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Reduced-scale ultrasonic modelling of Rayleigh wave 

transmission over seismic barriers formed by periodic 

arrays of vertical holes  

 

Abdelhalim Azbaid El Ouahabia) and Victor V. Krylova)  

 

Seismic barriers are used widely to protect buildings from traffic-induced 

ground vibrations, mainly from propagating Rayleigh surface waves. 

Experimental investigations of real size seismic barriers at frequencies typical 

for traffic-induced ground vibrations, i.e. at 10-100 Hz, are costly and time 

consuming. In the present work, an alternative and much less expensive 

approach is proposed - a reduced-scale experimental modelling using ultrasonic 

Rayleigh wave propagation over very small-scale replicas of real seismic 

barriers. Experimental investigations of propagation of Rayleigh wave pulses 

with the central frequency of 1 MHz have been carried out for seismic barriers 

formed by periodic arrays of vertical holes in Aluminium samples. 

Measurements of transmission and reflection coefficients of Rayleigh waves for 

different types of arrays and for different incident angles have been carried out 
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and compared with the earlier published results obtained for real seismic 

barriers.  

 

Primary subject classification:  43.2.4;  Secondary subject classification:  13.4.3  

 

 

1   INTRODUCTION  

       Ground vibrations generated by rail and road traffic can disturb residents of nearby 

buildings and can even cause structural damage to properties in especially severe cases. A 

simple and efficient way to reduce ground vibrations from railways or road traffic is to 

influence the propagation path from source to receiver by introducing seismic barriers. The 

advantage of interventions on the propagation path is that no modifications of the track or 

road are required. Several types of seismic barriers have been proposed in the past to protect 

buildings from traffic-induced ground vibrations, mainly from propagating Rayleigh surface 

waves. Among such barriers are trenches (both open and in-filled)1-8, large concrete blocks 

embedded in the ground9-11, rows of vertical piles12-15, periodic arrays of vertical holes16, 

heavy masses placed on the ground surface17, 18, etc.  

      Theoretical predictions of Rayleigh wave propagation through such barriers are extremely 

difficult. Analytical solutions are possible only for a limited number of cases, for example for 

very shallow trenches19. In the majority of practical situations though, in particular for deep 

trenches, the only methods of theoretical prediction are numerical approaches, which require 

much of computation time. For that reason, in order to obtain a reliable prediction of the 

behaviour of seismic barriers in specific locations, a typical practical solution is to use direct 

experimental measurements on real size seismic barriers at frequencies typical for traffic-
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induced ground vibrations, i.e. at 10-100 Hz11, 20, 21. Unfortunately, such direct measurements 

are costly and time consuming.  

      In the present paper, an alternative and much less expensive approach to a full-scale 

experimental testing is proposed. This is reduced-scale experimental modelling using 

ultrasonic Rayleigh wave propagation over very small-scale replicas of real seismic barriers. 

The principle of reduced-scale ultrasonic modelling is based on the fact that scattering of 

Rayleigh waves on topographic irregularities depends on the values of non-dimensional 

parameters, such as  h/λR,  where  h  is one of the dimensions of the irregularity, for example 

depth, and  λR = vR/f  is the Rayleigh wavelength, where  vR  is Rayleigh wave velocity in the 

solid medium, and  f  is frequency. If to increase frequency  f  of the incident wave from 

sound to ultrasound, which will reduce  λR  from a few meters to a few millimetres, then the 

same values of  h/λR,  and thus the same behaviour of the seismic barrier, can be achieved for 

the values of  h  in the range of few millimetres. This constitutes a major achievement of 

ultrasonic modelling, namely that propagation of Rayleigh waves over real seismic barriers 

can be modelled in a much smaller scale by propagation of ultrasonic Rayleigh waves over 

very small replicas of seismic barriers made on the surfaces of experimental solid samples. 

Note that very similar problems are considered in ultrasonic non-destructive testing with 

regard to identification of parameters of cracks and other defects (see e.g. Refs. 22-25).  

