The acyl selanide 341 proved harder to obtain than expected. Bromination of the o-methyl toluate 342 was carried using a literature procedure, but in poor yield (scheme 125). This reaction had previously been used and yielded the 2-(bromomethyl)toluate 343 was obtained in poor yield. Attempts at using a large excess of NBS had no effect, nor did carrying the reaction in the dark. Alkylation of 3H-quinazolin-4-one 219 using the 2-(bromomethyl)toluate 343 gave an overall disappointing yield of 34% of the quinazolinone ester 344. Ester hydrolysis was carried out followed by formation of the acyl selenide using the same procedure for the previous tryptanthrin synthesis. The radical precursor acyl selenide 341 proved to be stable in air.

Scheme 125. Synthesis of the radical precursor 341.

With the acyl selanide 341 in hand, various radical conditions were investigated to form the tetracycle 339. It quickly became apparent that the formation of the tetracycle 339 was not favourable (table 14). The first attempt at cyclisation using (Me3Sn)2 produced a mixture of unidentifiable products. When this method was repeated, under a shortened reaction time, the unexpected hydroxytetracycle 345 was formed in moderate yield. Various other radical conditions were tried and resulted in starting material recovery or unidentifiable products. The other result of note occurred when the reaction was carried using only light irradiation. A 1H NMR spectra of the
crude reaction mixture appeared to show a peak at 10 ppm, which may have corresponded to an aldehyde. However, the aldehyde was not isolated.

Table 14. Attempts at forming tetracycle 339.

<table>
<thead>
<tr>
<th>Reagents (equiv.)*</th>
<th>Solvent</th>
<th>Reflux</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Me3Sn)2 (3.0)</td>
<td>Benzene</td>
<td>Yes</td>
<td>Unidentifiable</td>
</tr>
<tr>
<td>(Me3Sn)2 (3.0) **</td>
<td>Benzene</td>
<td>Yes</td>
<td>345 (40%)</td>
</tr>
<tr>
<td>Et3B (10.0)</td>
<td>MePh</td>
<td>No</td>
<td>Possible aldehyde</td>
</tr>
<tr>
<td>AIBN (3.0)</td>
<td>MePh</td>
<td>Yes</td>
<td>Unidentifiable</td>
</tr>
<tr>
<td>TTMSS (3.0) and Et3B (10)</td>
<td>MePh</td>
<td>No</td>
<td>Unidentifiable</td>
</tr>
</tbody>
</table>

* The reaction time was 12 h.
** The reaction time was 3 h.

An X-ray crystal structure was obtained for the tetracycle 345 (figure 24). Until this point, the 1H and 13C NMR spectra of this compound had been perplexing as identification of the formation of a hydroxyl group had not been envisaged.

Figure 24. X-ray structure of hydroxytetracycle 345.
A possible mechanism for the formation of the hydroxytetracycle 345 is shown in the scheme 126. Firstly, the acyl radical 340 undergoes a 6-exo cyclisation onto the quinazolinone. After rearomatisation of the π-intermediate 346 by loss of H• by some means (most likely Me• or MeOO•) quinazolinone tetracycle 339 is produced. MeSn• radicals can react rapidly with O₂ to form Me₃SnO-O• radicals which could then abstract one of the benzylic hydrogens, forming the benzylic stabilised radical 347. Presumably the benzylic radical 347 has a sufficiently long lifetime to react further with Me₃SnO-O• and form the intermediate 348. This could break down to leave the oxy radical intermediate 349, which after H-abstraction forms the hydroxytetracycle 341. It is surprising that the hydroxytetracycle 341 did not go on further to form the oxidised product 350.

Scheme 126. Possible mechanism for formation of the hydroxytetracycle 345.
Whilst carrying out radical investigations of the acyl six-membered ring synthesis, simultaneous attempts to prepare the related acyl selenide precursor 351 were made (scheme 127). It was hoped that the acyl selanide precursor 351 might be easier to prepare and provide some interesting results given the apparent odd results previously obtained. It was considered that the acyl selenide analogue 351 would be easy to prepare from the acid 352 which in turn could be prepared by the reaction between 3H-quinazolin-4-one 219 and phthalic anhydride 353.

Scheme 127. Planned route to new the acyl precursors 351.

However, the reaction of 3H-quinazolin-4-one with phthalic anhydride proved unsuccessful under a variety of reaction conditions (table 15). It was clear that the 3-N quinazolinone anion 356 was being formed, because the colour of the reaction mixture turned yellow, however, no indication of the possible alkylation with phthalic anhydride 353 was seen in any crude 1H NMR spectra.
Table 15. Attempted synthesis of the acid 352.

![Chemical Structures]

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Temperature</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMF</td>
<td>rt</td>
<td>Unidentifiable</td>
</tr>
<tr>
<td>DMF</td>
<td>80 °C</td>
<td>Unidentifiable</td>
</tr>
<tr>
<td>THF*</td>
<td>Reflux</td>
<td>Unidentifiable</td>
</tr>
<tr>
<td>DMF*</td>
<td>rt</td>
<td>Unidentifiable</td>
</tr>
<tr>
<td>DMF*</td>
<td>Reflux</td>
<td>Unidentifiable</td>
</tr>
<tr>
<td>MeCN*</td>
<td>Reflux</td>
<td>Unidentifiable</td>
</tr>
</tbody>
</table>

* A catalytic amount of DMAP added.

An attempt to prepare the acid 352 starting from anthranilamide 354 and isatoic anhydride was undertaken (scheme 128). However, this route proved unsuccessful and the amide 355 was never isolated. An attempt to carry out this synthesis in one-pot also failed.

![Scheme 128. Attempted synthesis of the acid 352.]

A final attempt to synthesise the acyl selenide 351 was made using phthaloyl dichloride 357 (scheme 129). It was hoped the 3-N quinazolinone anion 356 would react with phthaloyl dichloride 357. The crude product 358 (if formed) of this reaction was reacted with PhSeO, but no acyl selenide 351 was formed. Mixtures of unidentifiable products were obtained.
Scheme 129. Attempted synthesis of the acyl selenide 351.

With attempts to form the acyl selenide 351 not proving profitable and failed attempts to form desired tetracycle 339 under radical condition, work was halted on acyl radical studies. The results from cyclisations of acyl radicals onto C-2 of 3H-quinazolin-4-one 219, are unusual and in most part unexplained. Cyclisation of the five-membered ring to form tryptanthrin was observed, albeit in low yield. The six-membered ring acyl radical cyclisations results were disappointing, however, the unexpected hydroxytetracycle 345 was obtained in moderate yield.

4.4 Investigations into alkenyl and vinyl radical cyclisations onto 3H-quinazolin-4-one

Having investigated aryl, alkyl and acyl radical cyclisations onto the 3H-quinazolinone moiety, attention was turned to the investigation of alkenyl radical cyclisations in the synthesis of natural product isaindigotone 323 (scheme 130). Only recently isolated, its biological activity is still under investigation. To date, there are very few syntheses of this quinazolinone natural product. The only notable synthesis was by Liu et al. using a one-pot microwave reaction already shown for the synthesis of mackinazolinone 148 (scheme 83). The planned synthesis of isaindigotone required alkylation of 3H-quinazolin-4-one with alkenyl radical precursor 359 side chain.
Scheme 130. Retrosynthesis of isaindigotone.

Alkenyl radical cyclisations onto the 3H-quinazolin-4-one template are unknown and therefore, it was decided to investigate a number of simpler systems before attempting the total synthesis of isaindigotone (scheme 131). The unhindered vinyl 360 and alkenyl 361 radicals were planned as the first experiments. This required the synthesis of substituted alkenes 363 and 364 for alkylation with 3H-quinazolin-4-one. The simpler alkenyl radical analogue of isaindigotone 362 was also planned from alkene 365 which did not contain the methoxy or hydroxy groups present on isaindigotone. There is a possibility these groups may hinder the radical cyclisation.
Scheme 131. Planned routes to vinyl and alkenyl radical cyclisations onto 3H-quinazolin-4-one

The initial investigation began with the study of the vinyl radical 360 (scheme 132). The planned retrosynthesis involved a Wittig reaction to make the key vinyl bromide 366. The aldehyde 367 could be reached by either alkylation of 3H-quinazolin-4-one using 1-hydroxy-3-chloropropane and then oxidation or condensation chemistry of anthranilic acid, 1-amino-3-hydroxypropane and triethyl orthoformate.

![Scheme 132. Retro synthesis of vinyl radical 366.](image)

A condensation chemistry route with anthranilic acid was chosen (scheme 133). The reaction of anthranilic acid 169 and triethyl orthoformate was carried out followed by addition of 3-aminopropan-1-ol after the removal of excess triethyl orthoformate. The previous attempt to use the intermediate 331 reported by Khajavi et al. had been unsuccessful (scheme 118). The overall yield of alcohol 368 was moderate. An attempt to adapt this procedure into a one-pot synthesis failed.

![Scheme 133. Synthesis of the alcohol precursor 368.](image)

With the alcohol 368 in hand, oxidation was carried out to the aldehyde 367 using 2-iodoxybenzoic acid (IBX) in excellent yield (scheme 134). Kuroda and Masakatsu have reported Wittig reactions to form vinylbromides. The authors emphasized the
The problem of the acetylene formation in the presence of an excess of base. The Wittig reaction with aldehyde 367 and bromomethylenetriphenylphosphorane was found to be problematic. Alkyne 369 was never isolated as a reaction side product. Eventually, the vinyl bromide 366 was formed in low yield (table 16).

![Scheme 134. Synthesis of the vinyl bromide 366.](image)

Table 16. Wittig reaction conditions (see scheme 134)

<table>
<thead>
<tr>
<th>Base</th>
<th>Temperature</th>
<th>Solvent</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-BuLi</td>
<td>−78 °C</td>
<td>THF</td>
<td>Unidentifiable</td>
</tr>
<tr>
<td>n-BuLi</td>
<td>−78 °C</td>
<td>THF</td>
<td>Unidentifiable</td>
</tr>
<tr>
<td>NaH</td>
<td>rt</td>
<td>DCM</td>
<td>Unidentifiable</td>
</tr>
<tr>
<td>t-BuOK</td>
<td>rt</td>
<td>DCM</td>
<td>Unidentifiable</td>
</tr>
<tr>
<td>t-BuOK</td>
<td>−78 °C</td>
<td>THF</td>
<td>366 (15%)</td>
</tr>
</tbody>
</table>

The radical reaction of vinyl bromide 366 using (Me₃Sn)₂ resulted in a mixture of unidentifiable products. Given the poor yield of the Wittig reaction it was decided not to pursue this work any further. It was decided to concentrate on the synthesis of alkene radicals 360 and 361 which were more closely related to isaindigohtone.

The synthesis of the bromoalkene quinazolinone 372 was the first target (scheme 135) which could undergo radical cyclisation to form a six-membered ring onto the 3H-quinazolin-4-one 219 moiety. The literature procedure of Köllner and Molander was
chosen for the bromination of alkynes using HBr in AcOH. Using Kollner and Molander's methodology, 5-chloro-1-pentyne was cleanly converted to the bromoalkene 370. A Finkelstein reaction was carried out to form iodobromo alkene 371. Alkylation onto the 3H-quinazolin-4-one 219 gave the desired bromoalkene quinazolinone 372.

![Scheme 135. Synthesis of the vinyl radical precursor 372.](image)

To reduce the number of synthetic step it was decided to by alkylate 3H-quinazolin-4-one 219 with 5-chloro-1-pentyne (scheme 136). However, the alkylation using 5-chloro-1-pentyne to produce the terminal alkyne 373 proceeded in a poor yield. It was disappointing when this alkyne was treated with HBr in DCM, no bromination took place, even after two days. Complete recovery of the starting material was observed. This result was most unexpected and given the poor yield of the alkylation reaction this particular route was not investigated further. It was decided to use the previous synthesis of bromoalkene quinazolinone 372 (scheme 129).
Scheme 136. Attempted synthesis of the bromoalkene quinazolinone 372.

However, the radical reaction of the bromoalkene quinazolinone 372 did not prove straightforward. The initial attempts using (Me$_3$Sn)$_2$ resulted in a mixture of starting material and unidentifiable products (table 17). The reaction was repeated using a fresh ampoule of (Me$_3$Sn)$_2$, but the reaction failed again. Use of Bu$_3$SnH and Et$_3$B also failed. A GC-MS chromatogram of this reaction revealed three peaks. Two of the peaks on the chromatogram are likely to be the cyclised quinazolinone 374 and the reduced quinazolinone 376. No clean 1H NMR spectra could be obtained from this reaction. In the reaction using Bu$_3$SnH and AIBN, a 1H NMR spectrum of the reduced quinazolinone 376 was obtained. However, the yield of this product was low (<5%). The reduced cyclised quinazolinone 375 was never identified in any of these reactions. The reduced quinazolinone 376 was prepared unambiguously via the reaction of 3H-quinazolin-4-one 219, t-BuOK and 5-bromopent-1-ene in DMF in good yield (44%) to help with characterisation.
Table 17. Attempted radical reactions of the alkenylbromide 372.

<table>
<thead>
<tr>
<th>Radical reagent (equiv.)</th>
<th>Initiator (equiv.)</th>
<th>Reflux</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\text{Me}_3\text{Sn})_2) (3.0)*</td>
<td>hv</td>
<td>Yes</td>
<td>SM + decomposition</td>
</tr>
<tr>
<td>Bu(_3)SnH (4.0)</td>
<td>Et(_3)B (10)</td>
<td>No</td>
<td>SM + decomposition</td>
</tr>
<tr>
<td>Bu(_3)SnH (2.0)</td>
<td>Et(_3)B (10)</td>
<td>No</td>
<td>SM + decomposition</td>
</tr>
<tr>
<td>Bu(_3)SnH (2.2)</td>
<td>AIBN (2.2)</td>
<td>Yes</td>
<td>376 (<5%) decomposition</td>
</tr>
<tr>
<td>TTMSS (3.0)</td>
<td>Et(_3)B (10)</td>
<td>No</td>
<td>SM + decomposition</td>
</tr>
</tbody>
</table>

*The reaction was carried out in \(t\)-BuPh.

An explanation for the failures may be explained by the potential addition of \(\cdot\text{SnR}_3\) to the bromoalkene 372 (scheme 137). Quinazolinone radical intermediate 377 could react further to produce quinazolinone 378. Quinazolinone 378 was not isolated, but its formation cannot be ruled out.

Scheme 137. Possible unwanted radical side reactions.

With the unexpected failure of the radical reaction and having a large quantity of the precursor to hand it was chosen to investigate some Pd-catalysed reactions (table 18).
These proved unsuccessful and were not pursued as new work was undertaken. There was disappointment that no Pd-catalysed reactions for bromoalkenes were observed. These results were similar to those observed in the case of arylbromides above.

Table 18. Failed Heck conditions

<table>
<thead>
<tr>
<th>Pd source</th>
<th>Ligand</th>
<th>Base</th>
<th>Solvent</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd$_2$(dba)$_3$</td>
<td>PBu$_3$</td>
<td>Cy$_2$NMe</td>
<td>Dioxane</td>
<td>Reflux</td>
</tr>
<tr>
<td>Pd$_2$(dba)$_3$</td>
<td>PBu$_3$</td>
<td>NEt$_3$</td>
<td>Dioxane</td>
<td>Reflux</td>
</tr>
<tr>
<td>Pd(OAc)$_2$</td>
<td>PPh$_3$</td>
<td>i-Pr$_2$NEt</td>
<td>DMF</td>
<td>Reflux</td>
</tr>
<tr>
<td>Pd(OAc)$_2$</td>
<td>PPh$_3$</td>
<td>NEt$_3$</td>
<td>neat</td>
<td>Reflux</td>
</tr>
<tr>
<td>Pd(OAc)$_2$</td>
<td>PPh$_3$</td>
<td>K$_2$CO$_3$</td>
<td>DMF</td>
<td>Reflux</td>
</tr>
<tr>
<td>Pd(PPh$_3$)$_4$</td>
<td>none</td>
<td>NEt$_3$</td>
<td>MeCN</td>
<td>10 min*</td>
</tr>
<tr>
<td>Pd(PPh$_3$)$_4$</td>
<td>none</td>
<td>i-Pr$_2$NEt</td>
<td>THF</td>
<td>10 min*</td>
</tr>
</tbody>
</table>

*The reaction was carried out in a microwave reactor.

With both radical and Pd-catalysed cyclisations not proving successful for the bromoalkenequinazolinone 372, it was decided to move onto the synthesis of the alkene 379 (scheme 138). It was hoped dibromo compound 380 could be accessed via the ring-opening of the cyclopropene 381 with CuBr$_2$ as shown by Brinker and Nordvik. The cyclopropene 381 should be synthesised from a Wittig reaction of 4-methylbenzaldehyde 382 and the commercially available cyclopropane Wittig reagent 383.
After several attempts, the Wittig reaction was successfully carried out (table 19). The reaction worked best when the Wittig reagent, the base and the aldehyde were reacted in one-pot. This indicated the intermediate ylid has a short lifetime.

Table 19. Wittig synthesis of the cyclopropene 383.

<table>
<thead>
<tr>
<th>Base</th>
<th>Solvent</th>
<th>Time</th>
<th>Temperature</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaH</td>
<td>THF</td>
<td>12 h</td>
<td>Reflux</td>
<td>SM</td>
</tr>
<tr>
<td>n-BuLi</td>
<td>THF</td>
<td>12 h</td>
<td>–78 °C → rt</td>
<td>Unidentifiable</td>
</tr>
<tr>
<td>NaH (slow)</td>
<td>THF (ultra dry)</td>
<td>4 h</td>
<td>Reflux</td>
<td>SM</td>
</tr>
<tr>
<td>t-BuOK</td>
<td>DCM</td>
<td>12 h</td>
<td>rt</td>
<td>381 (<5%)</td>
</tr>
<tr>
<td>t-BuOK</td>
<td>DCM</td>
<td>12 h</td>
<td>Reflux</td>
<td>381 (44%)</td>
</tr>
</tbody>
</table>

After successfully preparing the cyclopropene 381, the ring-opening reaction was carried out using CuBr₂ to yield dibromide 380 (scheme 139). It wasn’t envisage that the alkylation of 3H-quinazolin-4-one 219 using the dibromide 380 would prove difficult not prove difficult. However, after several attempts, it was realised that the styrene 384 was the major reaction product and the yield of the alkylation...
quinazolinone 379 was lower than expected. This is the first example of an attempted alkylation of 3H-quinazolin-4-one 219 where the elimination reaction competed with the Sn2 substitution. Finally a small amount of the alkylated product 379 was obtained which was reacted under radical conditions using (Me3Sn)2. It was disappointing that cyclisation did not occur and a number of unidentifiable products were recovered. The reaction was investigated twice more using Bu3SnH/Et3B and Bu3SnH/AIBN but this also resulted in number of unidentifiable products being produced. The cyclised product quinazolinone 385 was never obtained.

Scheme 139. Failed radical reactions of the hindered alkene.

A final alkene radical synthesis was attempted in which it was hoped to form a six-membered ring quinazolinone 389 using radical cyclisation using with the bromoalkene quinazolinone 388 similar to quinazolinone 385 (scheme 140). Key to this synthesis was the bromination of alkyne 386 which had been prepared via a literature procedure. However, bromination using HBr appeared to give a mixture of unidentified products. As a result, dibromide 387 was never obtained. Had time
permitted, further investigations of this route would have been pursued. It is believed that bromination of the alkyne could be achieved given more time.

![Scheme 140](image)

Scheme 140.

It was disappointing that alkenyl and vinyl radical cyclisations onto quinazolinones were not successful. It has been shown that these types of radical cyclisations onto quinazolinones are largely unfavourable. Had time permitted further attempts at radical cyclisations would have been carried out.

4.5 Conclusions

This chapter concludes the work in natural product synthesis using the radical cyclisation chemistry. A novel synthesis of tryptanthrin 146 has been shown and further discussion of acyl radical cyclisations. An unusual hydroxytetracycle 345 was identified in the six-membered ring radical cyclisation. The discussion and investigations of vinyl radical cyclisations onto 3H-quinazolin-4-ones has also been shown. This was not successful and no radical cyclisation products were obtained from these reactions. It had been hoped this would allow access to the natural product isaidigotone 323.
Chapter 5. Syntheses of 2-bromo-3H-quinazolin-4-one

During the investigations of radical cyclisations, it was also considered whether it would be possible to form a radical on the C-2 position of the quinazolinone 390 (scheme 141). At the time no reports of the insertion of suitable functionality (e.g. bromine) have been described at this position on the 3H-quinazolin-4-one 391. It was hoped that if it could be formed open up a new area of radical reactions.

![Scheme 141. Proposed radical cyclisation from C-2 of 3H-quinazolin-4-one.](image)

5.1 Investigation into the syntheses of a C-2 radical quinazolinone building block

2-Chloro-3H-quinazolin-4-one 394 is well reported in the literature and can be prepared from the 2,4-diketoquinazolinone 392 (scheme 142). It was hoped that a method could be developed to convert the chlorine of 2-chloro-3H-quinazolin-4-one 394 to a better radical leaving group as in quinazolinone 396. 2-Chloro-3H-quinazolin-4-one 394 was prepared using a procedure by Hess. It was found the 2,4-diketoquinazolinone 392 and 2-chloro-3H-quinazolin-4-one 394 difficult to handle, both were insoluble in organic solvents, even in DMF. Hydrolysis of 2,4-dichloroquinazolinone 393 occurs solely at C-4. Confirmation of the 2-chloroquinazolinone 394 came from an IR spectral analysis, which clearly showed a secondary amide carbonyl peak at 1653 cm⁻¹.
Scheme 142. Synthesis of 2-chloroquinazolinone.

The question remained whether 2-chloro-3H-quinazolin-4-one 394 could be converted to the 2-iodo-3H-quinazolin-4-one 396 via a Finkelstein SNAr type reaction (scheme 143). Normally Finkelstein reactions are limited to alkyl halides. However, Janeba et al. have shown N-heterocycles can also undergo these reactions in the presence of an acid such as TFA. Janeba showed that 6-chloro purine 397 was converted to 6-iodopurine 398.

Scheme 143.

Before attempting this reaction on 2-chloro-3H-quinazolin-4-one 394, the simpler 2-chloroquinoline 399 substrate was tested first (scheme 144). The method appeared to
work well using NaI and TFA and 2-iodoquinoline 400 was formed in good yield. It was presumed the acid is required to protonate the quinoline to facilitate nucleophilic attack of the iodine. Janeba et al. reported that such reactions need to be carried out at low temperature to increase the lifetime of the intermediate. However, it was found that the low temperature was not necessary and reached the highest yield of 2-iodoquinoline 400 at room temperature. Attempt to carry out the same reaction using 2-chloro-3H-quinazolin-4-one 394, gave several unidentifiable products. It was clear that reaction was not compatible using the 2-chloroquinazolin-4-one 394 and no further attempts at preparing 2-iodo-3H-quinazolin-4-one 396 were made using this reaction.

Next, it was considered if the 2-chloro-3H-quinazolin-4-one 394 could be converted to the 2-(phenylselanyl)-3H-quinazolin-4-one 401 even though there was uncertainty whether this would be synthetically useful in radical chemistry (scheme 145). The results previous from the 3-(2-hydroxyethyl)-2-(phenylselanyl)-NBoc-indole 319 showed no reaction when treated under radical conditions (scheme 112). Nevertheless, it was decided to prepare the selanide which was carried out by the reaction of (PhSe)$_2$ and K-selectride in THF, which is a well known method of forming imidoyl selanides from their chloro analogues within the group. Although the 2-(phenylselanyl)-3H-quinazolin-4-one 401 was made in reasonable yield, no reaction took place when treated under radical conditions using Bu$_3$SnH/Et$_3$B. The sp3C-Se bond is obviously too strong. There are no reports in the literature of cleaving
the Ph-Se bond in radical reactions so the result is not unusual. Given this result and that of the 3-(2-hydroxyethyl)-2-(phenylselanyl)-NBoc-indole 319, this work was not continued. Given these disappointing results in attempting to make a suitable C-2 radical quinazolin-4-one precursor inspiration from the literature was sought.

Scheme 145. Unsuccessful radical reaction of 2-phenylselanyl-3H-quinazolin-4-one.

5.2 Introduction to bromination of thioamides and thioureas
A reaction by Hull and Swain caught our attention (scheme 146). The authors had reported the reaction of 1,2,3,4-tetrahydro-2-thioxoquinazolin-4-yl-acetic acid 402 with bromine in acetic acid, leading to 2-bromo-3,4-dihydroquinazolin-4-yl-acetic acid 403.121 This immediately posed the question whether the same reaction could be carried out to provide a route to C-2 substituted quinazolin-4-one 395. Hull and Swain gave no account of the possible mechanism. It was decided to look more closely in the literature to find out more about the reaction of thioureas and thioamides with bromine. The next few pages consist of an introduction covering the notable reactions of thioureas and thioamides with bromine or other brominating species. This short review is intended to provide an introduction into the work, which was carried out to form a 2-bromo-3H-quinazolin-4-one building block 241 (scheme 77).

Scheme 146. Bromination of 1,2,3,4-tetrahydro-2-thioxoquinazolin-4-yl-acetic acid 402 by Hull and Swain.121
The reaction of thioamides and thioureas with bromine is not unprecedented in the literature. However, the reactions do not usually produce imidoyl-bromides as Hull and Swain had shown and more often result in cyclisation via a sulfanylbromide intermediate. A classic example of this is the Hugerschoff reaction to form benzothiazoles. Jordan et al. have used this reaction recently in the synthesis of various substituted benzothiazoles (scheme 147). For example, the reaction between thiourea and bromine forms intermediate sulfanylbromide, which is followed by cyclisation and rearomatisation to produce benzothiazole 407.

Scheme 147. The Hugerschoff synthesis of benzothiazole.

Similar reactions exist in the literature using thioamides. Moghaddam and Boeini have reported the cyclisation of thioamide using organic ammonium tribromide species (OATB) to form benzothiazole (scheme 148). Organic ammonium tribromide species were used instead of bromine as they are usually solid and much easier to handle. Cyclisation presumably takes place via a similar mechanism as described in scheme 147.

Scheme 148. Oxidative cyclisation of thioamide using OATB.
The driving force for rearomatisation plays a major role in these reactions. Shanmugam et al. have shown a similar reaction for 2-thioquinoline 410 which cyclised to form tricyclic quinoline 413 (scheme 149). However, the authors believe this reaction takes place via bromination of the alkene 412 rather than the double bond attacking sulfanylbromide 411. None the less this reaction constitutes a possible example of bromine addition to a thioamide. The 5-exo cyclisation of the alkene onto the sulfanylbromide 411 appears more favoured than the 5-endo cyclisation of the thioamide 412 onto the alkene.

Scheme 149. Cyclisation of a thioquinoline using bromine.

The bromination of thioamides and thioureas has also been shown to give a wide range of different products. There are examples where bromination of thioamides has lead to disulfides (scheme 150). Ali and McDermott have shown that the reaction of 2-thiopyridine 414 leads to formation of bis(2-pyridyl) disulfide 415. This is perhaps expected due to the strong aromatic nature of 2-thiopyridine. Other examples of disulfide formation of 2-thiobenzimidazole are also reported in the literature.
Scheme 150. Formation of disulfides.

A related reaction is the reaction between thioacyl urea compounds 416 and bromine to form dithiazoles 417 (scheme 151). Verma et al. has reported a number of these examples.127 Ali and McDermott's reaction in scheme 145 proceeded \textit{via} the sulfanyl bromide being trapped by intermolecular sulfur addition,125 whereas in the examples by Verma, intramolecular sulfur addition is seen.127

Scheme 151. Formation of a dithiazole using bromine.

Gewald \textit{et al.} have shown that the sulfanyl bromide intermediate can be trapped with nitriles (scheme 152).128 However, nitrogen attack of the nitrile 418 is only facilitated by concomitant addition of bromide to the nitrile, this explains the presence of a bromine atom on cyclised product 419. This is not the only example of nitrogen intercepting such intermediates. Bossio \textit{et al.} have shown a similar example of nitrogen interception of sulfanyl bromide intermediate using benzimidazoles.129 The literature also contains examples of nitrogen attack from amidines and amides.130,131

Scheme 152. Isonitrile cyclisation onto sulfur using bromine.
There are other examples in the literature where brominated products such as Hull and Swain's 2-bromo-3,4-dihydroquinazolin-yl-acetic acid 403 have been isolated. A very early example of a nearly identical reaction of 4-phenyl-3,4-dihydro-1H-quinazolin-2-thione 420 with bromine has been reported by Gabriel and Stelzner in 1896 (scheme 153). The reaction was carried out using bromine in acetic acid and water but no yield was given. The dibromo-intermediate 421 was reportedly isolated prior to formation of 2-bromo-4-phenyl-3,4-dihydroquinazoline 422.

\[
\text{C}_{14}\text{H}_{12}\text{N}_{2}\text{S} + 4\text{Br}_2 + 3\text{H}_2\text{O} \rightarrow 6\text{HBr} + \text{SO}_3 + \text{C}_{14}\text{H}_{12}\text{N}_2\text{Br}_2
\]

Scheme 153. Early reported bromination of thioquinazoline.

Robins et al. used the procedure for the preparation of mono-, di- and tri-substituted bromopurines 423, 424 and 425 (scheme 154). Robins postulated the mechanism involved an oxidised sulfur intermediate (sulfanyl bromide) being displaced by a bromide ion in solution.
Scheme 154. Bromination of purines

Robins et al. extended the same procedure for the conversion of thiopyrimidine 426 to the brominated analogue 427 (scheme 155).134 They also showed that this protocol can be extended to form iodo compounds by treating thiopurines with iodine under basic conditions, e.g. 9-furanol-8-iodo-9\textit{H}-purin-6-ylamine 428.135

Scheme 155. Bromination of thiopyrimidine.
5.3 Reactions and bromination of 2-Mercapto-3H-quinazolin-4-one

Having carefully reviewed the literature, it was considered there was enough evidence that the synthesis of the 2-bromo-3H-quinazolinone 241 building block could be successfully made using this method. 2-Mercapto-3H-quinazolin-4-one 242 was commercially available, and to our delight, treatment with bromine formed the desired 2-bromoquinazolinone 241 (table 20). Characterisation by 1H and 13C NMR spectroscopy was inconclusive and mass spectral data was relied upon to verify the presence of a bromine atom. There was concern that the hydrobromide salt product may form, which could have affected subsequent alkylations at the N-3 position. At this stage the mechanism of the reaction was unclear. No smell of H$_2$S was detected indicating it was not formed in the reaction. The move away from acetic acid was made and found the yields were similar in ethanol.

<table>
<thead>
<tr>
<th>Br$_2$ (equiv.)</th>
<th>Time (min)</th>
<th>Solvent</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>30</td>
<td>MeOH</td>
<td>24</td>
</tr>
<tr>
<td>1.5</td>
<td>10</td>
<td>AcOH</td>
<td>35</td>
</tr>
<tr>
<td>1.5</td>
<td>15</td>
<td>AcOH/H$_2$O (5:1)</td>
<td>48</td>
</tr>
<tr>
<td>1.5</td>
<td>120</td>
<td>EtOH</td>
<td>50</td>
</tr>
<tr>
<td>3.0*</td>
<td>30</td>
<td>AcOH</td>
<td>35</td>
</tr>
<tr>
<td>3.0</td>
<td>180</td>
<td>AcOH</td>
<td>40</td>
</tr>
<tr>
<td>3.0**</td>
<td>30</td>
<td>AcOH</td>
<td>14</td>
</tr>
<tr>
<td>3.5</td>
<td>20</td>
<td>AcOH/H$_2$O (5:1)</td>
<td>42</td>
</tr>
<tr>
<td>3.5</td>
<td>30</td>
<td>AcOH/H$_2$O (5:1)</td>
<td>40</td>
</tr>
<tr>
<td>4.0</td>
<td>40</td>
<td>AcOH/H$_2$O (5:1)</td>
<td>37</td>
</tr>
</tbody>
</table>

* Dried in a vacuum oven for 24 h over P$_2$O$_5$ (1H NMR spectroscopy showed slight decomposition).

** Extracted into DCM and washed with Na$_2$S$_2$O$_3$ (1H NMR spectroscopy showed evidence of some debromination).
Due to the high polarity of the product, work ups and purification were extremely difficult. When the crude reaction was washed with 5% aqueous Na$_2$S$_2$O$_3$ a loss in product yield was observed. It was also found that a slight excess of bromine was required. The reactions were not homogenous and therefore monitoring by TLC was precluded.

A 1H NMR spectrum showed that when the reaction was carried out in AcOH, an unknown intermediate appears in the spectra before the reaction goes to completion. This is not the case when the reaction is carried out in MeOH or EtOH. There is very little difference in the 1H NMR spectra of the compounds. However, careful study of the 1H NMR spectra of some of the reactions indicated a loss of NH peaks (about 13 ppm for 242 and 11 ppm for 241). It is proposed that the loss of NH peaks could imply the formation of a 2,4-dibromoquinazoline 429 as the unknown intermediate. An attempt to determine if the 2,4-dibromoquinazolinone 429 could be made by treating 2-mercapto-3H-quinazolin-4-one 242 with an excess of Br$_2$ in AcOH was carried out (scheme 156). However, this failed and no further evidence could be found to identify the unknown intermediate of the reaction in AcOH.

![Scheme 156. Attempt synthesis of 2,4-dibromoquinazoline.](image)

With the 2-bromo-3H-quinazolin-4-one 242 building block in hand, alkylation using benzyl bromide was carried out in good yield to give quinazolinone 241 (scheme 157). The radical reaction of quinazolinone 213 has already been described in chapter one, and is not the focus here.
However, the alkylation of 2-bromo-3H-quinazolin-4-one 241 with (2-bromoethyl)benzene proceeded extremely poorly. A number of different conditions were attempted and the yields are reported in table 21. Even when the reaction was attempted using the triflate derived from (2-hydroxyethyl)benzene, no alkylation was observed. It appeared to us that the ambident anion formed is not reactive enough.

Table 21. Alkylation conditions of (2-bromoethyl)benzene (BEB) in DMF.

<table>
<thead>
<tr>
<th>Base (equiv.)</th>
<th>BEB (equiv.)</th>
<th>Deprotonation</th>
<th>Reaction</th>
<th>Temperature</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaH (1.5)</td>
<td>1.5</td>
<td>1 h</td>
<td>12 h</td>
<td>rt</td>
<td>3%</td>
</tr>
<tr>
<td>NaH (1.5)*</td>
<td>1.2</td>
<td>1 h</td>
<td>4 h</td>
<td>rt</td>
<td>6%</td>
</tr>
<tr>
<td>NaH (1.2)**</td>
<td>1.5</td>
<td>10 min</td>
<td>12 h</td>
<td>rt</td>
<td><2%</td>
</tr>
<tr>
<td>NaH (1.5)</td>
<td>3.0</td>
<td>1 h</td>
<td>12 h</td>
<td>80 °C</td>
<td><5%</td>
</tr>
<tr>
<td>t-BuOK (1.5)</td>
<td>1.5</td>
<td>3 h</td>
<td>12 h</td>
<td>120 °C</td>
<td><5%</td>
</tr>
<tr>
<td>Cs₂CO₃ (1.5)</td>
<td>1.5</td>
<td>1 h</td>
<td>12 h</td>
<td>120 °C</td>
<td><5%</td>
</tr>
<tr>
<td>Cs₂CO₃ (1.5)</td>
<td>5.0</td>
<td>1 h</td>
<td>48 h</td>
<td>120 °C</td>
<td><5%</td>
</tr>
</tbody>
</table>

* NaI (20.0 equiv.) was added at the beginning of the reaction.
** NaI (5.0 equiv.) was added at the beginning of the reaction.

2-Bromo-3H-quinazolin-4-one 241 is insoluble in Et₂O, MeCN, toluene, DCM and THF which left no other obvious highly polar solvents to use other than DMF. Cs₂CO₃ has been shown to be a good base for deactivated amine alkylations, but in
this case made no improvement. However, it was noted that O-alkylation appeared to increase when Cs₂CO₃ was used. Molecular sieves were added to the (2-bromoethyl)benzene to ensure its dryness. A fresh new bottle of anhydrous DMF also had no effect. Increased yield was not observed when NaI was added to see if a Finkelstein type reaction could be carried. Attempts to carry out the reaction at a higher temperature had little effect.

An attempt to carry out the reaction under Mitsunobu conditions using DIAD, PPh₃, quinazolinone 219 and 2-(2-bromophenyl)ethanol was made, but that produced a complex mixture of inseparable products. Comins et al. have extensively investigated this reaction with respect to oxygen and nitrogen alkylation of 2-pyridones.

Attention was turned to studying the alkylation with active bromides instead (scheme 158). At this point, the mesylquinoline 430 was made from the previously prepared quinoline 275. It was hoped this might open a new route to luotonin A. However, the alkylation of quinoline 430 with 2-bromo-3H-quinazolin-4-one 241 occurred in such poor yield that no radical reactions were attempted with the quinazolinone 431. Alkylation of 2-bromo-3H-quinazolin-4-one 241 was successfully carried out using allyl bromide to give quinazolinone 432.
Attempts to alkylate 2-bromo-3H-quinazolin-4-one 241 using methyl bromoacetate 433 which we hoped would be sufficiently active were not successful (figure 25) and no alkylation was observed. Three other alkylation reactions were attempted using propargyl bromide 434, bromopropyl benzene 435 and 3-(2-bromoethyl)indole 320. All failed to give any 3-N alkylated product. At the completion of the studies, Curran reported the successful alkylation of 2-bromo-3H-quinazolin-4-one 241 with propargyl halides.138

Figure 25.
In summary, the electron withdrawing effect (-I) of the bromine, the aromatic imine and amide in 436 are deactivating the anion, making it unreactive towards electrophiles (figure 26). It is not believed that the steric bulk of the bromine plays a role.

\[
\begin{align*}
\text{Figure 26. Ambident anion of 2-bromo-3H-quinazolin-4-one.}
\end{align*}
\]

At this point, consideration of overcoming the problem encountered in the alkylation reaction was sought. We investigated a method developed by Robins and Stout for the alkylation of 3H-quinazolin-4-one 219 (scheme 159) using a TMS protected quinazolin-4-one 437. This was shown to react rapidly with the activated bromofuranose 439 to yield the alkylated quinazolinone 438.

\[
\begin{align*}
\text{Scheme 159.}
\end{align*}
\]
It was hoped to form 3-N-alkylated 2-bromo-3\textit{H}-quinazolin-4-ones 441 from the 2-bromo-3\textit{H}-quinazolin-4-one 241 building block using this method (scheme 160). There was uncertainty whether the TMS protected intermediate 440 would be reactive enough towards unactivated alkyl halides. Several unsuccessful attempts were made to carry out this reaction.

Scheme 160.

Preparation of the same TMS quinazolinone 437 that Robins and Stout had reported was unsuccessful (scheme 159). A range of conditions were employed without success. It was decided this work should be put to one side to concentrate on more profitable research.

A Chapman rearrangement as described by Chern \textit{et al.} could be applied to quinazolin-4-one chemistry was considered next (scheme 161).140 Chern has described a 1,3-shift from oxygen of the quinazolinone 442 to the nitrogen of the quinazolinone 443 of alkyl halides in excellent yield. Aryl, allyl and alkyl groups have all been shown to undergo this migration. A small amount of \textit{O}-alkylated quinazolinone 444 had been recovered from previous alkylation experiments, and so the reaction the solution of quinazolinone 444 in MeCN overnight was heated overnight under reflux. However, no reaction was observed. An attempt to carry out the same reaction under microwave conditions also failed to yield quinazolinone 432.
Scheme 161. Chapman rearrangement and failed attempt.

At this point, the reaction order was considered. It was not known if the alkylation of the nitrogen could be carried out first, before bromination to yield 3-\(N\) alkylated bromoquinazolinone 441 (scheme 162). The obvious problem with this route is that alkylation of 2-mercaptoquinazolinone 242 would most likely give undesired quinazolinone 446 rather than quinazolinone 445.

Scheme 162. Planned retrosynthesis of alkylated bromoquinazolinone.

It was reasoned that the dianion of 2-mercaptoquinazolin-4-one (\(N^\ominus\) and \(S^\ominus\)), might preferentially alkylate on the nitrogen (scheme 163). This was reasoned as the nitrogen anion would be less stable than the sulfur anion thus reacting faster to yield
quinazolinone 447. However, when this hypothesis was tested by treating 2-mercaptoquinazolinone 242 with 2 equivalents of base, only the sulfur alkylated product 448 was observed.

Scheme 163.

However, undeterred further investigations were made. It was not known whether the alkylated sulfur quinazolinone could be displaced at the C-2 position using bromine. This was tested by treating 3-methyl-2-methylsulfanyl-3H-quinazolin-4-one 449 with bromine (scheme 164). However, only starting material was recovered from this reaction. The reaction was repeated using Mel, but again this failed to facilitate an SNAr reaction. Bromo- or iodo-quinazolinone 451 or 450 were not obtained.

Scheme 164.
The next method investigated was to introduce the N-alkyl substituents during the ring synthesis and convert the thio group to the 2-bromoquinazolin-4-one (scheme 165). Drushlyak et al. have shown that 2-(methoxycarbonyl)phenyl isothiocyanate 452 reacts rapidly with amines to form N-alkylated 2-thioquinazolin-4-ones 453. This looked promising and should allow access to quinazolinone 454.

Scheme 165.

Two of the desired mercaptoquinazolinones 456 and 457 were prepared in excellent yields from a commercially available isothiocyanate 455 (scheme 166). A crystal structure of the quinazolinone 456 was obtained to prove the structure (figure 27).

Scheme 166.
Investigations were then carried out to brominate at the C-2 position of the 2-thioquinazolinones 456 and 457. When 2-thioquinazolinone 456 was treated with bromine (2.0 equivalents) in MeOH, only one product was obtained (scheme 167). The 1H NMR spectrum of the reaction showed the presence of a broad NH peak at 10.42 ppm (confirmed by a D$_2$O shake). The 1H NMR spectrum was clearly different to that of the starting material. The mass spectrum revealed that the product was the 3-(2-phenylethyl)-1H-quinazoline-2,4-dione 458. This product is likely to have arisen by attack of water present in the MeOH on the sulfanyl bromide intermediate.

Scheme 167.
When the 3-(2-hydroxyethyl)-2-thioxo-2,3-dihydro-1H-quinazolin-4-one 457 was treated with bromine in MeOH a mixture of unidentifiable products were obtained. It is believed that the pendant hydroxyl group is interfering in the reaction.

The reaction under anhydrous conditions between 3-(2-phenylethyl)-2-thioxo-2,3-dihydro-1H-quinazolin-4-one 456 and bromine gave a new product (scheme 168). The ¹H NMR spectra revealed no NH peaks, suggesting the formation of the 2-bromo product. However, the mass spectrum showed no bromine isotope patterns and indicated that the dimer 459 had been formed.

