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This paper proposes a ground vehicle tracking method using an airborne ground moving target indicator 
radar where the surrounding geographic information is considered to determine vehicle’s movement 
type as well as constrain its positions. Multiple state models corresponding to different movement 
modes are applied to represent the vehicle’s behaviour in different terrain conditions. Based on 
geographic conditions and multiple state models, a constrained variable structure multiple model 
particle filter algorithm is proposed. Compared with the traditional multiple model particle filtering 
schemes, the proposed algorithm utilises a particle swarm optimisation technique which generates more 
effective particles and generated particles are constrained into the feasible geographic region. Numerical 
simulation results in a realistic environment show that the proposed method achieves better tracking 
performance compared with current state-of-the-art ones for manoeuvring vehicle tracking.

© 2016 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY 
license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Airborne surveillance of moving ground targets is one of impor-
tant capabilities of manned or unmanned aircraft for both military 
and civil applications such as search and rescue, border patrol, 
and infrastructure protection, in which the use of airborne ground 
moving target indicator (GMTI) radar system is of special inter-
est. As mentioned in [1], the GMTI radar system extracts moving 
ground target information against a stationary background, pro-
viding wide-area, all-weather, day/night, and real time capabili-
ties. One important preliminary step for the GMTI based airborne 
surveillance is to continuously estimate vehicle’s state information. 
For instance, in order to analyse if the behaviour of a vehicle in 
a surveillance region is normal, its position and velocity need to 
be extracted [2]. For the continuous estimation of vehicle states, 
the Kalman or particle filters based on the Bayesian framework 
are widely applied [3]. Considering a tracked object could manoeu-
vre with different movement types, the interactive multiple model 
(IMM) method was applied for state estimation with multiple state 
models [4]. To overcome the issues of the non-linear measure-
ment model and the non-Gaussian distribution of the noise com-
ponent, the interactive multiple model particle filter (IMMPF) was 
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proposed in [5], and the simulation results show the improved per-
formance over the standard IMM method.

As the movement of a ground vehicle is not free but con-
strained by its operational terrain, some terrain information can 
be combined with certain filtering algorithms. The most widely-
used terrain information is the road network, and representative 
work is shown in [6–9]. In [6], the road constraint was treated as a 
pseudo-measurement and incorporated into the extended Kalman 
filter (EKF) scheme for state estimation of the target moving on 
the road. More advanced algorithms were proposed in [7] using 
the road map information. The target dynamics was modelled in 
quasi one-dimensional road coordinates and mapped onto ground 
coordinates using linear road segments, and Gaussian sum ap-
proximations and a particle filtering approach were applied and 
compared. Cheng et al. in [8] applied a multiple model frame-
work to describe the movement of a vehicle, and the unscented 
particle filtering scheme was proposed for more effective particle 
generation. In [9], an interactive multiple model auxiliary parti-
cle filtering (IMMAPF) algorithm was applied while considering the 
road width and multiple state models which describe the different 
vehicle movements. Arulampalam et al. [10] presented a GMTI ve-
hicle tracking problem in which a vehicle could move on or off 
road, and a variable structure multiple model (VS-MM) particle fil-
ter was applied. The transition probabilities between state models 
were set in a state dependent way and the active state models 
were made variable. In [11], instead of using the generic parti-
ss article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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cle filtering approach, the unscented particle filtering scheme was 
applied in the VS-MM framework to achieve more accurate state 
estimation with fewer particles.

In this work, a more realistic scenario is considered in which 
a vehicle manoeuvres in different terrain conditions with differ-
ent movement types. Note that a vehicle’s movement type and 
position can be determined by different types of terrain. We ex-
ploit both the road topology information and the off-road terrain 
information to aid the GMTI tracking compared with aforemen-
tioned works which only take the road topology information into 
account. In order to deal with the multiple movement types of 
a manoeuvring vehicle, multiple movement modes are considered 
and related state models are applied for the vehicle’s movement 
description in a particular terrain, instead of considering only a 
single movement mode as in [10] and [11]. These geographic in-
formation and multiple modes are incorporated into a constrained 
variable structure multiple model particle filter algorithm, aided by 
the particle swarm optimisation (denoted as C-VSMM-PSO-PF) for 
accurate GMTI tracking. The proposed C-VSMM-PSO-PF algorithm 
applies a particle filtering technique to deal with the non-Gaussian 
distribution as well as the non-linear GMTI measurements. Dif-
ferent from the algorithms in [10] and [11], a particle swarm 
optimisation technique ([12] and [13]) is introduced to generate 
more effective particles within a region with relatively high mea-
surement likelihood values. Particles obtained by performing the 
PSO which violate the geographic constraints are projected into 
the feasible geographic regions. The advantages of the proposed 
C-VSMM-PSO-PF algorithm with Geographic Information System 
(GIS) information and multiple movement modes are validated via 
numerical simulations.