       It should be noted that, whereas material damping is important for description of 

propagation of ground vibrations over long distances (hundreds of meters), it is insignificant 

if the problems of scattering of ground vibrations on seismic barriers are considered, which is 

the case investigated in this paper. Therefore, material damping can be ignored in reduced-

scale experimental samples, and it does not matter what material (metal or plastic) is used for 

ultrasonic modelling purposes.  
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      In the present work, we describe the methodology of the approach and the results of the 

experimental investigations of propagation of Rayleigh wave pulses with the central 

frequency of 1 MHz, which corresponds to the scaling factor of about 1:1000, over arrays of 

periodic vertical holes earlier investigated in the full-scale experiments carried out in the real 

ground16.  

      The small-scale replicas of real seismic arrays have been made on the surfaces of 

Aluminium rectangular blocks having the dimensions of 350x250x20 mm (each of these 

blocks can be considered as an elastic half space for Rayleigh waves at frequencies around 1 

MHz). The results of the measurements of transmission and reflection coefficients of 

ultrasonic Rayleigh waves over the above-mentioned reduced-scale replicas of periodic 

arrays of vertical holes demonstrate that the proposed approach is simple and efficient, and it 

helps to quickly evaluate the ability of a particular seismic array to suppress the transmitted 

Rayleigh waves. Part of the material described in this paper has been presented at the 

conference on noise and vibration engineering26.  

 

 

2   MANUFACTURING OF EXPERIMENTAL SAMPLES  

      The experimental samples have been made of 20 mm-thick Aluminium plates having 

horizontal dimensions of 350 x 250 mm. Figure 1 shows a photograph of an Aluminium 

rectangular plate with an array of vertical holes drilled on its surface. A CNC (Computer 

Numerically Controlled) milling machine was used to produce arrays of vertical holes. The 

central frequency of Rayleigh wave pulses used in the experiments was 1 MHz.  

      First, an array of vertical holes was produced with the parameters providing a reduced-

scale model of the periodic array of vertical holes drilled in the real ground and investigated 

in the work by Brule et al16. A scale factors have been calculated from the diameter, depth 
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and lattice to wavelength (λ = 1.56 m, according to the 50 Hz source used in Ref. 16) ratios of 

the experimental mesh (5 m deep self-stable holes of diameter 0.32 m with centre-to-centre 

spacing of 1.73 m),  nD = 0.2,  nh = 3.2,  na = 1.11,  respectively. A mesh of the reduced-scale 

model taking into account the scale factors calculated and the wavelength for a 1 MHz 

Rayleigh wave in Aluminium,  λR  (Rayleigh wave velocity in Aluminium,  vR = 2920 m/s), 

was made in square lattice of three lines of ten vertical holes 0.6 mm in diameter, D, 9.2 mm 

in depth, h, (owing to the difficulty of drilling the holes with 0.6 mm in diameter, the depth  h  

was chosen to be 5 mm instead of 9.2 mm) and 3.2 mm in lattice, a, (for convenience, we will 

use the following shortened notation for this sample: D06h50a32; similar notations will be 

also used for other experimental samples).  

      To investigate the influence of holes' sizes and spacing of reduced-scale model on the 

results, different meshes with different sizes of holes and lattice were produced in different 

samples; mesh of square lattice of D = 0.6 mm, h = 5 mm and a = λR, (D06h50a29); mesh of 

rectangular lattice of D = 0.6 mm, h = 5 mm and (a,b) = (3.2, 9) mm, (D06h50a32b90); mesh 

of square lattice of D = 1.2 mm, h = 9.2 mm and a = 3.2 mm, (D12h92a32) and mesh of 

square lattice of D = 1.2 mm, h = 9.2 mm and a = λR, (D12h92a29). Figure 2 shows 

photographs of arrays of vertical holes drilled in Aluminium rectangular plates.  

