Parallel array of YBa2Cu3O7–δ superconducting Josephson vortex-flow transistors with high current gains

Boris Chesca, Daniel John, Matthew Kemp, Jeffrey Brown, and Christopher Mellor

Citation: Appl. Phys. Lett. 103, 092601 (2013); doi: 10.1063/1.4819461
View online: http://dx.doi.org/10.1063/1.4819461
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v103/i9
Published by the AIP Publishing LLC.

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors
Parallel array of $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ superconducting Josephson vortex-flow transistors with high current gains

Boris Chesca,1 Daniel John,1 Matthew Kemp,1 Jeffrey Brown,1 and Christopher Mellor2

1Department of Physics, Loughborough University, Loughborough, United Kingdom
2School of Physics and Astronomy, Nottingham University, Nottingham, United Kingdom

(Received 21 June 2013; accepted 14 August 2013; published online 28 August 2013)

We have developed a Josephson vortex-flow transistor based on a parallel array of 440 $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ bicrystal grain boundary Josephson junctions. The array’s critical current I_c was measured as a function of the control current I_{ctrl} through a control line that is inductively coupled to the array. The device has a highly asymmetric $I_c(I_{ctrl})$ curve with several regions where a switching behaviour is observed characterized by a maximum current gain $g_{max} = \partial I_c/\partial I_{ctrl}$ of 19 and a significant dynamic range of 20 μA at 77 K. In the range 4.7–92 K g_{max} versus temperature is non-monotonic with a maximum recorded at 77 K. © 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4819461]
within the array by varying the value of β_L monotonically within each set of 20 JJs by about $\pm 15\%$ around its average. We chose a logarithmic dependence for β_L because it introduces a smaller degree of asymmetry than a linear dependence. The bias current, I_b, is applied symmetrically via the central top and bottom electrodes. The control current is fed through a control line (dotted line in Fig. 1), which is electrically decoupled from, and inductively coupled to, the array. We have fabricated two such devices and both showed a similar behaviour. In particular, the devices show a similar robust operation with or without a magnetically and electrically shielded environment which demonstrates the practicality of the design.

Families of dc current-voltage (IV) characteristics were measured by a 4 point-contact method at various temperatures between 4.7 K and 92 K and for different values of the control current I_{ctrl} in the range (-8 mA, 8 mA). I_{ctrl} was changed in small steps of 15μA. A family of 35 consecutive IVs measured at 77 K are plotted in Fig. 2. A maximum voltage modulation of 14μV, due to a change in I_{ctrl} between the first IV (IV number 1 on Fig. 2) and the last IV (IV number 4) in this particular family, was recorded at a fixed current bias of 1 mA. In blue are the two IV’s numbered 2 and 3 for I_{ctrl} range where a switching behaviour is observed: a small current I applied to the JVFT’s gate increases the IV’s characteristics recorded at 77 K for various values of the control current I_{ctrl} around 1.2 mA. I_{ctrl} is changed in steps of 15μA. In red are the two IV’s numbered 1 and 4 for the I_{ctrl} range where a switching behaviour is observed with current gains as high as 19. Inset shows a very unusual maximum current gain $g_{max}(T)$ dependence in the range (4.7, 89) K with a maximum recorded value at 77 K.

At temperatures close to T_c, we are in the low-inductance limit in which β_L are negligibly small and the magnetic fields of the bias current I_b can be neglected. Therefore, the magnetic field dependence of the array critical current, I_{cJ}, is unaffected by I_b and should have a symmetric and periodic pattern consisting of a series of maxima similar to a diffraction pattern of an optical grating consisting of multiple slits. The periodicity in I_{ctrl} corresponds to one additional flux quantum Φ_0 in each loop. This is confirmed by the experiments as shown in Fig. 3 where $I(I_{ctrl})$ for 5 different voltage criteria between -0.2μV and -1μV measured at 89 K show a symmetric and periodic pattern with a periodicity of about 2 mA. We performed numerical simulations based on a model developed earlier 10 in the limit of small β_L and from the modulation of I_b with I_{ctrl} we estimate an average value for β_L of 0.3 at 89 K. As the temperature is decreased β_L can no longer be neglected (due to an increase in I_{ctrl}) and consequently the self-field effects of the supercurrents become important. Since the inductance values of individual loops change monotonically within each set of 19 consecutive loops, due to differences in their lengths, a significant asymmetry appears between the left and the right half of the device as far as the self-induced flux in the loops is concerned. As a result, the bias current I produces a net inhomogeneous magnetic flux along the array that is proportional to I. The additional flux due to the self-field effects causes an increased (positive feedback) and a reduced slope (negative feedback) of the increasing and decreasing branches, respectively, of the $I(I_{ctrl})$ curve measured at 89 K. This is because the same change of the applied flux Φ_{ctrl} (produced by I_{ctrl}) results in larger or smaller changes of the critical current of the device. An asymmetric $I(I_{ctrl})$ curve is therefore expected for this device at $T < 89$ K along with the associated high current gains. The asymmetry of $I(I_{ctrl})$ as well as g_{max} are expected to increase rapidly with decreasing temperature as self-field effects (that are proportional to β_L) are enhanced according to the temperature dependence of I_{cJ}. Such a behaviour is indeed observed in a set

Fig. 1. Optical micrograph of the JVFT made of a parallel array of 22 identical sets of 20 JJ. Shown is a small central part of the array consisting of 4 sets of 20 JJ. Within each set all 20 JJ are 3 µm wide and are connected via superconducting loops of identical width (3 µm) and variable length (logarithmically decreasing from 18 µm to 13 µm). This geometry introduces an asymmetry with respect to the direction of the current bias I_b and consequently an inhomogeneous net magnetic flux proportional to I_b is produced along the array.