This paper is organised as follows. Section 2 presents the 
geographic information-aided state model and the measurement 
model for describing the GMTI tracking problem. Section 3 pro-
poses the C-VSMM-PSO-PF algorithm. Section 4 shows the advan-
tages of the proposed ground vehicle tracking method from Monte 
Carlo simulations in a realistic environment. Conclusions are given 
in Section 5.

2. GMTI tracking models

This section introduces the state and GMTI measurement mod-
els for a GMTI tracking problem. Based on these models, filtering 
techniques based on the particle filtering framework will be devel-
oped for state estimation.

2.1. State model description with geographic information

In a real environment, different types of terrain conditions exist, 
and the movement of a vehicle is always constrained by terrains 
whose information can be collected from geographic information 
systems (GIS) [14]. When a vehicle moves on the road, it moves 
along the road segment determined by the road topology. For 
off-road movement, a vehicle moves in a relatively free way but 
cannot enter inaccessible regions. Thus, different state models are 
required to describe the state evolution of a vehicle according to 
the vehicle’s movement characteristics in different terrain condi-
tions.

2.1.1. Off-road state model
The state model to describe the off-road movement can be rep-

resented as [15]:

xglobal = F xglobal + Gwglobal(mk) (1)
k k−1
Fig. 1. The representations of local road coordinate systems. o1s1n1, o2s2n2 and 
o3s3n3 represent local road coordinates with respect to different road segments. 
OXY represents the real world coordinate.

with

F =

⎡
⎢⎢⎣

1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , G =

⎡
⎢⎢⎣

T 2/2 0
0 T 2/2
T 0
0 T

⎤
⎥⎥⎦ (2)

where xglobal
k = [xglobal

k , yglobal
k , ̇xglobal

k , ẏglobal
k ] represents the state 

vector in the real world coordinate system, which includes the 
real world position ([xglobal

k , yglobal
k ]) and velocity ([ẋglobal

k , ẏglobal
k ]) 

(here we mainly consider tracking the vehicle’s 2-D positions as 
the height of the vehicle could be derived directly from the GIS 
as its 2-D positions are known) and T is the interval between 
consecutive time instances. wglobal(mk) is the uncertain control in-
put of the state model representing the accelerations in different 
directions. The representation of wglobal(mk) is related to one of 
the movement modes mk ∈ (CV,CA, Stop) considered in this study 
where CV,CA, Stop represent constant velocity, constant accelera-
tion and stop manoeuvre, respectively.

2.1.2. On-road state model
When a vehicle moves on the road, its movement is determined 

by the road topology, which mainly follows the road centerline 
without deviating largely normal to it. In this work, the road net-
work is represented by the connection of straight road segments 
as in [7] and [8], which represents the road network in a reason-
ably accurate way while requiring less computational cost. When 
a vehicle moves on a particular road segment lk , its corresponding 
state model is defined as:

xlk
k = F ′xlk

k−1 + G ′wlk (mk) (3)

with

F ′ =
⎡
⎣1 T 0

0 1 0
0 0 1

⎤
⎦ , G ′ =

⎡
⎣ T 2/2 0

T 0
0 T

⎤
⎦ (4)

where xlk
k = [slk

k , vlk
k , nlk

k ] represents the state associated with the 
local coordinate system of road segment lk . As illustrated in Fig. 1, 
the origin of the local coordinate system is the starting point a 
road segment (obtained from the GIS) and two axes are along and 
normal to the road centerline. Inhere, slk

k represents the coordinate 
in the axis along the centerline, vlk

k is the corresponding velocity 
and nlk

k is the coordinate in the axis normal to the centerline. The 
control parameter wlk (mk) is related both the road segment and 
one of the on-road movement modes. Similar to the off-road sce-
nario, multiple movement modes are considered to deal with the 
vehicle manoeuvring with different movement types on the road.
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2.1.3. State transition between global/local coordinates
As a vehicle transits from off-road to on-road or vice versa, 

its state vector representation needs to be transformed between 
the global real world coordinate system and local road coordinate 
system for dynamic modelling. For a local state vector xlt

k , it is con-

verted to its counterpart xglobal
t in the real world coordinate system 

as:

xglobal
k = xlstart

k
+ slk

k cos(θlk ) (5)

yglobal
k = ylstart

k
+ slk

k sin(θlk ) (6)