Scheme 168. Unexpected disulfide formation using bromine

The disulfide formation can be rationalised by reaction between a second thioquinazolinone molecule 456 and the sulfanylbromide intermediate 460 (scheme 169). It is now known that this sulfanylbromide intermediate 460 is also susceptible to attack by water to form 3-(2-phenylethyl)-1H-quinazoline-2,4-dione 458. It is now clear that bromo substitution of this sulfanylbromide intermediate 461 can only occur when 3-N is unsubstituted.
Initially, it was considered that the NH at the 3-N position was not important in the mechanism for the bromination of 2-mercapto-3H-quinazolin-4-one 242. However, observations show that bromination does not occur with 3-N-alkylated 2-thioquinazolin-4-ones 462 to yield the desired 2-bromoquinazolin-4-one 465 (scheme 170). This indicates that the 3-NH is involved in the mechanism, hence it is unlikely that intermediates 463 and 464 of route A would be obtained. The 3-NH is more acidic than the 1-NH and it could be predicted to be preferentially abstracted in the bromination/S_NAr reaction shown, therefore it is proposed route A is unlikely for the mechanism.

Scheme 169. Proposed routes to the quinazolin-4-one products.

Scheme 170.
An alternative route B could also be proposed by loss of H⁺ from 242 to form intermediate 466 should be rapid because the 3-NH is acidic (scheme 171). The alternative is that tautomerism to the thio-imine 469 is required prior to attack by bromine to form 470. This would be followed by SNAr attack by a bromide ion followed by loss of HSBr on 467 and 471 to yield product 468, which would rapidly tautomerise to 2-bromo-3H-quinazolin-4-one 241.

Alternatively route C, which takes into account the lone pair electrons of 3-N 242 could occur. This is followed by attack of a bromide ion on intermediate 472. It could be envisaged that the lone pair of the 1-N of intermediate 473 becomes involved. Loss of HSBr from intermediate 473 should yield 3H-quinazolin-4-one 241. Route C should work out equally well whether the 3-N substituents are hydrogen or R as only the lone pair is involved, hence route C is ruled out. It is postulated that the loss of the 3-NH is crucial to the bromination mechanism. If this loss of a proton is crucial in the mechanism then 3-N alkylated starting material 458 will yield other products as observed. The conclusion therefore is that this synthetic method of alkylation followed by bromination will not provide a route to the required 2-bromo-3H-quinazolin-4-ones 465.
Scheme 171. Possible bromination mechanisms of 3H-quinazolin-4-one

Consideration for the synthetic use of the disulfide 459 was given (scheme 172). There was an interest to see how this might react in the presence of an excess of bromine and whether this may lead to the bromo analogues 474. The conversion of disulfides to sulfanyl halides is well known.142
When quinazolin-4-one disulfide 459 was treated with an excess of bromine, TLC showed two products (scheme 173). Lithium bromide was added to ensure the excess of bromide ions in the reaction. Of the two products only one could be fully identified as unsubstituted C-2 quinazolin-4-one 238 in a very low yield. The mechanism of this dethionation to yield quinazolin-4-one product 238 is unclear. Even after repeating the reaction the other product could not be identified. However, both were obtained in low yields and the route did not look promising. A reaction was also carried out stirring disulfide 459 and Br2 in MeOH, but no new products were observed after 24 h.

Although this route was unsuccessful the reaction of an unsubstituted disulfide 475 at the 3-N position was given, and how it may react if treated with bromine (scheme 174). However, had bromination occurred, the problem of the low reactivity of 2-
bromo-3H-quinazolin-4-one 241 would still have needed overcoming. As a result termination of the disulfide work was decided. Up to here the investigations in the bromination reactions of 2-mercapto-3H-quinazolin-4-one were thorough, but, at this point it was decided to concentrate on returning to the natural product syntheses.

Scheme 174.

In the course of this study a report of radical reactions at C-2 of quinazolinone was published in the literature. Curran et al. has recently carried out a cascade radical annulation reaction using a C-2 quinazolinone radical (scheme 175). Curran describe the synthesis of 2,4-dibromo-3H-quinazoline 429 from 2,4-diketoquinazolinone 392 in good yield. This idea had been considered, but then abandoned after the fairly unsuccessful attempts at making the 2,4-dichloro-3H-quinazolin-4-one 393. Curran reported no problems in the propargylation of 2-bromo-3H-quinazolin-4-one 241 to radical precursor 476. This had been unsuccessful in our hands.
Although disappointed that the 2-bromoquinazolinone 241 could not be fully exploited in natural product syntheses ourselves, we were pleased to see it being explored by other chemists and that these results showed the potential of cyclisation onto arenes.

5.4 Conclusions

This chapter has given a detailed account of attempts to prepare a C-2 radical of 3H-quinazolin-4-one. Various methods were attempted. The most successful of which was the bromination of 2-mercapto-3H-quinazolin-4-one. However, great difficulty in attempting to carry out alkylations at the 3-N position was encountered. Attempts at carrying out the bromination once substituents have been added at 3-N failed. It has been shown that unexpected products lead us to help propose a mechanism for the bromination of 3-mercapto-3H-quinazolin-4-one.
Chapter 6. Experimental

6.1 General experimental

Commercial dry solvents were used in all reactions except light petroleum and ethyl acetate that were distilled from CaCl₂ and dichloromethane that was distilled over CaH₂. Light petroleum refers to the bp 40-60 °C fractions. All reactions were carried out under an atmosphere of nitrogen unless stated otherwise. Sodium hydride was obtained as 60% dispersion in oil. A 2.5 M solution of n-butyllithium in hexane was used in all stated cases. A 1.0 M solution of Et₃B in hexane was used in all cases. A 1.0 M solution of t-BuLi in THF was used in all cases. A solution of 1 M TBAF in THF was used in all cases. Melting points were determined on a Stuart Scientific SMP3 melting point apparatus and are uncorrected. Elemental analyses were determined on a Perkin Elmer 2400 CHN Elemental Analyser in conjunction with a Perkin Elmer AD-4 Autobalance. Infrared spectra were recorded on a Perkin-Elmer Paragon 1000 FT-IR spectrophotometer on NaCl plates. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra were recorded on a Bruker DPX-400 spectrometer (400 MHz). ¹H (250 MHz) were also carried out on a Bruker AC-250 spectrometer. Samples were run as solutions of CDCl₃ with TMS as the internal standard for ¹H NMR spectra and deuteriochloroform the standard for ¹³C NMR spectra unless otherwise specified. Chemical shifts are given in parts per million (ppm) and J values in hertz (Hz). Mass spectra were recorded on a Jeol JMS-SX102 quadrupole high resolution mass spectrometer or carried out by the EPSRC MS Service at University of Wales, Swansea. GCMS was carried out on Fisons 8000 series GCMS using a 15 m x 0.25 mm DB-5 column and an electron impact low resolution mass spectrometer. TLC using silica gel as absorbent was carried out with aluminium backed plates coated with silica gel (Merck Kieselgel 60 F₂₅₄), and TLC using alumina as absorbent was carried out with aluminium backed plates coated with neutral aluminium oxide (Merck 150 F₂₅₄, Type T). Silica gel (Merck Kieselgel 60 H silica) was used for column chromatography unless otherwise specified. Column chromatography using alumina was carried out with Aldrich aluminium oxide, activated neutral, Brockmann I, STD Grade, 150 mesh size. Prep-TLC was carried out using aluminium oxide (Merck 60 PF₂₅₄, Type E).
6.2 Experimental for Chapter 2

3-Methyl-3H-quinazolin-4-one

Method A using sodium hydride and lithium bromide

Sodium hydride (0.40 g, 10.0 mmol) was added to 3H-quinazolin-4-one (0.73 g, 5.0 mmol) at 0 °C in dry DMF (5 cm³) and dry ethylene glycol dimethyl ether (10 cm³) and stirred for 40 min. Lithium bromide (0.87 g, 10.0 mmol) was added and the reaction mixture stirred for another 15 min. Methyl iodide (1.25 cm³, 20.0 mmol) was added with stirring for another 3 h. The reaction mixture was quenched by dropwise addition of H₂O (5 cm³). The reaction mixture was extracted into DCM and washed with H₂O (5 x 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and evaporated to dryness under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (1:1) as eluent yielding 3-methyl-3H-quinazolin-4-one as yellow crystals (0.33 g, 2.0 mmol, 41%), mp 103-104 °C (lit.¹⁴³ 104-105 °C); (Found: MH⁺, 161.0708. C₉H₉N₂O requires 161.0708); ν_max(thin film)/cm⁻¹ 3377, 2923, 1664, 1612, 1340, and 779; δ_H 3.59 (3 H, s, CH₃), 7.45 (1 H, dd, J 8.2 7.2, 6-H), 7.72-7.63 (2 H, m, ArH), 8.04 (1 H, s, 2-H) and 8.25 (1 H, d, J 8.0, 5-H); δ_C 33.91 (CH₃), 121.73 (4a-C), 126.24 (8-C), 127.03 (6-C), 127.22 (5-C), 133.92 (7-C), 146.78 (2-C), 148.06 (8a-C) and 161.27 (4-C); NMR spectral assignments were confirmed by NOESY, COSY and ¹H-¹³C correlation NMR techniques; m/z(Electrospray) 161 (M⁺, 34%), 160 (100), 132 (36), 119 (30), 97 (35), 83 (40), 71 (47), 69 (59), 57 (65) and 43 (85).

Method B using potassium t-butoxide

Potassium t-butoxide (0.50 g, 4.5 mmol) was added to 3H-quinazolin-4-one (0.44 g, 3.0 mmol) in dry DMF (20 cm³) and stirred for 1 h. Methyl iodide (0.43 cm³, 5.0 mmol) was added and the reaction mixture stirred for a further 10 h. The reaction mixture was extracted into DCM and washed with H₂O (5 x 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and evaporated to dryness under reduced pressure. The crude product was
purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (2:1) yielding 3-methyl-3H-quinazolin-4-one as yellow crystals (0.17 g, 1.1 mmol, 37%). The data were consistent to the literature.143

\textbf{3-(3-Phenylallyl)-3H-quinazolin-4-one}73

![Chemical Structure]

Sodium hydride (0.39 g, 10.0 mmol) was added at 0 °C to 3H-quinazolin-4-one (0.73 g, 5.0 mmol) in dry DMF (5 cm3) and dry ethylene glycol dimethyl ether (10 cm3) and stirred for 1 h. Lithium bromide (0.86 g, 10.0 mmol) was added and the reaction mixture stirred for a further 15 min. Cinnamyl bromide (3.9 g, 20.0 mmol) was added and the reaction mixture stirred for an additional 2 h. The reaction mixture was quenched by dropwise addition of H\textsubscript{2}O (5 cm3). The reaction mixture was extracted into DCM (50 cm3) and washed with H\textsubscript{2}O (5 × 50 cm3) and with brine (50 cm3). The organic layer was dried over MgSO\textsubscript{4} and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (4:1) as eluent to yield 3-(3-phenylallyl)-3H-quinazolin-4-one as yellow crystals (0.51 g, 2.0 mmol, 40%); mp 115-116 °C (lit.7 115-116 °C); (Found: MH+, 263.1182. C\textsubscript{17}H\textsubscript{16}N\textsubscript{2}O requires 263.1179); \nu\textsubscript{max}(thin film)/cm-1 3423, 1670, 1652, 1608, 1558, 1473 and 773; \textit{\delta}H 4.79 (2 H, dd, J 6.4, 1.4, CH\textsubscript{2}), 6.34 (1 H, dt, J 15.8, 6.4, propenyl-2-H), 6.66 (1 H, dt, J 15.8, 1.4, propenyl-CH\textsubscript{2}), 7.23-7.38 (5 H, m, ArH), 7.53, (1 H, ddd, J 8.0, 8.0, 1.0, 6-H), 7.73 (1 H, ddd, J 8.0, 8.0, 1.0, 7-H), 8.11 (1 H, s, 2-H), 7.76 (1 H, dd, J 8.0, 1.0, 8-H) and 8.34 (1 H, dd, J 8.0, 1.0, 5-H); \textit{\delta}C 48.15 (CH\textsubscript{2}), 122.16 (4a-C), 122.77 (propenyl 2-C), 126.50 (phenyl-2,6 or 3,5), 126.82 (5-C), 127.41 (6-C), 127.54 (7-C), 128.30 (phenyl-4-C), 128.68 (phenyl-2,6 or 3,5-C), 134.35 and 134.50 (propenyl-3-C and 8-C), 135.75 (phenyl-1-C), 146.19 (2-C), 148.11 (8a-C) and 160.95 (O=C); NMR spectral assignments were confirmed by NOESY, COSY and 1H-13C correlation NMR techniques; \textit{m/z}(Electrospray) 263 (M+, 21 %), 147 (42), 121 (100), 79 (87) and 74 (26).
3-(2-Iodobenzyl)-3H-quinazolin-4-one

Potassium tert-butoxide (1.35 g, 12.0 mmol) was added to 3-H-quinazolin-4-one (1.17 g, 8.0 mmol) in dry DMF (50 cm³) and stirred for 1 h. 2-Iodobenzyl bromide (2.96 g, 10.0 mmol) was added to the reaction mixture and stirred for a further 16 h. The reaction mixture was extracted into DCM and washed with H₂O (5 x 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (2:1) as eluent yielding 3-(2-iodobenzyl)-3H-quinazolin-4-one as yellow crystals (1.82 g, 5.03 mmol, 63%); mp 94-95 °C; (Found: M⁺, 362.9987. C₁₉H₁₅N₂O requires 362.9989); νₘₙₜ(thin film)/cm⁻¹ 3055, 1689, 1469, 1230, 962 and 734; δₜ 5.71 (2 H, s, CH₂), 6.93 (1 H, ddd, J 7.9, 7.4, 1.6, 4-PhH), 7.09 (1 H, dd, J 7.9, 1.6, 3-PhH), 7.22 (1 H, ddd, J 7.4, 7.2, 1.6, 5-PhH), 7.45 (1 H, ddd, J 8.0, 6.2, 1.7, 6-H), 7.75-7.64 (2 H, m, 7,8-H), 7.81 (1 H, dd, J 7.2, 1.6, 6-PhH), 8.11 (1 H, s, 2-H) and 8.26 (1 H, dd, J 8.0, 1.6, 5-H); δc 54.90 (CH₂), 98.60 (1-Ph), 122.14 (4a-C), 126.95 (5-C), 127.48 (6-C), 127.63 (8-C), 128.88 (5-Ph), 129.10 (3-Ph), 129.94 (4-Ph), 134.46 (7-C), 137.74 (8a-C), 139.92 (6-Ph), 146.44 (2-C), 148.03 (2-Ph) and 161.11 (4-C); m/z(EI) 252 (M⁺, 98%), 129 (43), 107 (41), 90 (100), 89 (77), 76 (51), 63 (58), 50 (42) and 40 (85).

2-(2-Bromophenyl)ethyl methanesulfonate

Methanesulfonyl chloride (2.38 cm³, 30.7 mmol) was slowly added to 2-(2-bromophenyl)ethanol (4.74 g, 25.6 mmol) in dry DCM (50 cm³) followed by addition of triethyl amine (5.34 cm³, 38.4 mmol) at 0 °C and stirred for 48 h. The crude reaction mixture was washed with H₂O (3 x 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure yielding 2-(2-bromophenyl)ethyl methanesulfonate as an orange oil (4.91 g, 18.66 mmol, 75%); νₐₜₜ(near) cm⁻¹ 3057, 3024,
Potassium t-butoxide (2.61 g, 23.3 mmol) was added to 3-H-quinazolin-4-one (2.27 g, 15.5 mmol) in dry DMF (150 cm³) and stirred for 1 h. 2-(2-Bromophenyl)ethyl methanesulfonate (4.90 g, 18.6 mmol) was added to the reaction mixture and stirred for a further 48 h. The reaction mixture was extracted into DCM and washed with H₂O (5 x 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and evaporated to dryness under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (4:1) as eluent yielding 3-[2-(bromophenyl)ethyl]-3H-quinazolin-4-one as colourless crystals (1.93 g, 5.9 mmol, 38%); 119-120 °C; (Found: MH⁺, 329.0290. C₁₆H₁₄BrN₂O requires 329.0284); νmax(thin film)/cm⁻¹ 3423, 1972, 1609, 1470, 1069, 1027 and 773; δH 3.25 (2 H, t, J 7.0, CH₂), 4.25 (2 H, t, J 7.0, NCH₂), 7.22-7.07 (3 H, m, ArH), 7.58-7.48, (2 H, m, ArH), 7.78- 7.64 (3 H, m, ArH) and 8.34 (1 H, dd, J 8.3, 1.5, 5-H); δC 35.35 (CH₂), 46.73 (NCH₂), 122.02 (PhC), 124.45 (ArC), 126.61 (ArH), 127.24 (ArH), 127.49 (ArH), 127.94 (ArH), 128.94 (ArH), 131.36 (ArH), 133.14 (ArH), 134.21 (ArH), 136.73 (ArC), 146.36 (ArH), 148.10 (PhC) and 161.13 (ArC); m/z(Electrospray) 330 (M⁺, 98%), 328 (97), 251 (49), 249 (56) and 52 (14).
Radical cyclisation of 3-(2-iodobenzyl)-3H-quinazolin-4-one

Method A - Bu$_3$SnH (fast) and Et$_3$B as initiator
A solution of Bu$_3$SnH (0.76 g, 2.6 mmol) and 3-(2-iodobenzyl)-3H-quinazolin-4-one (0.44 g, 1.2 mmol) in dry toluene (40 cm3) was deoxygenated under nitrogen and stirred for 1 h. Triethylborane (3.6 cm3, 3.6 mmol) was added via a needle through a septum; the needle was left open to allow air (oxygen) to enter the reaction and the mixture stirred for 1 h. More triethylborane (3.6 cm3, 3.6 mmol) was added and the reaction mixture stirred for a further 10 h. Dilute hydrochloric acid was added to extract the protonated quinazolone products into the aqueous layer. The aqueous layer was washed with light petroleum to remove tributyltin residues. The aqueous layer was basified with sodium hydroxide to pH 14 and extracted with DCM. The combined organic layers were dried over MgSO$_4$ and the solvent removed under reduced pressure yielding the reduced product 3-benzyl-3H-quinazolin-4-one 232 as colourless crystals (0.27 g, 1.2 mmol, 96%); mp 116-117 °C (lit. 144 117-118 °C); v_{max} (thin film)/cm$^{-1}$: 3419, 1675, 1609, 1559, 1473, 1369, 1332, 1161, 1026, 773, 709, 694 and 645; δH 5.08 (2 H, s, CH$_2$), 7.24-7.23 (5 H, m), 7.48 (1 H, ddd, J 8.2 6.3 1.8, 6-H), 7.74-7.68 (2 H, m, 7,8-H), 8.11 (1 H, s, 2-H) and 8.32 (1 H, d, J 8.2 2.0, 5-H); δC 49.6 (CH$_2$), 122.2 (4a-C), 126.9 (5-H), 127.4 (6-H), 127.5 (8-H), 128.0 (CH), 128.3 (CH), 129.0 (CH), 134.3 (7-H), 135.8 (C), 146.4 (2-H), 148.0 (8a-C) and 161.1 (4-C).

The data were consistent to the literature.144

Method B - TTMSS (fast) reaction using Et$_3$B as initiator
The procedure for method A was repeated using TTMSS in place of Bu$_3$SnH to yield 3-benzyl-3H-quinazolin-4-one 232 (35%).

Method C - Bu$_3$SnH (slow) reaction using Et$_3$B as initiator
The general procedure for method A was repeated except that Bu$_3$SnH was added by a syringe pump over 6 h to give 3-benzyl-3H-quinazolin-4-one 232 (30%).
Method D - Bu$_3$SnH (slow) reaction using AIBN as initiator

The general procedure for method C was repeated except that AIBN (0.25 molar equiv.) was used as initiator and the reaction was heated under reflux for 6 h to yield 3-benzyl-3H-quinazolin-4-one 232 (45%).

Method E - Photolysis with hexamethylditin

A solution of 3-(2-iodobenzyl)-3H-quinazolin-4-one (0.36 g, 1.0 mmol) and (Me$_3$Sn)$_2$ (0.99 g, 3.0 mmol) in t-butylbenzene (20 cm3) in a two-necked pyrex flask (5 x 1 cm and 25 cm high, wall thickness = 1 mm), was purged with nitrogen for 30 min. The mixture was irradiated with a combined 300 W sunlamp at 150 °C for 10 h. The reaction mixture was cooled to room temperature, diluted with MeOH and evaporated under reduced pressure to a small volume. The residue was purified using column chromatography using silica gel as absorbent with light petroleum as eluent to remove the t-butylbenzene. A precipitate of polymeric dimethyltin was produced. The product was eluted with ethyl acetate and dilute hydrochloric acid was added to extract the protonated quinazolone products into the aqueous layer. The aqueous layer was washed with light petroleum to remove trimethyltin residues. The aqueous layer was basified with a solution of sodium hydroxide to pH 14 and extracted with DCM. The combined organic layers were dried over MgSO$_4$ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (4:1) yielding 3-benzyl-3H-quinazolin-4-one 232 (65%) and cyclised 12H-isoindolo[1,2-b]quinazolin-10-one 233 (18%) as an inseparable colourless crystals. 1H NMR spectroscopy was used to calculate the yield of the two products. 12H-Isoindolo[1,2-b]quinazolin-10-one 233 was identified in the mixture and therefore not fully characterised. δH 5.19 (2 H, s, CH$_2$), 7.28-7.35 (3 H, m), 7.51 (1 H, ddd, J 8.0, 8.0, 1.6, 7-H), 7.81 (1 H, ddd, J 8.0, 8.0, 1.6, 8-H), 7.85 (1 H, dd, 8.0, 1.6, 6-H), 8.21 (1 H, d, J 7.2, 4-H) and 8.41 (1 H, dd, J 8.0, 1.6, 9-H); δC 49.6 (CH$_2$), 120.6 (ArC), 123.4 (ArH), 123.5 (ArH), 126.4 (ArH), 126.4 (ArH), 127.3 (ArH), 128.8 (ArH), 132.3 (ArH), 132.6 (ArC), 134.2 (ArH), 139.6 (ArC), 149.4 (ArC), 154.9 (ArC) and 160.5 (ArC). The data were consistent to the literature.145

GC-MS analysis confirmed only two products to be in a rough ratio 4:1 of the reduced produced and cyclised product:
12H-isoindolo-[1,2-b]-quinazolin-10-one 233; RT 22.8 min, m/z 234 (M+, 100%), 205 (24) and 77 (20).

3-Benzyl-3H-quinazolin-4-one 232; RT 24.5 min, m/z 236 (M+, 51%), 130, (37), 91 (100) and 65 (27).

3-(2-Deuterio)benzyl-3H-quinazolin-4-one

\[
\begin{align*}
\text{Tributyltin deuteride (0.54 cm}^3, \ 2.0 \ \text{mmol) and triethylborane (0.20 cm}^3, \ 0.2 \ \text{mmol) were added to 3-(2-iodobenzyl)-3H-quinazolin-4-one (0.36 g, 1.0 mmol) in dry toluene (40 cm}^3) \\
\text{with an air bleed into the round bottom flask through a needle for 12 h. Dilute hydrochloric acid was added to the reaction mixture to extract the protonated quinazolinone products into the aqueous layer. The aqueous layer was washed with light petroleum (3 x 50 cm}^3) to remove tributyltin residues. The aqueous layer was basified with sodium hydroxide to pH 14 and extracted with DCM (3 x 50 cm}^3). The combined organic layers were dried over MgSO}_4 and the solvent removed under reduced pressure yielding the reduced product 3-(2-deuterio)benzyl-3H-quinazolin-4-one as colourless crystals (0.10 g, 0.4 mmol, 41%); mp 100-101 °C; (Found: MH+, 238.1084. C_{15}H_{13}DN_2O requires 238.1085); \nu_{\text{max}}(\text{thin film})/\text{cm}^{-1} 3421, 2359, 1670, 1610, 1471, 1396, 1153 and 773; \delta_{H} 5.21 (2 H, s, CH_2), 7.38-7.29 (4 H, m, PhH), 7.52 (1 H, ddd, \ J 8.0, 6.7, 1.4, 6-H), 7.71 (1 H, dd, \ J 8.2, 1.4 ArH), 7.77 (1 H, ddd, \ J 8.2, 6.7, 1.4, 7-H) 8.12 (1 H, s, 2-H) and 8.34 (1 H, dd , \ J 8.0, 1.4, 5-H); \delta_{C} 49.66 (CH_2), 104.09 (PhCD), 122.24 (4a-C), 126.91 (5-C), 127.39 (6-C), 127.55 (ArH), 128.03 (ArH), 128.34 (ArH), 128.94 (ArH), 129.05 (ArH), 134.32 (ArH), 135.66 (PhC), 146.32 (5-C), 148.07 (8a-C) and 161.10 (4a-C); m/z(Electrospray) 238 (M+, 50%), 235 (21), 130 (33), 92 (100), 91 (75), 65 (21) and 51 (23); Anal. Caled for C_{15}H_{13}DN_2O. C, 75.93; H, 5.52; N, 11.81. Found: C, 75.69; H, 5.20; N, 11.64.
\end{align*}
\]
Radical cyclisation of 3-[2-(bromophenyl)ethyl]-3H-quinazolin-4-one

Method A - Photolysis with hexamethylditin

The reaction mixture of 3-[2-(bromophenyl)ethyl]-3H-quinazolin-4-one (0.32 g, 1.0 mmol) and (Me₃Sn)₂ (0.99 g, 3.0 mmol) in t-butylbenzene (20 cm³) was purged with nitrogen for 30 min, and left to reflux whilst irradiating with a 300 W sunlamp at 150 °C for 10 h. The reaction mixture was cooled and dilute hydrochloric acid was added to the cooled reaction mixture to extract the protonated quinazolinone products into the aqueous layer. The aqueous layer was washed with light petroleum (3 × 50 cm³) to remove trimethyltin residues. The aqueous layer was basified with a solution of sodium hydroxide to pH 14 and extracted with DCM (3 × 50 cm³). The combined organic layers were dried over MgSO₄ and the solvent removed under reduced pressure yielding 5,6-dihydroisoquinol[1,2-b]quinazolin-8-one 237 as colourless crystals (0.22 g, 0.92 mmol, 92%); mp 195-197 °C (lit. 146-196 °C); (Found: MH⁺, 249.1025. C₁₆H₁₃N₂O requires 249.1022); v_max(thin film)/cm⁻¹ 3421, 1682, 1590, 1571, 1150, 762 and 692; δH 3.06 (2 H, t, J 6.4, CH₂), 4.35 (2 H, t, J 6.4, NCH₂), 7.22-7.13 (1 H, m, ArH), 7.43-7.37 (3 H, m, ArH), 7.71-7.69 (2 H, m, ArH), 8.25 (1 H, d, J 7.6, ArH) and 8.43-8.40 (1 H, m, ArH); δC 27.39 (CH₂), 39.54 (NCH₂), 120.70 (ArC), 126.48 (ArH), 126.82 (ArH), 127.40 (ArH), 127.56 (2 × ArH), 127.96 (ArH), 129.48 (ArC), 131.66 (ArH), 134.18 (ArH), 137.02 (ArC), 147.73 (ArCN), 149.29 (ArCN₂) and 161.63 (CO); m/z(Electrospray) 249 (M⁺, 17%), 247 (100), 128 (20), 116 (46), 104 (30), 90 (34), 89 (62), 77 (85), 76 (97), 63 (53) and 39 (54).

The data were consistent to the literature. 146

Method B - Bu₃SnH (fast) and Et₃B

Triethylborane (0.20 cm³, 0.20 mmol) and Bu₃SnH (0.54 cm³, 2.0 mmol) were added to 3-[2-(bromophenyl)ethyl]-3H-quinazolin-4-one (0.32 g, 1.0 mmol) in dry toluene (40 cm³) and stirred for 1 h with an air bleed into the round bottom flask through a needle. More triethylborane (0.20 cm³, 0.2 mmol) was added and the reaction left to stir for a further 10 h. Dilute hydrochloric acid was added to the reaction mixture to extract the protonated quinazolinone products into the aqueous layer. The aqueous layer was washed with light...
petroleum (3 × 50 cm³) to remove tributyltin residues. The aqueous layer was basified with a solution of sodium hydroxide to pH 14 and with DCM (3 × 50 cm³). The combined organic layers were dried over MgSO₄ and the solvent removed under reduced pressure yielding a mixture of reduced product 3-[2-(phenyl)ethyl]-3H-quinazolin-4-one 237 and 5,6-dihydroisoquino[1,2-b]quinazolin-8-one as inseparable colourless crystals.

'H NMR spectral analysis used to calculate yield of cyclised 5,6-dihydro-isoquino[1,2-b]quinazolin-8-one 237 (8%) and reduced product 3-[2-(phenyl)ethyl]-3H-quinazolin-4-one 238 (50%).

2-Bromo-3H-quinazolin-4-one

Bromine (0.76 cm³, 15.0 mmol) was slowly added to a solution of 2-mercapto-3H-quinazolin-4-one (0.89 g, 5.0 mmol) in EtOH (20 cm³) and stirred for 2 h. The crude reaction product was filtered and triturated with EtOH and DCM. The solid was dried under reduced pressure yielding 2-bromo-3H-quinazolin-4-one as colourless crystals (0.55 g, 2.46 mmol, 50%); mp 134-136 °C; (Found: M⁺, 223.9585. CsHsBrN2O requires 223.9585); νmax(thin film)/cm⁻¹ 2959, 2722, 2579, 1714, 1628, 1565, 1465, 1376, 1288, 1255, 1181, 1068, 755, 721 and 511; δH(CD₃)₂SO 7.20-7.16 (2 H, m, 6,8-H), 7.64 (1 H, ddd, J 8.6, 7.0, 1.5, 7-H) and 7.89 (1 H, dd, J 8.6, 1.5, 5-H); δC(CD₃)₂SO 114.27 (4a-C), 115.28 (6/8-C), 122.30 (6/8-C), 126.90 (5-C), 134.95 (7-C), 140.81 (8a-C), 150.25 (2-C) and 162.80 (4-ArC); m/z(EI) 226 (M⁺, 51%), 224 (52), 145 (100), 90 (46), 82 (26) and 80 (27).

The data were consistent to the literature.¹³⁸
Sodium hydride (0.13 g, 3.2 mmol) was added to a solution of 2-bromo-3H-quinazolin-4-one (0.49 g, 2.1 mmol) in DMF (10 cm³) and stirred for 1 h. Benzyl bromide (0.5 cm³, 4.2 mmol) was added and the reaction was stirred for a further 3 h. The reaction mixture was quenched with H₂O (5 cm³). The crude reaction mixture was extracted into Et₂O and washed with H₂O (5 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (6:1) as eluent to yield 3-benzyl-2-bromo-3H-quinazolin-4-one as colourless crystals (0.31 g, 0.97 mmol, 46%); mp 109-111 °C; (Found: MH⁺, 315.0128. C₁₃H₁₂BrN₂O requires 315.0128.); νmax(thin film)/cm⁻¹ 3457, 3064, 1653, 1558, 1494, 1430, 1339, 1234, 1074, 1023, 901 and 819; δH 5.56 (2 H, s CH₂), 7.29-7.37 (5 H, m, Ph-H), 7.52 (1 H, ddd, J 8.2, 8.0, 2.0, 7-H), 7.66 (1 H, dd, J 8.0, 1.2, 8-H), 7.79 (1 H, ddd, J 8.2, 8.0, 1.2, 6-H) and 8.27 (1 H, dd, J 8.0, 2.0, 5-H); δC 51.76 (CH₂), 120.55 (4a-C), 126.88 (6/8-C), 127.49 (2 × Ph-H), 127.56 (6/8-C), 127.73 (5-C), 127.94 (7-C), 127.77 (2 × Ph-H), 135.12 (Ph-C), 135.36 (Ph-C), 136.20 (8a-C), 147.19 (2-C) and 161.65 (4-C); m/z(Electrospray) 316 (M⁺, 15%), 314 (16), 235 (75), 144 (39), 129 (22) and 91 (100).

Radical cyclisation of 3-benzyl-2-bromo-3H-quinazolin-4-one

Method A - Bu₃SnH (slow) and Et₃B

Tributyltin hydride (0.59 cm³, 2.2 mmol) in toluene (10 cm³) was added over 6 h to a solution of triethylborane (10 cm³, 10.0 mmol) and 3-benzyl-2-bromo-3H-quinazolin-4-one (0.31 g, 1.0 mmol) in dry toluene (40 cm³) with an air bleed into the round bottom flask through a
needle. More triethylborane (10 cm³, 10.0 mmol) was added and the reaction left to stir for a
further 5 h. Dilute hydrochloric acid was added to the reaction to extract the protonated
quinazolinone products into the aqueous layer. The aqueous layer was washed with light
petroleum (3 × 50 cm³) to remove tributyltin residues. The aqueous layer was basified with a
solution of sodium hydroxide to pH 14 and extracted with DCM (3 × 50 cm³). The combined
organic layers were dried over MgSO₄ and the solvent removed under reduced pressure. The
crude product was purified by column chromatography using silica gel as absorbent with light
petroleum/EtOAc (2:1) yielding the reduced product 3-benzyl-3H-quinazolin-4-one 232 as
colourless crystals (0.15 g, 0.62 mmol, 62%).
The data were consistent to previous synthesis and literature.¹⁴⁴

Method B - Bu₃GeH (slow) and Et₃B
Tributylgermanium hydride (0.53 g, 2.2 mmol) in toluene (10 cm³) was added over 6 h to a
solution of triethylborane (10 cm³, 10 mmol) and 3-benzyl-2-bromo-3H-quinazolin-4-one
(0.31 g, 1.0 mmol) in dry toluene (40 cm³) with an air bleed into the round bottom flask
through a needle. Additional triethylborane (10 cm³, 10 mmol) was added to the reaction
mixture after 3 h. Dilute hydrochloric acid was added to the reaction mixture to extract the
protonated quinazolinone products into the aqueous layer. The aqueous layer was washed
with light petroleum (3 × 50 cm³) to remove tributylgermanium residues. The aqueous layer
was basified with a solution of sodium hydroxide to pH 14 and extracted with DCM (3 × 50
cm³). The combined organic layers were dried over MgSO₄ and the solvent removed under
reduced pressure yielding 3-benzyl-3H-quinazolin-4-one 232 (0.11 g, 0.47 mmol, 47%).

Method C – Photolysis with hexamethylditin
The reaction mixture between 3-benzyl-2-bromo-3H-quinazolin-4-one (0.30 g, 0.95 mmol)
and (Me₃Sn)₂ (0.93 g, 2.85 mmol) in t-butylbenzene (20 cm³) was purged with nitrogen for 30
min, refluxed and irradiated with 300 W sunlamp for 10 h. Dilute hydrochloric acid was
added to the cooled reaction mixture to extract the protonated quinazolinone products into the
aqueous layer. The aqueous layer was washed with light petroleum (3 × 50 cm³) to remove
trimethyltin residues. The aqueous layer was basified with a solution of sodium hydroxide to
pH 14. The basic solution was extracted with DCM (3 × 50 cm³). The combined organic
layers were dried over MgSO₄ and the solvent removed under reduced pressure. ¹H NMR
spectroscopy revealed a mixture of cyclised 12H-isoindolo-[1,2-b]-quinazolin-10-one 233
(27%) and reduced product 3-benzyl-3H-quinazolin-4-one 232 (41%) as inseparable colourless crystals.

The amounts of products were determined using 1H NMR spectroscopy.

The data were consistent to the previous synthesis and literature.144

\textbf{2-Bromo-3-phenylethyl-3H-quinazolin-4-one}

\[
\text{\begin{center}
\includegraphics[width=0.2\textwidth]{2-bromo-3-phenylethyl-3H-quinazolin-4-one.png}
\end{center}}
\]

Sodium hydride (0.14 g, 3.6 mmol) and sodium iodide (2.2 g, 15.0 mmol) were added to 2-bromo-3-H-quinazolin-4-one (0.53 g, 3.0 mmol) in dry DMF (20 cm3) and stirred for 1 h. 2-Bromoethylbenzene (0.82 cm3, 6.0 mmol) was added to the reaction mixture and stirred for a further 12 h. The reaction mixture was extracted into EtOAc and washed with H$_2$O (5 \times 50 cm3) and brine (50 cm3). The organic layer was dried over MgSO$_4$ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc as eluent (10:1) yielding 2-bromo-3-phenylethyl-3H-quinazolin-4-one as colourless crystals (0.06 g, 0.18 mmol, 6%); mp 109-110 °C; (Found: M$, 328.0206$. C$_{18}$H$_{13}$BrN$_2$O requires 328.0206.); ν_{\max}(thin film)/cm$^{-1}$ 3060, 2930, 2359, 1866, 1714, 1655, 1621, 1604, 1493, 1452, 1405, 1072, 1028, 938 and 908; $\delta$$_H$ 2.99 (2 H, t,J7.6, CH$_2$), 4.37 (2 H, t,J7.6, NCH$_2$), 7.26-7.15 (5 H, m, ArH), 7.34-7.30 (1 H, m, 6-H), 7.49 (1 H, d, J7.6, 8-H), 7.67-7.63 (1 H, m, 7-H) and 8.20 (1 H, d, J7.6, 5-H); $\delta$$_C$ 33.98 (CH$_2$), 42.25 (NCH$_2$), 114.55 (4a-C), 114.88 (ArH), 123.12 (8-C), 126.39 (6-C), 128.27 (5-C), 128.42 (2 \times ArH), 128.93 (2 \times ArH), 134.85 (7-C), 138.54 (ArC), 138.75 (ArC), 151.17 (2-C) and 162.28 (4-C); m/z(EI) 330 (M$^+$, 26%), 328 (25%) 145 (25), 130 (33), 104 (100), 90 (95), 65 (30) and 39 (40).
Radical cyclisation of 2-bromo-3-phenylethyl-3H-quinazolin-4-one

Method A – Photolysis and hexamethylditin

The reaction mixture of 2-bromo-3-phenylethyl-3H-quinazolin-4-one (28 mg, 0.085 mmol) and (Me₃Sn)₂ (82 mg, 0.25 mmol) in t-butylbenzene (20 cm³) was purged with nitrogen for 30 min, refluxed and irradiated with a 300 W sunlamp for 24 h. Dilute hydrochloric acid was added to the cooled reaction mixture to extract the protonated quinazolinone products into the aqueous layer. The aqueous layer was washed with light petroleum (3 × 50 cm³) to remove trimethyltin residues. The aqueous layer was basified with a solution of sodium hydroxide to pH 14 and extracted with DCM (3 × 50 cm³). The combined organic layers were dried over MgSO₄ and the solvent removed under reduced pressure yielding 5,6-dihydroisoquinol[1,2-b]quinazolin-8-one 237 as colourless crystals (0.02 g, 0.082 mmol, 97%).

The data were consistent to the previous synthesis and literature. 146

3-(3-Chloropropyl)-3H-quinazolin-4-one

Sodium hydride (1.78 g, 44.6 mmol) was added at 0 °C to 3H-quinazolin-4-one (6.50 g, 44.6 mmol) in dry DMF (50 cm³), warmed to 60 °C and stirred for 1 h. 1-Chloro-3-iodopropane (4.0 cm³, 37.2 mmol) was added and stirred for a further 12 h. The reaction mixture was extracted into DCM and washed with H₂O (5 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (2:1) as eluent yielding 3-(3-chloropropyl)-3H-quinazolin-4-one as colourless crystals (5.06 g, 22.8 mmol, 51%); mp 97-99 °C (lit. 147 98-100 °C); (Found: MH⁺,
223.0635. C_{11}H_{12}^{35}ClN_{2}O requires 223.0633; \nu_{\text{max}}(\text{thin film})/\text{cm}^{-1} 3439, 1659, 1613, 1469, 1366, 774 and 696; \delta_{\text{H}} 2.34-2.28 (2 \, \text{H}, \text{ m}, \text{ CH}_2), 3.60 (2 \, \text{H}, \text{ t}, J 9.9, \text{ ClCH}_2), 4.19 (2 \, \text{H}, \text{ t}, J 10.4, \text{ NCH}_2), 7.51 (1 \, \text{H}, \text{ ddd}, J 8.1, 6.4, 1.5, 6-\text{H}), 7.81-7.69 (2 \, \text{H}, \text{ m}, 7.8-\text{H}), 8.11 (1 \, \text{H}, \text{ s}, 2-\text{H}) and 8.30 (1 \, \text{H}, \text{ dd}, J 8.1, 1.5, 5-\text{H}); \delta_{\text{C}} 31.02 (\text{CH}_2), 41.58 (\text{ClCH}_2), 44.49 (\text{NCH}_2), 122.00 (4\text{a}-\text{C}), 126.57 (5-\text{C}), 127.42 (6-\text{C}), 127.49 (8-\text{C}), 134.38 (7-\text{C}), 146.61 (2-\text{C}), 148.05 (8\text{a}-\text{C}) and 161.15 (3-\text{C}); m/z(\text{Electrospray}) 225 (M^+, 23\%), 223 (79\%), 187 (46\%), 160 (48\%), 129 (36\%), 77 (41\%), 63 (29\%), 49 (39\%) and 41 (100\%); Anal. Calcd for C_{11}H_{12}N_{2}ClO. C, 59.33; H, 4.98; N, 12.58. Found: C, 58.98; H, 4.98; N, 12.31.

The data were consistent to the literature. 147

3-(3-Iodopropyl)-3H-quinazolin-4-one

\[
\begin{align*}
\text{254a}
\end{align*}
\]

3-(3-Chloropropyl)-3H-quinazolin-4-one (4.43 g, 20.0 mmol) and sodium iodide (14.9 g, 100.0 mmol) were added to dry acetone (50 cm³) and stirred under reflux for 12 h in the dark. The precipitated sodium chloride was removed by filtration on a celite bed and the solvent removed under reduced pressure. The solid residue was triturated with diethyl ether and the solution filtered a second time. The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure to afford 3-(3-iodopropyl)-3H-quinazolin-4-one propane as colourless crystals (3.35 g, 10.6 mmol, 53\%); mp 119-121 °C (lit. 147 120-122 °C); (Found: MH^+, 314.9990. C_{11}H_{12}IN_{2}O requires 314.9989.); \nu_{\text{max}}(\text{thin film})/\text{cm}^{-1} 3421, 1667, 1614, 1470, 1364, 1118, 775 and 698; \delta_{\text{H}} 2.37-2.30 (2 \, \text{H}, \text{ m}, \text{ CH}_2), 3.20 (2 \, \text{H}, \text{ t}, J 6.4, \text{ ICH}_2), 4.13 (2 \, \text{H}, \text{ t}, J 6.8, \text{ NCH}_2), 7.52-7.48 (1 \, \text{H}, \text{ m}, 6-\text{H}), 7.74-7.68 (2 \, \text{H}, \text{ m}, 7.8-\text{H}), 8.13 (1 \, \text{H}, \text{ s}, 2-\text{H}) and 8.27 (1 \, \text{H}, \text{ dd}, J 8.0, 1.6, 5-\text{H}); \delta_{\text{C}} 2.31 (\text{ICH}_2), 31.91 (\text{CH}_2), 47.42 (\text{NCH}_2), 121.94 (4\text{a}-\text{C}), 126.22 (5-\text{C}), 126.52 (6-\text{C}), 126.70 (8-\text{C}), 134.31 (7-\text{C}), 146.52 (2-\text{C}), 147.98 (8\text{a}-\text{C}), 161.03 (3-\text{C}); m/z(\text{Electrospray}) 187 (M^+, 37\%), 127 (35\%), 76 (28\%) and 41 (100\%).