 

 

3   EXPERIMENTAL SETUP  

      The laboratory arrangement used for measurements of transmission and reflection 

coefficients of propagating Rayleigh wave pulses with the central frequency of 1 MHz, which 

corresponds to the value of scaling factor of about 1:1000, over small replicas of periodic 

arrays of vertical holes is shown in Fig. 3. Two Phoenix angle-beam piezoelectric ultrasonic 

transducers of 1 MHz, 20mm diameter crystal and L51xW27xH31 mm, were used to 
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generate and receive ultrasonic Rayleigh waves on the surfaces of Aluminium rectangular 

blocks. A Sitescan150 ultrasonic testing system from Sonatest Ltd was used both to drive the 

transducer and to receive/display the ultrasonic signals. A Sonatest Data Management System 

version 3 (SDMS 3) was installed in the Laptop to interface and record the acquired data 

from Sitescan150 for further post processing.  

      Figure 4 represents a schematic of the experimental arrangement used for measuring the 

ultrasonic Rayleigh waves transmitted and reflected for different incident angles. The 

separation between the transmitter and the receiver was  d = 5 cm.  

      The reduced-scale models of periodic arrays of vertical holes were produced in the 

middle of one half of the Aluminium rectangular plates. Another half was used for the 

measurements of the propagation of ultrasonic Rayleigh waves over smooth surface (in the 

absence of holes) for reference purposes. Measurements were performed in transmission 

mode. The transducer connected to the Transmitter of Sitescan150 generated an ultrasonic 

Rayleigh wave pulse on the surface of an Aluminium plate. Another transducer was 

connected to the Receiver of Sitescan150 and placed behind the seismic barriers, separated by 

distance  d, and received the ultrasonic Rayleigh waves generated by the transducer 

(transmitter).  

      For measurements of Rayleigh wave transmission, different incident angles, θi, of 

ultrasonic Rayleigh waves were used. As angles of reception, the following angles were used:  

θr = -60o, -30o, 0o, 30o and 60o. Due to the symmetry of the geometrical configurations of the 

seismic barriers used in the experiments, only angles of  θi = 0o, 30o and 60o were considered 

for the incident waves. The positions and angles of the transducers (transmitter and receiver), 

are shown in Fig. 4(a).  

      With regard to the reflection of Rayleigh waves from the arrays of vertical holes, 30o and 

60o incident angles have been chosen, and the receiver was placed as shown in Fig. 4(b). For 
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reference purposes, the two transducers, transmitter and receiver, were located at the same 

distance, d, between them in the other half of the Aluminium rectangular plate (in the absence 

of drilled holes) for measuring the propagation of ultrasonic Rayleigh waves over smooth 

surface. The measurements were repeated several times for each configuration, and the 

results were averaged statistically.  

 

 

4   EXPERIMENTAL RESULTS AND DISCUSSION  

       One of the aims of this investigation was to reproduce in a small scale the full-scale 

experimental measurements carried out in the real ground on Rayleigh wave transmission 

through periodic arrays of vertical holes16, also termed 'seismic metamaterials' or 'seismic 

crystals'.  

      In the first step of the measurements, the transmitter and the receiver were placed in the 

normal position (0o). The measurements results for ultrasonic Rayleigh wave propagation 

over smooth surface and over an array of vertical holes, D06h50a32, as a reduced-scale 

model, at 1 MHz, of the full-scale experiments carried out in Ref. 16 are shown in Figs. 5 and 

6 respectively.  

      The amplitude reduction factor for the above-mentioned model array of vertical holes was 

introduced as the ratio of the maximum value of the Rayleigh wave signal transmitted over 

the array of vertical holes and the maximum value of the Rayleigh wave signal transmitted 

over a smooth surface. The maximum values used for calculations of amplitude reduction 

factor were taken from full-wave rectifier signals. The amplitude reduction factor calculated 

from Figs. 5 and 6 is about 0.73, which shows a moderate attenuation of the signal 

transmitted through this array of vertical holes. This attenuation of ultrasonic Rayleigh waves 

transmitted through this type of array of vertical holes is substantially smaller than in the case 
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of full-scale measurements16, where the signal hardly reaches the second row of boreholes. A 

more detailed comparison is not possible because in the above-mentioned Ref. 16 a point 

source of Rayleigh waves has been used, whereas in the present paper wedge ultrasonic 

transducers have been used that generate quasi-plane Rayleigh waves in their near field.  