ẋglobal
k = vlt

k cos(θlk ) (7)

ẏglobal
k = vlk

k sin(θlk ) (8)

where xlstart
k

and ylstart
k

represent the real world coordinate of the 
starting point of the current road segment lk on which a vehicle 
moves and θlk represents the angle of the road segment. xlstart

k
, ylstart

k

and θlk are obtained from GIS. Conversely, xglobal
k is converted back 

to the local state vector xlk
k for a particular road segment lk as:

slk
k =

√
(xglobal

k − xlstart
k

) cos(θlk )
2 + (yglobal

k − ylstart
k

) sin(θlk )
2 (9)

vlk
k = ẋglobal

k cos(θlk ) + ẏglobal
k sin(θlk ) (10)

nlk
k =

|yglobal
k − xglobal

k tan(θlk ) + xlstart
k

tan(θlk ) − ylstart
k

|√
1 + tan(θlk )

2
. (11)

2.1.4. Terrain type and movement mode transitions
In a real situation, a vehicle might move in different geographic 

terrains; the movement type of the vehicle also changes due to 
its manoeuvring. The transition between different terrains is first 
modelled in a state dependent way by using the distance between 
the vehicle position and the road entry as:

p(rk = on-road|rk−1 = off-road) = exp(−c · d) (12)

where d is the distance to the entry point of the road network 
and c is a positive constant value. The transition probability be-
tween the on-road and off-road p(rk = off-road|rk−1 = on-road)

has a similar form as in (12), and the only difference is that the 
distance d is the one to the exit point of the road. For the move-
ment mode transition, a simple Markov jump model is applied in 
this work. At time instance k − 1, we assume that the transition 
probability to every possible movement modes mk is equal in or-
der to ensure no bias exists towards a certain movement type.

2.2. GMTI measurement model

A GMTI radar on a UAV platform is assumed to be used, which 
measures the relative range r and azimuth angle θ of the tracked 
vehicle, given by:

yk =
[

rk
θk

]

=
⎡
⎢⎣

√
(xo,k − xglobal

k )2 + (yo,k − yglobal
k )2 + (zo,k − zglobal

k )2

arctan

(
yo,k−yglobal

k

xo,k−xglobal
k

)
⎤
⎥⎦

+ nk (13)

where (xglobal
k , yglobal

k , zglobal
k ) and (xo,k, yo,k, zo,k) represent the real 

world position of the tracked vehicle and the observer (GMTI 
tracker) at time instance k, respectively. nk represents the radar 
measurement noise. There are two issues to be considered for the 
GMTI radar as described below.

Missed detection A tracked vehicle cannot always be detected. Its 
detection will be missed if the line-of-sight (LOS) of the GMTI 
radar to the vehicle is obstructed or the radial velocity (the pro-
jected velocity along the line between the GMTI and the tracked 
vehicle) is below the minimum detection velocity (MDV) (in this 
case, it is called that the vehicle is within the ‘Doppler Blind 
Zone’). In this work, a similar method to [8] is proposed to model 
the detection probability considering the effect of the both LOS and 
MDV as:

P D =
⎧⎨
⎩

0, if a vehicle is outside LOS region or radial
velocity is below MDV

pd, otherwise
(14)

where pd is a constant between 0 and 1.

False alarms In some cases, false alarms will be generated since 
anything on the ground with significant motion relative to the sen-
sor can trigger a GMTI detection. These false detections are called 
‘clutter detections’. It is usually assumed that the number of the 
clutter detections follows a Poisson distribution and the clutter 
detections are distributed uniformly across the surveillance region 
[16].