The data were consistent to the literature. 147

158
1-Chloro-3-(phenylselanyl) propane¹⁴⁸

\[
\text{Cl} \quad \text{SePh}
\]

Diphenyl diselanide (4.67 g, 15.0 mmol) was dissolved in methanol (250 cm³) at rt. Sodium borohydride (1.41 g, 37.5 mmol) was added slowly to the stirred solution at 0 °C. Hydrogen gas was allowed to escape through a needle. After 30 min, 3-bromo-1-chloropropane (2.97 cm³, 30.0 mmol) was added dropwise and the mixture was stirred for 12 h. The reaction mixture was extracted into Et₂O and washed with H₂O (3 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure yielding 1-chloro-3-(phenylselanyl)propane as a yellow oil (5.67 g, 24.2 mmol, 81%); ν_max(neat)/cm⁻¹ 2952, 1576, 1476, 1436, 1261, 1021, 734 and 690; δ_H2.09-1.98 (2 H, m, CH₂), 2.96 (2 H, t, J 7.0, PhSeCH₂), 3.56 (2 H, t, J 6.2, CICH₂), 7.23-7.17 (3 H, m, ArH) and 7.44-7.42 (2 H, m, ArH); δ_C 24.64 (CH₂), 32.56 (PhSeCH₂), 44.46 (ClCH₂), 127.17 (ArH), 129.32 (2 × ArH), 129.74 (ArC) and 132.87 (2 × ArH).

The data were consistent to the literature.¹⁴⁸

1-Iodo-3-(phenylselanyl)propane¹⁴⁸

\[
\text{I} \quad \text{SePH}
\]

1-Chloro-3-(phenylselanyl)propane (3.50 g, 15 mmol) and sodium iodide (22.50 g, 150 mmol) were added to dry acetone (100 cm³) and stirred under reflux for 18 h in the dark. The precipitated sodium chloride was removed by filtration on a celite bed and triturated with diethyl ether. The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure yielding 1-iodo-3-(phenylselanyl)propane as a yellow oil (1.08 g, 3.4 mmol, 22%); ν_max(neat)/cm⁻¹ 1577, 1476, 1436, 1201, 1021, 732 and 689; δ_H 2.10-1.99 (2 H, m, CH₂), 2.87 (2 H, t, J 7.0, PhSeCH₂), 3.16 (2 H, t, J 6.7, ICH₂), 7.24-7.19 (3 H, m, ArH) and 7.49-7.24 (2 H, m, ArH); δ_C 6.36 (ICH₂), 28.56 (PhSeCH₂), 33.34 (CH₂), 126.99 (ArH), 129.17 (2 × ArH), 130.02 (ArC) and 132.77 (2 × ArH).

The data were consistent to the literature.¹⁴⁸
3-(4-Chlorobutyl)-3H-quinazolin-4-one

Sodium hydride (0.19 g, 4.8 mmol) was added at 0 °C to 3H-quinazolin-4-one (0.70 g, 4.8 mmol) in dry DMF (50 cm³) and warmed to 60 °C and stirred for 1 h. 1-Chloro-4-iodobutane (0.49 cm³, 4.0 mmol) was added and the reaction stirred for a further 12 h. The reaction mixture was extracted into DCM and washed with H₂O (5 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (3:1) as eluent yielding 3-(4-chlorobutyl)-3H-quinazolin-4-one as colourless crystals (0.61 g, 2.6 mmol, 65%); mp 74-76 °C; (Found: MH⁺, 237.0792. C12H14ClN2O requires 237.0789.); υₘₐₓ(thin film)/cm⁻¹ 3446, 2953, 1662, 1609, 1471, 1367, 908, 875, 769 and 696; δH 1.86-1.89 (2 H, m, CH₂CH₂Cl), 2.05-1.97 (2 H, m, NCH₂CH₂), 3.61 (2 H, t, J 6.5, CH₂Cl), 4.06 (2 H, t, J 7.6, NCH₂), 7.52 (1 H, m, 6-H), 7.77-7.12 (2 H, m, 7,8-H), 8.05 (1 H, s, 2-H) and 8.32-8.30 (1 H, m, 5-H); δC 26.89 (NCH₂CH₂), 29.47 (CH₂CH₂Cl), 44.16 (NCH₃), 46.10 (CH₂Cl), 122.06 (4a-C), 126.67 (5-CH), 127.34 (6-C), 127.46 (8-C), 134.26 (7-C), 146.30 (2-C), 148.06 (8a-C) and 161.06 (4-C); m/z(Electrospray) 238 (M⁺, 7%), 236 (50%), 201 (29), 146 (39), 77 (28), 63 (25), 55 (42), 49 (74); Anal. Calcd for C₁₂H₁₃N₂ClO. C, 60.89; H, 5.54; N, 11.84. Found: C, 60.76; H, 5.44; N, 12.00.

3-(4-Iodobutyl)-3H-quinazolin-4-one

3-(3-Chlorobutyl)-3H-quinazolin-4-one (0.37 g, 1.6 mmol) and sodium iodide (2.25 g, 15.0 mmol) were added to dry acetone (50 cm³) and stirred under reflux for 12 h in the dark. The precipitated sodium chloride was removed by filtration on a celite bed and the solution evaporated to dryness. The solid residue was triturated with diethyl ether and the solution filtered a second time. The organic layer was dried over MgSO₄ and the solvent removed
under reduced pressure to afford 3-(4-iodobutyl)-3H-quinazolin-4-one as colourless crystals (0.34 g, 1.1 mmol, 67%); mp 79-80 °C; (Found: M⁺, 329.0253. C₁₂H₁₃IN₂O requires 329.0254.); \(\nu_{\text{max}}\) (thin film)/cm⁻¹: 3424, 2949, 1656, 1614, 1471, 1372, 1172, 1111, 888, 769 and 697; \(\delta_H\) 1.89-1.91 (4 H, m, CH₂CH₂), 3.24 (2 H, t, \(J\) 6.4, CH₂I), 4.04 (2 H, t, \(J\) 6.8, NCH₂), 7.51 (1 H, ddd, \(J\) 8.2, 6.8, 1.2, 6-H), 7.78-7.70 (2 H, m, 7,8-H), 8.06 (1 H, s, 2-H) and 8.32-8.29 (1 H, dd, \(J\) 8.2, 1.0, 5-H); \(\delta_C\) 5.21 (CH₂I), 30.25 (CH₂), 30.38 (CH₂), 45.71 (NCH₂), 122.05 (4a-C), 126.67 (5-C), 127.35 (6-C), 127.58 (8-C), 134.26 (7-C), 146.29 (2-C), 148.05 (8a-C) and 161.02 (4-C); \(m/z\) (EI) 201 (M⁺, 43%), 141 (27), 90 (100), 76 (53), 62 (41) and 50 (30).

Radical cyclisation of 3-(3-iodopropyl)-3H-quinazolin-4-one

\[
\begin{align*}
\text{147} & & \text{259} & & \text{260}
\end{align*}
\]

Method A – Photolysis and hexamethylditin

The reaction mixture of 3-(3-iodopropyl)-3H-quinazolin-4-one (0.31 g, 1.0 mmol) and (Me₃Sn)₂ (0.96 g, 3.0 mmol) in t-butylbenzene (20 cm³) was purged with nitrogen for 30 min, refluxed and irradiated with a 300 W sunlamp for 24 h. Dilute hydrochloric acid was added to the cooled reaction mixture to extract the protonated quinazolinone products into the aqueous layer. The aqueous layer was washed with light petroleum (3 x 50 cm³) to remove trimethyltin residues. The aqueous layer was basified with a solution of sodium hydroxide to pH 14. The basic solution was extracted with EtOAc (5 x 50 cm³). The combined organic layers were dried over MgSO₄ and the solvent removed under reduced pressure and purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (2:1) as eluent yielding:

147 2,3-Dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one as colourless crystals (0.04 g, 0.2 mmol, 20%); mp 190-192 °C (lit.¹⁹⁹ 196-198 °C); \(\nu_{\text{max}}\) (thin film)/cm⁻¹: 3418, 2355, 1651, 1621, 1470, 1385, 1285, 775, 695 and 667; \(\delta_H\) 2.35-2.23 (2 H, m, CH₂), 3.18 (2 H, t, \(J\) 8.2, CH₂), 4.21 (2 H, t, \(J\) 7.4, NCH₂), 7.47-7.62 (1 H, m, 6-H), 7.76-7.62 (2 H, m, 7,8-H) and 8.28 (1 H, dd, \(J\) 7.8,
1.5, 5-H; δ 19.52 (CH₂), 32.51 (CH₂), 46.51 (NCH₂), 120.45 (4a-C), 126.25 (5-C), 126.38 (6-C), 126.76 (8-C), 134.19 (7-C), 149.07 (8a-C), 159.47 (2-C) and 161.01 (4-C).

The data were consistent to the literature.¹⁴⁹

259 2,3,3a,4-Tetrahydro-1H-pyrrolo[2,1-b]quinazolin-9-one as colourless crystals (0.02 g, 0.12 mmol, 12%); mp 187-188 °C (lit.¹⁵⁰ 184-185 °C); νmax (thin film)/cm⁻¹ 3421, 1633, 1503, 1470, 1434, 1337, 1151, 752 and 695; δH 2.32-2.29 (2 H, m, CH₂), 3.19 (1 H, t, J 8.0, 1-H), 3.75-3.67 (2 H, m, CHCH₂), 4.21 (1 H, t, J 7.2, 1-H), 5.03 (1 H, t, J 7.2, CH), 6.69 (1 H, d, J 8.1, 8-H), 6.92-6.88 (1 H, m, 6-H), 7.27-7.24 (1 H, m, 7-H) and 7.90 (1 H, dd, J 7.7, 1.5, 5-H); δC 21.73 (CH₂), 33.22 (CHCH₂), 44.29 (NCH₂), 69.86 (CH), 114.88 (5-C), 118.39 (4a-C), 119.95 (6-C), 126.78 (8-C), 132.92 (7-C), 147.31 (8a-C) and 162.22 (4-C).

The data were consistent to the literature.¹⁵⁰

260 3-Propyl-3H-quinazolin-4-one as colourless crystals (0.01 g, 0.06 mmol, 6%); mp 99-100 °C (lit.¹⁵¹ 96-98 °C); δH 1.01 (3 H, t, J 7.6, CH₃), 1.89-1.79 (2 H, m, CH₂), 3.98 (2 H, t, J 8.4, NCH₂), 7.49-7.26 (1 H, m, 5-H), 7.76-7.71 (2 H, m, 7,8-H), 8.04 (1 H, s, 2-H) and 8.33-8.31 (1 H, m, 5-H); δC 11.14 (CH₃), 22.66 (CH₂), 48.61 (NCH₂), 122.19 (4a-C), 126.71 (5-C), 126.82 (6-C), 127.23 (8-C), 134.16 (7-C), 146.12 (2-C), 148.12 (8a-C) and 161.10 (4-C).

The data were consistent to the literature.¹⁵¹

Method B - Et₃B only

The reaction mixture of 3-(3-iodopropyl)-3H-quinazolin-4-one (0.31 g, 1.0 mmol) and triethylborane (4 cm³, 4.0 mmol) in t-butylbenzene (20 cm³) was stirred for 10 h with an air bleed into the round bottom flask through a needle. Dilute hydrochloric acid was added to the cooled reaction mixture to extract the protonated quinazolinone products into the aqueous layer. The aqueous layer was washed with light petroleum (3 × 50 cm³). The aqueous layer was basified with a solution of sodium hydroxide to pH 14 and extracted with DCM (3 × 50 cm³). The combined organic layers were dried over MgSO₄ and the solvent removed under reduced pressure yielding 2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one ¹⁴⁷ (40%), 2,3,3a,4-tetrahydro-1H-pyrrolo[2,1-b]quinazolin-9-one ²⁵⁹ (10%) and 3-propyl-3H-quinazolin-4-one ²⁶⁰ (30%).

The data were consistent with the previous synthesis.¹⁴⁹,¹⁵⁰,¹⁵¹

The yields were calculated from ¹H NMR spectral calculations.
Method C – Bu₃SnH (fast) and Et₃B
Tributyltin hydride (0.54 cm³, 2.0 mmol) and triethylborane (0.20 cm³, 0.20 mmol) were added to 3-(3-iodopropyl)-3H-quinazolin-4-one (0.31 g, 1.0 mmol) in dry toluene (40 cm³) and stirred for 1 h with an air bleed into the round bottom flask through a needle. More triethylborane (0.20 cm³, 0.2 mmol) was added and the reaction stirred for a further 10 h. Dilute hydrochloric acid was added to the reaction mixture to extract the protonated quinazolinone products into the aqueous layer. The aqueous layer was washed with light petroleum (3 × 50 cm³) to remove tributyltin residues. The aqueous layer was basified with a solution of sodium hydroxide to pH 14. The basic solution was extracted with DCM (3 × 50 cm³). The combined organic layers were dried over MgSO₄ and evaporated to dryness under reduced pressure yielding 3-propyl-3H-quinazolin-4-one 260 (78%).

The data were consistent to the previous synthesis.

3-Propyl-3H-quinazolin-4-one

Sodium hydride (0.29 g, 7.2 mmol) was added at 0 °C to 3H-quinazolin-4-one (0.87 g, 6.0 mmol) in dry DMF (50 cm³), warmed to 60 °C and stirred for 1 h. 1-Iodopropane (1.75 cm³, 18.0 mmol) was added and stirred for a further 2 h. The reaction mixture was extracted into DCM and washed with H₂O (5 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (2:1) as eluent yielding 3-propyl-3H-quinazolin-4-one as colourless crystals (0.72 g, 3.8 mmol, 64%); mp 93-95 °C (lit. 96-98 °C); νmax (thin film)/cm⁻¹ 3416, 2963, 2875, 2462, 1674, 1611, 1473, 1376, 1324, 1091, 899, 767, 695, 610 and 552; δH 0.99 (3 H, t, J 7.4, CH₃), 1.88-1.79 (2 H, m, CH₂), 3.97 (2 H, t, J 7.2, NCH₂), 7.48 (1 H, ddd, J 8.1, 6.8, 1.5, 6-H), 7.75-7.67 (2 H, m, 7,8-H), 8.06 (1 H, s, 2-H) and 8.30 (1 H, dd, J 8.1, 1.5, 5-H); δC 11.02 (CH₃), 22.20 (CH₂), 48.38 (NCH₂), 122.03 (4a-C), 126.48 (5-C), 126.62 (6-C), 126.81 (8-C), 133.65 (7-C), 146.60 (2-C), 148.00 (8a-C) and 160.84 (4-C); Anal. Calcd for C₁₁H₁₂NO. C, 70.19; H, 6.43; N, 14.88. Found: C, 69.91; H, 6.43; N, 14.78.

The data were consistent to previous synthesis and the literature.¹⁵¹
Radical cyclisation of 3-(4-iodobutyl)-3H-quinazolin-4-one

Method A – photolysis with hexamethylditin

The reaction mixture of 3-(4-iodobutyl)-3H-quinazolin-4-one (0.32 g, 1.0 mmol) and (Me₃Sn)₂ (0.96 g, 3.0 mmol) in t-butylbenzene (20 cm³) was purged with nitrogen for 30 min, refluxed and irradiated with a 300 W sunlamp for 10 h. Dilute hydrochloric acid was added to the cooled reaction mixture to extract the protonated quinazolinone products into the aqueous layer. The aqueous layer was washed with light petroleum (3 × 50 cm³) to remove trimethyltin residues. The aqueous layer was basified with a solution of sodium hydroxide to pH 14 and extracted with DCM (3 × 50 cm³). The combined organic layers were dried over MgSO₄ and the solvent removed under reduced pressure and purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (2:1) as eluent yielding:

148 6,7,8,9-Tetrahydropyrido[2,1-b]quinazolin-11-one as colourless crystals (0.06 g, 0.3 mmol, 30%); mp 94-95 °C (lit. 180 96-97 °C); (Found: MH⁺, 201.1022). C₁₂H₁₃N₂O requires 201.1022.); νmax(thin film)/cm⁻¹ 3423, 2948, 2110, 1655, 1614, 1565, 1477, 1173, 1102, 990, 870, 771 and 583; δH 2.18-1.91 (4 H, m, CH₂CH₂), 3.00 (2 H, t, J 6.6, NCCH₂), 4.09 (2 H, t, J 6.3, NCH₂), 7.44-7.40 (1 H, m, 6-H), 7.59 (1 H, dd, J 8.3, 0.5, 8-H), 7.73-7.69 (1 H, m, 7-H) and 8.26 (1 H, dd, J 8.0, 1.5, 5-H); δC 19.33 (CH₂), 22.10 (CH₃), 31.93 (CH₂), 42.32 (CH₂), 120.40 (4a-C), 126.06 (5-C), 126.37 (6-C), 126.61 (8-C), 134.15 (7-C), 147.39 (8a-C), 154.86 (2-C) and 162.17 (4-C); m/z(Electrospray) 200 (M⁺, 50%), 199 (40), 90 (33), 76 (34), 63 (33), 50 (34), 41 (90) and 39 (100).

The data were consistent to the literature.¹⁸⁰

264 5,5a,6,7,8,9-Hexahydropyrido[2,1-b]quinazolin-11-one as colourless crystals (0.05 g, 0.23 mmol, 23%); mp 128-130 °C (lit. 152 134 °C); (Found: MH⁺, 203.1180. C₁₂H₁₅N₂O requires 203.1179.); νmax(thin film)/cm⁻¹ 3398, 3058, 2938, 2224, 1632, 1518, 1416, 1218, 1153, 1026, 754 and 692; δH 1.52-1.49 (2 H, m, 2-H), 1.91-1.75 (4 H, m, CH₂), 2.66-2.59 (1 H, m, 1-H), 4.25 (1 H, m, NH), 4.64-4.59 (1 H, m, 1-H), 4.78 (1 H, dd, J 10.2, 3.1, CH), 6.57

164
(1 H, d, J 7.1, 8-H), 6.79 (1 H, ddd, J 7.8, 1.0, 6-H), 7.25 (1 H, m, 7-H) and 7.90 (1 H, dd, J 7.8, 1.6, 5-H); δc 22.30 (CH2), 24.16 (CH2), 33.43 (CH2), 41.99 (CH2), 68.51 (CH), 113.70 (8-C), 115.18 (4a-C), 118.81 (6-C), 128.71 (5-C), 133.41 (7-C), 145.89 (8a-C) and 164.32 (4-C); m/z (Electrospray) 201 (M+, 30%), 146 (42), 119 (48), 92 (42), 55 (79) and 41 (100).

The data were consistent to the literature.152

Method B - Et₃B only
3-(4-Iodobutyl)-3H-quinazolin-4-one (0.32 g, 1.0 mmol) and triethylborane (4 cm³, 4.0 mmol) in t-butylbenzene (20 cm³) were stirred for 10 h with an air bleed into the round bottom flask through a needle. Dilute hydrochloric acid was added to the cooled reaction mixture to extract the protonated quinazolinone products into the aqueous layer. The aqueous layer was washed with light petroleum (3 × 50 cm³). The aqueous layer was basified with a solution of sodium hydroxide to pH 14 and extracted with DCM (3 × 50 cm³). The combined organic layers were dried over MgSO₄ and the solvent removed under reduced pressure yielding 6,7,8,9-tetrahydropyrido[2,1-b]quinazolin-11-one 148 (61%) and 5,5a,6,7,8,9-hexahydropyrido[2,1-b]quinazolin-11-one 264 (23%).

The data were consistent to the previous synthesis.80,152

The yields were calculated from ¹H NMR spectral calculations

6.4 Experimental for Chapter 3
2-Chloro-3-(hydroxymethyl)quinoline153

Sodium borohydride (0.18 g, 4.8 mmol) was added to a stirred solution of 3-carboxaldehyde-2-chloroquinoline (0.76 g, 4.0 mmol) in EtOH (50 cm³) at 0 °C and left stirring for 2 h. The crude reaction mixture was extracted into EtOAc and washed with H₂O (3 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure yielding 2-chloro-3-(hydroxymethyl)quinoline as colourless crystals (0.58, 3.0 mmol, 75%); mp 151-152 °C (lit.153 149 °C); (Found: MH⁺, 194.0368. C₁₀H₈ClNO requires 194.0367.); v max (thin film)/cm⁻¹ 3410, 1256, 1201, 1187, 1016, 942, 896, 778, 756 and
670; δH 4.94 (2 H, d, J 3.0, CH2), 7.57 (1 H, ddd, J 8.3, 6.8, 1.3, 6-H), 7.73 (1 H, ddd, J 8.1, 6.8, 1.5, 7-H), 7.85 (1 H, dd, J 8.3, 1.5, 5-H), 8.03 (1 H, dd, J 8.1, 1.3, 8-H) and 8.30 (1 H, s, 4-ArH); δC 62.05 (CH2), 127.25 (6-C), 127.38 (4a-C), 127.59 (5-C), 128.24 (8-C), 130.29 (7-C), 132.24 (3-C), 136.25 (4-C), 146.94 (8a-C) and 149.07 (2-C); m/z (Electrospray) 195 (M+, 15%), 193 (38), 163 (38), 140 (30), 130 (42), 129 (45), 128 (100), 75 (36), 63 (44), 62 (88), 50 (53) and 39 (59); Anal. Calcd for C10H7NCIO. C, 62.03; H, 4.16; N, 7.23. Found: C, 61.92; H, 4.16; N, 7.23.

The data were consistent to the literature.153

2-Bromo-3-(bromomethyl)quinoline102

\[
\text{\includegraphics[width=0.2\textwidth]{2-bromo-3-(bromomethyl)quinoline.png}}
\]

Phosphorous tribromide (1.5 cm3, 16.0 mmol) was added to a stirred solution of 2-chloro-3-(hydroxymethyl)quinoline (0.77 g, 4.0 mmol) in THF (20 cm3) at 0 °C and stirred for a further 24 h. The crude reaction mixture was extracted into DCM and washed with H\textsubscript{2}O (3 × 50 cm3) and brine (50 cm3). The organic layer was dried over MgSO\textsubscript{4} and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (10:1) as eluent to yield 2-bromo-3-(bromomethyl)quinoline as colourless crystals (0.66 g, 2.2 mmol, 55%); mp 137-138 °C (lit.102 139-140 °C); ν\textsubscript{max}(thin film)/cm-1 1559, 1490, 1430, 1399, 1249, 1210, 1131, 1022, 968, 920, 858, 776, 757, 695, 594 and 474; δH 4.74 (2 H, s, CH2), 7.60 (1 H, ddd, J 8.0, 6.8, 2.0, 6-H), 7.76 (1 H, ddd, J 8.6, 6.8, 1.7, 7-H), 7.82 (1 H, dd, J 8.0, 1.7, 5-H), 8.05 (1 H, dd, J 8.6, 2.0, 8-H) and 8.23 (1 H, s, 4-H); δC 28.98 (CH2), 127.25 (4a-C), 127.55 (5-C), 127.64 (6-C), 128.47 (8-C), 131.12 (7-C), 131.45 (3-C), 138.66 (4-C), 143.10 (2-C) and 147.94 (8a-C).

The data were consistent to the literature.102
Potassium t-butoxide (0.14 g, 1.28 mmol) was added to a solution of 3H-quinazolin-4-one (0.17 g, 1.16 mmol) in DMF (20 cm³) and stirred 1 h. 2-Bromo-3-(bromomethyl)-quinoline (0.42 g, 1.4 mmol) was added and stirred for a further 12 h. The crude reaction mixture was extracted into Et₂O and washed with H₂O (5 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (1:1) as eluent to yield 3-[(2-bromoquinolin-3-yl)methyl]-3H-quinazolin-4-one as colourless crystals (0.279 g, 0.76 mmol, 65%); mp 200-202 °C (lit. 102 201-203 °C); v max(thin film)/cm⁻¹ 3424, 1664, 1470, 1359, 1318, 1220, 1164, 960, 858, 774, 693 and 494; δH 5.42 (2 H, s, CH₂), 7.59-7.53 (2 H, m, ArH), 7.83-7.16 (4 H, m, ArH), 8.04-7.99 (1 H, m, ArH), 8.34-8.30 (1 H, s, ArH) and 8.35 (1 H, s, ArH); δc 49.53 (CH₂), 122.07 (4a-C), 126.84 (ArH), 127.04 (4a'-C), 127.67 (ArH), 127.72 (ArH), 127.78 (ArH), 127.83 (ArH), 128.31 (ArH), 128.73 (3'-C), 131.03 (ArH), 134.69 (ArH), 138.29 (ArH), 142.02 (2'-C), 146.52 (ArH), 147.91 (8a'-C), 148.02 (8a-C) and 161.21 (4-C).

The data were consistent to the literature. 102

Radical cyclisation of 3-[(2-bromoquinolin-3-yl)methyl]-3H-quinazolin-4-one

Method A – Photolysis with hexamethylditin

The reaction mixture between 3-[(2-bromo-quinolin-3-yl)methyl]-3H-quinazolin-4-one (0.16 g, 0.43 mmol) and (Me₃Sn)₂ (0.42 g, 1.29 mmol) in t-butylobenzene (20 cm³) was refluxed and irradiated with UV lamp for 24 h. Dilute hydrochloric acid was added to the cooled reaction
mixture to extract the protonated quinazolinone products into the aqueous layer. The aqueous layer was washed with light petroleum (3 × 50 cm³) to remove trimethyltin residues. The aqueous layer was basified with a solution of sodium hydroxide to pH 14 and extracted with DCM (3 × 50 cm³). The combined organic layers were dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (1:1) as eluent yielding:

144a Luotonin A as colourless crystals (62 mg, 0.22 mmol, 51%); v_{max}(thin film)/cm⁻¹ 3430, 2100, 1640, 1551, 1466, 1438, 1337, 741 and 691; δH 5.35 (2 H, s, CH₂), 7.59 (1 H, t, J 8.2, ArH), 7.69 (1 H, t, J 8.2, ArH), 7.88-7.82 (2 H, m, ArH), 7.95 (1 H, d, J 8.2, ArH), 8.21 (1 H, d, J 8.2, ArH) and 8.49-8.42 (3 H, m, ArH); δC 47.33 (CH₂), 121.32 (ArC), 126.46 (ArH), 127.47 (ArH), 127.98 (ArH), 128.55 (ArH), 128.78 (ArH), 129.42 (ArC), 130.72 (ArH), 130.74 (ArC), 131.59 (ArH), 134.62 (2 × ArH), 149.37 (ArC), 149.45 (ArC), 151.19 (ArC), 152.57 (ArC) and 160.69 (ArC).

The data were consistent to the literature.⁷³

278 3-[(Quinolin-3-yl)methyl]-3H-quinazolin-4-one as colourless crystals (19 mg, 0.07 mmol, 15%): mp 252-253 °C; (Found: MH⁺, 288.1131. C₁₈H₁₄N₃O requires 288.1130.); v_{max}(thin film)/cm⁻¹ 3420, 2357, 2107, 1646, 1558, 1450, 1361, 1332, 510 and 454; δH 5.39 (2 H, s, CH₂), 7.58-7.53 (2 H, m, ArH), 7.81-7.70 (4 H, m, ArH), 8.10 (1 H, dd, J 8.9, 0.4, ArH), 8.17 (1 H, d, J 1.8, ArH), 8.35-8.32 (1 H, m, ArH) and 8.99 (1 H, d, J 1.8, ArH); δC 47.73 (CH₂), 122.14 (ArC), 126.89 (ArH), 127.28 (ArH), 127.66 (2 × ArH), 127.86 (ArH), 128.60 (2 × ArC), 129.29 (ArH), 130.04 (ArH), 134.59 (ArH), 135.41 (ArH), 145.90 (ArH), 147.88 (ArC), 148.02 (ArC), 150.11 (ArH) and 161.07 (ArC); m/z(Electrospray) 287 (M⁺, 47%), 270 (45), 142 (100), 115 (68) and 89 (20).

Method B - Bu₃SnH (fast) and Et₃B

Tributyltin hydride (0.049 cm³, 0.17 mmol) was added to a solution of triethylborane (10 cm³, 10 mmol) and 3-[(2-bromo-quinolin-3-yl)methyl]-3H-quinazolin-4-one (0.025 g, 0.068 mmol) in dry toluene (40 cm³) with an air bleed into the round bottom flask through a needle and stirred 5 h. Triethylborane (10 cm³, 10 mmol) was added and the reaction mixture stirred for a further 5 h. Dilute hydrochloric acid was added to the reaction mixture to extract the
protonated quinazolinone products into the aqueous layer. The aqueous layer was washed with light petroleum (3 × 50 cm³) to remove tributyltin residues. The aqueous layer was basified with a solution of sodium hydroxide to pH 14. The basic solution was extracted with DCM (3 × 50 cm³). The combined organic layers were dried over MgSO₄ and the solvent removed under reduced pressure yielding 3-[(quinolin-3-yl)methyl]-3H-quinazolin-4-one 278 (10.3 mg, 0.036 mmol, 53%). The data were consistent to the previous synthesis.

Method C - Bu₃SnH (slow) and Et₃B
Tributyltin hydride (0.034 cm³, 0.14 mmol) was added to a solution of triethylborane (10 cm³, 10 mmol) and 3-[(2-bromoquinolin-3-yl)methyl]-4(3H)-quinazolinone (0.02 g, 0.055 mmol) in dry toluene (40 cm³) via a syringe pump over 5 h. The round bottom flask had a needle to bleed air through. After 3 h, triethylborane (10 cm³, 10 mmol) was added and stirred for a further 3 h. Dilute hydrochloric acid was added to the reaction mixture to extract the protonated quinazolinone products into the aqueous layer. The aqueous layer was washed with light petroleum (3 × 50 cm³) to remove tributyltin residues. The aqueous layer was basified with a solution of sodium hydroxide to pH 14. The basic solution was extracted with DCM (3 × 50 cm³). The combined organic layers were dried over MgSO₄ and the solvent removed under reduced pressure yielding luotonin A 144a (22 mg, 0.0076 mmol, 14%) and [(3-quinolin-3-yl)methyl]-3H-quinazolin-4-one 278 (50 mg, 0.174 mmol, 32%). The data were consistent to the previous synthesis and literature.²³

Method D - Bu₃GeH (slow) and Et₃B
Tributylgermanium hydride (0.034 cm³, 0.14 mmol) was added to a solution of triethylborane (10 cm³, 10 mmol) and 3-[(2-bromoquinolin-3-yl)methyl]-3H-quinazolin-4-one (0.02 g, 0.055 mmol) in dry toluene (40 cm³) over 5 h via a syringe pump, with an air bleed into the round bottom flask through a needle and stirred. After 3 h, triethylborane (10 cm³, 10 mmol) was added and stirred for a further 3 h. Dilute hydrochloric acid was added to the reaction mixture to extract the protonated quinazolone products into the aqueous layer. The aqueous layer was washed with light petroleum (3 × 50 cm³) to remove tributylgermanium residues. The aqueous layer was basified with a solution of sodium hydroxide to pH 14. The basic solution was extracted with DCM (3 × 50 cm³). The combined organic layers were dried over MgSO₄ and
the solvent removed under reduced pressure yielding luotonin A 144a (28 mg, 0.0098 mmol, 18%) and [(3-quinolin-3-yl)methyl]-3H-quinazolin-4-one 278 (17 mg, 0.0059 mmol, 11%). The data were consistent to the previous synthesis.73

Quinoline-3-carbaldehyde89

![Chemical Structure](https://example.com/structure.png)

Butylmagnesium chloride (1.25 cm³, 2.5 mmol) and n-butyllithium (2.0 cm³, 5.0 mmol) were stirred in toluene (10 cm³) at -10 °C for 1 h. 3-Bromoquinoline (0.91 cm³, 6.7 mmol) was added slowly at -10 °C and stirred for 2.5 h. DMF (0.51 cm³, 6.7 mmol) was added at -10 °C and stirred for a further 12 h. The crude reaction mixture was extracted into EtOAc and washed with H₂O (3 x 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (9:1) as eluent yielding quinoline-3-carbaldehyde as a yellow oil (0.73 g, 4.7 mmol, 70%); ν max (thin film)/cm⁻¹ 3052, 2983, 1732, 1497, 1423, 1373, 1264 and 908; δH 7.62 (1 H, ddd, J 8.4, 7.0, 1.0, 6-H), 7.84 (1 H, ddd, J 8.4, 7.0, 1.4, 7-H), 7.92 (1 H, dd, J 8.4, 1.4, 5-H), 8.14 (1 H, dd, J 8.4, 1.0, 8-H), 8.54 (1 H, d, J 2.0, 4-H), 9.31 (1 H, d, J 2.0, 2-H) and 10.19 (1 H, s, OCH); δC 126.82 (3-C), 127.71 (6-C), 128.41 (4a-C), 129.18 (7-C), 129.52 (5-C), 132.48 (8-C), 139.99 (4-C), 148.81 (2-C), 150.33 (8a-C) and 190.62 (CO). The data were consistent to the literature.89

3-Hydroxymethylquinoline

![Chemical Structure](https://example.com/structure.png)

Sodium borohydride (0.55 g, 14.0 mmol) was added to a stirred solution of quinoline-3-carbaldehyde (0.57 g, 3.4 mmol) in EtOH (50 cm³) at 0 °C and left stirring for 2 h. The crude reaction mixture was extracted into EtOAc and washed with H₂O (3 x 50 cm³) and brine (50 cm³).
cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (4:1) yielding 3-hydroxymethylquinoline as a colourless oil (0.32 g, 2.0 mmol, 54%); mp 80-81 °C (lit. 81-83 °C); νmax(thin film)/cm⁻¹ 3420, 2862, 1652, 1576, 1456, 1328, 1126, 1058, 886, 786, 667 and 472; δH 4.8 (2 H, s, CH₂), 7.43 (1 H, ddd, J, 8.0, 7.0, 1.2, 6-H), 7.58 (1 H, ddd, J 8.6, 7.0, 1.4, 7-H), 7.64 (1 H, dd, J 8.0, 1.4, 5-H), 7.96 (1 H, dd, J 8.6, 1.2, 8-H), 8.02 (1 H, d, J 1.6, 4-H) and 8.72 (1 H, d, J 1.6, 2-H); δC 62.12 (CH₂), 126.87 (6-C), 127.75 (7-C), 127.88 (4a-C), 128.35 (5-C), 129.40 (8-C), 133.98 (4-C), 134.29 (3-C), 146.80 (8a-C) and 149.84 (2-C).

The data were consistent to the literature.

2-(2-Bromo-1H-indol-3-yl)ethanol

N-Bromosuccinimide (0.52 g, 4.0 mmol) was added to tryptophol (0.32 g, 2.0 mmol) in carbon tetrachloride (20 cm³) and heated under reflux for 5 h. After cooling to room temperature the succinimide was filtered off. The organic solution was dried over MgSO₄ and the solvent removed under reduced pressure. The crystalline solid was purified by column chromatography using alumina as absorbent with light petroleum/EtOAc (6:1) yielding 2-(2-bromo-1H-indol-3-yl)ethanol as yellow crystals (55 mg, 0.3 mmol, 12%); mp 88.5-89.5 °C; (Found: M⁺, 238.9945. C₁₀H₁₀BrNO requires 238.9946.); νmax(thin film)/cm⁻¹ 3625, 2039, 1817, 1784, 1699 and 580; δH 3.26-3.30 (2 H, t, J 6.5, CH₂), 3.57-3.61 (2 H, t, J 6.5, CH₂OH), 7.41-7.11 (3 H, m, ArH), 7.50 (1 H, d, J 7.0 ArH) and 8.03 (1 H, brs, NH); δC 27.81 (CH₂), 30.35 (CH₂OH), 107.82 (3-C), 109.56 (7-C), 111.98 (2-C) 116.89 (6-C), 119.31 (4-C), 121.51 (5-C), 126.18 (3a-C) and 134.91 (7a-C); m/z(El) 225 (M⁺, 79%), 223 (81), 208 (22), 144 (100), 130 (61), 115 (60), 89 (24), 77 (23) and 63 (21). The compound was unstable in air.
2-Bromo-3-methyl-1H-indole

A solution of N-bromosuccinimide (1.56 g, 12.0 mmol) and 3-methyl-1H-indole (1.31 g, 10.0 mmol) in dry carbon tetrachloride (50 cm³) was refluxed for 2 h. The reaction mixture was cooled to rt before being filtered through a celite bed and washed with carbon tetrachloride (3 × 20 cm³). The solvent was removed under reduced pressure, and the crude product purified using column chromatography with neutral alumina as absorbent with light petroleum/EtOAc (6:1) as eluent yielding 2-bromo-3-methyl-1H-indole as colourless crystals (0.86 g, 4.8 mmol, 48%); mp 93-94 °C (lit. 94-95 °C); (Found: M⁺, 208.9840. C₉H₅BrN requires 208.9840.); δH 2.27 (3 H, s, CH₃), 7.11-7.21 (3 H, m, ArH), 7.46-7.48 (1 H, m, ArH) and 7.82 (1 H, brs, NH); δc 9.66 (CH₃), 107.92 (3-C), 110.28 (7-C), 111.37 (2-C), 118.20 (4-C), 119.34 (6-C), 121.60 (5-C), 128.00 (3a-C) and 135.94 (7a-C); m/z(EI) 211 (M⁺, 58 %), 209 (53), 210 (65), 147 (100), 130 (90), 129 (49) and 119 (65).

The data were consistent with the literature.

3-Methyl-2-(phenylselanyl)-1H-indole

3-Methyl-1H-indole (0.66 g, 5.0 mmol) and phenylselanyl chloride (1.05 g, 5.5 mmol) were placed in a round bottom flask containing dry carbon tetrachloride (50 cm³) and triethylamine (0.68 cm³, 5.0 mmol) was added dropwise. The solution was heated under reflux for 4 h. The reaction mixture was cooled, filtered through a celite bed and washed with carbon tetrachloride (3 × 20 cm³). The organic layer was dried using MgSO₄, and the solvent removed under reduced pressure. The resulting crude product was purified by column chromatography.
using neutral alumina as absorbent with light petroleum/EtOAc (8:1) as eluent yielding 3-
methyl-2-(phenylselanyl)-1H-indole as yellow crystals (0.15 g, 0.5 mmol, 11%), mp 77.6-
77.8 °C; (Found: M+, 287.0215. C_{16}H_{13}NSe requires 287.0213.); \nu_{\text{max}}(\text{thin film})/\text{cm}^{-1} 3452,
3053, 1477, 1261, 896 and 706; \delta_{\text{H}} 2.49 (3 H, s, CH_{3}), 7.21-7.32 (8 H, m, ArH), 7.66-7.70 (1
H, m, ArH) and 8.12 (1 H, brs, NH); \delta_{\text{C}} 10.49 (CH_{3}), 110.55 (7-C), 118.18 (3-C), 119.39 (4-
C), 119.61 (6-C), 120.62 (2-C), 123.22 (5-C), 126.44 (2 \times \text{ArH}), 127.82 (\text{ArC}), 129.92 (\text{ArH}),
129.34 (2 \times \text{ArH}), 132.30 (3a-C) and 137.64 (7a-C); \text{m/z(El)} 287 (M+, 51 %), 285 (26), 207
(100) and 206 (48).
The data were consistent with the literature.156

1-Benzyl-3-methyl-1H-indole157

![1-Benzyl-3-methyl-1H-indole](image)

A solution of 3-methylindole (0.66 g, 5.0 mmol) in dry DMF (15 cm³) was added to sodium
hydride (0.24 g, 6.0 mmol) in dry DMF (50 cm³) and stirred for 1.5 h. Benzyl bromide (2.97
ml, 25.0 mmol) was added and stirred the reaction stirred for a further 1 h. The reaction
mixture was quenched with distilled water (5 cm³). The reaction mixture was extracted into
Et_{2}O (50 cm³) and washed with distilled water (5 \times 50 cm³) and brine (50 cm³) to remove the
DMF. The crude product was dried with MgSO_{4} and the solvent removed under reduced
pressure before being purified by column chromatography using silica gel as absorbent with
light petroleum/EtOAc (10:1) as eluent yielding 1-benzyl-3-methyl-1H-indole as colourless
crystals (0.86 g, 3.9 mmol, 78%); mp 66-67 °C (lit.157 65-66 °C); \nu_{\text{max}}(\text{thin film})/\text{cm}^{-1} 3057,
1717, 1640, 1396, 1089 and 739; \delta_{\text{H}} 2.85 (3 H, s, CH_{3}), 5.48 (2 H, s, CH_{2}), 6.76 (1 H, s, 2-H)
and 7.01-7.49 (9 H, m, ArH); \delta_{\text{C}} 9.76 (CH_{3}), 49.82 (CH_{2}), 109.56 (7-C), 110.93 (3-C), 118.88
(6-C), 119.13 (4-C), 121.71 (5-C), 125.93 (2-C), 126.89 (2 \times \text{ArH}), 127.56 (\text{ArH}), 128.79 (2 \times
\text{ArH}), 129.01 (3a-C), 136.73 (\text{ArC}) and 138.39 (7a-C).
The data were consistent with the literature.157

173
A solution of 1-benzyl-3-methyl-1H-indole (0.44 g, 2.0 mmol) and N-bromosuccinimde (0.31 g, 2.4 mmol) in dry carbon tetrachloride (50 cm³) was heated under reflux in the dark for 3 h. The reaction mixture was cooled and filtered through a celite bed and washed with carbon tetrachloride (3 x 20 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum as eluent in the dark yielding 1-benzyl-2-bromo-3-methyl-1H-indole as a colourless oil (0.20 g, 0.7 mmol, 33%); νmax(thin film)/cm⁻¹ 3059, 2901, 1599, 1473, 778 and 657; δH 2.15 (3 H, s, CH₃), 5.14 (2 H, s, CH₂) 6.88-6.91 (2 H, m, ArH) and 7.06-7.52 (7 H, m, ArH); δc 10.14 (CH₃), 48.41 (CH₂), 112.62 (7-C), 113.16 (3-C), 115.85 (2-C), 119.72 (4-C), 123.06 (6-C), 126.38 (2 x ArH), 126.98 (3a-C), 127.68 (ArH), 128.86 (5-C), 128.89 (2 x ArH), 136.88 (ArC) and 137.66 (7a-C). Compound was unstable in air and no further characterisation could be carried out.