Fig. 2. A set of 35 consecutive current-voltage IV characteristics recorded at 77 K for various values of the control current I_{ctrl} around 1.2 mA. I_{ctrl} is changed in steps of 15μA. In red are the two IV’s numbered 1 and 4 for the extreme values of I_{ctrl}. In blue are the two IV’s numbered 2 and 3 for the I_{ctrl} range where a switching behaviour is observed with current gains as high as 19. Inset shows a very unusual maximum current gain $g_{max}(T)$ dependence in the range (4.7, 89) K with a maximum recorded value at 77 K.

Appl. Phys. Lett. 103, 092601 (2013)
of measurements taken at 89 K, 84 K, 81 K, and 77 K (see Figs. 4(a) and 4(b)) where the degree of $I_c(I_{ctrl})$ asymmetry and g_{max} both gradually increase as we decrease T. A similar rapid transition with increasing β_L (decreasing temperature) from a symmetric $I_c(I_{ctrl})$ to an asymmetric one was predicted to occur in discrete JVFTs with an asymmetric current bias distribution.1,7,8 Considering the increase in I_c due to a change in temperature from 89 K to 77 K an average value for β_L of 1.9 can be estimated at 77 K which is close to the designed value of 1.5. In contrast to $I_c(I_{ctrl})$ curves, $V(I_{ctrl})$ curves are almost symmetric at all temperatures.

A switching behaviour is observed at 77 K with current gains as high as $g = 19$ and a corresponding dynamic range of $\Delta I_{ctrl} > 20 \mu A$ for positive voltages (see Fig. 4(a)) and $g = 10$ with a corresponding $\Delta I_{ctrl} > 15 \mu A$ for negative voltages (Fig. 4(b)). A similar behaviour is observed at 81 K as well, with slightly smaller values for g and ΔI_{ctrl} associated with it. Interestingly, a switching behaviour that is due to strong self-field effects with very high values of g associated with it have been predicted theoretically1 for JVFTs with an asymmetric bias current distribution.1,8 However, it has never been observed experimentally. In our case the switching behaviour has a different nature, as explained below. First, it should be noted that flux-flow resonance modes occur in our system that are due to the motion of a chain of vortices through the discrete JJ array, accompanied by an emission of small amplitude linear waves that propagate along the array. When the vortex spacing is commensurate with the wavelength of the emitted waves flux-flow resonances are produced on the family of $IV's$. Two such resonances, which are tunable in a magnetic field (i.e., their voltage location strongly depends on the applied magnetic field via I_{ctrl}), are clearly visible in Fig. 2. A detailed investigation of these resonances will be published elsewhere.12 A breakdown of these flux-flow resonance modes occurs within a very narrow range of I_{ctrl} (that corresponds to the two blue $IV's$ numbered 2 and 3 on Fig. 2). This triggers a sharp transition involving several hundred $JJ's$ from a state where the array’s I_c has a value close to a minima—corresponding to destructive interference of individual $I_c(J)$ (see blue IV numbered 2 on Fig. 2)—to a state where the array’s I_c is close to its maxima—corresponding to constructive interference of individual $I_c(J)$ (see the blue IV numbered 3 on Fig. 2).

It is important to note that at lower temperatures (4.7 K, 10 K, 30 K, and 57.5 K) g_{max} values are significantly smaller (see inset of Fig. 2). Although never observed experimentally such a non-monotonic $g(T)$ dependence characterized by a maximum has been predicted by numerical simulations performed for discrete JVFT’s with an asymmetric current bias distribution.7 In our case the physics behind this can be understood as follows: decreasing the temperature leads to a decrease in the losses experienced by moving fluxons (i.e., smaller damping) accompanied by an increased discreteness of the array (the discreteness parameter is $(\beta_L)^{1/2}$). At some threshold temperature, T_{th}, numerical simulations show that flux-flow resonances are completely suppressed and a transition to a chaotic regime occurs.12 Consequently, in our case for temperature below T_{th} (which appears to be around 77 K)
the switching behaviour and the high gains associated with the flux-flow resonances both vanish.

We have developed a JVFT prototype based on arrays of JJ with an asymmetric loop configuration and demonstrated its operation in a wide temperature range 4.7–92 K. The device shows very promising performance in the areas of current gain and dynamic range. For some applications a primary concern might be the low impedance, r_m, of these devices. This issue can be solved by using an alternative to JJ bicrystal technology (e.g., a ramp-type JJ) for the implementation of our concept. The device operates in both magnetically and electrically unshielded environments and at 77 K demonstrating its potential for practical devices. The design approach reported here shows great promise as a route to realizing high performance supercomputing amplifiers using JVFTs.

The authors would like to thank Dominic Walliman and Jas Chauhan for their technical support.

9. The films were deposited by Theva GmbH.