To deal with the missed detections and false alarms, a general 
measurement likelihood function is applied to incorporate both 
the detection probability and clutters distribution, which is rep-
resented as [16]:

f (Zk|xglobal
k ) ∝ 1 − P D + P D

∑
zk∈Zk

g(zk|xglobal
k )

γ c(zk)
(15)

where Zk is the measurement set at time instance k which con-
tains both true measurement and false alarms (it could also be an 
empty set with no measurements), γ the expected number of false 
alarms per GMTI scan, c(zk) the uniform spatial distribution of the 
false alarm and g(zk|xglobal

k ) the likelihood function for a measure-

ment element zk ∈ Zk conditioned on the global state xglobal
k , which 

is determined according to (13).

3. C-VSMM-PSO-PF algorithm

Considering the following two facts: i) the incorporation of the 
geographic information into the state equations can significantly 
distort the distribution of the state vector resulting in a non-
Gaussian system and ii) the measurement model of the GMTI radar 
is non-linear (15), a particle filtering technique is adopted in this 
work. For the generic particle filtering technique, particles are gen-
erated only from predictions by the state models in [10], which in-
troduces outlier particles with low measurement likelihood values. 
To address this issue, the VSMM-UPF (Unscented Particle Filter) 
framework [11] was proposed in which unscented Kalman filters 
were applied for new particles generation. Although this method 
exploits measurement information for new particles generation, as 
the unscented Kalman filter is performed for every particle, the al-
gorithm becomes computationally expensive.

To further address the above issue, this paper proposes the 
constrained variable structure multiple model particle filter algo-
rithm, aided by the particle swarm optimisation (C-VSMM-PSO-PF). 
Firstly, it uses the particle filtering based on the VSMM frame-
work considering different movement types (on/off movements), 
different movement modes and state-dependent model transitions 
between on/off road. The measurement information is incorpo-
rated in new particle generation by applying a particle swarm 
optimisation (PSO) technique to make the outliers move towards 
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a comparatively high measurement likelihood region. Considering 
the constraints imposed by the geographic information, the resul-
tant particles are projected into the feasible regions determined by 
the geographic information. The proposed C-VSMM-PSO-PF algo-
rithm is divided into the following three main steps as follows.

3.1. VSMM prediction

A set of N particles are initialised at k − 1 as {Xi
k−1 =

[xi
k−1, l

i
k−1, r

i
k−1, m

i
k−1]}i=1,...,N , where each particle Xi

k−1 includes 
the vehicle status (on/off road indicator ri

k−1, movement mode 
mi

k−1, the particular road segment on which it moves li
k−1 (if 

ri
k = off-road, li

k−1 = global)) and the vehicle state vector xi
k−1. 

New particles for the time instance k are predicted according to 
the VSMM scheme, which includes:

Status determination. For each particle i, its on/off road indication 
ri

k , the road segment li
k if it is on-road and the movement mode mi

k
of at time instance k are firstly determined. ri

k is sampled accord-
ing to the probability in Eq. (12), mi

k is chosen from the possible 
movement modes with an equal probability and li

k is determined 
by the following criteria:

li
k =

⎧⎨
⎩

global, ri
k = off-road

lstart, ri
k−1 = off-road and ri

k = on-road
li
k−1 ri

k = on-road
(16)

where lstart represents the entry to the corresponding road seg-
ment.

State prediction. According to {li
k, r

i
k, m

i
k}i=1,...,N and vehicle states 

{xi
k−1}i=1,...,N in the particle set, new N vehicle states

{x
predict,i,lik
k }i=1,...,N are predicted by Eq. (1) (for ri

k = off-road) or 
Eq. (2) (for ri

k = on-road). Note, if ri
k �= ri

k−1, the corresponding 
state vector xi

k−1 needs to be transformed accordingly before state 
prediction.

Status/state adjustment. For ri
k = on-road and the along-centerline 

axis coordinate of x
predict,i,lik
k (denoted as s) is larger than the length 

of the road segment li
k (denoted as L) or smaller than zero, a new 

road segment which connects to the end or start point of the road 
segment li

k is chosen to replace the original li
k . The coordinate in 

the along-centerline axis of x
predict,i,lik
k is adjusted to s

predict,i,lik
k − L

or −s
predict,i,lik
k . After the VSMM prediction step, a new set of parti-

cles {Xpredict,i
k = [xpredict,i,lik

k , li
k, r

i
k, m

i
k]}i=1,...,N is obtained.

