ULTRA-HIGH PERFORMANCE FIBRE-REINFORCED CEMENTITIOUS COMPOSITE WITH
STEEL MICROFIBRES FUNCTIONALIZED WITH SILANE

Cézar Augusto Casagrande1; Sergio Henrique Pialarissi Cavalaro2; Wellington Longuini Repette1.

1 Department of Civil Engineering (ECV), Federal University of Santa Catarina (UFSC), João Pio Duarte Silva s/n, Córrego Grande, CEP 88040-900 Florianópolis, Santa Catarina, Brazil

2 School of Architecture, Building and Civil Engineering, Loughborough University, Leicestershire, LE11 3TU, UK.

*Corresponding author: cezar.acasa@gmail.com (C.A. Casagrande).

HIGHLIGHTS:
• Silane film of TEOS is formed over the fibre after functionalization;
• Increase of silane content in functionalization leads to higher pullout bond strength;
• Functionalization with TEOS enhance fibre–matrix interfacial properties;
• The Si/Ca ratio in the fibre-matrix interface is increased when the TEOS functionalization is applied;

ABSTRACT
This paper explores the effect of fibre functionalization with tetraethoxysilane (TEOS) in the microstructure and mechanical property of ultra-high performance cement composites with steel fibres. Fibres treated with three concentrations of TEOS were evaluated by pullout tests and SEM/EDS analysis. Mixes with treated fibres showed up to 35.6\% increase in bond strength and up to 49.5\% reduction in the crack opening at the peak pullout load in comparison with
reference mixes containing untreated fibres. The Si/Ca ratios in the fibre-matrix transition zone increases with the increment of the concentration of TEOS in the treatment of the fibre. This indicates an increase of C-S-H at the interface that justifies the enhanced mechanical performance.

KEYWORDS: Silane, fibre pullout, functionalization, interface adhesion, UHPFRC.

1 **INTRODUCTION**

Introduced in the 80’s, Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) [1,2] has very high compressive strength (more than 150 MPa at 28 days [3,4]) and enhanced durability [5]. This is achieved by combining high content of binders, low water-to-binder ratios (typically smaller than 0.20 by weight) and ultrafine mineral admixtures. In most structural applications, mixes incorporate straight metallic microfibres to compensate for the brittle behaviour of the cementitious matrix and to achieve higher ductility and toughness in tension [6,7].

Pullout tests of UHPFRC, performed in specimens with aligned straight steel fibres embedded in cementitious concrete matrix, reveal a three-stage mechanical response [8–11]. An elastic stage takes place for small displacements as fibre and matrix show compatible deformation and the integrity of the fibre-matrix interface is maintained. As the load increases, tangential stresses in the fibre-matrix interface induce micro-cracks along the length of the fibre, initiating the debonding stage. Once the tangential stress reaches the bond strength along a critical length, the integrity of the interface is fully compromised and the strain compatibility between fibre and matrix cease to exist. The sliding stage follows, characterized by the relative displacement between fibre and matrix. The restriction to this movement is the result of friction at the fibre-matrix interface.

Since the tensile failure of UHPFRC is governed by the bond between fibre and matrix, attempts to enhance the mechanical performance of the material in tension often focus on
improving the interfacial properties through modifications of the matrix composition or of the
fibre geometry [12–14]. Few studies have addressed this issue by means of surface treatments
applied to the surface of metallic fibres, prior to their mixing with concrete.

In several industrial applications, silane films are used as surface coatings to improve
corrosion resistance [15,16] and as a primer to improve the adhesion of other polymeric coatings
to metal plates [17,18]. Silanes are molecules of general formula $R'\left(CH_2\right)_nSi(OR)_{4-n}$, in which R' is
an organofunctional group and R is a hydrolysable alkoxy group [19]. Studies with silane coupling
agents showed the possibility of producing sheets of hybrid calcium silicate hydrate from the
reaction of hydrolysed silanes in calcium hydroxide solution at room temperature [20–22]. Other
studies revealed the potential use of silanes to improve properties in cement-based materials,
such as workability or durability [23–28].

Research on modification of fibre surface with silanes to improve the performance of
interfaces with cement-based matrices is still limited. [29] and [30] evaluated the mechanical
properties of non-metallic fibres treated with silane and embedded in conventional cement
matrixes. Pullout tests indicated an increase of up to 150% in the average bond strength and of
up to 300% in the toughness. Similarly, [31] performed surface modification of polymeric fibres
with silane for reinforcement of concrete. The authors found that the increase of mechanical
properties resulted from the formation of high amount of calcium silicates hydrates (C-S-H) at
the surface of the fibre.