The data were consistent with the literature.¹⁵⁸

³-Methyl-1H-indole (1.87 g, 14.3 mmol) was added to sodium hydride (0.69 g, 17.1 mmol) in dry DMF (50 cm³) and stirred for 1 h. Methyl iodide was added slowly over 1 h and the mixture was left stirring for a further 2 h. The reaction mixture was quenched with distilled water (5 cm³). The reaction mixture was extracted into Et₂O (50 cm³) and washed with distilled water (5 x 50 cm³) and brine (50 cm³) to remove the DMF. The organic layer was dried using MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel absorbent with light petroleum as eluent to afford 1,3-dimethyl-1H-indole as colourless crystals (1.54 g, 10.6 mmol, 74%); mp 139-
140 °C (lit.159 142 °C); v\text{max}(\text{thin film})/\text{cm}^{-1} 3055, 2918, 1618, 1473 and 740; δ\text{H} 2.56 (3 H, s, CH₃), 3.84 (3 H, s, NCH₃), 6.96 (1 H, s, 2-H), 7.49-7.59 (2 H, m, ArH) and 7.78-7.93 (2 H, m, ArH); δ\text{C} 9.89 (CH₃), 32.59 (NCH₃), 109.33 (7-C), 110.27 (3-C), 118.83 (6-C), 119.08 (4-C), 121.71 (5-C), 126.85 (2-C), 128.99 (3a-C) and 137.30 (7a-C).

The data were consistent with the literature.159

2-Bromo-1,3-dimethyl-1\text{H}-indole

\text{N-Bromosuccinimide} (0.52 g, 4.0 mmol) was added to a solution of 1,3-dimethyl-1\text{H}-indole (0.29 g, 2.0 mmol) in dry carbon tetrachloride (20 cm³) and refluxed in the dark for 2 h. The reaction mixture was cooled, filtered through a celite bed and washed with carbon tetrachloride (3 × 20 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The resulting crude product was purified using column chromatography using silica gel as absorbent with light petroleum as eluent to yield 2-bromo-1,3-dimethyl-1\text{H}-indole as a colourless oil (less than 5%); δ\text{H} 2.25 (3 H, s, CH₃), 3.67 (3 H, s, NCH₃) and 6.91-7.63 (4 H, m, ArH); δ\text{C} 9.86 (CH₃), 31.66 (NCH₃), 112.12 (7-C), 113.90 (4-C), 115.40 (3-C), 116.86 (2-C), 119.86 (6-C), 122.51 (5-C), 126.25 (3a-C) and 137.33 (7a-C).

Compound was unstable in air and no further characterisation could be carried out.

3-Methyl-1,3-dihydroindol-2-one99

\text{N-Bromosuccinimide} (2.60 g, 20 mmol) was added to a solution of 3-methyl-1\text{H}-indole (2.64 g, 20 mmol) in \text{t-BuOH/H₂O} (155 cm³ 10:1) and stirred for 1 h. The reaction mixture was extracted into \text{Et}_2\text{O} and washed with \text{H}_2\text{O} (3 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using alumina as absorbent with light
petroleum/EtOAc (5:1) as eluent yielding 3-methyl-1,3-dihydroindol-2-one as colourless crystals (1.29 g, 8.6 mmol, 43%); mp 120-122 °C; (lit.99 122-124 °C); (Found: MH+, 148.0755. C\textsubscript{9}H\textsubscript{10}NO requires 148.0757.); \(\nu_{\text{max}}\) (thin film)/cm\(^{-1}\) 3216, 2972, 2873, 1731, 1624, 1470, 1331, 1223, 1174 and 749; \(\delta_{\text{H}}\) 1.51 (3 H, d, \(J\ 6.4\), CH\textsubscript{3}), 3.48 (1 H, q, \(J\ 6.4\), CH), 6.93 (1 H, d, \(J\ 7.4\), ArH), 7.02 (1 H, t, \(J\ 7.4\), ArH), 7.32-7.17 (2 H, m, ArH) and 9.57 (1 H, brs, NH); \(\delta_{\text{C}}\) 15.11 (CH\textsubscript{3}), 41.28 (CH), 109.94 (ArH), 121.81 (ArH), 123.02 (ArH), 127.89 (ArH), 128.54 (ArC), 141.43 (ArC) and 181.99 (ArC); m/z (Electrospray) 147 (M+, 58%), 119 (64), 118 (75), 91 (50), 63 (46), 52 (52), 51 (68) and 50 (44).

The data were consistent to the literature.99

2-Chloro-3-methyl-1\textit{H}-indole

\begin{center}
\includegraphics[width=0.2\textwidth]{2-Chloro-3-methyl-1H-indole.png}
\end{center}

3-Methyl-1,3-dihydroindol-2-one (0.29 g, 2.0 mmol) were heated under reflux in phosphorous oxychloride (0.8 cm3, 1.2 mmol) under for 10 min. The solution was poured onto an ice and saturated sodium carbonate solution. The reaction mixture was extracted into DCM and washed and with H\textsubscript{2}O (3 \times 50 cm3) and brine (50 cm3). The organic layer was dried over MgSO\textsubscript{4} and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (12:1) as eluent yielding 2-chloro-3-methyl-1\textit{H}-indole as colourless crystals (0.06 g, 0.4 mmol, 20%); mp 124 °C (lit.160 125 °C); \(\nu_{\text{max}}\) (thin film)/cm\(^{-1}\) 3209, 2974, 1730, 1620, 1469, 1333, 1223, 1104, 752, 666, 540 and 493; \(\delta_{\text{H}}\) 2.24 (3 H, s, CH\textsubscript{3}), 7.21-7.11 (3 H, m, ArH) and 7.46 (1 H, d, \(J\ 7.5\), ArH); \(\delta_{\text{C}}\) 8.32 (CH\textsubscript{3}), 107.95 (ArC), 110.35 (ArH), 118.32 (ArH), 119.94 (ArH), 120.60 (ArC), 122.22 (ArH), 128.32 (ArC) and 134.40 (ArC).

The data were consistent with the literature.160
2-(1-Methyl-1H-indol-3-yl)ethanol

Sodium hydride (1.37 g, 34.2 mmol) was added to a solution of tryptophol (5.0 g, 31.1 mmol) in dry DMF (50 cm³) and stirred for 30 min. Methyl iodide (2.3 cm³, 37.3 mmol) was added to the solution and stirred for 3 h. The reaction mixture was quenched by dropwise addition of H₂O (5 cm³). The reaction mixture was extracted into DCM and washed with H₂O (5 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude reaction mixture was purified using column chromatography with silica gel as absorbent with light petroleum/EtOAc (2:1) yielding 2-(1-methyl-1H-indol-3-yl)ethanol as a yellow oil (2.98 g, 17.0 mmol, 55%); (Found: M⁺, 175.0999. C₁₁H₁₃NO requires 175.0997); νmax (thin film)/cm⁻¹ 3388, 2947, 1656, 1620, 1444 and 1328; δH 3.01 (2 H, t, J 6.7, CH₂), 3.36 (3 H, s, CH₃), 3.64 (2 H, t, J 6.7, CH₂OH), 6.84 (1 H, s, 2-H), 7.24-7.06 (3 H, m, ArH) and 7.58 (1 H, d, J 6.9, ArH); δC 28.52 (CH₂), 32.32 (CH₃), 62.60 (CH₂OH), 109.50 (7-C), 110.73 (3-C), 118.50 (6-C), 119.10 (4-C), 121.63 (5-C), 126.74 (2-C), 127.85 (3a-C) and 137.00 (7a-C); m/z (EI) 175 (M⁺, 11%), 144 (100), 129 (4), 115 (6), 103 (5) 102 (6) and 77 (7).

2-Bromo-3-(2-hydroxyethyl)-1-methyl-1H-indole

A solution of N-bromosuccinimide (5.20 g, 40.0 mmol) and 2-(1-methyl-1H-indol-3-yl)-ethanol (0.70 g, 4.0 mmol) in dry carbon tetrachloride (20 cm³) was heated under reflux for 1 h. The reaction mixture was cooled, filtered and washed with carbon tetrachloride (3 × 15 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (10:1) as eluent yielding 2-bromo-3-(2-hydroxyethyl)
1-methyl-1H-indole as a colourless oil (0.30 g, 1.2 mmol, 30%); (Found M+, 256.0155. C₁₁H₁₂BrNO requires 256.0155); νmax(thin film)/cm⁻¹ 3427, 1724, 1612, 1471, 1373 and 750; δH 2.96-2.75 (2 H, m, CH₂), 3.23 (3 H, s, CH₃), 3.40-3.26 (2 H, m, HOCH₂), 6.87 (1 H, d, J 7.7, 4-H), 7.14 (1 H, t, J 7.7, 6-H) and 7.41- 7.34 (2 H, m, ArH); δc 26.27 (CH₂), 26.89 (CH₃), 41.93 (HOCH₂) 109.14 (7-C), 109.14 (2-C), 123.95 (4-C), 124.56 (6-C), 128.79 (3-C), 130.67 (5-C), 142.30 (3a-C) and 173.28 (7a-C); m/z(Cl) 256 (M⁺, 3%), 254 (80), 252 (82), 173 (100), 172 (93), 158 (85), 144 (90), 130 (96), 115 (55), 89 (43) and 77 (51).

Methanesulfonic acid 2-(1-methyl-1H-indol-3-yl)ethyl ester

Methanesulfonic acid chloride (0.19 cm³, 2.4 mmol) was added to a solution of 2-(1-methyl-1H-indol-3-yl)ethanol (0.35 g, 2.0 mmol) in dry DCM (50 cm³) over 30 min. Triethylamine (0.41 cm³, 3.0 mmol) was added and the reaction stirred for a further 18 h. The reaction mixture was washed with H₂O (3 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure yielding methanesulfonic acid 2-(1-methyl-1H-indol-3-yl)ethyl ester as a colourless oil (0.44 g, 1.7 mmol, 87%); δH 2.75 (3 H, s, SO₂CH₃), 3.13 (2 H, t, J 7.0, CH₂), 3.63 (3 H, s, NCH₃), 4.35 (2 H, t, J 7.0, MsOCH₂), 6.86 (1 H, s, 2-H), 7.26-7.06 (3 H, m, ArH) and 7.54 (1 H, d, J 7.7, ArH); δc 25.47 (CH₂), 32.49 (SO₂CH₃), 37.16 (NCH₃), 70.37 (MsOCH₂), 108.82 (3-C), 109.62 (7-C), 118.46 (6-C), 119.10 (4-C), 121.92 (5-C), 127.62 (2-C), 127.68 (3a-C) and 137.05 (7a-C).

1-Benzyl-3-(2-hydroxyethyl)-1H-indole

Sodium hydride (0.19 g, 4.8 mmol) was added to a solution of tryptophol (0.64 g, 4.0 mmol) in dry DMF (20 cm³) at 0 °C and stirred 40 min at rt. Benzyl bromide (0.57 cm³, 4.8 mmol)
was added and the reaction mixture stirred for a further 3 h. The crude reaction was quenched by dropwise addition of H₂O (5 cm³). The mixture was extracted into DCM and washed with H₂O (5 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (2:1) as eluent to yield 1-benzyl-3-(2-hydroxyethyl)-1H-indole as a yellow oil (0.68 g, 2.7 mmol, 68%); (Found: M⁺, 251.1311. C₁₇H₁₇NO requires 251.1310.; δH 3.02 (2 H, t, J 6.5, CH₂), 3.90 (2 H, t, J 6.5, OCH₂), 5.26 (2 H, s, BenzH), 7.00 (1 H, s, 2-H), 7.23-7.08 (8 H, m, ArH) and 7.83 (1 H, d, J 8.2, ArH); δC 26.03 (CH₂), 49.98 (BenzH), 62.85 (HOCH₂), 110.01 (7-C), 111.78 (3-C), 119.23 (6-C), 119.31 (4-C), 122.10 (5-C), 126.78 (Ph 4-C), 127.01 (Ph 3,5-C), 127.71 (2-C), 128.20 (3a-C), 128.94 (Ph 2,6-C), 136.96 (Ph 1-C) and 137.94 (7a-C); m/z (EI) 251 (M⁺, 44%), 220 (93), 130 (28), 97 (21), 91 (100) and 57 (21).

The data were consistent to the literature.¹⁶¹

3-(2-Hydroxyethyl)-1H-indole-1-carboxylic acid t-butyl ester

Triethylamine (0.56 cm³, 4.0 mmol) was added to a solution of tryptophol (0.32 g, 2.0 mmol) in dry THF (20 cm³) with stirring. DMAP (0.02 g, 0.2 mmol) was added and the reaction stirred for a further 15 min. Di-t-butyl dicarbonate (0.44 g, 2.0 mmol) in dry THF (10 cm³) was added slowly over 12 h using a syringe pump. The reaction mixture was washed with H₂O (3 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (10:1) as eluent to yield 3-(2-hydroxyethyl)-1H-indole-1-carboxylic acid t-butyl ester as a yellow oil (0.06 g, 0.2 mmol, 11%); νmax (thin film)/cm⁻¹ 3687, 3384, 3064, 1733, 1683, 1456, 1255, 1161 and 792; δH 1.48 (9 H, s, t-BuH), 3.14 (2 H, t, J 7.8, CH₂), 4.37 (2 H, t, J 7.8, HOCH₂), 7.00 (1 H, s, 2-H), 7.12 (1 H, t, J 7.8, ArH), 7.19 (1 H, t, J 8.0, ArH), 7.35 (1 H, d, J 8.0, ArH) and 7.63 (1 H, d, J 8.0, ArH); δC 24.91 (CH₂), 27.82 (3 × CH₃), 66.94 (HOCH₂), 82.01 (CMe₃), 111.17 (7-C), 179
111.53 (3-C), 118.77 (4-C), 119.47 (6-C), 122.11 (5-C), 122.23 (2-C), 127.41 (3a-C), 136.19 (7a-C) and 153.62 (C=O).

The date were consistent to the literature.¹⁶²

Methanesulfonic acid 2-[1-(methanesulfonyl)-1H-indol-3-yl]ethyl ester

![Structure](image)

Methanesulfonyl chloride (3.26 cm³, 33.2 mmol) was added slowly at 0 °C to a solution of tryptophol (3.34 g, 16.6 mmol) and triethylamine (8.9 cm³, 64.0 mmol) in dry toluene (50 cm³). The reaction mixture was stirred for 12 h and extracted into EtOAc and washed with H₂O (3 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (5:1) as eluent yielding methanesulfonic acid 2-[1-(methanesulfonyl)-1H-indol-3-yl]ethyl ester as yellow crystals (0.74 g, 2.45 mmol, 15%); mp 98-99 °C; (Found: M⁺/N⁺, 335.0733. C₁₂H₁₉N₂O₅S₂ requires 335.0730.); νmax (thin film)/cm⁻¹ 3111, 3022, 2932, 1606, 1448, 1351, 1281, 1167, 1121, 959, 909, 781, 748 and 589; δH 2.90 (3 H, s, NMsCH₃), 3.03 (3 H, s, OMsCH₃), 3.12 (2 H, t, J 6.8, CH₂), 4.45 (2 H, t, J 6.8, OMsCH₃), 7.35-7.25 (3 H, m, ArH), 7.57 (1 H, d, J 7.6, ArH) and 7.86 (1 H, d, J 8.0, ArH); δC 25.00 (CH₂), 37.15 (OMsCH₃), 40.49 (NMsCH₃), 70.49 (OCH₂), 113.20 (ArH), 117.31 (ArC), 118.39 (ArH), 123.18 (ArH), 123.71 (ArH), 125.17 (ArH), 130.43 (ArC) and 136.25 (ArC); m/z (Electrospray) 317 (M⁺, 36%), 221 (0), 208 (32), 142 (100), 130 (78), 115 (60), 101 (48), 79 (80) and (62).

1-Tosyl-3-(2-tosyloxyethyl)-3H-indole

![Structure](image)

Sodium hydride (0.40 g, 10.0 mmol) was added to tryptophol (0.60 g, 4.0 mmol) in dry THF (20 cm³) and stirred for 40 min. Tosyl chloride (1.67 g, 8.8 mmol) was added at 0 °C and stirred for 2 h. The crude reaction mixture was quenched with H₂O (5 cm³). The crude
reaction mixture was extracted into DCM and washed with H2O (3 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (2:1) as eluent to yield 1-tosyl-3-(2-tosyloxyethyl)-3H-indole a yellow oil (0.45 g, 1.0 mmol, 25%); (Found: M⁺, 469.1009. C₃₂H₂₃NO₅S₂ requires 469.1001.); νmax (thin film)/cm⁻¹ 3055, 2923, 1596, 1495, 1269, 1020, 813 and 704; δH 2.30 (3 H, s, TsCH₃), 2.37 (3 H, s, TsCH₃), 3.00 (2 H, t, J 6.6, CH₂), 4.24 (2 H, t, J 6.6, OCH₂), 7.32-7.13 (8 H, m, ArH), 7.57-7.54 (2 H, m, TsH), 7.75-7.72 (2 H, m, TsH) and 7.94-7.92 (1 H, m, ArH); δc 21.52 (TsCH₃), 21.60 (TsCH₃), 24.88 (CH₂), 68.75 (OCH₂), 113.67 (7-C), 117.18 (3-C), 119.05 (4-C), 123.13 (6-C), 124.09 (2-C), 124.74 (5-C), 126.78 (2 × TsH), 127.62 (2 × TsH-C), 129.70 (2 × TsH), 129.92 (2 × TsH), 130.17 (3a-C), 132.49 (3-C), 135.03 (TsC), 135.17 (TsC), 144.80 (2 × TsC); m/z (EI) 297 (M⁺, 39%), 155 (49), 142 (80), 129 (6), 115 (50), 91 (100) and 65 (39).

3-[2-(t-Butyl-dimethylsilyloxy)ethyl]-1H-indole

Imidazole (0.93 g, 13.6 mmol) was added to a solution of tryptophol (1.0 g, 6.2 mmol) in THF (50 cm³) with stirring at cooled to 0 °C. TBDMSCl (1.02 g, 6.8 mmol) was added and stirred for 16 h at rt. The reaction mixture was diluted with EtOAc (20 cm³) and washed with H₂O (5 × 50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by flash sinter chromatography using silica gel as absorbent with light petroleum/EtOAc (3:1) as eluent to yield 3-[2-(t-butyl-dimethylsilyloxy)ethyl]-1H-indole as a yellow oil (1.67 g, 6.1 mmol, 88%); (Found: MH⁺, 276.1778. C₁₆H₂₆NOSi requires 276.1778.); νmax (thin film)/cm⁻¹ 3398, 3195, 2850, 1712, 1328, and 723; δH 0.42 (6 H, s, 2 × CH₃), 1.29 (9 H, s, 3 × CH₃), 3.46 (2 H, t, J 7.3, CH₂), 4.24 (2 H, t, J 7.3, SiOCH₂), 7.13 (1 H, s, 2-H), 7.50-7.42 (3 H, m, ArH), 7.94 (1 H, d, J 7.8, ArH) and 8.54 (1 H, brs, NH); δc-4.95 (2 × CH₃), 21.84 (3 × t-Bu), 26.36 (3 × CH₃), 31.53 (CH₂), 64.35 (SiOCH₂), 111.83 (7-C), 112.66 (3-C), 118.74 (6-C), 119.07 (4-C), 122.22 (5-C), 122.70 (2-
C), 129.71 (3a-C) and 136.57 (7a-C); m/z (Electrospray) 276 (M⁺, 46 %), 179 (23), 162 (100) and 144 (24).
The data were consistent with the literature.⁶³

3-[2-(t-Butyldimethylsilanoxyl)ethyl]-1-tosyl-1H-indole⁶⁴

Sodium hydride (1.20 g, 30.0 mmol) was added to 3-[2-(t-butyl-dimethylsilanyloxy)ethyl]-
1H-indole (5.50 g, 20.0 mmol) in dry DMF (75 cm³) and stirred for 1 h. Tosyl chloride (4.57
g, 24.0 mmol) was added at 0 °C and stirred for 24 h. The crude reaction was quenched with
H₂O (5 cm³). The crude reaction mixture was extracted into DCM and washed with H₂O (5 ×
50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed
under reduced pressure. The crude product was purified by column chromatography using
silica gel as absorbent with light petroleum/EtOAc (15:1) to yield 3-[2-(t-
butyldimethylsilanoxyl)ethyl]-1-tosyl-1H-indole as yellow crystals (7.35 g, 17.13 mmol,
86%); mp 99-101 °C; (Found: MNH⁺, 447.2136. C₂₃H₃₅N₂O₃SSi requires 447.2132.);

\[\text{\text{\text{\text{\nu}max(thin film)/cm}^{-1}} = 2925, 1448, 1371, 1174, 1095, 812 \text{ and 669; } \delta_H 0.01 \text{ (6 H, s, 2 x SiMe),} \]

0.90 (9 H, s, t-Bu), 2.31 (3 H, s, TsMe), 2.88 (2 H, t, J 7.2, CH₂), 3.88 (2 H, t, J 7.2, OCH₂);
7.35-7.19 (4 H, m, ArH), 7.43 (1 H, s, 2-H), 7.52-7.48 (1 H, m, ArH), 7.76 (2 H, d, J 8.4, 2 ×
TsH) and 7.99 (1 H, m, ArH); δC 5.34 (2 x SiMe), 18.30 (q-t-Bu), 21.51 (TsMe), 25.96 (3 ×
t-Bu), 28.61 (CH₂), 62.63 (OCH₂), 113.68 (ArH), 119.60 (ArH), 120.16 (ArC), 112.97 (ArH),
123.55 (ArH), 124.55 (ArH), 127.04 (2 × TsArH), 129.81 (2 x TsArH), 131.28 (ArC), 135.16
(ArC), 135.50 (ArC) and 144.70 (ArC); m/z (Electrospray) 447 (M⁺, 100%), 298 (18), 276
(22) and 144 (14).

The data were consistent with the literature.⁶⁴
3-(2-Hydroxyethyl)-1-tosyl-3H-indole165

\[
\text{\begin{tikzpicture}
\node at (0,0) [anchor=north east] (n1) {1};
\node at (1,0) [anchor=north east] (n2) {2};
\node at (2,0) [anchor=north east] (n3) {3};
\node at (2,-1) [anchor=north east] (n4) {4};
\node at (1,-1) [anchor=north east] (n5) {3a};
\node at (0,-2) [anchor=north east] (n6) {5};
\node at (1,-2) [anchor=north east] (n7) {6};
\node at (2,-2) [anchor=north east] (n8) {7};
\node at (2,-3) [anchor=north east] (n9) {7a};
\node at (1,-3) [anchor=north east] (n10) {Ts};
\draw (n1) -- (n2) -- (n3) -- (n4) -- (n5) -- (n6) -- (n7) -- (n8) -- (n9) -- (n10);
\end{tikzpicture}}
\]

TBAF (21.40 cm3, 21.4 mmol) was added to 3-[2-(t-butyldimethylsilanoxyl)ethyl]-1-tosyl-1H-indole (6.12 g, 14.3 mmol) in THF (50 cm3) and stirred for 24 h. The crude reaction mixture was extracted into EtOAc and washed with H\textsubscript{2}O (3 \times 50 cm3) and brine (50 cm3). The organic layers were dried over MgSO\textsubscript{4} and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (2:1) as eluent to yield 3-(2-hydroxyethyl)-1-tosyl-3H-indole as yellow crystals (3.34 g, 11.1 mmol, 78\%); mp 66-67 °C; (Found: MNH\textsubscript{+}, 333.1269. C\textsubscript{11}H\textsubscript{15}N\textsubscript{2}O\textsubscript{3}S requires 333.1267.); ν\textsubscript{max}(thin film)/\text{cm}^{-1} 3568, 1647, 1446, 1172, 860 and 570; δ\textnu (3 H, s, CH\textsubscript{3}), 2.92 (2 H, t, J 6.4, CH\textsubscript{2}), 3.87 (2 H, t, J 6.4, OCH\textsubscript{2}), 7.26-7.19 (4 H, m, ArH), 7.32 (1 H, s, 2-H), 7.43 (1 H, m, ArH), 7.75 (2 H, d, J 8.4, ArH) and 7.90 (1 H, d, J 8.4, ArH); δ\textgamma 21.54 (CH\textsubscript{3}), 28.42 (CH\textsubscript{2}), 61.84 (OCH\textsubscript{2}), 113.80 (7-C), 119.33 (3-C), 119.46 (6-C), 123.13 (4-c), 123.76 (5-c), 124.81 (2-C), 126.79 (2,6 TsH), 129.86 (3,5 TsH), 130.87 (7a-C), 135.30 (3a-C), 135.33 (1-TsC) and 144.86 (4-TsC); m/z(Electrospray) 155 (M+, 33\%), 130 (60), 91 (100), 77 (25), 65 (30), 44 (41) and 40 (11).

The data were consistent with the literature.165

3-[2-(t-Butyl-dimethylsilanyloxy)-ethyl]indole-1-carboxylic acid tert butyl ester

\[
\text{\begin{tikzpicture}
\node at (0,0) [anchor=north east] (n1) {1};
\node at (1,0) [anchor=north east] (n2) {2};
\node at (2,0) [anchor=north east] (n3) {3};
\node at (2,-1) [anchor=north east] (n4) {4a};
\node at (1,-1) [anchor=north east] (n5) {3a};
\node at (0,-2) [anchor=north east] (n6) {5};
\node at (1,-2) [anchor=north east] (n7) {6};
\node at (2,-2) [anchor=north east] (n8) {7};
\node at (2,-3) [anchor=north east] (n9) {7a};
\node at (1,-3) [anchor=north east] (n10) {N};
\node at (0,-4) [anchor=north east] (n11) {OTBDMS};
\draw (n1) -- (n2) -- (n3) -- (n4) -- (n5) -- (n6) -- (n7) -- (n8) -- (n9) -- (n10) -- (n11);
\end{tikzpicture}}
\]

3-[2-(t-Butyl-dimethylsilanyloxyethyl)-1H-indole (1.66 g, 6.05 mmol) was dissolved in dry THF (20 cm3). Triethyl amine (1.66 cm3, 12.1 mmol), DMAP (0.036 g, 0.3 mmol) and di-t-butyldicarbonate (1.44 g, 6.6 mmol) were added and stirred for 12 h. The crude reaction mixture was extracted into EtOAc and washed with H\textsubscript{2}O (3 × 50 cm3) and brine (50 cm3). The organic layer was dried over MgSO\textsubscript{4} and the solvent removed under reduced pressure. The
crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (4:1) as eluent to yield 3-[2-(t-butyldimethylsilanyloxy)-ethyl]indole-1-carboxylic acid t-butyl ester as a yellow oil (2.0 g, 5.4 mmol, 8%); (Found: MH+, 376.2304. C21H34N03Si requires 376.2302.); νmax (thin film)/cm⁻¹ 3050, 2979, 2855, 706 and 665; δH 0.01 (6 H, s, 2×SiMe), 0.86 (9 H, s, SiC-t-Bu), 1.62 (9 H, s, OC-t-Bu), 2.88 (2 H, t, J 6.8, CH₂), 3.86 (2 H, t, J 6.8, OCH₂), 7.19 (1 H, dd, J 7.8, 6.8, 5-H) 7.27 (1 H, dd, J 6.8, 6.0, 6-H), 7.41 (1 H, s, 2-H) 7.49 (1 H, d, J 7.8, 4-H) and 8.12 (1 H, d, J 6.0, 7-H); δc -5.29 (2 × Me), 21.06 (Si t-BuC), 26.15 (3 × Si t-Bu), 27.84 (3 × O t-Bu), 28.59 (CH₂), 62.89 (OCH₂), 83.21 (O t-BuC), 115.25 (7-C), 117.25 (3-C), 122.35 (5-C), 123.36 (2-C), 124.23 (6-C), 130.88 (4-C), 135.45 (3a-C), 149.80 (7a-C) and 171.08 (CO); m/z(Electrospray) 262 (M⁺, 22%), 218 (64), 216 (20), 144 (26), 130 (30), 75 (28), 73 (32), 57 (100) and 41 (54).

3-(2-Hydroxyethyl)-2-(phenylselanyl)-indole-1-carboxylic acid tert butyl ester

\[
\begin{align*}
\text{OH} & \quad \text{SePh} \\
\text{Boc} & \\
\end{align*}
\]

319

n-Butyllithium (0.66 cm³, 1.65 mmol) was added to 2,2,6,6-tetramethylpiperidine (0.28 cm³, 1.65 mmol) at -78 °C and stirred for 30 min in dry THF (20 cm³). 3-[2-(t-Butyldimethylsilanyloxy)-ethyl]indole-1-carboxylic acid tert butyl ester (0.56 g, 1.5 mmol) was added and stirred for a further 12 at rt. The crude reaction mixture was extracted into EtOAc and washed with H₂O (3 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was added to a solution of TBAF in (15 cm³, 15 mmol) in THF (20 cm³) and stirred for 24 h. The crude reaction was extracted into EtOAc and washed with H₂O (3 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (4:1) as eluent to yield 3-(2-hydroxy-ethyl)-2-phenylselanyl-indole-1-carboxylic acid t-butyl ester as yellow crystals (0.14 g, 0.34 mmol, 22%); mp 93-94 °C (Found: MH⁺, 418.0919. C21H34NO₃Se requires 418.0916.); νmax(thin film)/cm⁻¹ 3363, 3050, 2987, 1727, 1576, 1476, 1444, 1399, 1354, 1250, 1156, 1101, 1067 and 998; δH 2.17 (9 H, s, t-Bu), 3.04 (2 H, t, J 6.8,
CH₂), 3.72 (2 H, t, J 6.8, OCH₂), 7.16-7.14 (3 H, m, ArH), 7.27-7.24 (3 H, m, ArH), 7.36-7.28 (1 H, m, ArH) 7.59-7.57 (2 H, m, ArH) and 8.14 (1 H, d, J 8.0, 1.5, ArH); δc 28.00 (3 × t-Bu), 29.85 (CH₂), 62.47 (OCH₂), 84.58 (t-BuC), 115.48 (7-C), 119.18 (ArH), 121.55 (3-C), 122.77 (ArH), 126.07 (ArH), 128.74 (2-C), 128.87 (2×ArH), 129.16 (ArH), 129.43 (2 × ArH), 129.47 (ArC), 133.92 (3a-C), 138.09 (7a-C) and 149.88 (CO); m/z (Electrospray) 417 (M⁺, 28%), 415 (14), 363 (21), 361 (100), 359 (53) and 358 (21).

3-(2-Bromoethyl)-1H-indole

Phosphorous tribromide (1.2 cm³, 11.0 mmol) was added slowly at 0 °C to a solution of tryptophol (1.78 g, 11.0 mmol) in dry DCM (10 cm³) and stirred for 2 h. The crude reaction mixture was quenched with H₂O (5 cm³) and extracted into EtOAc and washed with H₂O (3 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (9:1) as eluent to yield 3-(2-bromoethyl)-1H-indole as yellow crystals (1.40 g, 6.2 mmol, 56%); mp 96-97 °C (lit. 166 97-98 °C); νmax (thin film)/cm⁻¹ 3412, 3053, 2919, 2480, 1620, 1455, 1264, 1008, 744 and 564; δH 3.33 (2 H, t, J 7.4, CH₂), 3.63 (2 H, t, J 7.4, BrCH₂), 7.05 (1 H, s, 2-ArH), 7.13 (1 H, ddd, J 7.0, 6.6, 1.3, ArH), 7.20 (1 H, ddd, J 7.9, 7.0, 1.5, ArH), 7.35 (1 H, dd, J 6.6, 1.5, ArH) and 7.58 (1 H, dd, J 7.9, 1.3, ArH); δc 29.32 (CH₂), 32.90 (BrCH₂), 111.29 (ArH), 113.47 (ArC), 118.46 (ArH), 119.57 (ArH), 122.21 (ArH), 122.25 (ArH), 126.93 (ArC) and 136.14 (ArC).

The data were consistent to the literature.
Potassium t-butoxide (0.14 g, 1.28 mmol) was added to a solution of 3H-quinazolin-4-one (2.24 g, 15.4 mmol) in DMF (20 cm³) and stirred for 1 h. 3-(2-Bromoethyl)-1H-indole (4.13 g, 18.4 mmol) was added and the reaction stirred for a further 12 h. The crude reaction mixture was extracted into EtOAc and washed with H₂O (5 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (2:1) as eluent to yield 3-[2-(1H-indol-3-yl)ethyl]-3H-quinazolin-4-one as colourless crystals (1.72 g, 5.9 mmol, 39%); (Found: MH⁺, 290.1291. C₁₁H₁₆N₂O requires 290.1288); mp 170-171 °C (lit. 173-174 °C); νmax(thin film)/cm⁻¹ 3441, 2099, 1650, 1643, 1530, 1474, 1376, 1021, 996, 642 and 631; δH 3.28 (2 H, t, J 7.0, CH₂), 4.31 (2 H, t, J 7.0, NCH₂), 6.86 (1 H, d, J 2.0, 2'-H), 7.14 (1 H, ddd, J 8.0, 6.8, 0.8, ArH), 7.21 (1 H, ddd, J 8.0, 6.8, 0.8, ArH), 7.37-7.35 (1 H, m, ArH), 7.54-7.50 (2 H, m, ArH), 7.67-7.63 (2 H, m, ArH), 7.76-7.772 (1 H, m, ArH) and 8.38-8.35 (1 H, m, ArH); δC 24.96 (CH₂), 47.55 (NCH₂), 111.37 (4a-ArC), 111.52 (ArH), 118.42 (ArH), 119.81 (ArH), 122.14 (3'-ArC), 122.44 (ArH), 122.77 (2'-a-ArH), 126.67 (ArH), 126.83 (3'-a-ArC), 127.14 (ArH), 127.41 (ArH), 134.16 (ArH), 136.47 (7'-a-ArC), 146.74 (ArH), 148.19 (8a-ArC) and 161.14 (4-ArC); m/z(Electrospray) 143 (M⁺, 100%), 129 (58), 115 (13), 102 (14) and 77 (27). The data were consistent to the literature.¹₀²

¹₀² The data were consistent to the literature.
3-[2-(2-Bromoindol-3-yl)ethyl]-3H-quinazolin-4-one

\[\text{N-Bromosuccinimide (0.12 g, 0.65 mmol) was added to a solution of 3-[2-(1H-indol-3-yl)ethyl]-3H-quinazolin-4-one (0.19 g, 0.65 mmol) at 0°C in DCM and stirred for 30 min. The crude reaction mixture was extracted into EtOAc and washed with H}_2\text{O (5 × 50 cm}^3\text{)} \text{ and brine (50 cm}^3\text{). The organic layer was dried over MgSO}_4 \text{ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (2:1) as eluent to yield 3-[2-(2-bromoindol-3-yl)ethyl]-3H-quinazolin-4-one as yellow crystals (0.09 g, 0.24 mmol, 38%); mp 198-200 °C; (Found: MH\(^+\), 368.0395. C\textsubscript{18}H\textsubscript{17}BrN\textsubscript{3}O requires 368.0393.); \nu\text{max (thin film)/cm}^{-1} \text{ 3407, 2358, 1651, 1611, 1471, 1446, 1376, 1157 and 742; } \delta_\text{H} 3.23 (2 \text{ H, t, } J 6.4, \text{ CH}_2), 4.27 (2 \text{ H, t, } J 6.4, \text{ NCH}_2), 7.06 (1 \text{ H, ddd, } J 8.0, 6.8, 0.8, \text{ ArH}), 7.15-7.10 (1 \text{ H, m, ArH}), 7.19 (1 \text{ H, d, } J 8.8, \text{ ArH}), 7.39 (1 \text{ H, s, } 2-\text{H}), 7.53-7.51 (2 \text{ H, m, ArH}), 7.64 (1 \text{ H, dd, } J 9.2, 0.8, \text{ ArH}), 7.73 (1 \text{ H, ddd, } J 8.4, 6.8, 1.2, \text{ ArH}), 8.37 (1 \text{ H, dd, } J 8.0, 1.6, 5-\text{H}) \text{ and } 8.98 (1 \text{ H, brs, NH}); \delta_\text{C} 24.13 (\text{CH}_2), 46.82 (\text{NCH}_2), 109.69 (\text{ArC}), 110.83 (\text{ArC}), 110.85 (\text{ArH}), 117.58 (\text{ArH}), 120.43 (\text{ArH}), 122.10 (\text{ArC}), 122.69 (\text{ArH}), 126.65 (\text{ArH}), 127.14 (\text{ArC}), 127.18 (\text{ArH}), 127.24 (\text{ArH}), 134.19 (\text{ArH}), 136.21 (\text{ArC}), 146.56 (\text{ArH}), 147.95 (\text{ArC}) \text{ and } 161.36 (\text{4-ArC}); \text{m/z(Electrospray) 369 (M}^+\text{, 5%), 367 (5), 288 (21), 221 (100), 208 (36), 147 (22), 129 (74), 115 (28), 102 (54), 90 (20) \text{ and } 77 (61). \text{The data were consistent to the literature.}\text{102}

Radical cyclisation of 3-[2-(2-Bromoindol-3-yl)ethyl]-3H-quinazolin-4-one

\[\text{Method A - Bu}_3\text{SnH (slow) and Et}_3\text{B}

3-[2-(2-Bromoindol-3-yl)ethyl]-3H-quinazolin-4-one (0.094 g, 0.26 mmol) was added to toluene (20 cm3) which had been degassed with nitrogen for 30 min. Triethylborane (3 cm3,}
3.0 mmol) was added and Bu$_3$SnH (0.18 g, 0.64 cm3) in toluene (10 cm3) was added over 12 h. At 3 h intervals the solution was purged with nitrogen for 30 min and triethylborane (3 cm3, 3.0 mmol) was added. The reaction mixture was washed through a sinter containing silica absorbent with light petroleum (100 cm3). The sinter was flushed with EtOAc (200 cm3). The filtrate was dried over MgSO$_4$ and the solvent removed under reduced pressure. The crude product was purified initially by a column chromatography using silica absorbent with light petroleum/EtOAc (4:1) as eluent yielding:

145 Rutacearpine as colourless crystals (11 mg, 0.038 mmol, 15%); (Found: MH$^+$, 288.1131. C$_{18}$H$_{14}$N$_3$O requires 288.1132.); ν_{max}(thin film)/cm$^{-1}$ 3338, 2923, 2359, 1851, 1753, 1659, 1592, 1468, 1326, 1228, 1140, 796, 726 and 667; δ_{H} 3.24 (2 H, t, J 8.0, CH$_2$), 4.59 (2 H, t, J 8.0, NCH$_2$), 7.19 (1 H, d, J 8.0, ArH), 7.35 (1 H, d, J 8.0, ArH), 7.47-7.41 (2 H, m, 2-H and ArH), 7.67-7.63 (2 H, m, 4-H and ArH), 7.73 (1 H, t, J 8.0, 3-H), 8.38 (1 H, d, J 8.0, 1-H) and 9.10 (1 H, brs, NH); δ_{C} 20.72 (CH$_2$), 39.22 (NCH$_2$), 112.05 (2-C), 118.29 (ArC), 120.12 (ArH), 120.66 (ArH), 125.61 (ArH), 126.20 (ArH), 126.69 (4-C), 127.23 (7-C), 128.22 (ArC), 129.04 (ArC), 134.32 (3-C), 138.22 (ArC), 144.82 (ArC), 147.53 (ArC), 159.72 (ArC) and 169.26 (ArC); m/z(Electrospray) 286 (M$^+$, 100%), 155 (27), 140 (24), 128 (38), 115 (25), 102 (37), 91 (28), 77 (54), 63 (37) and 51 (34).

The data were consistent to the literature.102

322 3-[2-(1H-Indol-3-yl)ethyl]-3H-quinazolin-4-one as colourless crystals (0.42 g, 0.15 mmol, 57%).

The data were consistent to the previous synthesis and literature.102

Method B – Photolysis with hexamethylditin

The reaction between 3-[2-(2-bromoindol-3-yl)ethyl]-3H-quinazolin-4-one (0.52 g, 1.41 mmol) and (Me$_3$Sn)$_2$ (1.39 g, 4.25 mmol) in t-butylbenzene (20 cm3) was purged for 30 min with nitrogen, refluxed and irradiated with a 300 W sunlamp for 6 h. The reaction mixture was washed through a sinter containing silica absorbent with petrol (100 cm3). The sinter was flushed with EtOAc (200 cm3). The filtrate was dried over MgSO$_4$ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica absorbent with light petroleum/EtOAc (4:1) yielding the sole product rutacearpine 145 (0.22 g, 0.77 mmol, 55%).

The data were consistent with the previous synthesis and literature.102

188
6.4 Experimental for Chapter 4

2-(4-Oxo-4H-quinazolin-3-yl)benzoic acid methyl ester

Isatoic anhydride (7.5 g, 45.9 mmol) and anthranilic acid (6.9 g, 50.4 mmol) were heated under reflux in water for 12 h. The reaction mixture was cooled over ice water. The precipitate was collected by filtration, washed with EtOAc and dried. The yellow precipitate was refluxed with triethyl orthoformate (17 cm³, 108 mmol) in MeOH (50 cm³) for 4 h. The reaction mixture was cooled and the precipitate collected by filtration and dried yielding 2-(4-oxo-4H-quinazolin-3-yl)benzoic acid methyl ester as colourless crystals (4.85 g, 18.2 mmol, 40%); mp 281-283 °C; (Found: MH⁺, 267.0764. C₁₃H₁₁N₂O₃ requires 267.0764); νmax (thin film)/cm⁻¹ 3405, 1873, 1785, 1762, 1690, 1657, 1639, 1629, 789 and 669; δH (CDCl₃)SO 7.62-7.57 (2 H, m, ArH), 7.69-7.66 (1 H, m, ArH), 7.83-7.74 (2 H, m, ArH), 7.91-7.87 (1 H, m, ArH), 8.09 (1 H, d, J 9.2, ArH), 8.17 (1 H, d, J 9.2, ArH) and 8.33 (1 H, s, 2-H); δC (CDCl₃)SO 121.85 (4a-C), 126.33 (ArH), 127.25 (ArH), 127.28 (ArH), 129.13 (ArC), 129.56 (ArH), 129.76 (ArH), 131.08 (ArH), 133.41 (ArH), 134.64 (ArH), 137.12 (ArC), 147.14 (2-C), 147.93 (8a-C), 160.29 (4-C) and 165.86 (CO₂H); m/z (Electrospray) 266 (M⁺, 30%), 221 (100), 145 (22), 119 (24), 102 (29), 90 (37), 76 (35) and 65 (30).

The data were consistent to the literature.