3.2. Particle swarm optimisation

Note that a set of particles {x
predict,i,lik
k }i=1,...,N may fall into a 

very low measurement likelihood region. To mitigate this issue, 
the particle swarm optimisation (PSO) [12], a population based 
stochastic optimisation technique, is applied to make the predicted 
vehicle states move into a comparatively high measurement likeli-
hood region (as illustrated in Fig. 2) by maximising the likelihood 
function in Eq. (15).

The predicted states {x
predict,i,lik
k }i=1,...,N are taken as an initial 

population set for the PSO algorithm. For the consensus of the 
vehicle states’ coordinates, all the vehicle states are transformed 
into the real word coordinate system as {xpredict,i,global

k }i=1,...,N

using Eqs. (5)–(6). Then, for each xpredict,i,global , a fitness value 
k
Fig. 2. The illustration of particle swarm optimisation, which makes particles gener-
ated from the state transition probability converge into a region with comparatively 
high measurement likelihood value.

f (Zk|xpredict,i,global
k ) is calculated. Based on individual best position 

pi
0 and global best g0, every individual i moves with a velocity of 

vi
0, which relates to the difference between the individual i and 

the individual and global best, which constructs a new population 
set. Using this new population set, the same procedure repeats to 
obtain individuals with higher fitness values. The population set 
update continues until certain conditions are met (e.g. the maxi-
mum iteration number is reached or the function values for the 
majority of points are larger than a pre-specified threshold, as will 
be illustrated in the numerical simulations section).

Technical details of the PSO are explained in Algorithm 1. 
r1 and r2 in Algorithm 1 are random numbers with Gaussian 
distribution N(0, 1), and ρ is a zero-mean Gaussian perturbation 
noise added to avoid particles being trapped in local optima. The 
obtained population set after performing the PSO, {Xoptimised,i

k =
[xoptimised,i

k , li
k, r

i
k, m

i
k]}i=1,...,N is obtained to replace the original set 

{x
predict,i,lik
k }i=1,...,N for a new set of particles.

Algorithm 1 Particle swarm optimisation to obtain more effective 
particles.

Input: {xi
0}i=1,...,N = {xpredict,i,global

k }i=1,...,N is chosen as the initial population set.

1: Set j = 0, pi
0 = xi

0 for i = 1, . . . , N , g0 = arg maxpi
0

f (Zk|pi
0) for i = 1, . . . , N

2: while Termination condition is not met do
3: j = j + 1
4: for i = 1 to N do
5: vi

j = |r1|(pi
j−1 − xi

j−1) + |r2|(g j−1 − xi
j−1) + ρ

6: xi
j = xi

j−1 + vi
j

7: pi
j =

{
xi

j if f (Zk|xi
j) > f (Zk|pi

j−1),

pi
j−1 otherwise.

8: end for
9: g j = arg maxpi

j
f (Zk|pi

j) for i = 1, . . . , N
10: end while
Output: {xoptimised

k }i=1,...,N = g j

3.3. Particles projection and state estimation

Finally, the geographic information which constrains the ve-
hicle’s movement is considered. As the geographic constraint re-
gions are often non-linear, a projection based method [17] which 
is a simple but efficient technique to deal with different types 
of constraints, is applied to exploit the geographic constraint in-
formation. For the particle Xoptimised,i

k = [xoptimised,i
k , li

k, r
i
k, m

i
k] ob-

tained from the PSO process, if the vehicle position is not within 
the feasible region (outside the road boundary if ri

k = on-road
or inside the off-road infeasible region if ri

k = off-road), then it 
is projected to the nearest point on the feasible region bound-
ary. The particles after projection are denoted as {Xprojection,i

k =
[xprojection,i

k , li
k, r

i
k, m

i
k]}i=1,...,N .

The probability of a vehicle being on/off road p(rk), the move-
ment mode probability p(mk) and the state estimation x̂m,r corre-
k
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sponding to an off/on road movement type (rk = r) with a particu-
lar movement mode (mk = m) are obtained as:

p(rk = r) =
∑

i

wi, for i ∈ { j|r j
k = r} (17)

p(mk = m) =
∑

i

wi, for i ∈ { j|m j
k = m} (18)

x̂m,r
k =

∑
i wix

projection,i
k

p(mk = m, rk = r)
, for i ∈ { j|r j

k = r,m j
k = m} (19)

where wi ∝ f (Zk|xprojection,i
k ) as in Eq. (15).