However, the application of silane surface treatments to improve the performance of
metallic fibres in UHPFRC is still unexplored. The objective of this study is to investigate the
influence of steel fibres functionalization with silane on the pullout behaviour and on the
characteristics of the fibre-matrix interface in UHPFRC.
2 EXPERIMENTAL PROGRAM

2.1 FIBRE TREATMENT

Brass covered straight steel microfibre, with 13 mm of length, 0.16 mm of diameter and tensile strength of 2000 MPa was used in this study. This fibre has been extensively used in UHPFRC. The surface treatment used tetraethoxysilane (C₈H₂₆O₄Si) – a silane also known as TEOS with purity higher than 98% and specific gravity of 0.9935 g/cm³. TEOS is among the most commonly used silanes in industrial functionalization of metals due to its controllable hydrolysis velocity and high degree of crosslink [32].

For effective functionalization with TEOS, all four methoxy groups have to be hydrolysed to release hydroxyls radicals (silanol) able to react with the base surfaces (metallic surface, in this case). Fig. 1 shows the representation of the procedure of hydrolyse of the TEOS, based on [24,33,34]. Since TEOS is not miscible in water, a 1:1 solution by volume of ethanol (C₂H₆O with purity higher than 96%) in water was used to disperse the silane. Then, acetic acid was added to ensure a solution with pH of 5±0.2. After that, the solution was constantly homogenized in a magnetic stirrer at 25 °C. The optimum hydrolysis time was determined by infrared analysis (FT-IR). The transmittance of the wavenumber in the interval of approximately 960 cm⁻¹ indicates the Si-OH (silanol) formation. Lower index at 960 cm⁻¹ bands indicates a larger concentration of silanol groups produced by hydrolysis. The lowest wavenumber index was observed after 60 min of hydrolysis.

Fig. 1 - Representation of the TEOS hydrolysis procedures
Silane concentrations of 1.0% by volume are typically used for industrial functionalization of metallic plates with amino, ureido and epoxysilanes \([35–37]\). For the functionalization of synthetic fibres, \([29]\) and \([30]\) used concentrations of 0.5%, 0.75% and 1.0% by volume of vinylsilane. Based on that, solutions with 0.1%, 0.5% and 1.0% of TEOS by volume were prepared in the present study (T\(_{0.1\%}\), T\(_{0.5\%}\) and T\(_{1.0\%}\), respectively).

Fig. 2 summarizes the steps for the functionalization of the steel fibres, which was adapted from the work by \([33]\). Fibres were first submerged during 2 minutes in 1:0.25 solution of acetone \((C_3H_6O\) with purity higher than 96\%) in water to remove dust or grease off their surface and, then, dried during 12 hours in a ventilated oven at 100 °C.

Next, the surface of the fibres was activated by the deposition of hydroxyl groups \((OH^-)\) that might react with TEOS. Fibres were submerged in a 0.625 M aqueous solution of NaOH (97% purity) at 25°C under constant agitation for 10 min, rinsed with distilled water and dried in an oven at 50 °C for 12 hours. At this stage of the process, the surface of the fibres composed of a thin layer of brass oxidizes superficially, resulting in a darker finishing. This surface oxidation does not damage the steel of the fibre or affect the efficiency of the functionalization process.

After that, the functionalization of the surface with TEOS was conducted following a sol-gel dip coating process. Fibres were submerged in the solution with the hydrolysed TEOS produced
according with Fig. 1, in a proportion of 300 g/L. The components were constantly agitated in a mechanical stirrer during 10 min at 25 °C, rinsed in distilled water and cured for 30 min in an oven at 150 °C.

Fibres were then submerged in a 0.1 M aqueous solution of Ca(OH)₂ (purity higher than 95%), which was agitated for 30 min at 25°C to remove loose TEOS from the surface. The removal of loose TEOS film prevented undesirable change in the composition of UHPFRC and a retardation of the cement setting observed in the presence of loose TEOS film during a preliminary stage of the experimental program. Finally, fibres were rinsed in distilled water and oven dried at 50 °C for 12 h.

2.2 PREPARATION OF THE COMPOSITE SPECIMENS

An initial experimental campaign was conducted to adjust the mix and to assure the desired performance in fresh and hardened states. Table 1 shows the materials and the composition defined used to produce the UHPFRC (defined in accordance with previous studies by [38–40]).

<table>
<thead>
<tr>
<th>Materials</th>
<th>Density</th>
<th>Proportion by weight</th>
<th>kg/m³</th>
<th>Apparent volume (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement CEM I 52.5R</td>
<td>3.11</td>
<td>1.00</td>
<td>939.8</td>
<td>30.21</td>
</tr>
<tr>
<td>Fine Sand</td>
<td>2.64</td>
<td>1.21</td>
<td>1140.3</td>
<td>43.19</td>
</tr>
<tr>
<td>CaCO₃ powder</td>
<td>2.70</td>
<td>0.11</td>
<td>103.4</td>
<td>3.82</td>
</tr>
<tr>
<td>Superplasticizer</td>
<td>1.05</td>
<td>0.07</td>
<td>66.2</td>
<td>6.30</td>
</tr>
<tr>
<td>Nano-silica</td>
<td>1.13</td>
<td>0.07</td>
<td>67.2</td>
<td>5.92</td>
</tr>
<tr>
<td>Mixing water</td>
<td>1.00</td>
<td>0.09</td>
<td>85.8</td>
<td>8.58</td>
</tr>
<tr>
<td>Fibres (untreated)</td>
<td>7.95</td>
<td>0.16</td>
<td>155.1</td>
<td>2.00</td>
</tr>
</tbody>
</table>