2-(4-Oxo-4H-quinazolin-3-yl)selenobenzoic acid Se-methyl ester

Tributyl phosphine (2.5 cm³, 10.4 mmol) was slowly added to diphenyl diselanide (2.47 g, 7.9 mmol) in dry DCM and left to stir for 15 min. 2-(4-Oxo-4H-quinazolin-3-yl)benzoic acid methyl ester (1.40 g, 5.2 mmol) was added and stirred for 12 h until no solid was visible. The crude reaction mixture was extracted into DCM and washed with H₂O (3 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced
pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (4:1) the yellow solid was recrystallised from hot EtOH yielding 2-(4-oxo-4H-quinazolin-3-yl)selenobenzoic acid Se-methyl ester as yellow crystals (1.55 g, 3.8 mmol, 73%); mp 234-236 °C; (Found: MH+, 407.0289. C21H15N2O2Se requires 407.0293.); νmax (thin film)/cm\(^{-1}\) 3165, 2831, 2063, 1798, 1519, 1367, 1118, 960 and 915; δ\(_{\text{H}}\) 7.36-7.30 (3 H, m, ArH), 7.42 (1 H, dd, J 9.2, 1.6, ArH), 7.55-7.45 (3 H, m, ArH), 7.70-7.66 (1 H, m, ArH), 7.81-7.72 (3 H, m, ArH), 8.02 (1 H, s, 2-H), 8.14 (1 H, dd, J 9.2, 1.6, ArH) and 8.34-8.32 (1 H, m, ArH); δ\(_{\text{C}}\) 122.34 (ArC), 125.91 (ArC), 127.14 (5-C), 127.58 (6-C), 127.71 (ArH), 129.25 (ArH), 129.44 (2 × ArH), 129.74 (ArH), 129.85 (ArH), 130.11 (ArH), 133.64 (ArC), 133.72 (ArH), 134.65 (ArH), 136.02 (2 × ArH), 136.91 (ArC), 145.62 (2-C), 147.99 (ArC), 160.71 (4-C) and 192.72 (CO); m/z (Electrospray) 407 (M⁺, 100%), 251 (39), 235 (55) and 223 (46).

Radical cyclisation of 2-(4-oxo-4H-quinazolin-3-yl)selenobenzoic acid Se-methyl ester

![Image](image.png)

Method A - Photolysis with reflux (benzene)

2-(4-Oxo-4H-quinazolin-3-yl)selenobenzoic acid Se-methyl ester (240 mg, 0.59 mmol) was refluxed in benzene (20 cm³) for 10 h and irradiated with a 300 W sunlamp. The solvent was removed under vacuum and the crude reaction product was purified by column chromatography using silica gel as absorbent and light petroleum/EtOAc (2:1) as eluent yielding tryptanthrin 146 as yellow crystals (20 mg, 0.07 mmol, 13%); mp 213-214 °C (lit.\(^{107}\) 215-217 °C); (Found: MH⁺, 249.0659. C₁₃H₉N₂O₂ requires 249.0660.); δ\(_{\text{H}}\) 7.43 (1 H, t, J 8.0, ArH), 7.68 (1 H, t, J 8.0, ArH), 7.79 (1 H, t, J 8.0, ArH), 7.86 (1 H, t, J 8.0, ArH), 7.92 (1 H, d, J 8.0, ArH), 8.04 (1 H, d, J 8.0, ArH), 8.44 (1 H, d, J 8.0, ArH) and 8.64 (1 H, d, J 8.0, ArH); δ\(_{\text{C}}\) 117.98 (ArH), 121.96 (ArC), 123.76 (ArC), 125.40 (ArH), 127.20 (ArH), 127.56 (ArH), 130.24 (ArH), 130.74 (ArH), 135.13 (ArH), 138.27 (ArH), 146.36 (ArC), 146.66 (ArC), 158.11 (ArC) and 171.13 (2 × ArH); m/z (Electrospray) 248 (M⁺, 51%), 220 (22), 130 (28), 102 (54), 90 (100), 76 (81), 63 (55) and 50 (74).

The data were consistent to the literature.\(^{107}\)
Method B – Photolysis only

2-(4-Oxo-4H-quinazolin-3-yl)selenobenzoic acid Se-methyl ester (240 mg, 0.59 mmol) in benzene (20 cm³) was irradiated with a 300 W sunlamp for 30 min. The solvent was removed under reduced pressure and the crude reaction product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (2:1) as eluent yielding tryptanthrin 146 (23 mg, 0.081 mmol, 15%).

The data were consistent with the previous synthesis and literature. 107

Method C- Photolysis with hexamethylditin

The reaction mixture of 2-(4-oxo-4H-quinazolin-3-yl)selenobenzoic acid Se-methyl ester (290 mg, 0.72 mmol) and (Me₃Sn)₂ (700 mg, 2.15 mmol) in tert-butylbenzene (20 cm³) was refluxed and irradiated with a 300 W sunlamp for 4 h. Dilute hydrochloric acid was added to the cooled reaction mixture to extract the protonated quinazolone products into the aqueous layer. The aqueous layer was washed with light petroleum (3 × 50 cm³) to remove tin residues. The aqueous layer was basified with a solution of sodium hydroxide to pH 14. The basic solution was extracted with DCM (3 × 50 cm³). The combined organic layers were dried over MgSO₄ and the solvent removed under reduced pressure and purified by column chromatography using silica gel as absorbent and light petroleum/EtOAc (2:1) yielding tryptanthrin 146 (5 mg, 0.02 mmol, 3%).

The data were consistent with the previous synthesis and literature. 107

Tryptanthrin 107

Non-radical synthesis

Isatin (0.88 g, 6.0 mmol), isatoic anhydride (0.97 g, 6.0 mmol) and triethyl amine (0.97 cm³, 7.0 mmol) were refluxed in toluene for 12 h under Dean Stark conditions. The crude reaction mixture was extracted into DCM and washed with H₂O (3 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (2:1) as eluent yielding tryptanthrin as yellow crystals (1.32 g, 5.3 mmol,
88%; mp 213-214 °C (lit. 215-217 °C); (Found: MH+, 249.0659. C₁₃H₉N₂O₂ requires 249.0660.); δH 7.43 (1 H, t, J 8.0, ArH), 7.68 (1 H, t, J 8.0, ArH), 7.79 (1 H, t, J 8.0, ArH), 7.86 (1 H, t, J 8.0, ArH), 7.92 (1 H, d, J 8.0, ArH), 8.04 (1 H, d, J 8.0, ArH), 8.44 (1 H, d, J 8.0, ArH) and 8.64 (1 H, d, J 8.0, ArH); δc 117.98 (ArH), 121.96 (ArC), 123.76 (ArC), 125.40 (ArH), 127.20 (ArH), 127.56 (ArH), 130.24 (ArH), 130.74 (ArH), 135.13 (ArH), 138.27 (ArH), 146.36 (ArC), 146.66 (ArC), 158.11 (ArC) and 171.13 (2 × ArC); m/z(EI) 248 (M+, 51%), 220 (22), 130 (28), 102 (54), 90 (100), 76 (81), 63 (55) and 50 (74).

Data were consistent with the previous synthesis and literature.¹⁰⁷

2-[(4-Oxo-4H-quinazolin-3-yl)methyl]benzoic methyl ester

N-Bromosuccinimide (19.0 g, 107.1 mmol), methyl o-toluate (7.5 g, 50 mmol) and AIBN (1.16 g, 7.1 mmol) were heated under reflux in cyclohexane in the dark for 5 h. The reaction mixture was cooled to 0 °C and filtered. The filtrate was extracted into DCM, washed with H₂O (3 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and evaporated to dryness under reduced pressure. The crude residue was added to a solution of 3H-quinazolin-4-one (7.3 g, 50 mmol) and potassium t-butoxide (7.3 g, 65 mmol) in DMF (50 cm³) for 40 min. The reaction mixture was stirred for 12 h, extracted into DCM, washed with H₂O (5 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (4:1) as eluent yielding 2-[(4-oxo-4H-quinazolin-3-yl)methyl]benzoic methyl ester as a colourless oil (4.98 g, 16.6 mmol, 34%); (Found: MH+, 295.1077. C₁₃H₁₃N₂O₃ requires 295.1077.); νmax(thin film)/cm⁻¹ 3541, 3417, 1715, 1681, 1563, 1367, 1322, 1079, 968 and 774; δH 3.88 (3 H, s, OMe), 5.62 (2 H, s, CH₂), 7.31-7.22 (2 H, m, ArH), 7.44-7.41 (2 H, m, ArH) 7.70-7.69 (2 H, m, ArH), 7.97 (1 H, dd, J 7.8, 1.4, ArH) and 8.28-8.23 (2 H, m, ArH); δc 47.86 (CH₂), 52.41 (Me), 122.20 (4a-C), 126.91 (ArH), 127.33 (ArH), 127.54 (ArH), 128.03 (ArH), 128.59 (ArC), 129.06 (ArH), 131.31 (ArH), 132.96 (ArH), 134.36 (ArH), 137.36 (ArC), 147.14 (ArH), 148.12 (8a-C), 192
161.36 (4-C) and 167.37 (CO$_2$Me); m/z (Electrospray) 421 (M$^+$, 4%), 262 (53), 132 (80), 118 (30), 102 (60), 91 (100), 77 (58), 63 (33) and 50 (23).

2-[(4-Oxo-4H-quinazolin-3-yl)methyl]-benzoic acid

2-[(4-Oxo-4H-quinazolin-3-yl)methyl]benzoic methyl ester (1.93 g, 6.14 mmol) and LiOH (1 M, 200 cm3) were stirred in EtOH/H$_2$O (100 cm3, 10:1) for 18 h. The reaction mixture was acidified with HCl and extracted with EtOAc (3 x 50 cm3). The organic layers were combined and washed with H$_2$O (5 x 50 cm3) and brine (50 cm3). The organic layer was dried over MgSO$_4$ and the solvent removed under reduced pressure yielding 2-[(4-oxo-4H-quinazolin-3-yl)methyl]benzoic methyl acid as a colourless oil (1.26 g, 4.16 mmol, 68%); (Found: MH$^+$, 281.0918. C$_{16}$H$_{13}$N$_2$O$_3$ requires 281.0921.); ν_{max} (thin film)/cm$^{-1}$ 3160, 2825, 2059, 1801, 1511, 1380, 1111, 930 and 904; δH 5.58 (2 H, s, CH$_2$), 6.96 (1 H, d, J 8.0, ArH), 7.41-7.39 (1 H, m, ArH), 7.58 (1 H, d, J 8.0, ArH), 7.50-7.49 (1 H, m, ArH), 7.50-7.49 (1 H, m, ArH), 7.41-7.39 (1 H, m, ArH), 7.50-7.49 (1 H, m, ArH). 7.58 (1 H, d, J 8.0, 6.8, 1.0, ArH), 7.74 (1 H, dd, J, 8.2, 1.0, ArH), 7.88 (1 H, d, J 8.2, 6.8, 1.2, ArH), 7.97 (1 H, dd, J 8.0, 1.2, ArH), 8.16 (1 H, d, J 8.0 ArH) and 8.51 (1 H, s, ArH); m/z (Electrospray) 262 (M$^+$, 31%), 146 (35), 132 (86), 118 (38), 104 (47), 90 (58), 77 (100), 63 (28), 51 (32) and 43 (53).

The acid was converted to the acyl selenide without further characterisation

2-[(4-Oxo-4H-quinazolin-3-yl)methyl]seleno benzoic acid Se-methyl ester

Tributyl phosphine (0.51 cm3, 1.3 mmol) was slowly added to diphenyl diselenide (480 mg, 1.5 mmol) in dry DCM and left to stir for 15 min. 2-[(4-Oxo-4H-quinazolin-3-yl)methyl]benzoic acid (310 mg, 1.0 mmol) was added and stirred for 12 h until no precipitate was visible. The crude reaction mixture was extracted into DCM and washed with H$_2$O (3 x 50 cm3) and brine (50 cm3). The organic layer was dried over MgSO$_4$ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using
radical cyclisation of 2-[(4-oxo-4H-quinazolin-3-yl)methyl]seleno benzoic acid Se-methyl ester

The reaction mixture between 2-[(4-oxo-4H-quinazolin-3-yl)methyl]seleno benzoic acid Se-methyl ester (0.044 g, 0.1 mmol) and (Me_3Sn)_2 (0.099 g, 0.3 mmol) in benzene (20 cm³) were heated under reflux and irradiated with a sunlamp lamp for 3 h. The benzene was removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (4:1) as eluent and recrystallised from CDCl₃ yielding 11-hydroxy-11H-isooquinolino[3,2-b]quinazolin-6,13-dione 345 as colourless crystals (11 mg, 0.04 mmol, 39%); mp 164-165 °C; (Found: MH⁺, 279.0768. C₁₆H₁₁N₂O₃ requires 279.0764.); ν_(max)(thin film)/cm⁻¹ 3421, 2919, 2360, 1699, 1683, 1653, 1559, 1461, 1260, 1100, 936, 910, 728 and 667; δ_(H) 5.29 (1 H, d, J 4.6, OH), 7.21 (1 H, d, J 4.6, CH), 7.69-7.65 (2 H, m, ArH), 7.80 (1 H, d, J 8.0, ArH), 7.93-7.84 (2 H, m, ArH), 8.10 (1 H, d, J 8.0, ArH), 8.32 (1 H, dd, J 7.6, 1.2, ArH) and 8.39 (1 H, dd, J 8.0, 1.2, ArH); δ_(C) 75.48 (CH), 121.89 (ArC), 126.70 (ArH), 128.03 (ArH), 128.71 (ArH), 129.20 (ArC), 129.57 (ArH), 130.01 (ArH), 130.35 (ArH), 135.58 (ArH), 135.68 (ArH), 137.01 (ArC), 142.61 (ArC).
146.74 (ArC), 162.74 (ArC) and 176.58 (ArC); m/z (Electrospray) 278 (M+, 50%), 262 (43), 249 (40), 221 (26), 135 (38), 119 (36), 105 (100), 91 (45), 84 (60), 77 (68) and 51 (69).

The structure was confirmed by X-ray crystallography (see appendix).

3-(2-Hydroxypropyl)-3H-quinazolin-4-one

![Chemical Structure](image)

368

Anthranilic acid (11.3 g, 82.0 mmol) and triethyl orthoformate (273 cm³, 1650 mmol) were refluxed for 24 h. The excess triethyl orthoformate was removed under vacuum. 3-Aminopropan-1-ol (50 cm³) was added to the slurry and the reaction mixture stirred for 48 h. The excess 3-aminopropan-1-ol was removed under vacuum yielding 3-(2-hydroxypropyl)-3H-quinazolin-4-one as brown crystals (6.53 g, 32.0 mmol, 40%); mp 148-49 °C (lit. 167-150-152 °C); \(\nu_{\text{max}} \) (thin film)/cm⁻¹ 3400, 1652, 1475, 1379, 1325, 1160, 1060 and 775; \(\delta_\text{H} \) 2.76-2.00 (2 H, m, CH₂), 3.65 (2 H, t, J 6.2, NCH₂), 4.21 (2 H, t, J 6.2, OCH₂), 7.52 (1 H, ddd, J 8.0, 6.8, 1.2, 6-H), 7.72 (1 H, dd, J 8.2, 1.2, 8-H), 7.77 (1 H, ddd, J 8.2, 6.8, 1.4, 7-H), 8.14 (1 H, s, 2-H) and 8.30 (1 H, dd, J 8.0, 1.4, 5-H); \(\delta_\text{C} \) 31.85 (CH₂), 43.51 (CH₂), 58.06 (NCH₂), 121.78 (4a-C), 126.67 (5-C), 127.35 (8-C), 127.46 (6-C), 134.44 (7-C), 146.83 (2-C), 148.05 (8a-C) and 161.81 (4-C).

The data were consistent to the literature.

3-(4-Oxo-4H-quinazolin-3-yl)propionaldehyde

![Chemical Structure](image)

367

3-(2-Hydroxypropyl)-3H-quinazolin-4-one (0.40 g, 2.0 mmol) and 2-iodoxy benzoic acid (1.68 g, 6.0 mmol) were refluxed in EtOAc (50 cm³) for 4 h. The reaction mixture was filtered and the filtrate was washed with brine (20 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure yielding 3-(4-oxo-4H-quinazolin-3-
yl)propionaldehyde as a yellow oil (370 mg, 1.86 mmol, 93%); ν_{max}(thin film)/cm$^{-1}$ 3341, 2837, 2248, 1668, 1564, 1472, 1384, 1263, 1066, 962 and 880; δ_H 3.11 (2 H, m, CH$_2$), 4.26 (2 H, t, J 6.0 NCH$_2$), 7.48-7.46 (1 H, m, ArH), 7.72-7.69 (2 H, m, ArH), 8.23-8.22 (1 H, m, 5-H), 8.29 (1 H, s, 2-H) and 9.78 (1 H, s, OCH); δ_c 42.15 (CH$_2$), 43.44 (NCH$_2$), 122.59 (4a-C), 123.80 (ArH), 127.27 (ArH), 127.32 (ArH), 134.35 (ArH), 147.38 (ArH), 147.79 (8a-C), 161.22 (4-C) and 199.20 (CO). Compound was unstable in air and no further characterisation could be carried out.

3-(4-Bromobut-3-enyl)-3H-quinazolin-4-one

![Diagram](image-url)

Bromomethylenetriphenylphosphorane (1.97 g, 4.5 mmol) was stirred with potassium tert-butoxide (500 mg, 4.5 mmol) at -78 °C in THF for 15 min. 3-(4-Oxo-4H-quinazolin-3-yl)propionaldehyde (0.83 g, 4.10 mmol) was added and stirred for 12 h at rt. The crude reaction mixture was extracted into DCM and washed with H$_2$O (3 x 50 cm3) and brine (50 cm3). The organic layer was dried over MgSO$_4$ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (2:1) yielding 3-(4-bromobut-3-enyl)-3H-quinazolin-4-one as a yellow oil (170 mg, 0.61 mmol, 15%); (Found: M$^+$. 279.0130. C$_{12}$H$_{12}$BrN$_2$O requires 279.0128.); ν_{max}(thin film)/cm$^{-1}$ 3508, 3076, 1668, 1608, 1472, 1373, 1261, 1152, 1048, 878, 775 and 700; δ_H 2.76-2.56 (2 H, m, CH$_2$), 4.12 (2 H, t, J 8.0, NCH$_2$), 6.22-6.13 (1 H, d, J 9.2, BrCH), 7.53-7.48 (1 H, m, 6-H), 7.78-7.70 (2 H, m, 7,8-H), 8.08 (1 H, s, 2-H) and 8.29-8.20 (1 H, m, 5-H); δ_c 29.41 (CH$_2$), 45.01 (NCH$_2$), 111.97 (BrCH), 121.94 (4a-C), 126.61 (5-C), 127.35 (ArH), 127.38 (6-H), 129.65 (CH), 134.36 (ArH), 146.49 (2-C), 147.81 (8a-C) and 160.95 (4-C); m/z(Electrospray) 279 (M$^+$, 13%), 277 (13), 199 (62), 159 (28), 145 (75), 129 (60), 102 (47), 76 (48), 50 (50) and 40 (100).
2-Bromo-5-chloropent-1-ene

HBr (33% in AcOH) (30.0 cm³, 160 mmol) was added dropwise using a syringe pump, over 1 h at 0 °C to a neat solution of 5-chloro-1-pentyne (14.0 cm³, 133 mmol). The reaction mixture was stirred at rt for 24 h. DCM (100 cm³) and water (100 cm³) were added and the reaction mixture basified with sodium bicarbonate (Na₂CO₃) to pH 8. The organic phase was washed with dilute Na₂CO₃ solution (50 cm³) and water (3 x 50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was distilled under reduced pressure and temperature yielding 2-bromo-5-chloropent-1-ene as a yellow oil (16.0 g, 87.3 mmol, 66%); v_max (thin film)/cm⁻¹ 3416, 2925, 1436, 1179, 1121, 896, 749 and 694; δ_H 2.07-2.00 (2 H, m, 4-H), 2.61 (2 H, t, J 7.8, 3-H), 3.57 (2 H, t, J 6.3, 5-H), 5.31 (1 H, d, J 1.7, Hₐ) and 5.66 (1 H, dt, J 1.7, 1.1, Hₐ); δ_C 30.35 (4-C), 38.31 (3-C), 43.34 (5-C), 118.08 (1-C) and 132.46 (2-C).

The data were consistent to the literature.

2-Bromo-5-iodopent-1-ene

Sodium iodide (107.0 g, 714 mmol) and 2-bromo-5-chloropent-1-ene (16.0 g, 87 mmol) were refluxed in dry acetone (300 cm³) for 20 h. The reaction mixture was extracted into DCM (100 cm³) and washed with water (3 x 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure yielding 2-bromo-5-iodopent-1-ene as a yellow oil (17.3 g, 62.8 mmol, 72%); (Found: M⁺, 273.8849. C₃H₅BrI requires 273.8848.; v_max (thin film)/cm⁻¹ 3413, 2920, 1456, 1230, 1125, 896, 888, 845, 749 and 684; δ_H 2.09-2.05 (2 H, m, 4-H), 2.58-2.54 (2 H, m, 3-H), 3.22-3.18 (2 H, m, 5-H), 5.47 (1 H, d, J 1.7, Hₐ) and 5.68 (1 H, dt, J 1.7, 1.1, Hₐ); δ_C 5.37 (5-C), 31.06 (4-C), 41.06 (3-C), 118.34 (1-C) and 135.76 (2-C); m/z (EI) 276 (M⁺, 20%), 374 (21), 148 (43), 126 (20), 67 (100), 64 (21) and 41 (65).

The data were consistent to the literature.
3-(4-Bromopent-4-enyl)-3H-quinazolin-4-one

Potassium t-butoxide (5.40 g, 48.30 mmol) was added to a solution of 3H-quinazolin-4-one (48.3 g, 7.05 mmol) in DMF (100 cm³) and stirred for 1 h. 2-Bromo-5-iodopent-1-ene (17.26 g, 62.80 mmol) was added and stirred for a further 12 h. The crude reaction mixture was extracted into EtOAc and washed with H₂O (5 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (3:1) as eluent to yield 3-(4-bromopent-4-enyl)-3H-quinazoline-4-one as colourless crystals (6.65 g, 22.7 mmol, 47%); mp 157-158 °C; (Found: MH⁺, 293.0285. C₁₃H₁₄N₂BrO requires 293.0284.; νmax (thin film)/cm⁻¹: 3498, 2945, 1673, 1608, 1562, 1471, 1372, 1321, 1291, 1180, 1118 and 883; δH 2.19-2.12 (2 H, m, CH₂), 2.56-2.48 (2 H, m, BrCCH₂), 4.09-4.00 (2 H, m, NCH₂), 5.49 (1 H, d, J 1.7, Ha), 5.69-5.68 (1 H, dt, J 1.7, 1.1, H₄), 7.54-7.49 (1 H, m, 6-H), 7.79-7.70 (2 H, m, 7 and 8-H), 8.04 (1-H, s, 2-H) and 8.32-8.30 (1 H, m, 5-H); δc 27.65 (CH₂), 38.21 (BrCCH₂), 46.24 (NCH₂), 118.09 (CH₆H₆), 122.07 (4a-C), 126.67 (5-C), 127.38 (6-C), 127.47 (ArH), 132.52 (8a-C), 134.29 (ArH), 146.43 (2-C), 148.06 (BrC) and 161.10 (4-C); m/z (Electrospray) 295 (M⁺, 11%), 293 (10), 213 (100), 147 (32), 129 (40), 102 (33), 77 (36), 67 (72) and 53 (35).

3-(Pent-4-ynyl)-3H-quinazolin-4-one

Potassium t-butoxide (3.17 g, 33.3 mmol) was added to a solution of 3H-quinazolin-4-one (4.50 g, 31.0 mmol) in DMF (100 cm³) and the reaction mixture stirred for 1 h at 60 °C. 5-Chloropent-1-ylene (3.40 cm³, 32.25 mmol) and sodium iodide (4.7 g, 30.60 mmol) were added and stirred for 20 h at rt. The crude reaction mixture was extracted into EtOAc and washed with H₂O (5 × 100 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column
chromatography using silica gel as absorbent with light petroleum/EtOAc (2:1) as eluent to yield 3-(pent-4-ynyl)-3H-quinazolin-4-one as colourless crystals (0.64 g, 3.00 mmol, 10%); mp 127-128 °C; (Found: MH+, 213.1023. C_{13}H_{13}N_{2}O requires 213.1022.); \(\nu_{	ext{max}} \) (thin film)/cm\(^{-1} \) 2963, 2923, 1617, 1614, 1472, 1367, 1324, 1156, 775 and 634; \(\delta_{	ext{H}} \) 2.08-2.01 (2 H, m, \(\text{CH}_2 \)), 2.16 (1 H, s, CH), 2.32-2.27 (2-H, m, c-CH\(_2\)), 4.14 (2 H, t, \(\text{J}_{6.8, \text{NCH}_2} \)), 7.45 (1 H, ddd, \(\text{J}_{8.0, \text{J}_8.0, 1.2, 6-H} \)), 7.64 (1 H, dd, \(\text{J}_8.0, 1.2, 8-H \)), 7.70 (1 H, ddd, \(\text{J}_8.0, 7.0, 1.4, 7-H \)), 8.04 (1 H, s, 2-C) and 8.24 (1 H, dd, \(\text{J}_8.0, 1.4, 5-H \)); \(\delta_{	ext{C}} \) 15.60 (b-CH\(_2\)), 27.19 (a-CH\(_2\)), 45.87 (NCH\(_2\)), 70.19 (CH), 82.32 (C), 122.14 (4a-C), 126.65 (5-C), 127.34 (6-C), 127.50 (8-C), 134.28 (7-C), 146.70 (2-C), 148.15 (8a-C) and 161.18 (4-C); m/z (Electrospray) 169 (M\(^+\), 36%), 159 (100), 146 (35), 129 (28) and 50 (35); Anal. Calcd for C\(_{13}\)H\(_{13}\)N\(_2\)O. C, 73.56; H, 5.70; N, 13.20. Found: C, 73.33; H, 5.68; N, 13.12.

3-(Pent-4-enyl)-3H-quinazolin-4-one

Potassium t-butoxide (0.82 g, 7.4 mmol) was added to a solution of 3H-quinazolin-4-one (0.98 g, 6.7 mmol) in DMF (100 cm\(^3\)) and stirred for 1 h. 5-Bromopent-1-ene (1.20 cm\(^3\), 8.05 mmol) was added and stirred for 20 h. The crude reaction was extracted into EtOAc and washed with H\(_2\)O (5 × 100 cm\(^3\)) and brine (50 cm\(^3\)). The organic layer was dried over MgSO\(_4\) and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (4:1) as eluent to yield 3-(pent-4-enyl)-3H-quinazolin-4-one as colourless crystals (0.63 g, 3.0 mmol, 44%); mp 134-135 °C; (Found: MH+, 215.1179. C\(_{13}\)H\(_{13}\)N\(_2\)O requires 215.1179.); \(\nu_{	ext{max}} \) (thin film)/cm\(^{-1} \) 3415, 3069, 2866, 1666, 1613, 1474, 1175, 1112, 1003 and 918; \(\delta_{	ext{H}} \) 1.95-1.88 (2 H, m, C\(_6\)H\(_2\)), 2.18-2.13 (2 H, m, C\(_6\)H\(_2\)), 4.03-3.99 (2 H, m, NCH\(_2\)), 5.11-5.02 (2 H, m, CH\(_2\)), 5.82-5.76 (1 H, m, CH), 7.49 (1 H, ddd, \(\text{J}_8.1, 5.4, 1.4, 6-H \)), 7.76-7.68 (2 H, m, 7+8-H), 8.04 (1 H, s, 2-H) and 8.30 (1 H, dd, \(\text{J}_8.1, 1.4, 5-H \)); \(\delta_{	ext{C}} \) 28.07 (C\(_6\)), 30.51 (C\(_5\)), 46.39 (C\(_4\)), 115.90 (CH\(_2\)), 122.08 (4a-C), 126.55 (5-C), 126.94 (6-C), 127.14 (ArH), 134.06 (ArH), 136.83 (CH), 146.59 (2-C), 148.05 (8a-C) and 160.96 (4-C); m/z (Electrospray) 160 (M\(^+\), 38%), 147 (28), 68 (29), 55 (36) and 40 (100).
4-(Cyclopropylidenemethyl)toluene

A solution of cyclopropyltriphenylphosphonium bromide (10.20 g, 26.60 mmol), p-toluylaldehyde (3.03 cm³, 26.6 mmol) and potassium t-butoxide (6.25 g, 55.86 mmol) in DCM (100 cm³) were refluxed for 48 h. The reaction mixture was cooled and the DCM removed under reduced pressure. The crude mixture was partially dissolved in MeOH (200 cm³), NaBH₄ (3.01 g, 79.8 mmol) was added and the reaction mixture stirred for a further 12 h to reduce the remaining aldehyde. The MeOH was removed under reduced pressure and the crude slurry was extracted with DCM (100 cm³). The DCM solution was washed with H₂O (3 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified with column chromatography using silica gel as absorbent with light petroleum as eluent yielding 4-(cyclopropylidenemethyl)toluene as a colourless oil (1.53 g, 11.6 mmol, 44%); v_max(thin film)/cm⁻¹ 3044, 2973, 1784, 1408, 1109, 1043, 973, 832, 754 and 512; δ_H 1.16-1.23 (2 H, m, CH₂), 1.40-1.47 (2 H, m, CH₂), 2.20 (3 H, s, CH₃), 6.55 (1 H, t, J 1.6, CH), 7.17 (2 H, d, J 8.0, ArH) and 7.46 (2 H, d, J 8.0, ArH); δ_C 0.00 (CH₂), 3.63 (CH₂), 20.56 (Me), 117.59 (CH), 122.54 (C), 126.02 (2 × ArH), 129.20 (2 × ArH), 135.02 (ArC) and 135.86 (ArC).

The data were consistent to the literature.

(E)-4-(2,4-Dibromobut-1-enyl)toluene

The reaction between 4-(cyclopropylidenemethyl)toluene (1.31 g, 9.9 mmol) and copper (II) bromide (4.42 g, 18.8 mmol) was heated under reflux in MeCN (50 cm³) for 14 h. The reaction mixture was cooled and washed with sat. NH₄Cl and extracted light petroleum (4 × 50 cm³). The combined organic layers were dried over MgSO₄ and the solvent removed under reduced pressure yielding (E)-4-(2,4-dibromobut-1-enyl)toluene as a colourless oil (1.80 g, 5.9 mmol, 60%); (Found: M⁺, 301.9299. C₁₁H₁₂Br₂ requires 301.9300.); v_max(thin film)/cm⁻¹
(E)-3-(3-Bromo-4-p-toluytbut-3-enyl)-3H-quinazoline-4-one

Potassium t-butoxide (0.57 g, 4.67 mmol) was added to a solution of 3H-quinazolin-4-one (0.68 g, 4.67 mmol) in DMF (100 cm³) and stirred for 1 h. (E)-4-(2,4-Dibromobut-1-enyl)toluene (1.70 g, 5.60 mmol) was added and stirred for a further 12 h. The crude reaction mixture was extracted into EtOAc and washed with H₂O (5 x 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (3:1) as eluent to yield (E)-3-(3-bromo-4-p-toluybut-3-enyl)-3H-quinazoline-4-one as colourless crystals (0.05 g, 0.13 mmol, 20%); mp 201-202 °C; (Found: MH⁺, 369.0595. C₁₈H₁₈BrN₂O requires 369.0597.); νmax(thin film)/cm⁻¹ 3021, 2918, 1716, 1675, 1609, 1507, 1373, 1321, 1259, 1154, 909, 805, 774, 698, 537 and 452; δH 2.31 (3 H, s, Me), 3.10 (2 H, t, J 6.4, CH₂), 4.31 (2 H, t, J 6.4, NCH₂), 6.63 (1 H, s, CH), 7.10 (2 H, d, J 8.0, Ha), 7.29 (2 H, d, J 8.0, Hb), 7.51 (1 H, ddd, J 8.2, 6.8, 1.2, 6-H), 7.69 (1 H, d, J 8.2, 1.2, 8-H), 7.75 (1 H, ddd, J 8.2, 6.8, 1.4, 7-H), 8.04 (1 H, s, 2-H) and 8.32 (1 H, dd, J 8.2, 1.4, 5-H); δC 21.31 (Me), 42.02 (CH₂), 45.63 (NCH₂), 121.00 (C), 121.97 (C), 126.59 (5-C), 127.31 (6-C), 127.61 (8-C), 126.87 (2 x ArH), 128.85 (2 x ArH), 131.60 (CH), 132.30 (p-C), 134.33 (7-C), 138.07 (i-C), 146.73 (2-C), 148.17 (8a-C) and 161.15 (4-C); m/z(Electrospray) 371 (M⁺, 4%), 369 (4), 289 (75), 143 (79), 128 (100), 115 (54), 102 (33), 77 (46) and (51).
5-Bromo-1-phenylpent-1-yn

Phenylacetylene (0.69 cm\(^3\), 6.3 mmol) was slowly added to n-butyllithium (2 cm\(^3\), 5 mmol) in THF. The reaction was refluxed for 1 h until no gas evolution. The reaction mixture was cooled to rt and 1,3-dibromopropane (0.76 cm\(^3\), 7.5 mmol) was added and refluxed for 12 h. After cooling to rt the crude reaction was quenched with water (2 cm\(^3\)). The crude reaction mixture was extracted into EtOAc and washed with H\(_2\)O (3 \(\times\) 100 cm\(^3\)) and brine (50 cm\(^3\)). The organic layer was dried over MgSO\(_4\) and the solvent removed under reduced pressure yielding 5-bromo-1-phenylpent-1-yne as a colourless oil (1.11 g, 5.0 mmol, 80\%); \(\nu\)\(_{\text{max}}\)(thin film)/cm\(^{-1}\) 2929, 2858, 1489, 1441, 1246, 1069, 1033, 998, 913 and 775; \(\delta\)\(_{\text{rt}}\) 2.14 (2 H, sep, J 6.6, CH\(_2\)) 2.61 (2 H, t, J 6.6, CH\(_2\)), 3.58 (2 H, t, J 6.6, CH\(_2\)Br), 7.35-7.32 (3 H, m, ArH) and 7.51-7.48 (2 H, m, ArH); \(\delta\)\(_C\) 18.15 (CH\(_2\)), 32.19 (CH\(_2\)Br), 34.86 (CH\(_2\)), 81.63 (1-C), 87.94 (2-C), 123.55 (ArC), 127.82 (ArH), 128.26 (2 \(\times\) ArH) and 131.77 (2 \(\times\) ArH).

The data were consistent to the literature.\(^{18}\)

6.5 Experimental for Chapter 5
2,4-Dichloroquinazoline

Phosphorous oxychloride (14.3 cm\(^3\), 154 mmol) was added to a solution of benzoyleneurea (5.0 g, 30.8 mmol) in \(N,N\)-dimethylaniline (1.8 cm\(^3\), 15.0 mmol) and refluxed for 4 h. The reaction mixture was cooled and carefully quenched with chilled water. The reaction mixture was extracted into DCM and washed with H\(_2\)O (5 \(\times\) 50 cm\(^3\)) and brine (50 cm\(^3\)). The organic layer was dried over MgSO\(_4\) and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with EtOAc/light petroleum (3:1) as eluent yielding 2,4-dichloroquinazoline as colourless crystals (1.04 g, 5.3 mmol, 17\%); mp 115-116 °C (lit.\(^{19}\) 116-118 °C); \(\nu\)\(_{\text{max}}\)(thin film)/cm\(^{-1}\) 3290, 2901,
1340, 1245, 1109, 1097, 956 and 779; δ\textsubscript{H}(CD\textsubscript{3})\textsubscript{2}SO 7.71 (1 H, ddd, J 8.8, 7.1, 1.2, 7-H), 7.88 (1 H, dd, J 8.3, 1.2, 5-H), 8.00 (1 H, ddd, J 8.3, 7.1, 1.2, 6-H) and 8.15 (1 H, dd, J 8.8, 1.2, 8-H); δ\textsubscript{C}(CD\textsubscript{3})\textsubscript{2}SO 121.13 (4a-C), 125.42 (5-C), 129.11 (8-C), 130.78 (6-C), 134.54 (7-C), 148.90 (8a-C), 162.01 (4-C) and 164.58 (2-C).

The data were consistent to the literature.119

2-Chloro-3H-quinazolin-4-one119

\[\text{2-Chloro-3H-quinazolin-4-one}\]

To a stirred solution of 2,4-dichloroquinazoline (5.0 g, 25.4 mmol) in THF (50 cm3) was added 1 \textit{N} NaOH (127 cm3, 127 mmol) and the reaction mixture was stirred for 6 h. The organic solvent was removed under reduced pressure and the solid triturated with H\textsubscript{2}O. The precipitate was recrystallised from hot EtOH to afford 2-chloro-3H-quinazolin-4-one as colourless crystals (0.58 g, 3.2 mmol, 12%); mp 210-211 °C (lit.119 214-218 °C); ν\textsubscript{max}(thin film)/cm-1 3410, 1699, 1653, 1601, 1582, 1523, 1399, 1124, 958, 762, 734, 659, 620 and 542; δ\textsubscript{H}(CD\textsubscript{3})\textsubscript{2}SO 7.73 (1 H, ddd, J 8.6, 7.0, 1.2, 6-H), 7.78 8.15 (1 H, dd, J 8.6, 1.2, 8-H) 8.00 (1 H, ddd, J 8.2, 7.0, 1.2, 7-H) and 8.24 (1 H, dd, J 8.2, 1.2, 5-H); δ\textsubscript{C}(CD\textsubscript{3})\textsubscript{2}SO 119.37 (4a-C), 123.42 (5-C), 128.78 (8-C), 128.80 (6-C), 134.40 (7-C), 146.81 (8a-C), 153.56 (2-C) and 164.78 (4-C).

The data were consistent to the literature.119

2-Iodoquinoline

\[\text{2-Iodoquinoline}\]

Trifluoroacetic acid (1.53 cm3, 20 mmol) was added to a solution of 2-chloroquinoline (0.65 g, 4 mmol) and sodium iodide (11 g, 80 mmol) in 2-butanone (20 cm3) and stirred for 48 h. The crude reaction mixture was extracted into DCM and washed with H\textsubscript{2}O (3 × 50 cm3) and brine...
The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (8:1) yielding 2-iodoquinoline as red crystals (0.57 g, 2.22 mmol, 56%); mp 49-50 °C (lit. 51-53 °C); ν_max(thin film)/cm⁻¹ 1577, 1557, 1491, 1415, 1282, 1122, 1073, 934, 829, 815, 772 and 764; δ_H 7.52 (1 H, ddd, J 8.0, 7.2, 1.2, 6-H), 7.77-7.65 (4 H, m, ArH) and 8.00 (1 H, dd, J 8.0, 1.2, 8-H); δ_C 119.09 (2-C), 127.10 (4a-C), 127.26 (6-C), 127.96 (5-C), 128.52 (8-C), 130.44 (3-C), 131.97 (7-C), 137.32 (4-C) and 149.35 (8a-C).

The data were consistent to the literature. 89

2-Phenylselanyl-3H-quinazolin-4-one

K-selectride in 1 N THF (1.1 cm³, 1.1 mmol) was added to diphenylselanide (0.16 g, 0.5 mmol) in dry THF (20 cm³) and stirred for 10 min. 2-Chloro-3H-quinazolin-4-one (0.22 g, 1.0 mmol) was added and the mixture was stirred for 12 h. The solvent was removed under reduced pressure. The crude product was triturated hot petrol yielding 2-phenylselanyl-3H-quinazolin-4-one as colourless crystals (12 mg, 0.36 mmol, 36%); mp 120-121 °C; (Found: MH⁺, 303.0031. C₁₄H₁₁N₂O₈Se requires 303.0028.); ν_max(thin film)/cm⁻¹ 3644, 2357, 1694, 1573, 1557, 1465, 1337, 1304, 1168, 940 and 870; δ_H 7.29 (1 H, dd, J 8.0, 1.1, 8-H), 7.49-7.41 (4 H, m, ArH), 7.73-7.68 (3 H, m, ArH) and 8.04 (1 H, dd, J 7.6, 0.8, 5-H); δ_C 120.42 (ArC), 125.87 (ArH), 125.99 (ArH), 126.06 (ArC), 127.84 (ArH), 129.02 (ArH), 129.31 (ArH), 129.49 (ArH), 129.94 (ArC), 130.72 (ArH), 134.33 (ArH), 135.79 (ArH), 148.51 (ArC) and 161.80 (ArC); m/z(Electrospray) 302 (M⁺, 18%), 300 (8) 145 (51), 117 (26), 90 (100), 77 (38), 64 (29), 63 (37) and 51 (45).
Methanesulfonic acid 2-(chloroquinolin-3-yl)methyl ester

\[
\begin{align*}
\text{O} & \\
\text{S} & \\
\text{Me} & \\
\end{align*}
\]

Methanesulfonyl chloride (0.15 g, 1.56 mmol) and triethyl amine (0.43 cm³, 4.2 mmol) were added to a solution of 2-chloro-3-(hydroxymethyl)quinoline (0.15 g, 0.78 mmol) in toluene (20 cm³) and stirred for 24 h. The crude reaction mixture was extracted into DCM and washed with H₂O (3 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (9:1) as eluent yielding methanesulfonic acid 2-(chloroquinolin-3-yl)methyl ester as a yellow oil (0.11 g, 0.48 mmol, 62%); mp 130-131 °C; (Found: MH⁺, 272.0144. C₁₁H₁₅ClNO₃S requires 272.0143.); νₘₙₐₓ(thin film)cm⁻¹ 3399, 3049, 2915, 2852, 1646, 1616, 1550, 1455, 1351, 1243, 1092, 1008, 825, 777, 751, 586 and 514; δH 3.14 (3 H, s, CH₃), 5.46 (2 H, s, CH₂), 7.60 (1 H, ddd, J 8.0, 6.8, 1.0, 6-H), 7.76 (1 H, ddd, J 8.4, 6.8, 1.6, 7-H), 7.85 (1 H, dd, J 8.0, 1.6, 5-H), 8.04 (1 H, dd, J 8.4, 1.0, 8-H) and 8.30 (1 H, s, 4-H); δC 38.10 (CH₂), 67.78 (CH₃), 125.62 (4a-H), 126.83 (3-C), 127.76 (6-H), 127.88 (5-H), 128.38 (8-H), 131.47 (7-H), 138.97 (4-H), 147.63 (8a-C) and 148.96 (2-C); m/z(Electrospray) 272 (M⁺, 20%), 271 (63), 172 (43), 170 (32), 79 (89) and 63 (27).