The on/off road type (denoted as rvehicle) and the movement 
mode (denoted as mvehicle) of the vehicle are determined from the 
largest p(rk) and p(mk). The final state estimation of the vehicle 
is then x̂mvehicle,rvehicle

k . After the state estimation, for every particle i

whose ri
k = on-road, the vehicle state vector xprojection,i

k is converted 
back to the local coordinate for the VSMM prediction at the next 
time instance using Eq. (9). The outline of the proposed C-VSMM-
PSO-PF algorithm is presented in Algorithm 2:

Algorithm 2 The outline of the C-VSMM-PSO-PF algorithm.

Input: N particles are initialised at k −1 as {Xi
k−1 = [xi,lik−1

k−1 , li
k−1, ri

k−1, mi
k−1]}i=1,...,N

•VSMM prediction:
Obtaining the on/off road movement type ri

k , road segment li
k movement mode 

mi
k and predicted state x

i,lik
k according to corresponding transition probabilities 

for every particle. Every predicted state x
predict,i,lik
k is converted to the global one 

xpredict,i,global
k for PSO.

•PSO:
Taking the predicted vehicle states {[xpredict,i,global

k }i=1,...,N as an initial popula-

tion, a new set of vehicle states {xoptimised,i
k }i=1,...,N is obtained from PSO using 

Algorithm 1
•Particle projection:

For the obtained vehicle state particles xoptimised,i
k whose position is outside the 

feasible region, we project the vehicle position to the nearest point on the feasible 
region’s boundary to obtain a new set of vehicle state particles {xprojection,i

k }i=1,...,N .
•State estimation:
The final particle set at time instance k is obtained as {Xi

k =
[xprojection,i

k , li
k, ri

k, mi
k]}i=1,...,N . The on/off road probability, movement mode 

probability and vehicle state are obtained using Eqs. (17)–(19). After the state 
estimation, the corresponding xprojection,i

k is converted back to the local road seg-

ment state for ri
k = on-road. The VSMM prediction for the next time instance is 

then performed and the above procedure repeats.

4. Numerical simulations

The advantages of the proposed C-VSMM-PSO-PF algorithm are 
evaluated by numerical simulations. We simulate a scenario that 
an unmanned aerial vehicle (UAV) with the GMTI radar tracks a 
highly manoeuvring vehicle in a realistic environment (a region of 
Lindifferon, St. Andrews in the United Kingdom). The simulated ve-
hicle trajectory is plotted as the blue line in Fig. 3. x and y axes 
represent the distance to the origin along the East and North di-
rection, respectively.

The on/off road transition, movement modes transitions and ve-
locity amplitude variations corresponding to the simulated vehicle 
movement are plotted in Fig. 4. The state models corresponding 
to on/off road movements have forms of Eqs. (1) and (3) as de-
scribed in Section 2, and three types of movement modes (CV, 
CA and Stop) are considered in this work. The control parameter 
wglobal(mk) for the off-road movement with different movement 
modes is set as:
Fig. 3. The trajectories of the simulated UAV (red stars) and vehicle (blue line) 
movements. The satellite image is taken from Google Earth and geo-referenced. (For 
interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)

wglobal(mk) ∼ N(w|0,

[
(0.1)2 0

0 (0.1)2

]
) for (mk = C V )

wglobal(mk) ∼ N(w|0,

[
(15)2 0

0 (15)2

]
) for (mk = C A)

wglobal(mk) =
[

−ẋglobal
k

− ẏglobal
k

]
for (mk = Stop) (20)

where wglobal(mk) is assumed to follow Gaussian distribution for 
CV and CA movement mode. The standard deviations of the com-
ponents of wglobal(mk) are set to be small for CV to reflect the 
movement with a constant velocity and those for the CA mode 
are set large to deal with the vehicle manoeuvring. Similarly, the 
control parameter wonroad(mk) of the on-road state model corre-
sponding to different on-road vehicle in Eq. (21) is set as:

wlk (mk) ∼ N(w|0,

[
(0.1)2 0

0 σ 2
n (lk)

]
) for (mk = C V )

wlk (mk) ∼ N(w|0,

[
(15)2 0

0 σ 2
n (lk)

]
) for (mk = C A)

wlk (mk) =
[−vlk

k
0

]
for (mk = Stop) (21)

where the standard deviation for the first component of wlk (mk)

(representing the acceleration along the road centerline) is set in 
the same way as in the off-road movement scenario. The sec-
ond component of wlk (mk) represents the change of the normal 
distance for consecutive time instances whose standard deviation 
σn(lk) is related to the width of the particular road segment lk (ob-
tained from the GIS).