The Cement CEM I 52.5R followed the specifications of EN 197-1 [41]. The silica sand had 99.5% of SiO₂, a maximum nominal particle size of 0.6 mm and an average particle size of 0.3 mm. CaCO₃ powder with average particle size of 3.9 µm was used as filler. Nano-silica, in suspension with a solid content of 22% and average particle size of 99.35 nm, was also used. The
superplasticizer was a sodium polycarboxylate with a solid content of 25%. The effective water-to-cement ratio (considering the water provided by the components) was approximately 0.20.

UHPFRC with the composition from Table 1 had an average flow of 191 mm in accordance with ASTM C1437 [42]. The average compressive strength at 28 days according to the EN 196-1 [43] was 172.4 MPa, with a standard deviation of 6.7 MPa.

All mixes were produced with 2% by volume of fibres treated with the silane concentrations described in previous sections (T_0.1%, T_0.5%, and T_1.0%). For comparative purposes, reference mixes with untreated fibres (REF) were also produced.

A mixer model with a vertical axis was used. First, all solid materials were homogenized for 3 min. Then, the liquids were added in the following order separated from each other by 1 min of mixing: all nano-silica, 50% of the water, 90% of superplasticizer and the remaining liquids. After mixing for 5 min, fibres were slowly added during 5 min. Finally, the UHPFRC was mixed for 5 min more.

Then, specimens were cast for the pullout test of multiple fibres, similarly to the described in [10], [14] and [44]. A thin polyethylene plastic sheet with dimensions 40x40x0.5 mm was pierced with evenly spaced holes forming a 5 by 5 grid. Fibres were placed at half of their length, perpendicularly to each hole (Fig. 3.a). The polyethylene sheet was, then, positioned at the central part of a mould with internal dimensions of 40x40x80 mm. This guaranteed a uniform fibre distribution, their perpendicular alignment with the largest dimension of the specimen and a preferential cracking plane during the pullout tests.

The UHPFRC was poured on both sides of the thin polyethylene sheet and compacted in accordance with UNE-EN 196-1 [43]. Special care was taken to guarantee a complete filling of the space between fibres, minimizing their displacement or spin. Specimens were demoulded 24 hours of casting, remaining in a climatic chamber at 23 °C and relative humidity higher than 99% for 28 days. Six specimens per series were produced.
2.3 PULL OUT TESTING PROCEDURE

Fig. 3.b shows the setup of the pullout test conducted in a hydraulic press, using a load cell with 5 kN nominal capacity and 0.001 kN resolution. Both ends of the specimens were glued with an epoxy adhesive to the plates of the press. An extensometer was placed with the cracking plane in the middle. Following [10], the test was conducted at a constant displacement rate of 0.3 mm/min controlled by the extensometer. The pullout load (P) was registered throughout the test.

The displacement registered by the extensometer is the summed result of the crack opening and the elastic deformation of the UHPFRC between the points of measurements. Due to the low load reached during the test and the high Young Modulus of the UHPFRC, the displacement induced by the elastic deformation is several orders of magnitude smaller than the sensitivity of the extensometer and may be disregarded. Therefore, the displacement is considered equal to the crack opening (w).

As in other studies [10,45,46], the average bond strength (τ_{max}) was calculated according to Eq. (1) that assumes an uniform stress distribution at the fibre-matrix interface. P_{max} is the maximum pullout load, n is the number of fibres in the cracked section, d is the fibre diameter (0.16 mm) and l is the embedded length at each side of the polypropylene sheet (6.5 mm).
The pullout energy was regarded as the mechanical work consumed during the fibre pullout, which was calculated with Eq. (2) through the integration of the area under the load-crack opening curve. The pullout energy was estimated for crack openings of 0.5 mm ($E_{0.5}$) and 2.5 mm ($E_{2.5}$), associated to the serviceability limit state and ultimate serviceability limit state, respectively [47]. Notice that such crack openings are usually defined for conventional fibre reinforced concrete, not UHPFRC. In UHPFRC, a bigger number of cracks tend to appear due to the hardening behaviour of the material. Consequently, a smaller crack opening is expected to occur both in the ultimate limit state for the same strain level.

\[
\tau_{\text{max}} = \frac{P_{\text{max}}}{n. \pi. d. l} \quad \text{Eq. (1)}
\]

\[
E_w = \int_0^w P(w) \, dw \quad \text{Eq. (2)}
\]

All parameters derived from the pullout test represent the average of 6 determinations per type of fibre. To identify changes induced by the treatment, the surfaces of the fibres were analysed before they were embedded in the UHPFRC matrix and after the pullout tests by means of Scanning Electron Microscopy with X-ray microanalysis (SEM/EDS). Furthermore, to evaluate the fibre-matrix interface, samples of 5x5x5 mm were cut out of the pullout specimens. These samples were dry-polished in a rotary polisher during 10 min at 1000 rpm with a 3 µm grain sandpaper and inspected by SEM/EDS. These analyses were performed in a microscope at the voltage of 15 kV to obtain backscattered electron images.