2-Bromo-3-[(2-chloroquinolin-3-yl)methyl]-3H-quinazolin-4-one

\[
\begin{align*}
\text{O} & \\
\text{N} & \\
\text{Br} & \\
\text{Cl} & \\
\end{align*}
\]

Potassium t-butoxide (0.13 g, 1.2 mmol) was added to a solution of 2-bromo-3H-quinazolin-4-one (0.22 g, 1.0 mmol) in DMF (20 cm³) and stirred 1 h. Methanesulfonic acid 2-(chloroquinolin-3-yl)methyl ester (0.27 g, 1.2 mmol) was added and stirred for a further 12 h. The crude reaction mixture was extracted into Et₂O and washed with H₂O (5 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under
reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (5:1) as eluent to yield 2-bromo-3-[(2-chloroquinolin-3-yl)methyl]-3H-quinazolin-4-one as colourless crystals (0.058 g, 0.15 mmol, 16%); mp 180-181 °C; (Found: MH⁺, 399.9847. C₁₈H₁₂⁷⁹Br₂₅C₅N₃O requires 399.9847.; νmax(thin film)/cm⁻¹ 3423, 2093, 1735, 1641, 1561, 1555, 1467, 1407 and 671; δH 5.68 (2 H, s, CH₂), 7.45 (1 H, ddd, J 8.1, 7.0, 1.2, ArH), 7.54-7.50 (2 H, m, ArH), 7.68-7.61 (3 H, m, ArH), 7.78 (1 H, ddd, J 8.3, 6.8, 1.1, ArH), 7.97 (1 H, d, J 8.5, ArH) and 8.24 (1 H, dd, J 8.0, 1.5, 4'-H); δC 49.37 (CH₂), 120.23 (ArC), 127.02 (ArC), 127.05 (ArC), 127.15 (ArH), 127.44 (ArH), 127.48 (ArH), 127.70 (4'-C), 128.15 (ArH), 128.31 (ArH), 130.64 (ArH), 134.59 (ArH), 135.56 (ArH), 135.57 (ArC), 146.97 (ArC), 147.26 (ArC), 148.62 (ArC) and 161.39 (4-C); m/z(Electrospray) 405 (M⁺, 7%), 404 (22), 402 (98), 400 (81), 364 (50), 316 (24), 286 (25), 178 (29), 176 (84), 140 (100), 89 (34), 83 (48), 51 (52) and 49 (76).

3-Allyl-2-bromo-3H-quinazolin-4-one

Potassium t-butoxide (0.12 g, 3.0 mmol) was added to a stirred solution of 2-bromo-3H-quinazolin-4-one (0.35 g, 2.0 mmol) in DMF (20 cm³) and stirred for 1 h. Allyl bromide (0.34 cm³, 4.0 mmol) was added and stirred for 12 h. The crude reaction mixture was extracted into EtOAc and washed with H₂O (5 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc as eluent (5:1) yielding 3-allyl-2-bromo-3H-quinazolin-4-one as colourless crystals (0.17 g, 0.65 mmol, 33%); mp 106-107 °C; (Found: MH⁺, 264.9974 C₁₁H₁₀⁷⁹BrN₂O requires 264.9971.; νmax(thin film)/cm⁻¹ 3447, 1687, 1583, 1470, 1332, 1154, 1121, 592, 810, 768, 691, 577 and 523; δH 4.94-4.92 (2 H, m, NCH₂), 5.33-5.27 (2 H, m, CH₂), 6.02-5.92 (1 H, m, CH), 7.49 (1 H, ddd, J 8.6, 8.4, 2.0, 6-H), 7.62 (1 H, dd, J 8.6, 1.6, 8-H), 7.74 (1 H, ddd, J 8.6, 8.4, 1.6, 7-H) and 8.22 (1 H, dd, J 8.6, 1.6, 5-H); δC 50.74 (NCH₂), 118.82 (CH₂), 120.45 (4a-C), 126.76 (8-C), 127.32 (5-C), 127.58 (6-C), 130.69 (CH), 134.94 (7-C), 135.88 (8a-C), 147.11 (2-C) and 161.01 (4-C); m/z(Electrospray) 266 (M⁺, 16%), 264 (15), 249 (20), 185 (100), 129 (52), 102 (23), 90 (35) and 40 (53).
2-(Phenylethylsulfany)-3H-quinazolin-4-one

Sodium hydride (0.35 g, 8.8 mmol) was added to a stirred solution of 2-mercapto-3H-quinazolin-4-one (0.71 g, 4.0 mmol) in DMF (20 cm³) and stirred for 1 h at rt. 2-Bromoethyl benzene (0.58 cm³, 4.2 mmol) in DMF (10 cm³) was added to the reaction over 1 h. The reaction was stirred for a further 12 h. The crude reaction mixture was extracted into EtOAc and washed with H₂O (5 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc (2:1) as eluent yielding 2-(phenylethylsulfany)-3H-quinazolin-4-one as colourless crystals (0.84 g, 2.99 mmol, 75%); mp 121-122 °C; (Found: MH⁺, 283.0898. C₁₆H₁₅N₂OṢ requires 283.0900.); v_max (thin film)/cm⁻¹ 3417, 1732, 1698, 1666, 1581, 1556, 1446, 1398, 1247, 958, 872, 765, 722, 687, 620 and 558; δH 3.11 (2 H, t, J₇.₈, CH₂), 3.54 (2 H, t, J₇.₈, SCh₂), 7.27-7.21 (1 H, m, ArH), 7.35-7.31 (4 H, m, ArH), 7.43 (1 H, ddd, J 8.1, 6.7, 0.3, 6-H), 7.58 (1 H, dd, J 8.5, 0.3, 8-H), 7.78 (1 H, ddd, J 8.5, 6.7, 1.5, 7-H), 8.05 (1 H, dd, J 8.1, 1.5, 5-H) and 12.55 (1H, brs, NH); δC 31.01 (SCH₂), 34.81 (PhCH₂), 119.98 (4a-C), 125.56 (6-C), 126.00 (8-C and ArC), 126.36 (5-C and ArH), 128.40 (2 × ArH), 128.59 (2 × ArH), 134.57 (7-C), 140.02 (8a-C), 157.31 (2-C) and 161.24 (4-C); m/z(Electrospray) 283 (M⁺, 36%), 179 (20), 164 (23), 147 (100) and 52 (26).

3-Methyl-2-methylsulfany-3H-quinazolin-4-one

Sodium hydride (0.60 g, 15.0 mmol) was added to a solution of 2-mercapto-3H-quinazolin-4-one (1.06 g, 6.0 mmol) in DMF (20 cm³) and stirred for 1 h at 80 °C. Methyl iodide (0.93 cm³,
15.0 mmol) was added to the reaction mixture and stirred for a further 12 h. The crude reaction was extracted into EtOAc and washed with H₂O (5 × 50 cm³) and brine (50 cm³). The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent with light petroleum/EtOAc as eluent (5:1) yielding 3-methyl-2-methylsulfonyl-3H-quinazolin-4-one as colourless crystals (0.63 g, 3.0 mmol, 50%); mp 208 °C (lit. 169–210 °C); δH 2.57 (3 H, s, SMe), 3.50 (3H, s, NMe), 7.28 (1 H, ddd, J 8.8 7.0 0.8, 6-H), 7.44 (1 H, dd, J 8.8 0.8 8-H), 7.59 (1 H, ddd, J 8.8 7.0 1.2, 7-H) and 8.14 (1 H, dd, J 8.8 1.2, 5-H); δc 14.93 (SMe), 30.03 (NMe), 118.86 (4a-C), 125.03 (8-C), 127.57 (6-C), 126.73 (5-C), 133.96 (7-C), 147.30 (8a-C) and 161.56 (4-C).

The data were consistent to the literature. 169

3-(2-Hydroxyethyl)-2-thioxo-2,3-dihydro-1H-quinazolin-4-one

The reaction between 2-(methoxycarbonyl)-phenyl isothiocyanate (0.62 cm³, 4.0 mmol) and 2-hydroxyethylamine (0.24 cm³, 4.0 mmol) was heated under reflux in 2-propanol (20 cm³) for 2 h. The reaction mixture was cooled and the precipitate triturated with cold water and dried yielding 3-(2-hydroxyethyl)-2-thioxo-2,3-dihydro-1H-quinazolin-4-one as colourless crystals (820 mg, 3.97 mmol, 99%); mp 237-239 °C (lit. 240 °C); νmax(thin film)/cm⁻¹ 3403, 3002, 1690, 1653, 1546, 1529, 1349, 1132, 775 and 694; δH (CD₃)₂SO 3.65 (2 H, t, J 6.6, OCH₂), 4.48 (2 H, t, J 6.6, NCH₂), 7.33-7.27 (2 H, m, ArH), 7.69 (1 H, ddd, J 8.8, 6.8, 1.2, 7-H) and 7.90 (1 H, dd, J 8.8, 1.2, 5-H); δC (CD₃)₂SO 47.06 (NCH₂), 56.81 (OCH₂), 115.39 (4a-C), 115.41 (6-C), 124.41 (8-C), 127.21 (5-C), 135.31 (7-C), 138.88 (8a-C), 159.42 (4-C) and 175.18 (2-C).

The data were consistent with the literature. 170
The reaction between 2-(methoxycarbonyl)-phenyl isothiocyanate (0.31 cm3, 2.0 mmol) and 2-phenylethylamine (0.25 cm3, 2.0 mmol) was heated under reflux in 2-propanol (10 cm3) for 2 h. The reaction mixture was cooled and the precipitate collected by filtration and recrystallised with hot propanol yielding 3-(2-phenylethyl)-2-thioxo-2,3-dihydro-1H-quinazolin-4-one as colourless crystals (520 mg, 1.83 mmol, 92%); mp 237-238 °C (lit.171 239-240 °C); (Found: MH$^+$, 283.0897. C$_{16}$H$_{15}$N$_2$O$_2$S requires 283.0900.; ν_{max}(thin film)/cm$^{-1}$ 3422, 2999, 1698, 1643, 1540, 1450, 1400, 1099, 996, 745 and 684; δ_{H} 3.10 (2 H, t, J 7.6, CH$_2$), 4.74 (2 H, t, J 7.6, NCH$_2$), 7.17 (1 H, d, J 8.2, 8-H), 7.28-7.23 (2 H, m, ArH), 7.37-7.32 (2 H, m, ArH), 7.43-7.40 (2 H, m, ArH), 7.68 (1 H, ddd, J 8.2, 6.4, 1.2, 7-H), 8.17 (1 H, dd, J 8.0, 1.2, 5-H) and 10.33 (1 H, brs, NH); δ_{C} 32.82 (CH$_2$), 48.37 (NCH$_2$), 114.51 (8-C), 116.15 (ArC), 125.10 (ArH), 126.61 (ArH), 128.57 (2 × ArH and 5-C), 129.05 (2 × ArH), 135.53 (7-C), 138.33 (ArC), 138.35 (ArC), 159.46 (2-C) and 175.67 (4-C); m/z(Electrospray) 282 (M$^+$, 21%), 178 (38), 162 (18), 104 (100), 91 (38), 77 (35), 65 (34), 63 (21) and 51 (26).

The structure was confirmed by X-ray crystallography (see appendix).

The data were consistent to the literature.171

A solution of 3-(2-phenylethyl)-2-thioxo-2,3-dihydro-1H-quinazolin-4-one (200 mg, 0.71 mmol) and bromine (0.04 cm3, 0.85 mmol) in MeOH (20 cm3) were stirred for 1 h. The precipitate was collected by triturated with cold EtOAc yielding and dried yielding 3-(2-phenylethyl)-1H-quinazoline-2,4-dione as colourless crystals (160 mg, 0.61 mmol, 87%); mp 177-178 °C (lit.172 179-180 °C); (Found: MH$^+$, 267.1131. C$_{16}$H$_{13}$N$_2$O$_2$ requires 267.1128.).
Vmax(thin film)/cm⁻¹ 3417, 1697, 1556, 1503, 1366, 1172, 1061, 889 and 789; δH (CD3)SO 3.03 (2 H, t, J 8.0, CH2), 4.33 (2 H, t, J 8.0, NCH2), 7.13 (1 H, dd, J 8.0, 0.4, 8-H), 7.37-7.24 (6 H, m, ArH), 7.64 (1 H, ddd, J 8.0, 7.2, 1.2, 7-H), 8.15 (1 H, dd, J 8.0, 1.2, 5-H) and 10.42 (1 H, brs, NH); δC (CD3)SO 34.06 (CH2), 42.34 (NCH2), 114.64 (ArC), 115.10 (ArH), 123.48 (ArH), 126.55 (ArH), 128.88 (ArH), 128.98 (2 × ArH), 135.08 (ArH), 138.55 (ArC), 138.58 (ArC), 152.03 (4-C) and 162.27 (2-C); m/z(Electrospray) 266 (M⁺, 26%), 162 (20), 145 (23), 103 (100) and 91 (24).

The data were consistent to the literature. Di-[3-(2-phenylethyl)quinazolin-4-on-2-yl] disulfide

\[
\text{Di-[3-(2-phenylethyl)quinazolin-4-on-2-yl] disulfide}
\]

3-(2-Phenylethyl)-2-thioxo-2,3-dihydro-1H-quinazolin-4-one (0.56 mg, 2.0 mmol) and bromine (0.20 cm³, 4.0 mmol) were stirred in anhydrous MeOH (20 cm³) for 4 h. The white precipitate was collected and triturated with MeOH and dried yielding di-[3-(2-phenylethyl)quinazolin-4-on-2-yl] disulfide as colourless crystals (330 mg, 0.59 mmol, 59%); mp 223-225 °C; (Found: MH⁺, 563.1566. C₃₂H₂₇N₄O₂S₂ requires 563.1570.); Vmax(thin film)/cm⁻¹ 3607, 2354, 1672, 1555, 1469, 1336, 1130, 768 and 690; δH 3.13 (4 H, t, J 8.2, CH2), 4.59 (4 H, t, J 8.2, NCH2), 7.28-7.48 (14 H, m, ArH), 7.66-7.61 (2 H, m, ArH) and 8.23-8.20 (2 H, m, ArH); δC 34.90 (2 × CH2), 46.85 (2 × NCH2), 119.80 (2 × ArC), 126.69 (2 × ArH), 126.81 (2 × ArH), 127.05 (2 × ArH), 127.11 (2 × ArH), 128.91 (4 × ArH), 129.10 (4 × ArH), 134.63 (2 × ArH), 137.47 (2 × ArC), 147.10 (2 × ArC), 152.69 (2 × ArC) and 161.50 (2 × ArC); m/z(Electrospray) 563 (M⁺, 5%), 529 (100), 497 (27), 401 (17) and 321 (20).

N-Phenylselanylphthalimide

\[
\text{N-Phenylselanylphthalimide}
\]

Potassium phthalimide (3.87 g, 21.0 mmol) and phenylselanyl chloride (4.80 g, 25.1 mmol) were placed in a three necked flask (250 cm³). The flask was connected to a vacuum line and

210
after several evacuations and purges with nitrogen, dry hexane (50 cm\(^3\)) was added. The reaction mixture was stirred at rt for 2 h. DCM was added and the solid removed by filtration. The solution was concentrated on a rotary evaporator to 20 cm\(^3\) and was diluted with hexane (80 cm\(^3\)). The resulting precipitate was collected by filtration yielding N-phenylselanylphthalimide as yellow crystals (6.34 g, 21.0 mmol, 83%); mp 172-174 °C (lit.\(^{173}\) 171-175 °C); \(\nu_{\text{max}}\) (thin film)/cm\(^{-1}\) 3419, 1720, 1643, 1282 and 711; \(\delta_{\text{H}}\) 7.57-7.85 (9 H, m, ArH); \(\delta_{\text{C}}\) 122.91 (ArH), 125.78 (2 x ArH), 128.96 (2 x ArH), 131.58 (2 x ArH), 132.57 (ArC), 132.79 (ArC), 134.30 (2 x ArH), 148.85 (ArC), 168.66 (ArC) and 169.22 (ArC).

The data were consistent to the literature.\(^{173}\)

Tributylgermanium hydride\(^{174}\)

\[
\begin{array}{c}
\text{H} \\
\text{Ge} \\
\text{Bu}
\end{array}
\]

Tetrachlorogerermanium (4.38 g, 20.8 mmol) and butylmagnesium chloride (2 M solution in diethyl ether, 50 cm\(^3\)) were successively added dropwise to a solution of Cp\(_2\)TiCl\(_2\) (0.38 g, 1.5 mmol) in freshly distilled diethyl ether (100 cm\(^3\)) at -78 °C over 45 min. The reaction mixture was warmed to room temperature over 45 min and refluxed for 15 h. After cooling to 0 °C the aqueous phase was extracted with Et\(_2\)O. The combined organic layer was dried over MgSO\(_4\) and the solvent removed under reduced pressure. The crude product was distilled under reduced pressure and temperature yielding tributylgermanium hydride as a colourless oil (1.89 g, 7.75 mmol, 37%); \(\nu_{\text{max}}\) (thin film)/cm\(^{-1}\) 2955, 2925, 2857, 2005, 1463, 1457, 1375, 1339, 1172, 1082, 962, 882, 773, 724, 696 and 557; \(\delta_{\text{H}}\) 0.56-0.69 (15 H, m, BuH), 1.10-1.20 (12 H, m, BuH) and 3.46 (1 H, sep, \(J\) 3.0, GeH); \(\delta_{\text{C}}\) 11.66 (3-C), 13.76 (4-C), 26.15 (2-C) and 28.53 (1-C).

The data were consistent to the literature.\(^{174}\)
Appendix A. X-ray crystallography

Structure determination by single X-ray crystallography of 11-hydroxy-11H-isoquinolino[3,2-b]quinazolin-6,13-dione 345. The compound was placed in a small sample vial and dissolved in a minimal amount of CDCl₃. The small sample vial was sealed. Crystals developed upon storage at room temperature for 24 h, and were submitted in the mother liquor.

Table 1. Crystal data and structure refinement for 345.

<table>
<thead>
<tr>
<th>Identification code</th>
<th>345</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C₁₁H₁₁Cl₃N₂O₃</td>
</tr>
<tr>
<td>Formula weight</td>
<td>397.63</td>
</tr>
<tr>
<td>Temperature</td>
<td>120(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoKα, 0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>triclinic, P ̅1</td>
</tr>
</tbody>
</table>
| Unit cell parameters | a = 6.6511(3) Å \(\alpha = 90.123(2)^\circ \)
| | b = 8.6274(3) Å \(\beta = 94.525(3)^\circ \)
| | c = 14.5395(7) Å \(\gamma = 99.594(3)^\circ \) |
| Cell volume | 819.97(6) Å³ |
| Z | 2 |
| Calculated density | 1.610 g/cm³ |
| Absorption coefficient \(\mu \) | 0.579 mm⁻¹ |
| \(F(000) \) | 404 |
| Crystal colour and size | pale yellow, 0.55 × 0.17 × 0.09 mm³ |
| Reflections for cell refinement | 3181 (θ range 1.0 to 27.48°) |
| Data collection method | Bruker-Nonius 95mm CCD camera on κ-goniostat |
| \(\phi \) & \(\omega \) scans | 3.12 to 27.54° |
| Index ranges | h = -8 to 8, k = -11 to 11, l = -18 to 18 |
| Completeness to \(\theta = 27.54^\circ \) | 98.4 % |
| Intensity decay | 0% |
| Reflections collected | 11250 |
Independent reflections 3715 ($R_{int} = 0.0370$)
Reflections with $F^2 > 2\sigma$ 2898
Absorption correction none
Structure solution direct methods
Refinement method Full-matrix least-squares on F^2
Weighting parameters a, b 0.0492, 0.1456
Data / restraints / parameters 3715 / 0 / 230
Final R indices [$F^2 > 2\sigma$] $R_1 = 0.0353$, $wR_2 = 0.0851$
R indices (all data) $R_1 = 0.0550$, $wR_2 = 0.0939$
Goodness-of-fit on F^2 1.028
Extinction coefficient 0.0071(18)
Largest and mean shift/su 0.000 and 0.000
Largest diff. peak and hole 0.353 and -0.328 eÅ^{-3}

Table 2. Atomic coordinates and equivalent isotropic displacement parameters (Å^2) for 345. U_{eq} is defined as one third of the trace of the orthogonalized U^{ij} tensor.

$$
\begin{array}{cccc}
& x & y & z & U_{eq} \\
N(1) & 0.14244(19) & 0.63569(15) & 0.92173(9) & 0.0146(3) \\
C(1) & -0.0378(2) & 0.66563(18) & 0.87709(11) & 0.0158(3) \\
N(2) & -0.1702(2) & 0.73348(15) & 0.91529(9) & 0.0166(3) \\
C(2) & -0.1214(2) & 0.79209(18) & 1.00469(11) & 0.0167(3) \\
C(3) & -0.2519(2) & 0.88209(19) & 1.04353(12) & 0.0196(4) \\
C(4) & -0.2003(3) & 0.94848(19) & 1.13003(12) & 0.0222(4) \\
C(5) & -0.0183(3) & 0.92780(19) & 1.18015(12) & 0.0213(4) \\
C(6) & 0.1089(2) & 0.83740(19) & 1.14387(11) & 0.0192(4) \\
C(7) & 0.0580(2) & 0.76842(18) & 1.05619(11) & 0.0158(3) \\
C(8) & 0.1965(2) & 0.67843(18) & 1.01500(11) & 0.0157(3) \\
O(1) & 0.35078(17) & 0.64334(14) & 1.05530(8) & 0.0212(3) \\
C(9) & 0.3060(2) & 0.58892(19) & 0.86974(11) & 0.0159(3) \\
O(2) & 0.42678(17) & 0.72966(13) & 0.84351(8) & 0.0176(3) \\
\end{array}
$$
C(10)	0.2222(2)	0.49033(18)	0.78584(11)	0.0165(3)
C(11)	0.3409(3)	0.39065(19)	0.74902(11)	0.0197(4)
C(12)	0.2740(3)	0.3093(2)	0.66742(12)	0.0243(4)
C(13)	0.0874(3)	0.3263(2)	0.62048(12)	0.0266(4)
C(14)	-0.0312(3)	0.4249(2)	0.65622(12)	0.0238(4)
C(15)	0.0355(2)	0.50622(19)	0.73902(11)	0.0174(3)
C(16)	-0.0910(2)	0.61045(19)	0.77812(11)	0.0186(3)
O(3)	-0.23696(18)	0.65190(16)	0.73531(8)	0.0282(3)
C(17)	0.4419(3)	0.8143(2)	0.62829(12)	0.0232(4)
Cl(1)	0.46117(8)	0.68003(6)	0.53965(3)	0.03290(14)
Cl(2)	0.62940(7)	0.98375(6)	0.62257(4)	0.03665(15)
Cl(3)	0.19517(7)	0.86669(6)	0.62000(3)	0.03135(14)

Table 3. Bond lengths [Å] and angles [°] for 345.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length [Å]</th>
<th>Angle [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1)–C(1)</td>
<td>1.3805(19)</td>
<td>N(1)–C(8)</td>
</tr>
<tr>
<td>N(1)–C(9)</td>
<td>1.481(2)</td>
<td>C(1)–N(2)</td>
</tr>
<tr>
<td>C(1)–C(16)</td>
<td>1.511(2)</td>
<td>N(2)–C(2)</td>
</tr>
<tr>
<td>C(2)–C(7)</td>
<td>1.402(2)</td>
<td>C(2)–C(3)</td>
</tr>
<tr>
<td>C(3)–C(4)</td>
<td>1.375(2)</td>
<td>C(4)–C(5)</td>
</tr>
<tr>
<td>C(5)–C(6)</td>
<td>1.375(2)</td>
<td>C(6)–C(7)</td>
</tr>
<tr>
<td>C(7)–C(8)</td>
<td>1.461(2)</td>
<td>C(8)–O(1)</td>
</tr>
<tr>
<td>C(9)–O(2)</td>
<td>1.4109(19)</td>
<td>C(9)–C(10)</td>
</tr>
<tr>
<td>C(10)–C(11)</td>
<td>1.393(2)</td>
<td>C(10)–C(15)</td>
</tr>
<tr>
<td>C(11)–C(12)</td>
<td>1.381(2)</td>
<td>C(12)–C(13)</td>
</tr>
<tr>
<td>C(13)–C(14)</td>
<td>1.379(3)</td>
<td>C(14)–C(15)</td>
</tr>
<tr>
<td>C(15)–C(16)</td>
<td>1.471(2)</td>
<td>C(16)–O(3)</td>
</tr>
<tr>
<td>C(17)–Cl(1)</td>
<td>1.7573(17)</td>
<td>C(17)–Cl(2)</td>
</tr>
<tr>
<td>C(17)–Cl(3)</td>
<td>1.7690(17)</td>
<td></td>
</tr>
<tr>
<td>C(1)–N(1)–C(8)</td>
<td>121.36(13)</td>
<td>C(1)–N(1)–C(9)</td>
</tr>
<tr>
<td>C(8)–N(1)–C(9)</td>
<td>116.16(12)</td>
<td>N(2)–C(1)–N(1)</td>
</tr>
<tr>
<td>N(2)–C(1)–C(16)</td>
<td>116.85(13)</td>
<td>N(1)–C(1)–C(16)</td>
</tr>
</tbody>
</table>

214
Table 4. Hydrogen coordinates and isotropic displacement parameters (Å²) for 345.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(3)</td>
<td>-0.3755</td>
<td>0.8971</td>
<td>1.0101</td>
</tr>
<tr>
<td>H(4)</td>
<td>-0.2890</td>
<td>1.0090</td>
<td>1.1561</td>
</tr>
<tr>
<td>H(5)</td>
<td>0.0174</td>
<td>0.9763</td>
<td>1.2392</td>
</tr>
<tr>
<td>H(6)</td>
<td>0.2311</td>
<td>0.8218</td>
<td>1.1783</td>
</tr>
<tr>
<td>H(9)</td>
<td>0.3919</td>
<td>0.5290</td>
<td>0.9111</td>
</tr>
<tr>
<td>H(2)</td>
<td>0.539(3)</td>
<td>0.723(2)</td>
<td>0.8595(14)</td>
</tr>
<tr>
<td>H(11)</td>
<td>0.4683</td>
<td>0.3786</td>
<td>0.7801</td>
</tr>
<tr>
<td>H(12)</td>
<td>0.3555</td>
<td>0.2411</td>
<td>0.6430</td>
</tr>
<tr>
<td>H(13)</td>
<td>0.0426</td>
<td>0.2703</td>
<td>0.5643</td>
</tr>
</tbody>
</table>
Table 5. Torsion angles [°] for 345.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H(14)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>−0.1578</td>
<td>0.4374</td>
<td>0.6246</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>H(17)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.4644</td>
<td>0.7632</td>
<td>0.6891</td>
<td>0.028</td>
</tr>
</tbody>
</table>

C(8)—N(1)—C(1)—N(2) | −0.1(2) | | | |
C(8)—N(1)—C(1)—C(16) | −177.39(13) | | | |
N(1)—C(1)—N(2)—C(2) | 5.6(2) | | | |
C(1)—N(2)—C(2)—C(7) | −5.2(2) | | | |
N(2)—C(2)—C(3)—C(4) | −176.39(15) | | | |
C(2)—C(3)—C(4)—C(5) | 0.1(3) | | | |
C(4)—C(5)—C(6)—C(7) | 1.1(3) | | | |
C(5)—C(6)—C(7)—C(8) | 177.03(15) | | | |
C(3)—C(2)—C(7)—C(6) | −1.9(2) | | | |
C(3)—C(2)—C(7)—C(8) | −178.38(14) | | | |
C(9)—N(1)—C(8)—O(1) | −16.6(2) | | | |
C(9)—N(1)—C(8)—C(7) | 161.98(13) | | | |
C(2)—C(7)—C(8)—O(1) | −175.76(15) | | | |
C(2)—C(7)—C(8)—N(1) | 5.7(2) | | | |
C(8)—N(1)—C(9)—O(2) | −81.07(15) | | | |
C(8)—N(1)—C(9)—C(10) | 158.48(13) | | | |
N(1)—C(9)—C(10)—C(11) | −156.63(14) | | | |
N(1)—C(9)—C(10)—C(15) | 29.1(2) | | | |
C(9)—C(10)—C(11)—C(12) | −174.41(15) | | | |
C(11)—C(12)—C(13)—C(14) | −0.2(3) | | | |
C(13)—C(14)—C(15)—C(10) | 0.7(3) | | | |
C(11)—C(10)—C(15)—C(14) | −0.6(2) | | | |
C(11)—C(10)—C(15)—C(16) | 179.52(15) | | | |
C(14)—C(15)—C(16)—O(3) | −12.7(3) | | | |
C(14)—C(15)—C(16)—C(1) | 166.13(15) | | | |
N(2)—C(1)—C(16)—O(3) | 10.8(2) | | | |
N(2)—C(1)—C(16)—C(15) | −168.14(14) | | | |

\[\text{C(9)--N(1)--C(1)--N(2)} = -166.96(15) \\
\text{C(9)--N(1)--C(1)--C(16)} = 15.7(2) \\
\text{C(16)--C(1)--N(2)--C(2)} = -177.00(13) \\
\text{C(1)--N(2)--C(2)--C(3)} = 172.63(15) \\
\text{C(7)--C(2)--C(3)--C(4)} = 1.5(2) \\
\text{C(3)--C(4)--C(5)--C(6)} = -1.5(3) \\
\text{C(5)--C(6)--C(7)--C(2)} = 0.5(2) \\
\text{N(2)--C(2)--C(7)--C(6)} = 175.98(14) \\
\text{N(2)--C(2)--C(7)--C(8)} = -0.6(2) \\
\text{C(1)--N(1)--C(8)--O(1)} = 175.81(15) \\
\text{C(1)--N(1)--C(8)--C(7)} = -5.6(2) \\
\text{C(6)--C(7)--C(8)--O(1)} = 7.7(3) \\
\text{C(6)--C(7)--C(8)--N(1)} = -170.85(14) \\
\text{C(1)--N(1)--C(9)--O(2)} = 86.48(16) \\
\text{C(1)--N(1)--C(9)--C(10)} = -34.0(2) \\
\text{O(2)--C(9)--C(10)--C(11)} = 85.06(17) \\
\text{O(2)--C(9)--C(10)--C(15)} = -89.25(18) \\
\text{C(15)--C(10)--C(11)--C(12)} = 0.0(2) \\
\text{C(10)--C(11)--C(12)--C(13)} = 0.4(3) \\
\text{C(12)--C(13)--C(14)--C(15)} = -0.3(3) \\
\text{C(13)--C(14)--C(15)--C(16)} = -179.40(16) \\
\text{C(9)--C(10)--C(15)--C(14)} = 173.78(15) \\
\text{C(9)--C(10)--C(15)--C(16)} = -6.1(2) \\
\text{C(10)--C(15)--C(16)--O(3)} = 167.21(16) \\
\text{C(10)--C(15)--C(16)--C(1)} = -13.9(2) \\
\text{N(1)--C(1)--C(16)--O(3)} = -171.71(15) \\
\text{N(1)--C(1)--C(16)--C(15)} = 9.4(2) \\

216
Table 6. Hydrogen bonds for 345 [Å and °].

<table>
<thead>
<tr>
<th>D–H...A</th>
<th>d(D–H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(2)–H(2)...N(2’)</td>
<td>0.78(2)</td>
<td>2.02(2)</td>
<td>2.7935(17)</td>
<td>171(2)</td>
</tr>
<tr>
<td>O(2)–H(2)...O(3’)</td>
<td>0.78(2)</td>
<td>2.57(2)</td>
<td>2.9963(17)</td>
<td>116.7(17)</td>
</tr>
</tbody>
</table>

Symmetry operations for equivalent atoms

' x+1, y, z

Structure determination by single X-ray crystallography of 3-(2-phenylethyl)-2-thioxo-2,3-dihydro-1H-quinazolin-4-one 457. The compound was placed in a small sample vial and dissolved in a minimal amount of hot propanol. The small sample vial was sealed. Crystals developed upon storage at room temperature for 24 h, and were submitted in the mother liquor.

Table 1. Crystal data and structure refinement for 457.

<table>
<thead>
<tr>
<th>Identification code</th>
<th>wrb9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C₁₆H₁₄N₂O₂S</td>
</tr>
<tr>
<td>Formula weight</td>
<td>282.35</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoKα, 0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>monoclinic, Cc</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>(a = 4.6405(7)) Å, (\alpha = 90^\circ)</td>
</tr>
<tr>
<td></td>
<td>(b = 25.329(4)) Å, (\beta = 97.047(2)^\circ)</td>
</tr>
<tr>
<td></td>
<td>(c = 12.1910(17)) Å, (\gamma = 90^\circ)</td>
</tr>
<tr>
<td>Cell volume</td>
<td>1422.1(4) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Calculated density</td>
<td>1.319 g/cm³</td>
</tr>
<tr>
<td>Absorption coefficient (\mu)</td>
<td>0.224 mm⁻¹</td>
</tr>
<tr>
<td>(F(000))</td>
<td>592</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>colourless, 0.56 × 0.16 × 0.02 mm³</td>
</tr>
</tbody>
</table>

217
Reflections for cell refinement 2505 (θ range 2.33 to 27.77°)
Data collection method Bruker SMART 1000 CCD
diffractometer

ω rotation with narrow frames

θ range for data collection 1.61 to 28.73°
Index ranges h -6 to 6, k -32 to 32, l -15 to 16
Completeness to θ = 26.00° 99.7 %
Intensity decay 0%
Reflections collected 5350
Independent reflections 3005 (R_{int} = 0.0368)
Reflections with F^2>2σ 2351
Absorption correction semi-empirical from equivalents
Min. and max. transmission 0.885 and 0.996
Structure solution direct methods
Refinement method Full-matrix least-squares on F^2
Weighting parameters a, b 0.1005, 0.0000
Data / restraints / parameters 3005 / 2 / 184
Final R indices [F^2>2σ] R1 = 0.0602, wR2 = 0.1444
R indices (all data) R1 = 0.0837, wR2 = 0.1590
Goodness-of-fit on F^2 1.026
Absolute structure parameter 0.13(13)
Largest and mean shift/su 0.000 and 0.000
Largest diff. peak and hole 0.432 and -0.202 e Å^-3

Table 2. Atomic coordinates and equivalent isotropic displacement parameters (Å²) for 457. U_{eq} is defined as one third of the trace of the orthogonalized U^ii tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1)</td>
<td>0.5300(6)</td>
<td>0.19362(12)</td>
<td>0.6679(2)</td>
<td>0.0236(7)</td>
</tr>
<tr>
<td>C(1)</td>
<td>0.4066(7)</td>
<td>0.21118(14)</td>
<td>0.5651(3)</td>
<td>0.0240(7)</td>
</tr>
<tr>
<td>S(1)</td>
<td>0.1436(2)</td>
<td>0.17829(4)</td>
<td>0.48714(9)</td>
<td>0.0331(3)</td>
</tr>
<tr>
<td>Atom</td>
<td>x</td>
<td>y</td>
<td>z</td>
<td>Atom</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>N(2)</td>
<td>0.5072(6)</td>
<td>0.25707(12)</td>
<td>0.5303(2)</td>
<td>0.0260(6)</td>
</tr>
<tr>
<td>C(2)</td>
<td>0.7275(8)</td>
<td>0.28714(14)</td>
<td>0.5880(3)</td>
<td>0.0238(7)</td>
</tr>
<tr>
<td>C(3)</td>
<td>0.8156(9)</td>
<td>0.33469(15)</td>
<td>0.5442(3)</td>
<td>0.0329(9)</td>
</tr>
<tr>
<td>C(4)</td>
<td>1.0351(9)</td>
<td>0.36289(16)</td>
<td>0.6036(4)</td>
<td>0.0364(9)</td>
</tr>
<tr>
<td>C(5)</td>
<td>1.1700(9)</td>
<td>0.34463(16)</td>
<td>0.7053(3)</td>
<td>0.0353(9)</td>
</tr>
<tr>
<td>C(6)</td>
<td>1.0816(8)</td>
<td>0.29799(15)</td>
<td>0.7483(3)</td>
<td>0.0284(8)</td>
</tr>
<tr>
<td>C(7)</td>
<td>0.8576(8)</td>
<td>0.26890(13)</td>
<td>0.6899(3)</td>
<td>0.0236(7)</td>
</tr>
<tr>
<td>C(8)</td>
<td>0.7576(8)</td>
<td>0.21945(14)</td>
<td>0.7327(3)</td>
<td>0.0242(7)</td>
</tr>
<tr>
<td>O(1)</td>
<td>0.8619(6)</td>
<td>0.19952(10)</td>
<td>0.8208(2)</td>
<td>0.0320(6)</td>
</tr>
<tr>
<td>C(9)</td>
<td>0.4292(8)</td>
<td>0.14396(14)</td>
<td>0.7137(3)</td>
<td>0.0275(8)</td>
</tr>
<tr>
<td>C(10)</td>
<td>0.6053(9)</td>
<td>0.09659(15)</td>
<td>0.6836(4)</td>
<td>0.0353(9)</td>
</tr>
<tr>
<td>C(11)</td>
<td>0.5129(9)</td>
<td>0.04717(15)</td>
<td>0.7388(3)</td>
<td>0.0343(9)</td>
</tr>
<tr>
<td>C(12)</td>
<td>0.2967(11)</td>
<td>0.01529(17)</td>
<td>0.6871(5)</td>
<td>0.0504(12)</td>
</tr>
<tr>
<td>C(13)</td>
<td>0.2124(16)</td>
<td>-0.0295(2)</td>
<td>0.7395(6)</td>
<td>0.0722(18)</td>
</tr>
<tr>
<td>C(14)</td>
<td>0.3406(16)</td>
<td>-0.0432(2)</td>
<td>0.8437(7)</td>
<td>0.075(2)</td>
</tr>
<tr>
<td>C(15)</td>
<td>0.5500(16)</td>
<td>-0.0116(3)</td>
<td>0.8949(6)</td>
<td>0.079(2)</td>
</tr>
<tr>
<td>C(16)</td>
<td>0.6382(13)</td>
<td>0.0335(2)</td>
<td>0.8429(5)</td>
<td>0.0619(14)</td>
</tr>
</tbody>
</table>

Table 3. Bond lengths [Å] and angles [°] for 457.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length [Å]</th>
<th>Bond</th>
<th>Length [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1)--C(1)</td>
<td>1.386(4)</td>
<td>N(1)--C(8)</td>
<td>1.400(4)</td>
</tr>
<tr>
<td>N(1)--C(9)</td>
<td>1.475(4)</td>
<td>C(1)--N(2)</td>
<td>1.341(5)</td>
</tr>
<tr>
<td>C(1)--S(1)</td>
<td>1.674(4)</td>
<td>N(2)--C(2)</td>
<td>1.394(4)</td>
</tr>
<tr>
<td>C(2)--C(7)</td>
<td>1.392(5)</td>
<td>C(2)--C(3)</td>
<td>1.398(5)</td>
</tr>
<tr>
<td>C(3)--C(4)</td>
<td>1.375(6)</td>
<td>C(4)--C(5)</td>
<td>1.398(6)</td>
</tr>
<tr>
<td>C(5)--C(6)</td>
<td>1.375(6)</td>
<td>C(6)--C(7)</td>
<td>1.396(5)</td>
</tr>
<tr>
<td>C(7)--C(8)</td>
<td>1.455(5)</td>
<td>C(8)--O(1)</td>
<td>1.231(4)</td>
</tr>
<tr>
<td>C(9)--C(10)</td>
<td>1.521(5)</td>
<td>C(10)--C(11)</td>
<td>1.508(5)</td>
</tr>
<tr>
<td>C(11)--C(16)</td>
<td>1.373(7)</td>
<td>C(11)--C(12)</td>
<td>1.379(6)</td>
</tr>
<tr>
<td>C(12)--C(13)</td>
<td>1.382(7)</td>
<td>C(13)--C(14)</td>
<td>1.379(10)</td>
</tr>
<tr>
<td>C(14)--C(15)</td>
<td>1.351(11)</td>
<td>C(15)--C(16)</td>
<td>1.393(8)</td>
</tr>
</tbody>
</table>
\begin{align*}
C(1)-N(1)-C(8) & : 124.0(3) \\
C(8)-N(1)-C(9) & : 116.0(3) \\
N(2)-C(1)-S(1) & : 120.6(3) \\
C(1)-N(2)-C(2) & : 125.2(3) \\
C(7)-C(2)-N(2) & : 120.8(3) \\
C(4)-C(3)-C(2) & : 120.0(4) \\
C(6)-C(5)-C(4) & : 118.6(4) \\
C(1)-N(2)-C(2) & : 121.2(4) \\
C(2)-C(7)-C(8) & : 120.6(3) \\
C(7)-C(2)-C(3) & : 123.1(3) \\
C(6)-C(7)-C(8) & : 119.2(3) \\
C(2)-C(7)-C(6) & : 119.8(3) \\
C(7)-C(2)-C(3) & : 116.3(3) \\
C(4)-C(3)-C(2) & : 120.6(3) \\
C(5)-C(6)-C(7) & : 118.9(3) \\
C(6)-C(7)-C(8) & : 121.4(3) \\
C(2)-C(7)-C(6) & : 118.6(4) \\
O(1)-C(8)-C(7) & : 123.9(3) \\
O(1)-C(8)-C(7) & : 116.9(3) \\
N(1)-C(9)-C(10) & : 120.7(4) \\
C(16)-C(11)-C(12) & : 118.5(4) \\
C(12)-C(11)-C(10) & : 120.1(5) \\
C(14)-C(13)-C(12) & : 121.2(6) \\
C(14)-C(15)-C(16) & : 120.7(6) \\
C(14)-C(15)-C(16) & : 120.8(6) \\
\end{align*}

\begin{table}
\begin{center}
\begin{tabular}{cccc}
 & x & y & z & U \\
\hline
H(2) & 0.429(9) & 0.2667(16) & 0.467(4) & 0.031 \\
H(3) & 0.7257 & 0.3472 & 0.4749 & 0.039 \\
H(4) & 1.0961 & 0.3954 & 0.5750 & 0.044 \\
H(5) & 1.3229 & 0.3644 & 0.7448 & 0.042 \\
H(6) & 1.1726 & 0.2856 & 0.8176 & 0.034 \\
H(9A) & 0.2224 & 0.1383 & 0.6852 & 0.033 \\
H(9B) & 0.4439 & 0.1469 & 0.7951 & 0.033 \\
H(10A) & 0.5779 & 0.0917 & 0.6024 & 0.042 \\
H(10B) & 0.8140 & 0.1032 & 0.7070 & 0.042 \\
H(12) & 0.2055 & 0.0241 & 0.6154 & 0.061 \\
H(13) & 0.0636 & -0.0513 & 0.7031 & 0.087 \\
\end{tabular}
\end{center}
\end{table}

Table 4. Hydrogen coordinates and isotropic displacement parameters (Å²) for 457.
Table 5. Torsion angles [°] for 457.