A GMTI radar sensor is assumed to be mounted on a moving 
UAV platform for ground surveillance. We simulate the UAV loiter-
ing at an altitude of 200 m where the circle radius is 100 m and 
angular speed is π/20 rad/s (the UAV trajectory in the 2-D over-
look plane is marked as red stars in Fig. 3). Measurements of the 
GMTI radar are simulated according to Eq. (13) with a Gaussian 
noise being added to the relative range and angle between the ve-
hicle and the UAV platform. The Gaussian noise is assumed to have 
zero mean and the standard deviations for r and θ are: σr = 5 m 
and σθ = 0.05 rad, respectively. It is assumed that the vehicle is 
always within the line-of-sight of the sensor. If the radial veloc-
ity between the vehicle and the GMTI radar is smaller than the 
threshold (set to 1 m/s in this work), no vehicle measurements 
are obtained; otherwise, corresponding measurements are gener-
ated with a detection probability of pd which is set to be 0.9. The 
expected number of false alarms (γ in Eq. (15)) is set to 2 and 
false alarms are assumed to be spatially equally distributed across 
the surveillance area in Fig. 3.
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Fig. 4. The transitions of the vehicle’s movement types. (a) on/off road movement transitions (b) velocity and movement mode variations.

Fig. 5. The presentation of different types of terrains on a georeferenced image. Terrain information is obtained from GIS.
The geographic information for the surveillance area is obtained 
from the GIS. In the GIS, different types of terrains such as the 
off-road wood/building regions or the road network and their cor-
responding geographic information (area of a terrain region, real 
world positions, region boundary, etc.) are available from corre-
sponding geographic datasets. Fig. 5 represents the visualisation of 
different types of terrain regions on a geo-referenced image in the 
surveillance area, obtained from the Ordnance Survey OpenData 
[18]. Based on this simulation scenario, evaluations are performed 
as described below.

4.1. PSO termination conditions

The termination conditions of the PSO in our proposed C-
VSMM-PSO-PF algorithm are set as: i) values of measurement like-
lihood function (15) for a certain amount of particles (50% of the 
entire particle number in the algorithm implementation) are not 
smaller than a particular threshold (set by 0.1); or ii) the maximum 
allowed iteration number (denoted as imax) is reached. Condition i) 
guarantees that a certain percentage of particles are not ‘outliers’ 
but in a comparatively high measurement likelihood region with 
proper levels of likelihood function values and condition. Condi-
tion ii) determines the maximum allowed execution time of the 
PSO algorithm.

We evaluate the influences of different imax on the performance 
of our algorithm. The comparison results are shown in Table 1, 
from which we can see that as imax increases, smaller mean and 
standard deviation of RMSE errors are obtained. However, as imax

reaches to a certain value, the additional increase of imax will not 
result in much improvements. For example, as the imax increases 
from 5 to 10, there is a reduction of 3.46 (corresponding to 24% re-
duction) of the RMSEs mean. However, as the imax increases from 
Table 1
The performance comparison for different maximum PSO iterations.

imax value Mean (m) Std (m) Computation time (s)

0 19.14 2.90 3.18
5 14.53 2.05 3.66

10 11.07 1.15 4.30
20 10.95 1.07 4.49

10 to 20, the reduction of the RMSEs mean is only 0.12 (corre-
sponding to 1% reduction). Thus, imax = 10 is chosen for the evalu-
ations in the following sections.

4.2. Geographic information evaluation

Next, we analyse the effect of incorporating the geographic in-
formation in terms of the tracking performance. The proposed al-
gorithm is compared with its counterpart without incorporating 
any GIS information. If no geographical information is used, the 
state model in Eq. (1) is always applied to describe the vehicle 
movement. Otherwise, different models mentioned in Section 2 are 
applied to describe the on/off road movements and the infeasi-
ble region (including the woods, building and high slope regions 
as marked in Fig. 5 and regions outside the road boundary when 
the vehicle moves on road) are exploited to constrain the parti-
cles.