3 RESULTS AND ANALYSIS

3.1 PULLOUT BEHAVIOR

Fig. 4 shows the average curves that relate the pullout load (P) and the crack opening (w) measured during the pullout test of samples containing untreated fibres and those with
different concentrations of TEOS. All curves reveal a similar behaviour characterized by an initial stage with a significant increase in P, with almost no increase in w.

![Pullout curves](image)

Debonding initiates for a pullout load around 200 N, being characterized by an increase of both w and P. Although no clear trend related to the content of TEOS is identified, REF series (untreated) debonding initiates at a load 31.7% bigger than the average registered for series with treated fibres. Despite that, the pullout load reached during the debonding stage in series with treated fibres is up to 35.6% bigger than the observed in REF series. This suggests that the functionalization with TEOS enhances the capability of the fibre-matrix interface to transmit stresses before significant damage appears.

Once w reaches approximately 0.04 mm, debonding is completed and fibre slippage takes place. At this stage, the pullout load remains practically constant whereas w increases. From a certain point on, a decrease in P is observed as w increases and the embedded length of the fibres in the matrix is reduced. The decrease registered for the series with TEOS is proportionally bigger than the one verified for the REF series. The bigger load mobilized in the debonding stage of mixes with treated fibres due to a stronger fibre-matrix interface leads to a
more pronounced loss of load capacity. As the interface is debilitated, the pullout load becomes
a consequence of frictional forces during the slipping stage.

Elements made with UHPFRC tend to present multiple cracking due to the strain
hardening behaviour of the material, which is consistent with the small fibre length normally
used. Crack openings of less than 1 mm are expected for both serviceability and ultimate limit
states. Therefore, if further statistical analysis confirms that the average differences observed in
Fig. 4.; UHPFRC made with treated fibres should outperform those made with reference
untreated fibres, since for small crack openings the latter presents higher pullout loads than the
former.

3.2 BOND STRENGTH

Fig. 5 in the principal axis shows the maximum bond strength (τ_{max}) calculated from the
pullout test results according to Eq. 1. Fig. 5 in the secondary axis shows the average crack
opening (w_p) corresponding to τ_{max}. The error bars depict the confidence interval for a
significance level of 0.05. The coefficient of variation (CV) of the maximum bond strength and
the toughness remains between 8% and 10%. The CV of the load increases with the crack
opening, reaching values of 25% for a crack opening of 5.5%. These results are consistent with
the findings by [10], [48] and [49]. The τ_{max} of the untreated sample (REF) is comparable to
values found in previous studies [10,50], while the τ_{max} of series treated with 0.1%, 0.5% and
1.0% of TEOS were respectively 7.5%, 30.4%, and 35.6% bigger on the average.
A one-way ANOVA was conducted to compare the effect of the treatment on \(\tau_{\text{max}} \) and the Duncan’s test was used to compare the means. The increase in \(\tau_{\text{max}} \) observed in treated samples in comparison with untreated ones is statistically significant (\(F=14.47; \) \(p \)-value=0.00). This confirms that the fibre functionalization conducted in this study contributes to enhancing the strength of the fibre-matrix interface.

The post hoc comparison of REF series and series treated with 0.10% of TEOS indicates no significant difference. Conversely, the comparison between the REF series with series treated either with 0.5% of TEOS or with 1.0% of TEOS indicates statistically significant differences. These results reveal that a minimum content of TEOS is required to achieve improvement in the bond strength. Interestingly, no statistically significant difference was found in the comparison between series treated with 0.5% and 1.0% of TEOS. This suggests a saturation effect as no significant differences are observed despite doubling the TEOS concentration. Such observations are consistent with the study conducted by Benzerzour et al. [29] that observed optimal results for 0.5% of silane content in the treatment of unsaturated polyester/glass fibre.

A reduction in \(w_p \) is observed in the series with treated fibres in comparison with that found in REF series, which becomes more evident as the content of TEOS in the treatment
increases. In fact, series treated with 0.1%, 0.5% and 1.0% of TEOS show w_p 32.3%, 45.0% and 49.6% smaller than that observed in REF series. This behaviour may arise from the formation of a stiffer fibre-matrix interfacial zone that, despite being capable of transmitting higher loads, loses the bearing capacity as damage appears in the interface and the pullout stress the slipping stage governed by friction.

