This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/
Erratum: Collective excitations in the A phase of 3He

P. N. Brusov

While this paper is mostly concerned with results obtained by the author, a small part reviews the results of other authors. In this part, the placement of two citations in relation to the relevant text is not clear.

This Erratum serves to provide clear and unambiguous acknowledgment to the work of G. E. Volovik and M. V. Khazan. Specifically, Table I, describing the collective modes of 3He and their respective quantum numbers, was taken from Ref. 1. A citation was provided in the text but unfortunately, it does not relate directly to that table.

In addition, the following portion of text was reprinted from Ref. 2: the last paragraph of page 12895 through line 18 of the second column on the next page. Again, a citation was provided in the text but it does not show clearly enough that the equations and text were reprinted from the above reference.

Erratum: Magnetic levitation force and penetration depth in type-II superconductors

J. H. Xu, J. H. Miller, Jr., and C. S. Ting

We list below some typographical mistakes, for which we thank Dr. Mark Coffey for pointing out.

p. 425, l. 13, change Eq. (2.2) to Eq. (2.1).

p. 426, Eqs. (2.9) and (2.10) are missing the prefactor of $\mu_0 m/4\pi$. The integrands are missing a factor of k. In Eq. (2.10), z should not be included in the square root in the exponent.

p. 429, Eq. (3.4): λ^2 in the denominator.

Eq. (3.5): change ρ to $\hat{\rho}$.

Eq. (3.7): the sign of $D_2(k)$ is incorrect.

Eq. (3.8): the factor $\sqrt{k^2+1/\lambda^2-k}$ is extraneous.

In the line below Eq. (3.11): $\alpha'=m\phi_0/2\pi a^3$.

Eqs. (3.12)–(3.14): Delete m factor. Need $1/a^3$ in denominator of α' and β'. Eqs. (3.10)–(3.14) require a 1/2 factor.

Eq. (3.14): ∞ for the upper limit. The typesetting in Eqs. (3.12)–(3.14) is misleading with respect to the Bessel function J_0.

p. 430, l. 2: change Δ_{x+ik} to Δ_{x+id}.
Erratum: Instability in the current-biased 0-π Josephson junction

A. B. Kuklov, V. S. Boyko, and J. Malinsky

[S0163-1829(97)06718-0]

As pointed out by Kato and Imada\(^1\) the condition for the current induced instability in Eq. (6) should be \(\varphi(x=0)=0\). Accordingly, Eqs. (7) should be replaced by \(\lambda_{+}^{-2}(\cos\varphi_{+}-1)+\lambda_{-}^{-2}(\cos\varphi_{-}-1)-J(\varphi_{+}-\varphi_{-})=0\). Equations (11) read \(\varphi_{+}-\varphi_{-}=\pm \pi\), which gives \(I^{\ast}=(2/\pi)\lambda_{+}^{-2}\) in Eq. (12) for the symmetric junction.\(^1\) The value of \(I^{\ast}\) for the strongly asymmetric junction in Eq. (10) is unaffected.

\(^{1}\)T. Kato and M. Imada (unpublished).

Erratum: Ferromagnetism in correlated electron systems: Generalization of Nagaoka’s theorem

Marcus Kollar, Rainer Strack, and Dieter Vollhardt

[S0163-1829(97)05618-X]

Several misprints were found in Table I. The corrected table is below.

<table>
<thead>
<tr>
<th>Case</th>
<th>Condition on (U)</th>
<th>Condition on lattice</th>
<th>Condition on (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>(F>0, \ X\neq t)</td>
<td>(U>U_{c}^{(1)})</td>
<td>any lattice</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1b</td>
<td>(F>0, \ X=t)</td>
<td>(U\geq U_{c}^{(2)})</td>
<td>any lattice</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F=0, \ X=t)</td>
<td>(U>U_{c}^{(2)})</td>
<td>lattice with loops</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erratum: Charge ordering and magnetoresistance in \(\text{Nd}_{1-x}\text{Ca}_{x}\text{MnO}_{3}\)
due to reduced double exchange [Phys. Rev. B 54, 3007 (1996)]

[S0163-1829(97)05718-4]

Figures 3(c) and 3(d) should be along the \([10\overline{1}]\) zone axis, not the \([100]\) zone axis as originally stated, even though the two sets are very similar. Superlattice spots in Fig. 3(d) are still only in the \([010]\) direction, but absent in the orthogonal \([101]\) direction. The argument therein should be modified as follows:

These results demonstrate charge ordering with a modulation wave vector of \(q=(2\pi/a)(0,\frac{1}{2},0)\). The superlattice spots in both \([100]\) and \([010]\) directions along the \([001]\) zone axis probably come from twinned regions of the sample.\(^{1}\) This modification of the details of the charge ordering does not affect the physics of the paper.

We thank Dean Miller for bringing this point to our attention.

Erratum: Spiral phase and spin waves in the quasi-two-dimensional antiferromagnet Ba₂CuGe₂O₇

[Phys. Rev. B 54, 15163 (1996)]

A. Zheludev, G. Shirane, Y. Sasago, N. Koide, and K. Uchinokura

[S0163-1829(97)06818-5]

The corrections listed below do not in any way change the essence of the published paper.
(i) Author list: the correct spelling of the 4th author’s name is N. Koide.
(ii) Abstract, line 3: the propagation vector is \((1 \pm \xi, \pm \xi,0)\).
(iii) Abstract, line 6: \(J_\perp = -0.013\) meV.
(iv) Page 15164, right column, 3rd line from the bottom of page: “Ba₂CuGe₂O₆” should be replaced by “Ba₂CuGe₂O₇”.
(v) Page 15165, left column, line 19: \(\beta = 0.147(0.002)\).
(vi) Figure 6 should be replaced by the following figure (the previous figure caption stays valid):

![Figure 6](image)

FIG. 6. Typical inelastic constant-\(Q\) scans for the single crystal Ba₂CuGe₂O₇ sample measured at \(Q=(1.25,0,0)\) using experimental setup A (a) and at \(Q=(1,0,0.2)\) using setup C (b). The insets schematically show the positions in \(Q\) space where the scans were taken (open and solid circles mark the nuclear and magnetic Bragg reflections, respectively). In both panels lines represent empirical Gaussian fits.
Erratum: Theory of the charged Bose gas: Bose-Einstein condensation in an ultrahigh magnetic field

A. S. Alexandrov, W. H. Beere, and V. V. Kabanov

[S0163-1829(97)11617-4]

There are several misprints, which do not affect any of the results or conclusions. The coefficient A in Eq. (30) is $A = 1/2 + (3/2)^3(\gamma(\gamma + (2/3)^3))^{3/2} - (10/27 - \gamma^3)$. Equation (32) should be written as $\epsilon_c = \gamma - 3(\gamma/2)^{2/3}$, and Eq. (42) is

$$\Pi(q, i\Omega_n) = \sum_{k_z, k_x} \frac{n[(k_z + q_z)^2/2m] - n(k_z^2/2m)}{i\Omega_n - k_z q_z/m - q_z^2/2m} \exp(-a_H^2 q_z^2/2).$$

The gapless plasmon spectrum, Eq. (50), results from the one-dimensional motion in the ultraquantum limit. For fermions one obtains in this limit the gapless plasmon as well, $\omega_q = [v_F^2 q_z^2 + \omega_p^2 q_z^2 I_q^2]^{1/2}$ where v_F is the Fermi velocity, $qa_H \ll 1$, and $\omega_p = (4\pi n e^2/m)^{1/2}$ is the classical plasma frequency.