<table>
<thead>
<tr>
<th>Torsion Angle</th>
<th>Torsion Angle</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(8)--N(1)--C(1)--N(2)</td>
<td>C(9)--N(1)--C(1)--N(2)</td>
<td>-3.2(5) 179.0(3)</td>
</tr>
<tr>
<td>C(8)--N(1)--C(1)--S(1)</td>
<td>C(9)--N(1)--C(1)--S(1)</td>
<td>177.5(3) -0.4(4)</td>
</tr>
<tr>
<td>N(1)--C(1)--N(2)--C(2)</td>
<td>S(1)--C(1)--N(2)--C(2)</td>
<td>1.6(5) -179.1(3)</td>
</tr>
<tr>
<td>C(1)--N(2)--C(2)--C(7)</td>
<td>C(1)--N(2)--C(2)--C(3)</td>
<td>0.2(5) -179.8(3)</td>
</tr>
<tr>
<td>C(7)--C(2)--C(3)--C(4)</td>
<td>N(2)--C(2)--C(3)--C(4)</td>
<td>0.5(6) -179.6(3)</td>
</tr>
<tr>
<td>C(2)--C(3)--C(4)--C(5)</td>
<td>C(3)--C(4)--C(5)--C(6)</td>
<td>0.4(6) -0.8(6)</td>
</tr>
<tr>
<td>C(4)--C(5)--C(6)--C(7)</td>
<td>N(2)--C(2)--C(7)--C(6)</td>
<td>0.2(6) 179.1(3)</td>
</tr>
<tr>
<td>C(3)--C(2)--C(7)--C(6)</td>
<td>N(2)--C(2)--C(7)--C(8)</td>
<td>-1.0(5) -0.4(5)</td>
</tr>
<tr>
<td>C(3)--C(2)--C(7)--C(8)</td>
<td>C(5)--C(6)--C(7)--C(2)</td>
<td>179.5(3) 0.6(5)</td>
</tr>
<tr>
<td>C(5)--C(6)--C(7)--C(8)</td>
<td>C(1)--N(1)--C(8)--O(1)</td>
<td>-179.9(3) -176.7(3)</td>
</tr>
<tr>
<td>C(9)--N(1)--C(8)--O(1)</td>
<td>C(1)--N(1)--C(8)--C(7)</td>
<td>1.2(5) 2.9(5)</td>
</tr>
<tr>
<td>C(9)--N(1)--C(8)--C(7)</td>
<td>C(2)--C(7)--C(8)--O(1)</td>
<td>-179.1(3) 178.6(4)</td>
</tr>
<tr>
<td>C(6)--C(7)--C(8)--O(1)</td>
<td>C(2)--C(7)--C(8)--N(1)</td>
<td>-0.9(6) -1.0(5)</td>
</tr>
<tr>
<td>C(6)--C(7)--C(8)--N(1)</td>
<td>C(1)--N(1)--C(9)--C(10)</td>
<td>179.5(3) 91.5(4)</td>
</tr>
<tr>
<td>C(8)--N(1)--C(9)--C(10)</td>
<td>N(1)--C(9)--C(10)--C(11)</td>
<td>-86.5(4) 175.5(3)</td>
</tr>
<tr>
<td>C(9)--C(10)--C(11)--C(16)</td>
<td>C(9)--C(10)--C(11)--C(12)</td>
<td>-88.1(5) 90.5(5)</td>
</tr>
<tr>
<td>C(16)--C(11)--C(12)--C(13)</td>
<td>C(10)--C(11)--C(12)--C(13)</td>
<td>-0.6(7) -179.2(4)</td>
</tr>
<tr>
<td>C(11)--C(12)--C(13)--C(14)</td>
<td>C(12)--C(13)--C(14)--C(15)</td>
<td>0.2(9) 0.6(10)</td>
</tr>
<tr>
<td>C(13)--C(14)--C(15)--C(16)</td>
<td>C(12)--C(11)--C(16)--C(15)</td>
<td>-1.0(10) 0.3(8)</td>
</tr>
<tr>
<td>C(10)--C(11)--C(16)--C(15)</td>
<td>C(14)--C(15)--C(16)--C(11)</td>
<td>178.9(5) 0.6(10)</td>
</tr>
</tbody>
</table>
Table 6. Hydrogen bonds for 457 [Å and °].

<table>
<thead>
<tr>
<th>D–H...A</th>
<th>d(D–H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(2)–H(2)...O(1')</td>
<td>0.85(5)</td>
<td>1.97(5)</td>
<td>2.787(4)</td>
<td>162(4)</td>
</tr>
</tbody>
</table>

Symmetry operations for equivalent atoms

' x–1/2,–y+1/2,z–1/2
Appendix B. Publications
Radical reactions with 3H-quinazolin-4-ones: synthesis of deoxyvasicinone, mackinazolinone, luotonin A, rutaecarpine and tryptanthrin†

W. Russell Bowman,* Mark R. J. Elsegood, Tobias Stein and George W. Weaver*

Received 27th September 2006, Accepted 19th October 2006
First published as an Advance Article on the web 3rd November 2006
DOI: 10.1039/b614075k

Alkyl, aryl, heteroaryl and acyl radicals have been cyclised onto the 2-position of 3H-quinazolin-4-one. The side chains containing the radical precursors were attached to the nitrogen atom in the 3-position. The cyclisations take place by aromatic homolytic substitution hence retain the aromaticity of the 3H-quinazolin-4-one ring. The highest yields were obtained using hexamethylditin to facilitate cyclisation rather than reduction without cyclisation. The alkaloids deoxyvasicinone 2, mackinazolinone 3, tryptanthrin 4, luotonin A 5 and rutaecarpine 8 were synthesised by radical cyclisation onto 3H-quinazolin-4-one.

The 3H-quinazolin-4-one ring system is important to the biological activity of both naturally occurring alkaloids, biosynthesised from anthranilic acid, and pharmaceuticals. The alkaloids include vasicinone 1, mackinazolinone 3, tryptanthrin 4, luotonin A 5, B 6 and E 7 and rutaecarpine 8. All 3H-quinazolin-4-one natural products have interesting biological activity and have therefore been extensively investigated for useful pharmaceutical activity. The 3H-quinazolin-4-one ring is regarded as a 'privileged structure' in combinatorial synthesis. These are structures which represent molecules that are capable of binding at multiple sites with high affinity and facilitate more rapid discovery of useful medicinally active compounds.

Our study involved the development of protocols involving radical cyclisation for the synthesis of polycyclic 3H-quinazolin-4-ones (Scheme 1). The protocols have also been used for the synthesis of novel polycyclic quinazolinones including the natural products deoxyvasicinone 2, mackinazolinone 3, tryptanthrin 4, luotonin A 5 and rutaecarpine 8.

Radical cyclisation onto heteroarenes has been developed in recent years to considerable advantage for the synthesis of novel polycyclic heteroarenes. Examples of these cyclisations include: a. alkyl radicals onto pyrroles,9 imidazoles,10 pyrazoles,10 indoles,10,12,13 1,2,3-triazoles,14 pyridinium salts,15 and quinolones;16 b. acyl radicals onto pyrroles,16 quinolines,17 pyridines18 and arenes;19 c. aryl radicals onto indoles,10,11 pyrroles,9 pyridones,11 and 5-amino- and 5-hydroxyuracils/1 quinolines,15 quinolines15 and pyridines.16

All of the above cyclisations are 'oxidative' i.e. the intermediate π-radicals are not reduced by triorganometal hydrides [e.g. tributyltin hydride (Bu3SnH)] as normally observed for these reagents. The cyclisations proceed by aromatic homolytic substitution with abstraction of hydrogen in a rearomatisation process. Aromatic homolytic substitution has been recently reviewed17 and the mechanism of Bu3SnH mediated 'oxidative' cyclisation elaborated.18 The pyrimidin-4-one ring of the quinazolin-4-ones has some aromaticity and therefore aromatic homolytic substitution could be predicted, and was observed in our studies, as shown in Scheme 1 (9 to 11 via the π-radical 10). However, the lower aromaticity could favour reductive cyclisation in which the intermediate π-radical 10 is intercepted by reagents such as Bu3SnH. Our prediction that radical cyclisation onto the quinazolin-4-one ring would be 'oxidative' was supported by the 'oxidative' radical cyclisation onto related ring systems, e.g. pyrimidine-2,4-diones,20,21
quinoxinones and pyridinones. However, the lower aromaticity in the pyrrole ring of indole, facilitates both reductive and oxidative cyclisation depending on the conditions. The radical intermediate 10, whether a π-radical or not, is still a strongly stabilised aniline radical and therefore the rate of reduction by Bu3SnH to yield 12 is probably too low to be competitive with loss of hydrogen to yield the oxidised product. The reactions could also be regarded as exo-cyclisations onto imines which are well known.

We used two general methodologies to synthesise the radical precursors. Firstly, heteroarenes containing an NH group facilitate N-alkylation and provide a suitable synthetic route to radical precursors for cyclisation. The radical leaving group is introduced as part of the N-alkyl substituent. Secondly, there is a wide variety of protocols for the synthesis of 3-substituted quinazolinones from the 2-position of the quinazolinone as shown in Scheme 3.

Aryl radical cyclisation

Aryl radicals have been successfully cyclised onto pyrroles, indoles and pyrazoles. Aryl radicals are very reactive and the most employed as required. Even syringe pump addition of Bu3SnH, with either Et3B (r.t.) or AIBN (110 °C) as initiators, gave only 19. We considered that the lack of cyclisation could be due to 1,5-hydrogen abstraction from the 2-position of the quinazolinone as shown in Scheme 3 (route b: 18 to 21). This possibility was eliminated by repeating the reaction with Bu3SnD which gave only deuteration on the aryl radical position, and none on the 2-position of the quinazolinone, and these results indicated that the rate of cyclisation was not favourable compared to reduction with Bu3SnH. Therefore, hexamethylditin (Me3SnI) was used so that the intermediate radical (cf. 9 in Scheme 1) was not reduced. The reaction was repeated with (Me3Sn)2 which resulted in a small amount of the cyclised product 20 (18%) as well as uncyclised 19 (65%) as the major compound.

The analogous six-membered ring aryl radical cyclisation using precursor 17 gave an excellent yield of the cyclised product 22 (92%) with no reduction using (Me3Sn)2 (Scheme 4). The reaction with Bu3SnH again gave largely the uncyclised reduced product 23 (55%) but did also yield a small amount of the cyclised product 22 (8%). We have observed before that 5-ring cyclisation of radicals onto heteroarenes is difficult due to strain whereas 6-ring cyclisation is more favourable. Therefore, the higher yields of cyclisation from 17 relative to 16 are expected. The results indicate that the oxidative route is dominant (i.e. loss of hydrogen from the π-radical intermediate 10) for cyclisation onto quinazolinones as observed for other heteroarenes.

Scheme 4 Reagents and conditions: i, (Me3Sn)2, tert-BuPH, reflux, 92% (22), 9% (23); ii, Et3B, PhMe, r.t., Bu3SnH (fast addition), 8% (22), 55% (23).

3H-4-Oxooquinazolin-2-yl radical cyclisation

As shown in Scheme 5 we envisaged an alternative route to polycyclic quinazolinones by cyclisation of 3H-4-oxooquinazolin-2-yl radicals onto pendant side chains attached to the 3-position instead of cyclisation of side chain radicals onto the quinazolinone moiety. 3H-4-Oxooquinazolin-2-yl radicals, generated photolytically from 3-(but-1-en-4-yl)-3H-quinazolin-4-one, have been reported to undergo 5-exo cyclisation onto the pendant alkene. The procedure however was not suitable for synthetic application. During our studies, a synthesis of luotonin A analogues using 3H-4-oxooquinazolin-2-yl radicals was reported.

Scheme 5 Reagents and conditions: i, Br2, EtOH, 50% (26); ii, NaH, DMF, BrBr, 46% (27); NaI, PhCH3, CH3Br, 6% (28); iii, 27, Bu3SnH, Et3B, slow addition, 62% (19); Bu3GeH, Et3B, slow addition, 41% (19); (Me3Sn)2, tert-BuPH, reflux, 4% (23), 97% (22).
The plan of our protocol was to alkylate 2-bromo-3H-quinazolin-4-one to provide suitable radical precursors (Scheme 5). 2-Bromo-3H-quinazolin-4-one was prepared by an adapted literature procedure from 2-mercapto-3H-quinazolin-4-one. Alkylations with activated halides, e.g. benzyl bromide, allyl bromide and methyl iodide were successful but alkylations with unactivated halides were very poor or failed. Alkylation with activated propargyl halides has also recently been reported. A maximum yield (6%) of alklylation was obtained with 2-phenylethyl bromide and alkylation with 3-phenylpropyl bromide failed. Alkylation with the corresponding triflates failed to give improved results. We suggest that the anion of 2-bromo-3H-4-oxoquinazolinone cannot lose a proton which is possibly significant in directing the 3-alkyl side chain in place could also be converted to the 2-bromo-3H-4-oxoquinazolinone to provide suitable radical precursors.

Various protocols were attempted to circumvent the alkylation problem. For instance, the successful bromination suggested that other 2-thioxo-2,3-dihydro-1H-quinazolin-4-ones with the 3-alkyl side chain in place could also be converted to the corresponding 2-bromo compounds. In order to test this hypothesis, 2-(phenylethyl)-2-thioxo-2,3-dihydro-1H-quinazolin-4-one was prepared by ring synthesis using the reaction between 2-(methyleneamino)phenyl isothiocyanate and amines. The structure of 30 was confirmed by X-ray crystallography (Fig. 1). However, the bromination procedure yielded only the corresponding disulfide instead of the 2-bromoquinazolinone 28.

The mechanism of these brominations is unknown. The most likely intermediate is the sulfenyl bromide which can either lose a proton and undergo substitution with bromide, or undergo direct substitution with bromide. The intermediate sulfenyl bromide from 2-(phenylethyl)-2-thioxo-2,3-dihydro-1H-quinazolin-4-one cannot lose a proton which is possibly significant in directing the reaction towards disulfide formation. Examples from the literature show bromoimine formation for thioureas with N,N'-substitution (i.e. can lose a proton) and disulfides and sulfides from thioureas.

We carried out radical cyclisations with the precursors and 28 (Scheme 5). As observed for the cyclisation of precursor 16, the 5-membered ring cyclisation from 27 was unfavourable with both Bu3SnH and Bu3GeH and yielded only the reduced uncyclised product. Radical abstraction of hydrogen from Bu3GeH is 20 times slower than from Bu3SnH which would favour cyclisation over reduction, but still only reduction was observed from the intermediate 29a. When (Me3Sn)2Bu3SnH was used, a moderate yield of cyclisation product (27%) was obtained but reduction was still the major route (41%). The 6-membered ring cyclisation from precursor 28 via 29b gave a quantitative yield of cyclisation to 22 with none of the reduced compound 23 formed. This cyclisation could either proceed by 5-exo cyclisation followed by a neophyl rearrangement or directly by 6-endo cyclisation. The results show that radical cyclisation can be used onto, or from, the quinazolinone moiety, but that a useful method of synthesis of the 2-bromoquinazolinones is still required. Addition of 3H-4-oxoquinazolin-2-yl radicals onto isonitriles has also recently been reported.

Alkyl radical cyclisation

Several methods have been used for the synthesis of both deoxyvasicinone 2 and mackinazolinone 3 but none involving radicals. Our protocol using cyclisation of an alkyl radical onto 3H-quinazolin-4-one rings was aimed at the synthesis of both natural products (Scheme 6). Routine alkylation yielded the required radical precursors. An initial study with Bu3SnH using precursor 31a yielded only reduced uncyclised product 33a (78%). The rate of cyclisation of the alkyl radical is obviously slow, and it is intercepted by Bu3SnH to yield the respective reduced uncyclised product 33a. Therefore, (Me3Sn)2Bu3SnH was used to facilitate cyclisation which gave moderate yields of deoxyvasicinone 2 and mackinazolinone 3.

The use of Et3B mediated reactions gave better yields of both 2 and 3 (Scheme 6). We suggest that the ethyl radical generated from the reaction between Et3B and oxygen is able to abstract iodine from the radical precursors to yield alkyl radicals and ethyl iodide, which is lost from the reaction. The hydrogen in the π-radical intermediates (cf. 10) is also most likely abstracted by ethyl radicals to facilitate rearomatisation. Unusually, some cyclised reduced material was obtained suggesting disproportionation was also taking place. GCMS analysis of the crude product from the Et3B facilitated reaction with 31a indicated traces (ca. 5%) of 2-ethyl-3-propyl-3H-quinazolin-4-one and 2-ethyl-3-propyl-3H-quinazolin-4-one with atom labelling.

![Fig. 1 X-Ray structure of 3-(2-phenylethyl)-2-thioxo-2,3-dihydro-1H-quinazolin-4-one 30 with atom labelling.](image-url)
Scheme 6
Reagents and conditions: i, NaH, DMF, a. 1-chloro-3-iodopropane, 51%; b. 1-chloro-4-iodobutane, 65%; ii, NaI, acetone, reflux, 53% (31a), 67% (31b); iii, (Me3Sn)2, tert-BuPh, reflux, hv: a. 31a gave 20% (2), 15% (32a) and 6% (33a); b. 31b gave 30% (3), 22% (32b) and 0% (33b); Et3B (20 equiv.), tert-BuPh, air (yields by 1H NMR analysis): a. 31a gave 40% (2), 10% (32a) and 30% (33a); b. 32b gave 61% (3), 23% (32b) and 0% (33b).

3-pentyl-3H-quinazolin-4-one indicating addition of ethyl radicals to intermediates. No uncyclised reduced material 33b was observed for the 6-ring cyclisation of 31b. Again, this provides evidence that 5-ring cyclisation onto heteroarenes is strained and that 6-ring cyclisation (84% of cyclised products) is more favourable.

Heteroaryl radical cyclisation

During our studies, Pd(0) catalysed cyclisations were reported for 2-bromoindole and 2-bromoquinoline moieties onto the 2-position of quinazolin-4-one to yield rutaeacarpine in poor yield (24% maximum) and luotonin A in good yield (86%) respectively.

Luotonin A. The luotonins make up a group of pyrroloquinazolino-quinoline alkaloids of which the pentacyclic luotonin A B 5, B 6 and E 7 are of most interest. The luotonins are used in traditional Chinese medicine and are reported to exhibit activity against a range of ailments including rheumatism, inflammation, influenza, hepatitis and leukemia. Luotonin A has been reported to show activity as an antitumour compound and is an inhibitor for human DNA topoisomerase 1. The compounds were isolated some ten years ago and luotonin A has been a popular synthetic target. Two radical syntheses of luotonin A have been reported; a radical domino cyclisation reaction using vinyl radical cyclisation onto nitriles and a bimolecular reaction involving radical addition onto isonitriles.

The synthesis of luotonin A 5 using 2-quinolinyl radicals was carried out as a further example of cyclisation onto the quinazolinone moiety (Scheme 7). The use of 2-quinolinyl radicals in cyclisation has two literature precedents; synthesis of camptothecin involving radical addition onto isonitriles.

The required starting material 34 was prepared by a literature procedure from 2-chloroquinoline-2-carbaldehyde and reacted under several radical conditions. Unusually, the yield from 5-exo cyclisation was significant. The use of (Me3Sn)2 gave a reasonable yield (53%) of luotonin A 5 but also some of the reduced product 36. The yield was high in comparison to the 5-exo cyclisation of the phenyl analogue. Luotonin A was even obtained with Bu2SnH and Bu3GeH, clearly indicating that the cyclisation is more favourable for 2-quinolinyl radicals as compared to phenyl radicals. The yield was not as high as the Pd(0)-catalysed cyclisation but further optimisation could improve the yield.

Rutaeacarpine 8. Rutaeacarpine 8 has been synthesised by a wide variety of protocols but none involving radicals. Our synthesis of Rutaeacarpine uses indol-2-yl radical cyclisation onto the quinazolinone motif as a further example of natural product synthesis using the general protocol (Scheme 8). Indol-2-yl radicals have been previously used in radical cyclisation onto pendant 1-alkenes and -arenes in H-translocation reactions towards the synthesis of mitotimycin.
...the NH. The use of NBS has been reported in the literature but the reaction is very sensitive, and can be adversely affected by the NH and side chain groups.48-51 We finally used an adapted literature procedure48 whereby the 3H-quinoxalin-4-one moiety was used as the 'protective group' for the indole side chain (i.e. 39). The bromination was rapid and short reaction times and low temperature gave the best yields of the 2-bromoindole precursor 40. As reported in the literature for 2-bromoindoles,48-51 decomposition of the product was a problem until it was purified. The free indole-NH did not interfere and was therefore not protected. A higher temperature gave the best yields of the 2-bromoindole precursor 39, bromination of the quinazolinone ring is unlikely to be the cause of the decomposition.

3-[2-(1H-indol-3-yl)ethyl]-3(2H)-quinazolinone 39 was prepared by alkylation of 4(3H)-quinazolinone with 3-(2-bromoethyl)-1H-indole 38 which was prepared by bromination of 3,4-dihydro-1H-indoles,48-51 decom­

Radical cyclisation of the precursor 40 gave the predicted 6-exo cyclisation of the intermediate radical 41 to yield rutaecarpine 8. Only cyclisation was obtained when (Me\textsubscript{3}Sn)\textsubscript{2} was used and even reductive conditions with Bu\textsubscript{3}SnH yielded a small amount of cyclisation product. The 6-exo cyclisation yields were similar to the equivalent cyclisation with aryl radicals (see Scheme 4). Longer reactions times led to decomposition.

Acyl radicals—synthesis of tryptanthrin

Tryptanthrin has been synthesised by a range of protocols.52-55

We prepared an authentic sample of tryptanthrin 4 by a literature procedure in order to obtain full spectroscopic data for comparison.55 Aromatic acyl radical cyclisation has recently been shown to be a useful synthetic technique.56-59 Although 5-membered ring cyclisation was reported to be unsuccessful,59 we have shown that 5-ring cyclisation onto the 3H-quinazolin-4-one moiety was possible (e.g. the luotonin synthesis). Therefore, we carried out the syntheses as shown in Scheme 9. The asymmetric CO bond in the intermediate acyl radical 44 is strong enough to avoid decarbonylation which is a rapid reaction for alkyl-CO radicals.59 However, it is possible that we failed to isolate products resulting from CO loss.

The starting material 42 was prepared in one step by a literature procedure56 and converted to the acyl selenide 43 by standard procedures.60 Several conditions were used based on literature reports.57-59 The highest yield (15\%) was obtained by photolysis at rt. Although the yield is poor, we believe this is the first example of a 5-exo acyl radical cyclisation onto a heterocycle. When AIBN was added to the reaction, an intractable mixture was obtained.

Heating under reflux was not required and UV photolysis alone was enough to facilitate the reaction, presumably by homolysis of the carbonyl-SePh bond. In a blank reaction, heating under reflux in benzene yielded only unaltered starting material after 24 h. The mechanism is unclear, other than 5-exo acyl radical cyclisation followed by hydrogen abstraction from the resulting \(\pi \)-radical intermediate. Large amounts of diphenyl diselenide were isolated indicating CO-Se bond homolysis.

We also investigated the 6-membered ring cyclisation because these had proved to be more successful than the 5-ring cyclisations.

\[\text{Scheme 9 Reagents and conditions: i, Bu}_3\text{P, PhSeSePh, DCM, 73\% (42); ii, LiOH, EtOH, H}_2\text{O; iii, Bu}_3\text{P, PhSeSePh, DCM, 68\% (47); iv, (Me}_3\text{Sn), tert-BuPh, reflux, hv, 3\% (4); v, (Me}_3\text{Sn), PhH, reflux, hv, 10h, 11\% (4); vi, (Me}_3\text{Sn), PhH, reflux, hv, 0\% (4); vii, (Me}_3\text{Sn), PhH, reflux, hv, 39\% (50).} \]
Conclusions
Our results show that radical cyclisation on the quinazolinoine moiety can be used for synthesis. The results show that radical cyclisation is also favourable for radicals centred on the 2-position of the quinazolinoine moiety but that a better method for the synthesis of 2-bromoquinazolinoines is still required.

Experimental

General
Commercial dry solvents were used in all reactions except for light petroleum and ethyl acetate which were distilled from CaCl₂ and dichloromethane which was distilled from CaH₂. Light petroleum refers to the bp 40-60 °C fraction. Sodium hydride was obtained as 60% dispersion in oil. A 2.5 M solution of n-butyl lithium (1.35 g, 12 mmol) was added to 3H-quinazolin-4-one 13 (1.17 g, 8 mmol) in dry DMF (50 cm³) and the mixture stirred for 1 h under an atmosphere of nitrogen. 2-Iodobenzyl bromide 14 (2.84 g, 9.6 mmol) was added and the reaction mixture stirred for a further 16 h. The mixture was diluted with DCM and was washed with H₂O and brine. The organic layer was dried and evaporated under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent and light petroleum-EtOAc (2:1) as eluent yielding 3-(2-iodobenzyl)-3H-quinazolin-4-one 16 as pale yellow crystals (1.82 g, 5.9 mmol, 38%), mp 119-120 °C; Found: M⁺, 362.9987; 362.9989; νₐ₅(OH)(thin film)/cm⁻¹ 3055, 1689, 1470, 1069, 1027; 1230, 1469, 773; 60 PF₂,., νₐ₅(N) requires 362.9989; δ₁ H (400 MHz) and δ₁ C (100 MHz) NMR spectra were recorded using a Bruker AC-250 spectrometer. Spectra were obtained from solutions in CDCI₃ with TMS as the standard for δ₁ H NMR spectra and deuteriochloroform as the standard for δ₁ C NMR spectra unless otherwise specified.

Chemical shifts are given in parts per million (ppm) and J values in hertz (Hz). Assignments were made using a combination of COSY and HMBC analysis. Mass spectra were recorded on a Jeol SX102 high resolution mass spectrometer or were run by the EPSRC MS Service at the University of Wales, Swansea. GCMS was carried out on a Fisons Broker DPX-400 series mass spectrometer using a 15 m x 0.25 mm DB-5 GC column. TLC using silica gel as absorbent and light petroleum-EtOAc (2:1) as eluent yielding 3-(2-iodobenzyl)-3H-quinazolin-4-one 17 as colourless crystals (1.93 g, 5.9 mmol, 38%), mp 119-120 °C; Found: M⁺, 362.9987; 362.9989; νₐ₅(OH)(thin film)/cm⁻¹ 3055, 1689, 1470, 1069, 1027; 1230, 1469, 773; 60 PF₂,., νₐ₅(N) requires 362.9989; δ₁ H (400 MHz) and δ₁ C (100 MHz) NMR spectra were recorded using a Bruker AC-250 spectrometer. Spectra were obtained from solutions in CDCI₃ with TMS as the internal standard for δ₁ H NMR spectra and deuteriochloroform as the standard for δ₁ C NMR spectra unless otherwise specified.

Chemical shifts are given in parts per million (ppm) and J values in hertz (Hz). Assignments were made using a combination of COSY and HMBC analysis. Mass spectra were recorded on a Jeol SX102 high resolution mass spectrometer or were run by the EPSRC MS Service at the University of Wales, Swansea. GCMS was carried out on a Fisons Broker DPX-400 series mass spectrometer using a 15 m x 0.25 mm DB-5 GC column. TLC using silica gel as absorbent and light petroleum-EtOAc (2:1) as eluent yielding 3-(2-iodobenzyl)-3H-quinazolin-4-one 17 as colourless crystals (1.93 g, 5.9 mmol, 38%), mp 119-120 °C; Found: M⁺, 362.9987; 362.9989; νₐ₅(OH)(thin film)/cm⁻¹ 3055, 1689, 1470, 1069, 1027; 1230, 1469, 773; 60 PF₂,., νₐ₅(N) requires 362.9989; δ₁ H (400 MHz) and δ₁ C (100 MHz) NMR spectra were recorded using a Bruker AC-250 spectrometer. Spectra were obtained from solutions in CDCI₃ with TMS as the internal standard for δ₁ H NMR spectra and deuteriochloroform as the standard for δ₁ C NMR spectra unless otherwise specified.

Chemical shifts are given in parts per million (ppm) and J values in hertz (Hz). Assignments were made using a combination of COSY and HMBC analysis. Mass spectra were recorded on a Jeol SX102 high resolution mass spectrometer or were run by the EPSRC MS Service at the University of Wales, Swansea. GCMS was carried out on a Fisons Broker DPX-400 series mass spectrometer using a 15 m x 0.25 mm DB-5 GC column. TLC using silica gel as absorbent and light petroleum-EtOAc (2:1) as eluent yielding 3-(2-iodobenzyl)-3H-quinazolin-4-one 17 as colourless crystals (1.93 g, 5.9 mmol, 38%), mp 119-120 °C; Found: M⁺, 362.9987; 362.9989; νₐ₅(OH)(thin film)/cm⁻¹ 3055, 1689, 1470, 1069, 1027; 1230, 1469, 773; 60 PF₂,., νₐ₅(N) requires 362.9989; δ₁ H (400 MHz) and δ₁ C (100 MHz) NMR spectra were recorded using a Bruker AC-250 spectrometer. Spectra were obtained from solutions in CDCI₃ with TMS as the internal standard for δ₁ H NMR spectra and deuteriochloroform as the standard for δ₁ C NMR spectra unless otherwise specified.
Cyclisation reactions of 3-(2-iodobenzyl)-3H-quinazolin-4-one 16.

General procedure for Bu₃SnH reactions using Et₃B as initiator. A solution of Bu₃SnH (0.76 g, 2.6 mmol) and 3-(2-iodobenzyl)-3H-quinazolin-4-one (0.44 g, 1.2 mmol) in dry toluene (40 cm³) was deoxygenated under an atmosphere of nitrogen and stirred for 1 h. Triethylborane (3.6 cm³, 3.6 mmol) was added via a needle through a septum; the needle was then left open to allow air (oxygen) to enter the reaction and the mixture stirred for 1 h. More triethylborane (3.6 cm³, 3.6 mmol) was added and the reaction mixture stirred for a further 10 h. Dilute hydrochloric acid was added to extract the protonated quinazolone products into the aqueous layer. The aqueous layer was washed with light petroleum to remove tributyltin residues. The aqueous layer was basified with sodium hydroxide to pH 14 and extracted with DCM. The combined organic layers were dried and evaporated under reduced pressure yielding the reduced product 3-benzyl-3H-quinazolin-4-one 19 (35%).

General procedure for slow addition of Bu₃SnH to 3-(2-iodobenzyl)-3H-quinazolin-4-one (0.36 mmol) was added and the reaction mixture was cooled in an ice bath and 25 cm high, wall thickness = 1 mm), was purged with nitrogen for 30 min. The mixture was stirred and evaporated under reduced pressure to a small volume. The residue was purified using column chromatography with light petroleum as eluent to remove the tert-butyldimethyl. A precipitate of polymeric dibutylamine was produced. The product was eluted with ethyl acetate and further worked up as for the general procedure for Bu₃SnH reactions using Et₃B as initiator. 3-Benzyl-3H-quinazolin-4-one 19 and cyclised 12H-isoindolo[1,2-b]quinazolin-10-one 20 were obtained as an inseparable white solid. Analysis using 1H NMR spectroscopy showed 19 (65%) and 20 (18%). 12H-isoindolo[1,2-b]quinazolin-10-one 20 was identified in the mixture and therefore not fully characterised. δH 5.19 (2 H, s, CH₂), 7.28-7.35 (3 H, m), 7.51 (1 H, ddd, J 8.0, 8.0, 1.6, 7-H), 7.81 (1 H, ddd, J 8.0, 8.0, 1.6, 8-H), 7.85 (1 H, ddd, J 8.0, 1.6, 6-H), 8.21 (1 H, d, J 7.2, 4-H) and 8.41 (1 H, dd, J 8.0, 1.6, 9-H); δC 49.6 (CH₂), 120.6 (C), 123.4 (CH), 123.5 (CH), 126.4 (CH), 1264 (CH), 127.3 (CH), 128.8 (CH), 132.3 (CH), 132.6 (C), 134.2 (CH), 139.6 (C), 154.9 (C) and 160.5 (C). The data were the same as that in the literature. GC-MS analysis showed the ratio of the two products to be in the ratio 4:1 of the reduced produced and cyclised product: 12H-isoindolo[1,2-b]quinazolin-10-one; Rf 22.8 min, m/z 234 (M⁺, 25%), 205 (24), 179 (15), 151 (16), 130 (25), 102 (28), 91 (100) and 77 (20) and 3-benzyl-3H-quinazolin-4-one; Rf 24.5 min, m/z 236 (M⁺, 51%), 130, (37), 91 (100) and 65 (27).

3-(2-Deutério)benzyl-3H-quinazolin-4-one. The general procedure for reductive reactions with Et₃B with Bu₃SnH as reductant were used with 3-(2-iodobenzyl)-3H-quinazolin-4-one 16 to yield 3-(2-deutério)benzyl-3H-quinazolin-4-one as colourless crystals (41%); mp 100-101 °C (Found: M⁺, 238.1084. C₁₅H₁₂N₂O requires 238.1085); νns(thin film)/cm⁻¹ 3421, 2359, 1670, 1610, 1471, 1396, 1153 and 773; δC 5.21 (2 H, s, CH₂), 7.38-7.29 (4 H, m, PhH), 7.52 (1 H, dd, J 8.1, 1.4, 6-H), 7.79-7.69 (2 H, m, 7-H), 8.12 (1 H, s, 2-H) and 8.34 (1 H, dd, J 8.1, 2.16, 5-H); δC 49.7 (CH₂), 104.1 (CD), 122.2 (4a-C), 126.9 (5-H), 127.4 (6-H), 127.5 (8-H), 128.0 (CH), 128.3 (CH), 129.0 (CH), 134.3 (7-H), 135.8 (C), 146.4 (2-H), 148.0 (8a-C) and 161.1 (4-C). The data were identical to that in the literature. The procedure was repeated using TMMSS in place of Bu₃SnH to yield 3-benzyl-3H-quinazolin-4-one (19) (35%).

General procedure for slow addition of Bu₃SnH reactions using Et₃B as initiator. The general procedure for Bu₃SnH reactions using Et₃B as initiator was repeated except that Bu₃SnH was added by a syringe pump over 6 h to give 3-benzyl-3H-quinazolin-4-one 19 (30%).

General procedure for slow addition of Bu₃SnH reactions using AIBN as initiator. The general procedure for Bu₃SnH reactions using Et₃B as initiator was repeated except that AIBN (0.25 molar equiv.) was used as initiator and the reaction was heated under reflux for 6 h to yield 3-benzyl-3H-quinazolin-4-one 19 (45%).

Hexamethylditin. The general procedure for reactions using photolysis and hexamethylditin yielded 5,6-dihydroisoquinolino[1,2-b]quinazolin-8-one 22 as colourless crystals (92%); mp 195-197 °C (lit., 196 °C); Found: M⁺, 249.1025. C₁₆H₁₂N₂O requires 249.1022; νns(thin film)/cm⁻¹ 3421, 1682, 1590, 1556, 1471, 1150, 762 and 692; δC 3.06 (2 H, t, J = 6.4, CH₂), 4.35 (2 H, t, J = 6.4, NCH₂), 7.22-7.13 (1 H, m, ArH), 7.43-7.37 (3 H, m, ArH), 7.71-7.69 (2 H, m, ArH), 8.25 (1 H, d, J = 7.6, ArH) and 8.44-8.41 (1 H, m, ArH); δC 27.4 (CH₂), 39.5 (NCH₂), 120.7 (C), 126.6 (CH), 126.8 (CH), 127.5 (CH), 127.6 (CH), 127.9 (CH), 129.5 (C), 131.7 (CH), 134.2 (CH), 137.0 (C), 147.7 (C) and 161.0 (CO); m/z (El) 237 (M⁺, 48%), 235 (21), 120 (30), 92 (100), 91 (75), 65 (21) and 51 (23).

Cyclisation reactions of 3-(2-bromo/phenyl)ethyl)-3H-quinazolin-4-one 17.

3-Benzyl-2-bromo-3H-quinazolin-4-one 27. The general procedure for alkylation of 3H-quinazolin-4-one (3H) yielded 3-benzyl-2-bromo-3H-quinazolin-4-one 27 as colourless crystals (46%); mp 109-111 °C; Found: M⁺, 315.0128. C₁₅H₁₀BrN₂O requires 315.0128; νns(thin film)/cm⁻¹ 3457, 3064, 1653, 1558, 1494, 1430, 1339, 1234, 1134, 1074, 1023, 901 and 819; δC 55.6 (2 H, s CH₂), 7.29-7.37 (5 H, m, PhH), 7.52 (1 H, ddd, J 8.2, 8.1, 2.0, 7-H), 7.66 (1 H, dd, J 8.2, 1.2, 8-H), 7.79 (1 H, ddd, J 8.1, 8.0, 1.2, 6-H) and 8.27 (1 H, dd, J 8.0, 2.0, 5-ArH); δC 51.8 (CH₂), 120.5 (4a-C),

This journal is © The Royal Society of Chemistry 2007
2-Bromo-3-(phenylethyl)-3H-quinazolin-4-one 28. The general procedure for alkylation of 3H-quinazolin-4-ones (12 h) yielded 2-bromo-3-(phenylethyl)-3H-quinazolin-4-one as colourless crystals (6%), mp 109–110 °C; Found: M+, 328.0206; C, 69.73; H, 5.62; N, 8.3%. The material was used without further purification.

Cycloalkylation of 3-benzyl-2-bromo-3H-quinazolin-4-one 27.

Bu3SnH and Et3B. The general procedure for Bu3SnH reactions was used except that the Bu3SnH was not added.

Et3B only. The general procedure for Bu3SnH and Et3B reactions was used except that the Bu3SnH was not added. 1H NMR spectral analysis showed 2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one 2 (40%), 2,3,3a,4-tetrahydro-1H-pyrrolo[2,1-b]quinazolin-9-one 32a (10%) and 3-propyl-3H-quinazolin-4-one 33a (30%).

Cycloalkylation reactions of 3-(3-iodobutyl)-3H-quinazolin-4-one 31b.

(Me3Sn)2 and photolysis. The general procedure for reactions using photolysis and hexamethylditin (24 h) yielded: 6,7,8,9-tetrahydropyrido[2,1-b]quinazolin-11-one 32b as colourless crystals (30%), mp 94–95 °C; Found: M+, 201.1020; C, 60.66; H, 6.02; N, 3.76%. The material was used without further purification.

Cycloalkylation of 2-bromo-3-(phenethyl)-3H-quinazolin-4-one 28.

Hexamethylditin. The general procedure for reactions using photolysis and hexamethylditin yielded an inseparable mixture of 2H-quinolino[1,2-b]quinazolin-10-one 20 (27%) and 3-benzyl-3H-quinazolin-4-one 19 (41%). The yields were estimated using 1H NMR spectroscopic analysis.

Cycloalkylation reactions of 3-(3-iodopropyl)-3H-quinazolin-4-one 31a.

Hexamethylditin. The general procedure for reactions using photolysis and hexamethylditin with 3-(3-iodopropyl)-3H-quinazolin-4-one 31a (24 h) yielded: 2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one 2 as colourless crystals (20%), mp 190–192 °C; Found: M+, 203.1179; v, (thin film)/cm⁻¹ 3398, 3058, 2938, 2224, 1652, 1518, 1416, 1213, 1102, 754 and 692; δ, 1.52–1.49 (2 H, m), 1.91–1.75 (4 H, m), 2.66–2.59 (1 H, m, 9-H), 4.25 (1 H, m, NH), 4.64–4.59 (1 H, m, 9-H), 4.78 (1 H, dd, J = 13.5, 3.1), 5.25 (1 H, m, 8-H), 5.67 (1 H, d, J = 7.1, ArH), 6.79 (1 H, dd, J = 7.8, 2.9, 1.0, ArH), 7.27–7.22 (1 H, m, ArH) and 7.90 (1 H, dd, J = 7.8, 1.6, ArH); δ, 22.3 (CH2), 24.2 (CH3), 33.4 (CH2), 40.2 (CH3), 68.5 (CH113), 113.7 (CH115), 115.2 (CH113), 118.8 (CH97), 128.7 (CH134), 145.9 (CH2) and 164.3 (CH3); (m/z) (EI) 202 (M+, 30%), 146 (119), 98 (42), 55 (79) and 41 (100).
d, J 1.8, ArH), 8.35-8.32 (1 H, m, ArH) and 8.99 (1 H, d, J 1.8, ArH); δ 4.77 (7H, CH), 122.1 (CH), 126.9 (CH), 127.3 (CH), 127.7 (2 x CH), 127.9 (CH), 128.6 (2 x C), 129.3 (CH), 130.0 (CH), 134.6 (CH), 135.4 (CH), 145.9 (CH), 147.9 (C), 148.0 (C), 150.1 (CH) and 161.1 (C); m/z (EI) 287 (M+, 45%), 270 (42), 132 (100), 115 (70), 89 (20), and 63 (21).

Bu₃SnH and Et₃B. The general procedure for Bu₃SnH reactions using Et₃B as initiator were used with Bu₃SnH added by syringe pump over 5 h and the reaction stirred for a further 5 h to yield luotonin A (51%) and 3-[(quinolin-3-yl)methyl]-3H-quinazolin-4-one (36%). When the Bu₃SnH was added at the beginning of the reaction only 3-[(quinolin-3-yl)methyl]-3H-quinazolin-4-one was obtained (53%).

Bu₃GeH and Et₃B. Luotonin A' (18%) and [(3-quinolin-3-yl)methyl]-3H-quinazolin-4-one (36%) were obtained.

Cyclisation of 3-[(2-bromoindol-3-yl)ethyl]-4(3H)-quinazolinone 40.

Bu₃SnH addition. The general procedure for Bu₃SnH reactions using Et₃B as initiator were used with Bu₃SnH added by syringe pump over 12 h to yield rutaecarpine 41 (15%), mp 254-255 °C (lit., 256-257°C). The data for rutaecarpine were the same as obtained in the previous synthesis.

2-(4-Oxo-4H-quinazolin-3-yl)selenobenzoic acid Se-phenyl ester (Me₃Sn) 1 and photolysis.

The general procedure for radical reactions of 2-(4-oxo-4H-quinazolin-3-yl)selenobenzoic acid was added to the cooled reaction mixture to extract the protonated quinazoline products into the aqueous layer. The aqueous layer was washed with light petroleum to remove tin residues. The aqueous layer was basified with sodium hydroxide to pH 14 and extracted with DCM. The combined organic layers were dried and evaporated to dryness under reduced pressure. The residue was purified by column chromatography using silica gel as absorbent and light petroleum–EtOAc (2:1) yielding tryptanthrin 4 as yellow crystals (0.02 g, 0.07 mmol, 13%).

mp 215-217 °C (lit. 215-217 °C). Found: MH+, 249.0659. C₁₂H₁₀N₄O₂ requires 249.0660 (M+, 51%); 220 (22), 130 (28), 102 (54), 90 (100), 76 (81), 63 (59) and 50 (74). The data were identical to the literature data and those of authentic material. Repeating the reaction for 10 h gave a yield of 11% of 4. The procedure was repeated using the same conditions but with the addition of AIBN (2.0 equiv.) for 5 h. An intractable mixture was obtained. A blank reaction with no sunlamp photolysis or added AIBN, in benzene heated under reflux for 24 h gave a quantitative recovery of unaltered starting material 43.

(Me₂Sn)₂, sunlamp. The reaction between 2-(4-oxo-4H-quinazolin-3-yl)selenobenzoic acid Se-phenyl ester 47 (0.29 g, 0.72 mmol) and hexamethyldisilazane (0.70 g, 2.15 mmol) was carried out in tert-butylbenzene (20 cm³). The mixture was heated under reflux and irradiated with a sunlamp for 4 h. Dilute hydrochloric acid was added to the cooled reaction mixture to extract the protonated quinazoline products into the aqueous layer. The aqueous layer was washed with light petroleum to remove tin residues. The aqueous layer was basified with sodium hydroxide to pH 14 and extracted with DCM. The combined organic layers were dried and evaporated under reduced pressure. The residue was purified by column chromatography using silica gel as absorbent and light petroleum–EtOAc (2:1) yielding tryptanthrin 4 (5 mg, 0.02 mmol, 3%).