3.3 PULLOUT ENERGY

Fig. 6 shows the average pullout energy calculated with Eq. 2 for crack openings of 0.5 mm ($E_{0.5}$) and 2.5 mm ($E_{2.5}$). Series treated with 0.1%, 0.5% and 1.0% of TEOS show 7.2%, 33.9% and 36.2% bigger $E_{0.5}$ than the ones obtained in REF series. In terms of $E_{2.5}$, the series treated with 0.5% and 1.0% of TEOS remain higher than the REF series, although differences are reduced to 13.1% and 21.9%, respectively. On the contrary, series treated with 0.1% of TEOS show results 2.8% smaller than the obtained for REF series.

Fig. 6 - Accumulated pullout energy for w_p of 0.5 mm and 2.5 mm

The increase in accumulated pullout energy observed in treated samples in comparison with untreated ones is statistically significant ($F=15.45$ and p-value=.000 for w_p of 0.5 mm; $F=15.877$ and p-value=.000 for w_p of 2.5 mm). The direct comparison between REF series and
series with 0.1% of TEOS indicate no statistical differences for the crack openings analysed. However, the pullout energy from both series are significantly different from the observed for series treated with 0.5% and 1.0% of TEOS. The difference between series treated with 0.5% and 1.0% of TEOS is only statistically significant for \(w_p \) of 2.5 mm.

These results show that the functionalization of the fibre surface with silane can effectively enhance the fracture toughness of UHPFRC. In the case of UHPFRC, this gain in pullout energy tends to be proportionally bigger for low \(w_p \) than for high \(w_p \). As mentioned in section 3.2, a minimum silane content is required to achieve significant improvement in the pullout energy. The saturation effect of the silane concentration is not so evident in this case since significant differences in the pullout energy exist between series treated with 0.5% and with 1.0% of TEOS for high \(w_p \).

4 MICROSTRUCTURAL ANALYSIS

Fig. 7 presents the SEM images of the surfaces of the untreated fibre (Fig. 7.a) and of the fibres treated with TEOS at 0.1%, 0.5% and 1.0% (respectively, Figs. 7 b, c, and d), before they were embedded in the UHPFRC specimens. The atomic compositions determined by EDS at the areas highlighted in each figure are also summarized as percentage concentration of each element, placed above each image. Untreated REF fibres have a smooth surface with small scratches formed during the fabrication process. Conversely, the surfaces of treated fibres reveal the formation of a TEOS film that covers the scratches and create deposits that increase the surface roughness of the fibres. The area covered by the deposits increased with the amount of TEOS used in the functionalization. For instance, fibres treated with 0.1% of TEOS display only a few small spots, whereas fibres treated with 1.0% of TEOS have more than 60% of their surface covered by TEOS deposits. The thickness and uniformity of the film seem to increase with the concentrations of TEOS used.
The chemical elements detected by EDS confirm the formation of a film on the surfaces of the treated fibres. Untreated fibres have mainly Fe, Cu, and Zn, which is expected in a brass coated steel fibre. No traces of Si or Ca are observed in this case. In contrast, treated fibres present Si and Ca at their surfaces. The amount of Si at the surface increased as the content of TEOS used for the treatment increased. However, the amount of Ca does not follow the same trend. Si and Ca were the primary components of the deposits observed in the SEM image.

\[a' \text{ Fe}=26.99; \text{ Cu}=48.80; \text{ Zn}=21.21 \]
\[a'' \text{ Fe}=33.95; \text{ Cu}=48.21; \text{ Zn}=17.71 \]

\[\text{Si}=0.36; \text{ Ca}=2.69; \text{ Fe}=43.22; \text{ Cu}=47.71; \text{ Zn}=6.00 \]

\[\text{Si}=0.95; \text{ Ca}=11.09; \text{ Fe}=29.61; \text{ Cu}=44.30; \text{ Zn}=14.03 \]

\[\text{Si}=1.15; \text{ Ca}=6.67; \text{ Fe}=45.97; \text{ Cu}=37.83; \text{ Zn}=8.36 \]

Fig. 7 - SEM images and EDS of fibres before being embedded in the UHPFRC matrix: REF (a), 0.1% (b), 0.5% (c) and 1.0% (d). Yellows arrows indicating typical calcium silicate precipitates.

An in-depth analysis of the reactions expected during the fibre treatment might explain these results. When the silane is dissolved in the solution, the hydrolysis is initiated and the
alkoxy groups (Si–OCH$_3$ or Si–OC$_2$H$_5$) are converted to hydroxyl groups (Si–OH), as described in Eq. 3. Subsequently, Si–OH groups and OH$^-$ groups condensate according to Eq. 4 and 5, forming siloxane by covalent bonding [51–53].

\[\equiv Si - OR + H_2O \leftrightarrow \equiv Si - OH + ROH \quad \text{Eq. (3)} \]

\[\equiv Si - OR + HO - Si \equiv \leftrightarrow \equiv Si - O - Si \equiv + ROH \quad \text{Eq. (4)} \]

\[\equiv Si - OH + HO - Si \equiv \leftrightarrow \equiv Si - O - Si \equiv + H_2O \quad \text{Eq. (5)} \]

Where: R is a radical group (commonly –CH$_3$ or –C$_2$H$_5$).