50 trials of Monte-Carlo simulations are performed (and this 
applies to the rest of this section). At every time instance, the 
averaged root mean square errors (RMSEs) between tracking re-
sults and ground truth trajectory are plotted in Fig. 6(a) and av-
eraged on/off road probabilities are plotted in Fig. 6(b). The er-
ror mean and standard deviation are presented in Table 2. From 
the results, we can see that estimated on/off road probabilities 



68 M. Yu et al. / Aerospace Science and Technology 52 (2016) 62–69
Fig. 6. The 50 times averaged RMSEs and on/off road probabilities for every time in-
stance. (a) The comparison of 50 times averaged RMSEs at every time instances for 
approaches with/without geographic information. (b) The 50 times averaged on/off 
road probabilities.

Table 2
The estimation performance comparison with and without the geographic informa-
tion.

Mean (m) Std (m)

No geographic information 19.42 2.43
Geographic information 11.07 1.15

are closely matched with the ground truth and by incorporating 
the geographic information, improved tracking performance is ob-
tained with more than 40% improvement of the mean tracking 
error.

4.3. Evaluation of incorporating multiple movement modes

We also analyse the advantage of considering three different 
movement modes (mt = C V , C A and Stop) for describing both the 
on and off road movements. We compare our multiple movement 
mode scheme with the one in [10] and [11] which only considers 
a single movement mode. For the single movement mode scheme, 
the mode mt = C A is chosen for comparison considering the corre-
sponding state model’s ability to deal with the highly manoeuvring 
vehicle.

The mean and standard deviation of RMSEs between the track-
ing results and ground truth trajectory for single and the multiple 
movement mode scheme are presented in Table 3, from which 
we can see that a significant improvement (more than 50% over 
the mean of RMSEs) is obtained by considering multiple move-
ment modes. Besides, the probabilities of the ‘stop’ and ‘non-stop’ 
Fig. 7. The 50 times averaged stop/non-stop probabilities for every time instance.

Table 3
Performance comparison with different state model schemes for movement descrip-
tion.

Mean (m) Std (m)

Single movement model 25.82 5.73
Multiple movement models 11.07 1.15

movement modes are estimated and presented in Fig. 7. It is 
observed that modes with larger estimated probabilities at dif-
ferent time instances are consistent with the ground truth as in 
Fig. 4(b).

4.4. Algorithm evaluation

Finally, we compare the proposed method with other particle 
filtering based algorithms including: VSMM-PF [10], VSMM-UPF 
[11] and the extension of the differential evolution-Markov chain 
particle filtering [19] for variable structure multiple models frame-
work (VSMM-DEMC-PF). For a fair comparison, all the methods 
incorporate the GIS information by projecting invalid particles into 
the feasible region and the algorithms then become constrained 
versions of them (termed as C-VSMM-PF, C-VSMM-UPF, and C-
VSMM-DEMC-PF).

The comparison of RMSEs between different algorithms are pre-
sented in Fig. 8 and Table 4. The performance of the C-VSMM-UPF 
and the C-VSMM-DEMC-PF is better than the C-VSMM-PF as they 
make use of measurement information for more effective parti-
cle generation. However, compared with those two, the proposed 
method (C-VSMM-PSO-PF) achieves even better performance as 
shown in Table 4. It also shows much higher computational effi-
ciency than the C-VSMM-UPF. It is worthwhile noting that the pro-
posed method achieves much better performance than C-VSMM-
UPF when the vehicle stops (during 26–36 and 77–87 seconds) 
from Fig. 8(a). This is because when the vehicle stops, no mea-
surements related to the vehicle will be received according to the 
characteristic of the GMTI radar. For the C-VSMM-UPF algorithm, 
only the mode transition probability and the state model are ap-
plied to obtain the mode and vehicle state. However, the PSO tech-
nique integrated in the proposed method makes the particles move 
to the high measurement likelihood region, which corresponds to 
the Doppler blind zone with small velocities. Besides, compared 
with the C-VSMM-DEMC-PF algorithm, the PSO algorithm makes 
use of the individual best and global best information to gener-
ate new populations, rather than generating new populations ran-
domly as for the DEMC. In this way, more effective particles with 
high measurement likelihood values can be generated by the pro-
posed C-VSMM-PSO-PF scheme.
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