Sunlamp. When the sunlamp irradiation alone was used for 30 min, the highest yield of tryptanthrin (15%) was obtained.

2-(4-Oxo-4H-quinazolin-3-yl)methylbenzoic methyl ester 45.

N-Bromosuccinimide (19.0 g, 107.1 mmol, 1.5 equiv.), methyl 2-methylbenzoate (10.0 cm³, 71.4 mmol) and AIBN (1.16 g, 7.1 mmol) were refluxed in cyclohexane in the dark for 5 h. The reaction mixture was cooled to 0 °C and filtered. The filtrate was diluted with DCM, washed with H₂O (3 x 50 cm³) and brine (50 cm³) and then dried and evaporated under reduced pressure. The unpurified methyl 2-bromomethylbenzoate was added to a solution of 3H-quinazoline-4-one (7.3 g, 50 mmol) and potassium tert-butoxide (0.73 g, 6.5 mmol) in DMSO (50 cm³) that had been stirred for 40 min. The resulting mixture was stirred for 12 h then diluted with DCM, and the solution washed with H₂O and brine. The organic layer was dried and evaporated under reduced pressure. The crude product was purified by column chromatography using silica gel as absorbent and light petroleum–EtOAc (4:1) as eluent yielding 2-(4-oxo-4H-quinazolin-3-yl)methylbenzoic methyl ester as a pale oil 45 (49.8 g, 16.6 mmol, 34%).

The reaction mixture was stirred for 24 h and the crude product was purified by column chromatography using silica gel as absorbent and light petroleum–EtOAc (2:1) yielding tryptanthrin 4 as yellow crystals (0.02 g, 0.07 mmol, 13%). mp 215-217 °C (lit. 215-217 °C). Found: MH+, 249.0659. C₁₂H₁₀N₄O₂ requires 249.0660 (M+, 51%); 220 (22), 130 (28), 102 (54), 90 (100), 76 (81), 63 (59) and 50 (74). The data were identical to the literature data and those of authentic material. Repeating the reaction for 10 h gave a yield of 11% of 4. The procedure was repeated using the same conditions but with the addition of AIBN (2.0 equiv.) for 5 h. An intractable mixture was obtained. A blank reaction with no sunlamp photolysis or added AIBN, in benzene heated under reflux for 24 h gave a quantitative recovery of unaltered starting material 43.

(Me₂Sn)₂, sunlamp. The reaction between 2-(4-oxo-4H-quinazolin-3-yl)selenobenzoic acid Se-phenyl ester 47 (0.29 g, 0.72 mmol) and hexamethyldisilazane (0.70 g, 2.15 mmol) was carried out in tert-butylbenzene (20 cm³). The mixture was heated under reflux and irradiated with a sunlamp for 4 h. Dilute hydrochloric acid was added to the cooled reaction mixture to extract the protonated quinazoline products into the aqueous layer. The aqueous layer was washed with light petroleum to remove tin residues. The aqueous layer was basified with sodium hydroxide to pH 14 and extracted with DCM. The combined organic layers were dried and evaporated under reduced pressure. The residue was purified by column chromatography using silica gel as absorbent and light petroleum–EtOAc (2:1) yielding tryptanthrin 4 (5 mg, 0.02 mmol, 3%).

Sunlamp. When the sunlamp irradiation alone was used for 30 min, the highest yield of tryptanthrin (15%) was obtained.

2-(4-Oxo-4H-quinazolin-3-yl)methylbenzoic methyl ester 45.

N-Bromosuccinimide (19.0 g, 107.1 mmol, 1.5 equiv.), methyl 2-methylbenzoate (10.0 cm³, 71.4 mmol) and AIBN (1.16 g, 7.1 mmol) were refluxed in cyclohexane in the dark for 5 h. The reaction mixture was cooled to 0 °C and filtered.
The reaction between 2-[(4-oxo-4H-quinazolin-3-yl)methyl]seleno methyl ester 45 (1.93 g, 6.14 mmol) in ethanolic LiOH was used to convert 2-[(4-oxo-4H-quinazolin-3-yl)methyl]benzoic acid 46 into the phenyl ester 47. The same procedure as for the seleno-ester 43 was followed to obtain the benzoic acid 46 as a colourless oil (43), 89 (46), 77 (68), mp 314-316°C. Analysis for compound 46: C 64.57, H 3.19, N 8.04; C 65.43, H 3.29, N 7.85. The structure of 46 was confirmed by X-ray crystallography.

11-Hydroxy-11H-isooquinolino[3,2-b]quinazolin-6,13-dione 50. The reaction between 2-[(4-oxo-4H-quinazolin-3-yl)methyl]seleno benzoic acid Se-phenyl ester 47 as colourless crystals (0.31 g, 0.71 mmol, 68%), mp 76.5-76°C; Found: M+ (C16H10N2O3), 281.0918. C16H10N2O3 requires M+ (C16H10N2O3), 281.0921; m/z (EI) 262 (M+, 31%), 146 (35), 132 (86), 118 (38), 104 (47), 90 (58), 77 (100), 63 (28), 51 (32) and 43 (53). The carboxylic acid 46 was converted to the acyl selenide without further characterisation.

11-Hydroxy-11H-isooquinolino[3,2-b]quinazolin-6,13-dione 50. The reaction between 2-[(4-oxo-4H-quinazolin-3-yl)methyl]seleno benzoic acid Se-phenyl ester 47 was carried out in benzene (0.099 g, 0.3 mmol) and hexamethyldisilazane (0.099 g, 0.3 mmol) was carried out in benzene (20 cm3) and was refluxed and irradiated with a UV lamp for 3 h. The benzene was removed under vacuum and the crude product was purified by column chromatography using silica gel as absorbent and light petrol–EtOAc (4 : 1) as eluent yielding 11-hydroxy-11H-isooquinolino[3,2-b]quinazolin-6,13-dione 50 as colourless needles (0.011 g, 0.04 mmol, 39%), mp 176-177°C (CHCl3). Found: (M + H)+, 279.0768. C15H10N2O3 requires 279.0764; m, (thin film/cm−1) 3421, 2919, 2360, 1699, 1683, 1653, 1559, 1465, 1260, 1100, 963, 910, 728 and 667; δ, 5.29 (1H, d, J 4.6, OH). 7.21 (1H, d, J 4,6, CH), 7.69-7.65 (2H, ArH), 7.49 (1H, d, J 8.0, ArH), 7.37-7.34 (2H, m, ArH), 8.10 (1H, d, J 8.0, ArH), 8.32 (1H, dd, J 7.6,1.2, ArH) and 8.39 (1H, dd, J 8.0,1.2, ArH); δ, 75.5 (CH), 121.9 (C), 126.7 (CH), 128.0 (CH), 128.7 (CH), 129.2 (C), 129.6 (CH), 130.0 (CH), 133.6 (CH), 135.7 (CH), 137.0 (C), 142.6 (ArC), 146.7 (C), 162.7 (C) and 176.6 (C); m/z (Electrospray) 421 (M+, 7%), 263 (60), 156 (45), 129 (100), 102 (43), 89 (46), 77 (60), 63 (23) and 51 (33).

Acknowledgements

We thank the EPSRC (DTA award) and Loughborough University for a Postgraduate Studentship (T. S.), and the EPSRC Mass Spectrometry Unit, Swansea University, Wales for mass spectra. We also thank the EPSRC National Crystallography Service at Southampton University, UK for collecting X-ray diffraction data for compound 50.

References

†CCDC reference numbers 622451 and 622452. For crystallographic data in CIF or other electronic format see DOI: 10.1039/b614075k.
Synthesis of heteroarenes using cascade radical cyclisation via iminyl radicals†

W. Russell Bowman,* Martin O. Cloonan, Anthony J. Fletcher and Tobias Stein
Department of Chemistry, Loughborough University, Loughborough, Leicestershire,
UK LE11 3TU. E-mail: w.r.bowman@lboro.ac.uk; Fax: +44 (0)1509 223925;
Tel: +44 (0)1509 22256

Received 31st January 2005, Accepted 23rd February 2005
First published as an Advance Article on the web 10th March 2005

Cascade radical cyclisation involving homolytic aromatic substitution has been used to synthesise new tetracycles. Treatment of vinyl iodide radical precursors with Me3Sn+ radicals (from hexamethylidyinin) yielded intermediate vinyl radicals which undergo 5-exo cyclisation onto suitably placed nitrile groups to yield intermediate iminyl radicals. The iminyl radicals undergo aromatic homolytic substitution via 6-endo cyclisation (or 5-exo cyclisation followed by neoplyl rearrangement) with loss of hydrogen (H+) in a H-abstraction step. We propose that this abstraction was facilitated by tert-butylmercapto radicals (t-BuO−) radicals from di-tert-butyl peroxide or methyl radicals, generated from breakdown of trimethylstannyl radicals (Me3Sn⋅). The biologically active alkaloids mappicine and luotonin A were synthesised using the new methodology. A novel radical conversion of nitriles to primary amides is proposed.

Introduction

Tetracyclic and pentacyclic alkaloids with the 2,3-dihydro-1H-pyrrolo[3,4-b]quinoline ring system making up rings A–C have been of intense interest in recent years. In particular, interest has centred around the anticancer and antiviral camptothecin 1 and analogues mappicine 2 and mappicine ketone (nothapodytine) B 3. The chemistry and pharmacology of camptothecins and analogues have been fully reviewed. Camptothecin11 and mappicine11,4,6 have been popular targets of synthesis and a wide variety of protocols have been reported including hetero Diels–Alder reactions, condensation to form the pyridone ring in the synthesis and biomimetic synthesis. Few of these studies have used radical methodology. The major studies using radical synthesis have been reported by Curran and co-workers who have synthesised camptothecin and analogues13 and mappicine via bimolecular radical additions of radicals derived from 6-iodo-1H-pyrind-2-ones onto aryl-isonitriles. A synthesis of camptothecin using cyclisation of 2-quinolinyl radicals onto pyridones has also been reported.4 Synthetic studies towards mappicine using radical cyclisation on enamides have also been reported.9

Another group of alkaloids containing the 2,3-dihydro-1H-pyrrolo[3,4-b]quinoline ring system are the recently discovered pyrroloquinazolinoquinoline alkaloids, luotonins A 4, B 5 and E 6 and other congeners.10 Although the compounds were only isolated four years ago10 there are already several syntheses of luotonin A, which has proved a popular synthetic target.11 None of the syntheses have used radical protocols. The luotonins are used in traditional Chinese medicine and are reported to exhibit activity against a range of ailments including rheumatism, inflammation, influenza, hepatitis and leukaemia.10,11 More recently, luotonin A has shown great promise as an antitumour compound and is a poison for human DNA topoisomerase I.11

In our studies of radical reactions of nitriles we showed that the cyclisation onto the nitrile group could be used in synthesis with understanding of the reactivity and rates of reactions.12 The rates of cyclisation onto nitriles are slow, and faster, competing reactions need to be avoided in the design of syntheses. For example, the rate cyclisation of 4-cyanobutyl radicals [(CH3(CH2)3CN] is slow (4 × 10−6 s−1) at 25 °C.12 We showed that 5-exo cyclisation of reactive aryl and vinyl radicals was faster than alkyl radicals thus providing more suitable reactions for synthesis and that cyclisation onto nitriles to generate intermediate iminyl radicals could be used for further tandem cyclisations onto alkenes.13 We have developed these studies to a new protocol for the synthesis of the 2,3-dihydro-1H-pyrrolo[3,4-b]quinoline ring system 7 which depends on several radical reactions in a cascade sequence (Scheme 1).14

† Electronic supplementary information (ESI) available: preparation and analytical details for heteroarene compounds. See http://www.rsc.org/suppdata/ob/b5/b501509f/
step of the cascade process (8 to 7), the newly formed iminyl radical intermediate 8 undergoes 6-endo cyclisation followed by neoply rearrangement) cyclisation onto the arene. The cyclisation reactions of the iminyl radical have been extensively studied by Zard and co-workers. 17 The final step is formally an aromatic homolytic substitution in which the iminyl radical substitutes for a hydrogen radical (H'). Aromatic homolytic substitution is a much under-used and maligned synthetic reaction but importantly is usefully regioselective when intramolecular. 18 In recent years many of the aromatic homolytic substitutions have been facilitated using tributyltin hydride to excellent synthetic application. 19 While these reactions can be formally described as aromatic homolytic substitution, the exact mechanism is unclear. 18

With the dual aim of further studying cyclisation onto nitriles and investigating its use in synthesis, we report the application of the methodology to the synthesis of mappicine (2) and mappicine ketone (nothapodytine B; 3) and luotonin A (4).

Results and discussion

Mappicine 2 and nothapodytine B 3

Our first investigation was the synthesis of mappicine 2 and mappicine ketone 3. We sought to synthesise the simplest relay 21 which has been used in the synthesis of mappicine, thereby constituting a formal synthesis. 20,21 The use of the electron-withdrawing substituent also provides an interesting mechanism of this step is not clear but we have proposed that the abstracting species are methyl radicals from the breakdown of abstractin by the trimethyltin radical. The rate of bromine abstraction by methyl radicals is fast (10^6 - 10^7 M^-1 s^-1), 24 and therefore, abstraction of iodine by Me3Sn· will be faster and is unlikely to be rate determining in the reaction sequence. Both abstraction of iodine from vinyl bromides is fast (10^6 - 10^7 M^-1 s^-1) and abstraction of hydrogen from methoxy groups is unfortunately common due to the formation of a stable radical.

The radical precursor 16 was synthesised as shown in Scheme 2 using a similar procedure to our earlier study. 14,26 2,6-Dibromopyridine-4-carboxylic acid was synthesised from the commercially available citrazinic acid 11 in an 80% yield. 27 S2Ar substitution with methoxide yielded 2-bromo-6-methoxypyridine-4-carboxylic acid 12 in a 96% yield. The usual procedure30 for the introduction of the nitrile group using CuCN and decomposition of the resultant copper complex to liberate the aryl nitrile proved problematic and black tars were observed. Therefore, the copper(II)-catalysed cyanation was carried out on the methyl ester, methyl 2-bromo-6-methoxypyridine-4-carboxylic acid, instead of the free carboxylic acid. Various alternative procedures were attempted but the yield of 40% could not be further maximised, indicating that the ester group hinders the reaction. The product 13 was only obtained when methanol was used in place of water in the decomposition of the copper complex. The low yield is likely to be due to some hydrolysis to 2-cyano-6-methoxypyridine-4-carboxylic acid which binds to the copper in the reaction. Conversion of 13 to the cyanopyridone 14 was carried out using a literature procedure. 24 The cyanopyridone 14 was alkylated with the α-iodocinnamyl bromide 25 using conditions that normally favour N-alkylation of pyridones. 26 The radical precursor 16 was obtained in only a 32% yield. The low yield was due to O-alkylation (17, 30%) and the formation of small amounts of methyl 6-cyano-1,2-dihydro-1-methyl-2-oxo-4-pyridine-carboxylate. The reasons for the low N-selectivity are not obvious.

The radical precursor 16 was reacted under similar conditions to those reported in our earlier paper, 26 i.e. hexamethylditin (7.5 equiv) in tert-butylbenzene with sun lamp irradiation (Scheme 3). Hexamethylditin was used in order to prevent trapping of intermediate radicals with a reagent such as tributyltin hydride. Irradiation and heating at 150 °C gave considerable decomposition with an isolated yield of methyl 9-oxo-9,11-dihydroindolizinol[1,2-b]quinoline-7-carboxylate 21 of only 15%. Reaction at a lower temperature of 85 °C with a smaller amount of hexamethylditin (2 equiv) gave a better yield of 21 (50% crude, 21% purified). These lower yields were disappointing compared with yields of up to 80% in earlier studies but indicate that the ester group makes the substrate 16 more reactive. 14 The use of di-tert-butyl peroxide as an initiator 4 largely resulted in decomposition with only a trace of 21. This may be related to the presence of the methoxy functional group, as decomposition under these conditions was also observed in the synthesis of the tetracyclic rings A-D of nothapodytine A which contains a 1-methoxy substituent. 14

Hydrogen-abstraction from methoxy groups is unfortunately common due to the formation of a stable radical.

\[ext{Reagents and conditions: } i, \text{Me}_3\text{Sn}, \text{tert-ButPh, hv, 85 °C, 24 h, 21% (21)}. \]

Scheme 3

\[\text{Reagents and conditions: } i, \text{POBr}_3, 180 °C, 30% \text{; ii, NaOMe, MeOH, 60 °C, 96% (12); iii, MeOH, conc. H_2SO_4, 87% iv, CuCN, DMF, reflux, 48 h, 40% (13); v, TMSCl, NaMeCN, 63% (14); vi, 15, NaH, LiCl, DME, DMF, 32% (16), 30% (17).} \]

Scheme 2

\[\text{Reagents and conditions: } i, \text{POBr}_3, 180 °C, 30% \text{; ii, NaOMe, MeOH, 60 °C, 96% (12); iii, MeOH, conc. H_2SO_4, 87% iv, CuCN, DMF, reflux, 48 h, 40% (13); v, TMSCl, NaMeCN, 63% (14); vi, 15, NaH, LiCl, DME, DMF, 32% (16), 30% (17).} \]
trimethyltin radicals.14 Blank reactions without hexamethylditin gave traces of 21 indicating iodine-homolysis or Diels-Alder cyclisation as possible minor mechanisms.

Luotonin A (4)

Our initial aim for the synthesis of luotonin A 4 was to use the same methodology, i.e. to alkylate a suitable α-cyano NH-heteroarone (Scheme 4) and carry out the [4 + 2] cascade radical cyclisation as exemplified in Scheme 3 for the synthesis of mappicine and our earlier studies.28 To this end we decided to use 4-oxo-3,4-dihydroquinazoline-2-carbonitrile 25 (Scheme 4). This model would allow study of the quinazoline ring system in the radical cascade protocol.

![Diagram](https://via.placeholder.com/150)

Scheme 4 Reagents and conditions: i, pyridine, DCM, rt, 24 h, 92% (24); ii, NH₃, dioxane, rt, 5 d, 98% (25); iii, NaH, LiCl, DME, DMF; rt, 5 h; 15 gave 16% (27), 0% (29, X = I), 6% (30) and 26 gave 45% (28), 9% (29, X = H), <1% (31); NaH, DMF, 60 °C, 20 h, 26 gave 44% (28), trace (29, X = H), 0% (31).

4-Oxo-3,4-dihydroquinazoline-2-carbonitrile 25 was synthesised in high yield (98%) from ethyl 2-[(4-chloro-5H-1,2,3-dithiazol-5-yliden)amino]benzene-1-carboxylate 24 and ammonia. This represents a new route to quinazoline-2-carbonitriles. This unusual reaction between amines and the (4-chloro-5H-1,2,3-dithiazol-5-yliden)amino ring system, developed by Rees co-workers,5 proved useful in our studies. A similar application has been reported by Kim and Mohanta for the 2-cyanoquinazoline system.25 The protocol relies on the reaction between Appel's salt23 and anthranilate esters (e.g. 22) to yield 24.24

The procedure for regioselective N-alkylation over O-alkylation which has been successfully applied to 6-cyano-pyrindones4 and to 6-iodopyridones23 again gave only small amounts of O-alkylation (Scheme 4). In contrast, O-alkylation can be selectively facilitated over N-alkylation by using the Mitsunobu reaction with alcoholic instead of halides for quinazolines and isoquinolines based on low (hard) polarisability factors.24 We have observed the same O-selectivity with the Mitsunobu reaction when attempting alkylation of 6-oxo-1,6-dihydro-pyridine-2-carbonitrile with 1-[(Z)-3-bromo-2-iodoprop-1-enyl]benzene 15 and DEAD.25 However, in this study the protocol was largely N-selective but it was not completely selective between alkylation at the 1-N and 3-N and the isomers were difficult to separate. At ambient temperatures, alkylation of 25 with cinnamyl bromide 26 gave a moderate yield of the required 3-N alkylated product 28. When the temperature was raised, O-alkylation (to 29, X = H) and 1-N alkylation (to 31) were largely eliminated. Unfortunately, the yields for alkylation with 1-[Z]-3-bromo-2-iodoprop-1-enyl]benzene14 15 were poor and the two regio-isomers could not be separated even after extensive chromatography.

We therefore developed a protocol which would be regioselective to the required 3-N product. Ethyl 2-[(4-chloro-5H-1,2,3-dithiazol-5-yliden)amino]benzene-1-carboxylate 24 was reacted with the required cinnamylamines 32 and 33 (Scheme 5). The cinnamylamines were prepared by standard methodology. Both cinnamylamines gave moderate yields of the required products 27 and 28. The quinazoline 28 was synthesised as a possible product of unsuccessful cascade cyclisation for comparison and identification purposes. The yields could not be optimised but are similar to reported reactions of similar compounds in the literature.26 An excess (1.5 equiv.) of Appel’s salt was used to ensure complete conversion of ethyl 2-aminobenzoate 22 because it co-eluates with the product 24 creating yet further separation problems. The advantage of the Rees method in the synthesis of the radical precursor is that it avoids the possibility of alkylation at oxygen and 1-N. The Z-stereochimistry of the alkene 27 and the E-stereochimistry of 28 were determined by NOE difference NMR spectroscopy.

Scheme 5 Reagents and conditions: i, THF, rt, 48 h, 32 gave 42% (27); 33 gave 40% (28).

The radical precursor 27 was reacted under the general reaction conditions14 using hexamethylditin (14 equiv.) in tert-butylenzene with sun lamp irradiation at 150 °C for 46 h (Scheme 6). Luotonin A 4 was formed as predicted in 21% yield along with other products (30%, an E/Z isomeric mixture). We initially assumed that the other product was the reduced uncyclised compound 28. However, after independent syntheses of potential products, we realised that the unknown products were an E/Z isomeric mixture of the primary amides 38 and 39. No unaltered starting material or other products were observed in the radical reactions except for large amounts of a polymeric organolinol compound.14

In order to improve the yield of luotonin A, milder conditions using di-tert-butyl peroxide were studied.14 tert-Butoxy radicals
are formed by thermal or photochemical homolysis at lower temperatures and react rapidly with hexamethylditin to yield trimethyltin radicals. The use of tert-butyleroxy radicals also has the advantage of providing a reactive and efficient H-abstractor for the final rearomatisation step (Scheme 6, 36 to 4). The reaction was carried out with 27 (6.33 x 10^{-2} M) and fewer equivalents of hexamethylditin (3.8 equiv.) and di-tert-butyl peroxide (2.0 equiv.) in a sealed tube at 120 °C and for a shorter reaction time (24 h) and yielded luotonin A (30%) and 38/39 (16%). The reaction was repeated at lower dilution (1.47 x 10^{-2} M) to encourage cyclisation over potential bimolecular reactions. None of the unwanted products 38/39 were observed but the yield of luotonin A dropped to 22%. This result indicates a bimolecular reaction in the formation of 38 and 39. However, it was not clear whether formation of 38 and 39 had been prevented or whether there were subtle differences in the conditions of the reaction, e.g. traces of oxygen. All the starting material was consumed in these reactions, therefore, it may be possible to improve the yield under milder conditions and shorter reaction times.

The proposed mechanism of the cascade cyclisation is shown in Scheme 6. 5-exo-Cyclisation of the vinyl radical 34 onto the nitrile yields the iminyl intermediate 35 which undergoes cyclisation onto the phenyl ring (5-exo followed by a neophyl rearrangement, or 6-endo, to 36). In this case both 5-exo and 6-endo routes yield the same product. We have provided evidence in previous examples of cyclisation proceeding via initial 5-exo cyclisation to a spirodienyl intermediate. The abstraction of the hydrogen from the n-radical intermediate 36 to yield luotonin A 4 is formally the second step of the aromatic homolytic substitution. The mechanism of this step is not clear but we have proposed that the abstracting species are methyl radicals from the breakdown of trimethyltin radicals or tert-butoxyl radicals when di-tert-butyl peroxide was used. The synthesis provides a further example, albeit in moderate yield, of our cascade methodology indicating that cyanoquinazolines can also be used and furthermore represents the first synthesis of luotonin A using radical methodology.

In order to gain further mechanistic understanding of the radical reactions of 27, blank reactions were carried out with the radical precursor 27 and also the equivalent non-iodo 3-alkylated compound 28 in which the hexamethylditin (and di-tert-butyl peroxide) were omitted. Both reactions gave near quantitative recovery of unaltered starting materials with only traces of luotonin A (<1%). These blank reactions served several purposes. Firstly, the reaction with 27 proved that the radical reagents were required and hence that the reaction was radical mediated. A putative mechanism initiated by iodine-homolysis is also eliminated by the lack of reaction under these conditions. Secondly, a mechanism involving a purely thermal Diels-Alder reaction followed by loss of hydroiodic acid for the synthesis of luotonin A 4 could be envisaged for 27 but is ruled out by the blank reaction. There is literature precedence for an intramolecular Diels-Alder reaction in which a nitrile functional group behaves as the 2n component, the product in this case was also luotonin A.

The mechanism of formation of the primary amide by-products 38 and 39 is difficult to explain. The products are clearly formed by a radical mechanism because they are not formed in the blank reaction. The most likely scenario is a competing reaction whereby the initial intermediate radical 34 can either undergo cyclisation onto the nitrile or H- abstraction to yield 28 and 37 (Scheme 6). The isomerism to an E/Z mixture can be explained by the radical intermediate 34. We have previously observed the formation of primary amides from reactions between nitriles and hexamethylditin under radical conditions. The mechanism is not obvious but we propose that the most likely explanation is that traces of oxygen react with the trimethylstannyl radicals as shown in Scheme 7. Even with careful freeze-thaw techniques traces of oxygen are difficult to eliminate completely. The nucleophilic peroxyl radicals add to the electrophilic nitrile. The resulting iminyl radicals undergo 1,5-hydrogen abstraction or H-abstraction from the radical intermediates to yield unstable intermediates which rearrange under the high temperature conditions. The rearranged products rapidly hydrolyse on work-up to yield the primary amides. A precedent has been reported for an analogous compound which has an acyl group in place in the iminyl group.

The characterisation of the unknown products 38/39 isolated from the radical reactions was ambiguous and the purification was hindered by two geometrical isomers which co-eluted on chromatography. In order to be certain of the assignment of the structures, possible products were synthesised by unoptimised but unambiguous routes (Scheme 8).

![Scheme 7](image1)

![Scheme 8](image2)
alkylation of 3H-quinazolin-4-one 42. The data for 41 and 43 were similar to the unknown 38 but clearly different, thereby ruling out these structures.

Although unlikely, we considered that a radical rearrangement to the 1-N-substituted 4-oxo-1-[E(3)-phenylprop-2-enyl]-3,4-dihydropyridine-2-carbonitrile 31 may be possible. The nitrile 31 was prepared by an adapted literature procedure for the synthesis of 1-N-substituted 2-cyano-3H-quinazolin-4-ones (Scheme 8). The conversion of the primary amide to the nitrile proved troublesome. The use of phosphorus oxychloride for dehydrating the primary amide to the nitrile led to removal of the cinnamyl group by Sn2 substitution by chloride to the nitrile proved troublesome. The use of phosphorus pentoxide. Light petroleum refers to the bp 60-80 °C.

Commercial dry solvents were used in all reactions except for light petroleum and ethyl acetate which were distilled from CaCl2 and dichloromethane (DCM) which was distilled from phosphorus pentoxide. Light petroleum and ethyl acetate which were distilled from CaCl2 and dried. The solution was evaporated under reduced pressure to give an orange solid which was purified by column chromatography using EtOAc/DCM as eluent to give methyl 6-cyano-1-[Z(2)-iodo-3-phenylprop-2-enyl]-2-oxo-1,2-dihydropyridine-4-carboxylate 17 (1.28 g, 60% yield). The product was analyzed for 1H NMR spectra and deuteriochloroform the standard for 1H NMR spectra and deuterium chloride (DCl) as solutions of CDCl3 with tetramethylsilane (TMS) as the internal standard.

Commercial dry solvents were used in all reactions except for light petroleum and ethyl acetate which were distilled from CaCl2 and dried. The solution was evaporated under reduced pressure to give an orange solid which was purified by column chromatography using EtOAc/DCM as eluent to give methyl 6-cyano-1-[Z(2)-iodo-3-phenylprop-2-enyl]-2-oxo-1,2-dihydropyridine-4-carboxylate 17 (1.28 g, 60% yield). The product was analyzed for 1H NMR spectra and deuteriochloroform the standard for 1H NMR spectra and deuterium chloride (DCl) as solutions of CDCl3 with tetramethylsilane (TMS) as the internal standard.

The mixture was stirred for 15 min at room temperature, [l-(Z)-3-bromo-2-iodoprop-1-enylbenzeno] 15 (1.6 g, 4.97 mmol) added, and the reaction heated at 65 °C for 20 h. The mixture was cooled to room temperature and poured into brine (50 cm3), extracted with EtOAc and dried. The solution was evaporated under reduced pressure to give an orange solid which was purified by column chromatography using EtOAc/DCM as eluent to give methyl 6-cyano-1-[Z(2)-iodo-3-phenylprop-2-enyl]-2-oxo-1,2-dihydropyridine-4-carboxylate 17 (1.28 g, 60% yield). The product was analyzed for 1H NMR spectra and deuteriochloroform the standard for 1H NMR spectra and deuterium chloride (DCl) as solutions of CDCl3 with tetramethylsilane (TMS) as the internal standard.

Our studies report novel cascade radical reactions and have indicated that the methodology shown in Scheme I can be applied to a range of radical precursors. Further studies are underway to apply the general protocol to a wider range of syntheses.

Experimental

Commercial dry solvents were used in all reactions except for light petroleum and ethyl acetate which were distilled from CaCl2 and dichloromethane (DCM) which was distilled off phosphorus pentoxide. Light petroleum refers to the bp 40-60 °C.

Sodium hydride was obtained as a light petroleum oil and was washed with light petroleum. Mps were determined on an Electrothermal 9100 microanalyser.

Commercial dry solvents were used in all reactions except for light petroleum and ethyl acetate which were distilled from CaCl2 and dried. The solution was evaporated under reduced pressure to give an orange solid which was purified by column chromatography using EtOAc/DCM as eluent to give methyl 6-cyano-1-[Z(2)-iodo-3-phenylprop-2-enyl]-2-oxo-1,2-dihydropyridine-4-carboxylate 17 (1.28 g, 60% yield). The product was analyzed for 1H NMR spectra and deuteriochloroform the standard for 1H NMR spectra and deuterium chloride (DCl) as solutions of CDCl3 with tetramethylsilane (TMS) as the internal standard.

The mixture was stirred for 15 min at room temperature, [l-(Z)-3-bromo-2-iodoprop-1-enylbenzeno] 15 (1.6 g, 4.97 mmol) added, and the reaction heated at 65 °C for 20 h. The mixture was cooled to room temperature and poured into brine (50 cm3), extracted with EtOAc and dried. The solution was evaporated under reduced pressure to give an orange solid which was purified by column chromatography using EtOAc/DCM as eluent to give methyl 6-cyano-1-[Z(2)-iodo-3-phenylprop-2-enyl]-2-oxo-1,2-dihydropyridine-4-carboxylate 17 (1.28 g, 60% yield). The product was analyzed for 1H NMR spectra and deuteriochloroform the standard for 1H NMR spectra and deuterium chloride (DCl) as solutions of CDCl3 with tetramethylsilane (TMS) as the internal standard.

The mixture was stirred for 15 min at room temperature, [l-(Z)-3-bromo-2-iodoprop-1-enylbenzeno] 15 (1.6 g, 4.97 mmol) added, and the reaction heated at 65 °C for 20 h. The mixture was cooled to room temperature and poured into brine (50 cm3), extracted with EtOAc and dried. The solution was evaporated under reduced pressure to give an orange solid which was purified by column chromatography using EtOAc/DCM as eluent to give methyl 6-cyano-1-[Z(2)-iodo-3-phenylprop-2-enyl]-2-oxo-1,2-dihydropyridine-4-carboxylate 17 (1.28 g, 60% yield). The product was analyzed for 1H NMR spectra and deuteriochloroform the standard for 1H NMR spectra and deuterium chloride (DCl) as solutions of CDCl3 with tetramethylsilane (TMS) as the internal standard.

The mixture was stirred for 15 min at room temperature, [l-(Z)-3-bromo-2-iodoprop-1-enylbenzeno] 15 (1.6 g, 4.97 mmol) added, and the reaction heated at 65 °C for 20 h. The mixture was cooled to room temperature and poured into brine (50 cm3), extracted with EtOAc and dried. The solution was evaporated under reduced pressure to give an orange solid which was purified by column chromatography using EtOAc/DCM as eluent to give methyl 6-cyano-1-[Z(2)-iodo-3-phenylprop-2-enyl]-2-oxo-1,2-dihydropyridine-4-carboxylate 17 (1.28 g, 60% yield). The product was analyzed for 1H NMR spectra and deuteriochloroform the standard for 1H NMR spectra and deuterium chloride (DCl) as solutions of CDCl3 with tetramethylsilane (TMS) as the internal standard.

The mixture was stirred for 15 min at room temperature, [l-(Z)-3-bromo-2-iodoprop-1-enylbenzeno] 15 (1.6 g, 4.97 mmol) added, and the reaction heated at 65 °C for 20 h. The mixture was cooled to room temperature and poured into brine (50 cm3), extracted with EtOAc and dried. The solution was evaporated under reduced pressure to give an orange solid which was purified by column chromatography using EtOAc/DCM as eluent to give methyl 6-cyano-1-[Z(2)-iodo-3-phenylprop-2-enyl]-2-oxo-1,2-dihydropyridine-4-carboxylate 17 (1.28 g, 60% yield). The product was analyzed for 1H NMR spectra and deuteriochloroform the standard for 1H NMR spectra and deuterium chloride (DCl) as solutions of CDCl3 with tetramethylsilane (TMS) as the internal standard.
irradiated with two 150 W sun lamps at 85 °C for 24 h. The reaction was cooled to room temperature, diluted with methanol and evaporated under reduced pressure. Analysis by LCMS and ¹H NMR spectroscopy showed 21 (50%) along with a number of unidentified products. The residue was purified using column chromatography with an eluent gradient of DCM/MeOH and gave methyl 9-oxo-9,11-dihydronicotinamide[1,2-b]quinoline-7-carboxylate 21 (14.6 mg, 21%), mp 184–185 °C (lit., 185–187 °C) (Found: M⁺, 292.0848. C₈H₁₀N₃O requires 292.0848); δₓ = 3.99 (3 H, s, CO₂Me), 5.30 (2 H, s, -NMe₂), 7.37 (1 H, s, 6-H), 7.66 (1 H, dd, J = 7.5, 7.8, 1.0 Hz, 2-H), 7.81 (1 H, s, 8-H), 7.83 (1 H, dd, J = 7.5, 7.8, 1.2 Hz, 3-H), 7.93 (1 H, dd, J = 7.8, 1.0, 1.8 Hz), 8.24 (1 H, dd, J = 7.8, 1.2, 4-H), 8.39 (1 H, s, 12-H); δᵧ = 50.99 (11 C, 55.39 % MeOH, 100.90 (6-C), 122.45 (8-C), 123.87, 125.31 (1-C, 2-C), 125.99, 120.11 (12-C, 11-C), 132.10, 130.97, 131.46 (12-C, 4-C, 3-C), 140.26 (7-C), 147.13, 149.37 (4a-C, Sb-C), 152.93 (Sa-C), 161.5S (9-C)

The reaction was carried out under similar conditions at 150 °C with a larger excess of hexamethylditin (3.66 mmol) and 16 (0.048 mmol) in tert-butylbenzene (6.5 cm³) which yielded 21 (15%). The reaction was also repeated with the addition of tert-butyl peroxide in a sealed tube and heated which yielded 21 in less than 5%.

4-oxo-3,4-dihydroquinazoline-2-carbonitrile 25

Ethyl 2-[(4-chloro-5H-1,2,3-dithiazol-5-yliden)amino]benzene-1-carboxylate 24 (4.453 g, 14.54 mmol) was added to an anhydrous tetrahydrofuran (20 cm³). Water was added and the reaction mixture was evaporated at 55 °C after the addition of cinnamyl bromide. 28 was observed.

The mixture was stirred for 2 d at room temperature under an atmosphere of nitrogen. The reaction mixture was evaporated under reduced pressure and the residue purified by column chromatography using DCM/light petroleum as eluent to yield 21 (50%). NOE enhancements from CH₂, 6%), 7.32–7.34 (2 H, m, phenyl 2,6-H), 7.41–7.43 (2 H, m, phenyl 2,6-H), 7.85 (1 H, dd, J = 7.9, 7.9, 7.9–H), 7.98 (1 H, d, J = 7.9, 7.9, 5-H); δᵧ = 68.83 (OCH₃), 116.27 and 116.64 (CN, 4a-C), 122.08 (propanol-2-C), 139.60 (2-C), 131.29, 127.68, 135.03 and 135.55 (5,6,7,8-C), 150.50 (8a-C), 166.90 (4-C), the remaining resonances overlap with those of 28; m/z 254 (31%), 230 (9), 171 (4), 153 (4), 131 (49) and 84 (18). 31 was not fully characterised but exhibited a similar mass spectrum using GC-MS.

The alkylation was repeated with 25 (0.275 g) using only NaH and DMF with heating at 65 °C for 20 h after the addition of cinnamyl bromide. 28 (0.203 g, 44%) was obtained with only a trace of the O-alkyl 29 and none of the N-1 alkylated product was observed.

4-oxo-3,4-dihydroquinazoline-2-carbonitrile 28: preparation of the alkylation of 4-oxo-3,4-dihydroquinazoline-2-carbonitrile 25

NaH (93.9 mg, 2.35 mmol) was added slowly with stirring to a solution of 4-oxo-3,4-dihydroquinazoline-2-carbonitrile 25 (0.402 g, 2.35 mmol) in anhydrous dimethyl sulfoxide (4.7 cm³) under an atmosphere of nitrogen. Cinnamyl bromide (0.4611 g, 2.35 mmol) was added after 1 h and the solution stirred at room temperature under nitrogen for 5 h. Water was added and the mixture extracted with DCM. The organic fractions were evaporated under reduced temperature and the residue purified by column chromatography using DCM/light petroleum as eluent to give an inseparable mixture of 4-oxo-3-(E)-3-phenylprop-2-enyl]-3,4-dihydroquinazoline-2-carbonitrile 28 (100%, 254) and 4-[(3-phenylprop-2-enyl]oxo]quinazoline-2-carbonitrile 29 (X = H) (59 mg, 9%). Further elution gave 4-oxo-1-(4-oxo-3-phenylprop-2-enyl]-1,4-dihydroquinazoline-2-carbonitrile 31 (<1%).

Sun lamp irradiation at 150 °C. A solution of 3-(Z)-2-iodo-3-phenylprop-2-enyl]-4-oxo-3,4-dihydroquinazoline-2-carboxylic acid amide 38 (E/Z mixture 2:1)
CONH₂ • 261.1027 C₁₈H₁₁N₃O is a flat-bottomed, two-necked Pyrex flask (5 x 1 cm and 25 cm high, wall thickness = 1 mm), was purged with nitrogen for 30 min. The mixture was irradiated with a combined 300 W sun lamp at 150 °C for 46 h. The reaction was cooled to room temperature, diluted with MeOH and evaporated under reduced pressure to a small volume. The residue was purified using column chromatography with light petroleum as eluent to remove the tert-butylbenzene. Further elution with DCM/diethyl ether gave luotonin A 4 as a white solid (15.4 mg, 21%) and 4-oxo-3-[(E)-3-phenylprop-2-enyl]-3,4-dihydroquinazoline-2-carboxylic acid amide 38/39 ([E/Z mixture = 2.8 : 1] (22.3 mg, 30%) as a mixture. A separation was achieved using preparative silica gel plates and DCM as eluent. Data for 4: mp 277-279 °C (DCM/light petroleum ether (7:1)), found: M⁺ 334.1319 C₁₈H₁₁N₃O requires: 334.1317; νmax (thin film/cm⁻¹) 2359, 1734, 1653, 1596, 1401, 1262, 1151 and 1033; δmax (400 MHz) 1.03 (3 H, t, J = 7.1 Hz, CH₃), 4.14 (2 H, q, J = 7.1, CH₂O), 4.75 (2 H, dd, J = 6.4, 1.4, CH₂N), 5.97 (1 H, dt, J = 15.9, 6.4, propenyl-2-H), 6.35 (1 H, dd, J = 15.9, 1.4, propenyl-3-H), 6.91-7.08 (5 H, m, phenyl-H), 7.23-7.30 (10 H, m, 8-H), 7.48-7.50 (2 H, m, 6-H and 7-H) and 8.04 (1 H, ddd, J = 1.2, 8.1, 5-H); δmax (100 MHz) 161.6 (qC), 160.8 (qC), 146.7 (qC), 146.2 (qC), 135.8 (qC), 134.7 (CH), 128.6 (CH), 128.4 (CH), 127.8 (CH), 127.0 (CH), 126.5 (CH), 122.9 (CH), 121.9 (qC), 63.3 (CH₂), 45.9 (CH₃) and 13.8 (CH₃); m/z (EI) 334 (M⁺, 8%), 281 (100), 145 (5), 115 (30) and 91 (16).

4-oxo-3-[(E)-3-phenylprop-2-enyl]-3,4-dihydroquinazoline-2-carboxylic acid amide 38

4-oxo-3-[(E)-3-phenylprop-2-enyl]-3,4-dihydroquinazoline-2-carboxylic acid ethyl ester 47 (0.90 g, 1.5 mmol) was dissolved in a absolute ethanol (10 cm³) to which was added concentrated aqueous ammonia (100 cm³). The reaction was stirred for 30 min and the resultant precipitate filtered off. The precipitate was washed with water and dried to yield the title compound 38 as a white solid (0.315 g, 69%) (Found M⁺ 334.1319 C₁₈H₁₁N₃O+ requires: 334.1317). The mixture was washed with water and dried to yield the title compound 38 as a white solid (13.8 mg, 22%). The reaction was repeated except that a higher dilution of the mixture. All data agreed with authentic materials.

Acknowledgements

We thank the EPSRC for postdoctoral Research Associate grants (M. O. C and A. J. F) and a DTa grant (T. S.) and the EPSRC Mass Spectrometry Unit, Swansea University, Wales for mass spectra.
References

References:
49. Phase II trials carried out by Cytokinetics, sponsored by GSK, Ispinesib SB-715992.
50. Kentanserin tartrate, Tocris Bioscience, R41468.
51. Quinethazone (Hydromox®, Lederle US).
52. Phase II trials carried out by Collgard Biopharmaceuticals.
53. Other names include Citexal®, Omnyl® and Soverin®.
54. Prazosin hydrochloride salt Minipress® sold by Pfizer.
55. Iressa™ sold by AstraZeneca since 2002.