After being activated in the NaOH bath, Metal-OH (Me-OH) groups are formed at the surface of the fibres. When these fibres are added into the silane bath, the Me-OH groups react with the hydrolysed silane (eq. 6), forming siloxane chains (eq.7) that are deposited on the surface of the fibres. With the heat treatment, neighbouring silane groups undergo a polycondensation process (eq. 8), forming a film on top of the fibre surface. Then, when the Ca(OH)$_2$ bath is performed, the silane hydroxyls in the silane film react with the calcium hydroxide (eq. 9) to form calcium silicates over the fibres.

\[Si(OC_2H_5)_4 + 4H_2O \leftrightarrow Si(OH)_4 + 4 C_2H_6O \quad \text{Eq. (6)} \]

\[Si(OH)_4 + MeOH \leftrightarrow MeOSi(OH)_3 + H_2O \quad \text{Eq. (7)} \]

\[MeOSi(OH)_3 + Si(OH)_4 \leftrightarrow MeO_2Si_2(OH)_5 + H_2O \quad \text{Eq. (8)} \]

\[MeOSi(OH)_3 + Ca(OH)_2 \leftrightarrow MeO_2SiCa(OH)_3 + H_2O \quad \text{Eq. (9)} \]

Where: R = –C$_2$H$_5$ or –CH$_3$ and Me is the substrate metal oxide

The heterogeneity of the film thickness varies with the concentration of the silane content in the functionalization solution and with the extent of the hydrolysis/condensation reactions
developed during the functionalization process [33]. Solutions with higher concentration of TEOS cause the silane to condensate and form larger siloxane complexes (≡Si-O-Si≡) with neighbouring silanol groups of different lengths. Such molecules may react with the fibre surface, producing a dissimilar thickness of the film on the surface. Another possible explanation relates to heterogeneities in the fibre surface composition. Studies conducted by [33] show that trivalent elements such as Fe³⁺ have a greater possibility of forming crosslinks with hydrolysed silane if compared with surfaces with divalent elements such as Zn²⁺. Although the concentration of Cu²⁺ is similar in the two regions analysed in Fig. 7.a, the concentration of Fe³⁺ and Zn²⁺ vary from 26% to 36%. This may lead to different silane condensation rates and, consequently, the formation of a film with irregular thicknesses over the surface of the fibres.

The silane deposits increase the overall surface in contact with the cementitious matrix and induce more tangential load. Furthermore, deposits might act as anchoring sites that generate inclined forces and affect the damage formation during the pullout. These phenomena may be the physical causes for the enhanced pullout response observed in treated fibres.

Fig. 8 presents the morphology of the fibres after the pullout test and the EDS results of the amplified areas. REF fibres (Fig. 8.a) show a smooth surface in which the scratches are more visible than before the pullout test, which may be a result of the friction between fibre and the matrix during the sliding stage of the pullout. A small layer of precipitates is found on the surface of REF fibres. The EDS results reveal the presence of Si and Ca, suggesting that the layer is possibly generated by the formation of cement hydration products over the surface.

In fibres treated with 0.1% of TEOS (Fig. 8.b), the scratches are less visible than in REF fibres. Moreover, a thicker layer of products remains after the pullout test, although no big deposits are observed. The EDS reveals a higher concentration of Si and Ca than in REF fibres. In fibres treated with 0.5% of TEOS (Fig. 8.c), not only does a layer of hydration products remain over the fibre surface after the pullout test, but also deposits are clearly observed. The concentration of Si and Ca is also slightly bigger than the obtained for the sample treated with
0.1% of TEOS. Similar results are obtained for fibres treated with 1.0% of TEOS, with a bigger formation of deposits and a bigger concentration of Si and Ca. In fact, portions of the matrix are observed around the fibre after the pullout test. This confirms that the deposits formed at the surface of the fibre during the treatment enhance the mechanical response, possibly working as anchorage sites that increases the contact between the fibre and the matrix.

The comparison of the atomic composition assessed before and after the pullout test for the series show that Si increases from 1% to up to 23%, whereas Ca increases from 11% to 19%. The increase in Si/Ca ratio suggests a densification in the layer originally formed by the treatment over the fibre due to precipitation of the hydration products. Thus, in addition to the physical anchorage effect previously described, a chemical effect could also be responsible for the enhanced pullout performance of the fibres treated with TEOS. The chemical affinity between the silane layer and the formation of hydration products could favour a densification of the interfacial transition zone, leading to a stronger fibre-matrix bond.

Although the assessment of durability falls outside the scope of this work, detailed visual inspection of UHPFRC specimens with functionalized and reference fibres showed no evidence of durability problems after the experimental program. Further studies are required to analyse the stability of the functionalization layer and its interaction with the cementitious matrix over a more extended period.

\[\text{Si} = 6.25; \text{Ca} = 1.33; \text{Fe} = 37.14; \text{Cu} = 33.95; \text{Zn} = 19.64 \]
For a more in-depth analysis of the positive effects of the TEOS layer in the fibre-matrix interfacial transition zone, untreated specimens were sliced with a precision saw and the surroundings of the fibres were analysed with SEM. Point and line scanning EDS analysis were
conducted to obtain a profile of composition in relation to the distance from the fibre (see Fig. 9 and Fig. 10). The regions analysed with EDS are indicated by a yellow dot and the line scanning are indicated with a blue line in the corresponding images.

The Si/Ca ratio may be used to indirectly assess the composition of the cementitious matrix [56, 57]. Ratios below 0.3 are characteristic of systems with a high proportion of CH, while ratios bigger than 0.3 indicate systems rich in C-S-H [54]. Studies conducted in systems formed mainly by C-S-H, without CH, indicate a Si/Ca ratio higher than 0.66 [55].

The fibre-matrix interface is dense and homogeneous, with low porosity in all analysed samples, as depicted in Fig. 9.a. REF fibres (Fig. 9.b) present Si/Ca ratios of 0.2 near the fibre. The ratio increases gradually with the distance from the fibre, reaching values consistently above 0.3 at distances bigger than 4 µm. This suggests a preferential CH precipitation around the fibre.
Fig. 9 - Fibre-matrix cross-section: point and line scan detail (a) and EDS results for series REF (b), with 0.1% (c), with 0.5% (d) and with 1.0% of TEOS (e).
In comparison with the REF series, fibres treated with 0.1% of TEOS (Fig. 9.c) show an increase in the Si/Ca in points around the fibre, with values bigger than 0.3. In fact, the Si/Ca reaches 0.3 at a distance of approximately 2 µm from the fibre, in contrast with the 4 µm found for the untreated fibre. This suggests a higher concentration of C-S-H closer to the surface of the fibre treated with TEOS at 0.1%. Analogous results are found for the samples with fibres treated with 0.5% (Fig. 9.d) and with 1.0% (Fig. 9.e) of TEOS. However, in these cases, the Si/Ca ratio of 0.3 is reached at distances even smaller than 1 µm from the fibres. Consequently, the concentration of C-S-H might be higher around the fibres treated with 0.5% and 1.0% than both the untreated fibres and the fibres treated with 0.1% of TEOS.

Interestingly, a more evident peak in the Si counting is observed in samples with treated fibres but not in REF series. This peak is closer to the fibre surface as the content of TEOS in the treatment increases, reaching Si/Ca ratios of approximately 1.0. The series with 0.1%, 0.5% and 1.0% of TEOS show their peaks located, respectively, at 3.5 µm, 2.0 µm and 1.0 µm from the fibre surface (Fig. 10). This suggests a higher level of densification of the interfacial transition zone due to the fibre treatment proposed in this study, confirming the positive chemical interaction caused by the silane film with cement paste.

Fig. 10 – Si/ Ca ratio in the transition zone based on EDS line scanning from UHPFRC cross section.
5 CONCEPTUAL MODEL FOR THE FIBRE-MATRIX INTERFACE

Based on the results obtained in this study, a conceptual model of the evolution of fibre-matrix interface is proposed to describe the effect of the functionalization with TEOS adapted from the work by [56]. Fig. 11 depicts the evolution of the hydration of the cement paste and its interaction with the fibre functionalized with TEOS. When the treated fibres come in contact with the cement matrix, the matrix rich in ions (Ca$^{2+}$, Si$^{4+}$, and OH$^{-}$) reacts with the silane film forming a diffuse layer. This diffuse layer marks a transition between the silane layer and the cement matrix, as shown in Fig. 11.a.

Over time, the alkaline environment around the fibre solubilizes the TEOS film into Si$^{4+}$ and OH$^{-}$ that reacts with calcium and leads to C-S-H precipitation. This process may consume part of the silane film, increasing the thickness of the diffuse layer, as shown in Fig. 11.b. The C-S-H precipitation reduces the Ca$^{2+}$ availability in the solution around the fibres to form CH. When the Si/Ca ratio is around 0.6, the calcium concentration in the pore solution becomes insufficient to react with the silane film. The increase in C-S-H concentration near the fibre surface could contribute to the densification of the fibre-matrix interface in comparison to the expected in the case of an equivalent non-functionalized fibre.

Differences in the characteristics of these layers may determine how the failure will occur during the pullout test. In case of no functionalization, a low-quality Me-O-Si structure is formed so that the failure may occur at the fibre-silane layer interface or even in the silane layer. The surface of the fibre after the pullout from the matrix should present a morphology similar to that found in untreated fibres.

When functionalization is performed with a small content of silane, a limited amount of Si is available to form and densify the diffuse layer. Consequently, a weak diffuse layer is formed, increasing the likelihood of failure along this faulty layer. Slightly higher pullout loads than those obtained in untreated fibres should be expected. After being pulled out from the matrix, fibres
should present a surface covered by a thin layer of silane. This explains the mode of failure observed for the fibres treated with 0.1% of TEOS.

In case of proper functionalization with high enough silane content, a good quality diffuse layer is formed. The failure is likely to occur in the cement matrix, leading to bigger surfaces of failure and, hence, bigger pullout loads. Parts of the cementitious matrix remain attached to the surface of the fibre after the pullout test. This failure mode was observed in fibres treated with 0.5% of TEOS and, more evidently, with 1.0% of TEOS.

Fig. 11 - Conceptual model of functionalized fibre-matrix interface at short (a) and long term (b). Adapted from [56]
6 CONCLUSIONS

Brass coated steel microfibres were functionalized with TEOS and incorporated in a UHPC matrix. The following conclusions resulted from this study:

- The bond strength measured in the pullout test increase by up to 35.6% in fibres subjected to treatment with TEOS. The energy absorbed for crack openings of 0.5 mm and 2.5 mm were also enhanced for the treated fibres, reaching values up to 36.2% and 21.9% bigger than those of the untreated fibres. Analyses confirm that such differences are statistically significant.

- An optimal content of TEOS should be used to achieve noticeable improvement in the mechanical performance. In this experimental program, a concentration of 0.1% did not produce significant improvements in terms of bond strength and pullout energy in comparison with reference untreated fibres.

- A saturation in the improvement provided by increasing the content of TEOS is also observed. For example, treatments performed with 0.5% and with 1.0% of TEOS lead to almost the same results in terms of bond strength and pullout energy at crack openings of 0.5 mm. Therefore, one of the parameters to be defined in industrial applications is the optimum content of TEOS.

- Evaluations of the morphology and the composition of the fibre-matrix interface reveal that the improvement in performance generated by the treatment relates to physical and chemical changes. The treatment with TEOS increases the roughness of the fibre surface, increasing the total area of contact and, as a result, the pullout force. In fibres treated with a high content of TEOS, silane deposits are formed over the surface of the fibre. These deposits act as mechanical anchorages that generate inclined forces and increase the surface mobilized during the pullout test.
Results also confirm that a chemical interaction between the silane layer and the cement matrix might also contribute to improve the pullout mechanical performance. The matrix rich in ions (Ca$^{2+}$, Si$^{4+}$, and OH$^-$) react with the silane film forming a diffuse layer. The alkaline environment around the fibre solubilizes the TEOS film into Si$^{4+}$ and OH$^-$ that react with calcium, producing C-S-H in the interface transition zone. EDS measurements reveal that treated fibres show Si/Ca ratios several times higher than untreated fibres, suggesting the additional presence of C-S-H that justifies a stronger interface transition zone.

A heterogeneity in terms of thickness and area covered by the silane film was observed in the surface of fibres treated with 0.5% and 1.0% of TEOS. This heterogeneity may be attributed to the high concentration of TEOS that tend to condensate and form larger siloxane complexes (≡Si-O-Si≡) with different molecular lengths. Moreover, heterogeneities in the fibre surface composition may favour different silane condensation rates and, consequently, film thicknesses over the fibre’s surface.

The failure mode observed in the pullout test is affected by the treatment applied. Untreated fibres fail in the fibre-matrix interface due to the weaker interface generated. Fibres treated with 0.1% of TEOS do not present enough silane to form a strong diffuse layer around the fibres. Consequently, the failure occurs in the diffuse zone so that a remaining silane layer is observed around the fibre after the pullout test. In contrast, fibres treated with 0.5% and 1.0% of TEOS present a diffuse zone with high concentration of C-S-H and silane deposits that promote a failure through the cement matrix. The inspection of the fibres after the pullout test show the presence of cracked chunks of the matrix around the fibre, confirming the stronger interface transition zone and the need to mobilize a bigger surface during failure. This is the cause of the increment in the pullout load and energy observed.
ACKNOWLEDGMENTS

The authors thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) by the international scholarship in the project 99999.000243/2015-09, to the Universidad Politècnica de Catalunya (UPC) for providing part of the infrastructure for the research, to the Programa de Pós-graduação em Engenharia Civil (PPGEC) for the fully funded scholarship, to NANOTEC and CERMAT through the LINDEN/UFSC for the technical support in the microstructural investigation, and to Ms. Maria Helena and Dr. Lidiane F. Jochem for their support in the experimental program.

REFERENCES

AENOR, UNE-EN 196-1. Métodos de ensayo de cementos - Parte 1: Determinación de

doi:10.1016/j.conbuildmat.2010.03.009.

doi:10.1016/j.cemconcomp.2016.05.005.