      For oblique incidence, the transmitter was placed at the angles  θi = 30o and 60o, while the 

receiver still was in the normal position. In what follows only the full-wave rectifier signals 

are presented. The corresponding measurement results are shown in Fig. 7.  

      The next measurements were to measure the reflection coefficients from the same model 

array of vertical holes. In the case of Rayleigh wave reflections from the model array, two 

pairs of incidence and reflection angles have been used, (θi = 30o,  θr = 30o), and (θi = 60o,  θr 

= 60o). The reflected signals are shown in Fig. 8.  

      To obtain the value of the reflection coefficient, the amplitude of the reflected wave must 

be divided by the amplitude of the incident wave. In this study, the amplitude of the 

ultrasonic Rayleigh wave propagation over smooth surface has been used as the amplitude of 

the incident wave. The reflection coefficients calculated in this way are 0.09 and 0.04 for (θi 

= 30o,  θr = 30o), and (θi = 60o,  θr = 60o) respectively.  

      In order to study the effect of the lattice structure on the results, two arrays of vertical 

holes with the same diameter, D = 0.6 mm, and depth, h = 5 mm, have been tested. The first 

one corresponded to an array with rectangular lattice, (a,b) = (3.2, 9) mm, D06h50a32b90, and 

the second one corresponded to an array with the square lattice, with the lattice constant  a = 

λR = 2.9 mm  being equal to the wavelength of Rayleigh wave in Aluminium at 1 MHz, 

D06h50a29. Figures 9 and 10 show the full-wave rectifier signals of ultrasonic Rayleigh 

waves and their corresponding frequency spectra for the propagation over smooth surface and 

over the array of rectangular lattice, D06h50a32b90; as well as over smooth surface and over 
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the array of square lattice, D06h50a29, respectively. The transmitter and the receiver were 

placed in the normal position, θi = 0 and θr = 0.  

      The calculated amplitude reduction factors are 0.67 and 0.61 for the rectangular lattice, 

D06h50a32b90, and for the square lattice, D06h50a29, respectively. As it can be seen, these 

new samples of arrays of vertical holes do not bring further noticeable reductions to the 

transmitted Rayleigh waves in comparison with the first array of vertical holes, D06h50a32. 

For the case of oblique incidence (θi = 30o and 60o) and for the receiver in normal position, 

the measurement results for both arrays, rectangular and square lattices, are shown in Figs. 11 

and 12 respectively.  

      For measurements of Rayleigh wave reflection from arrays (rectangular lattice, 

D06h50a32b90 and square lattice, D06h50a29), two incident angles have been investigated 

initially. The measurement results are shown in Figs. 13 and 14 respectively.  

     The reflection coefficients for rectangular lattice, D06h50a32b90, are 0.10 and 0.03 for (θi 

= 30o, θr = 30o) and for (θi = 60o, θr = 60o) respectively. And for the square lattice, 

D06h50a29, they were 0.08 and 0.04 for (θi = 30o, θr = 30o) and for (θi = 60o, θr = 60o) 

respectively.  

      Resuming the above, very similar results have been obtained for all of the above-

mentioned three samples of arrays having the same diameter and depth of holes, but different 

lattice parameters. These rather modest results stimulated us to produce two more arrays of 

square lattice, with the diameter of holes increased up to 1.2 mm and depth up to 9.2 mm and 

with the lattice parameters  a = 3.2 mm and 2.9 mm respectively. The transmitter and the 

receiver were placed in the normal position. The results of the measurements of ultrasonic 

Rayleigh wave propagation over smooth surface and over square lattice, D12h92a32, as well 

as over smooth surface and over square lattice, D12h92a29, are shown in Figs. 15 and 16 

respectively.  
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      The amplitude reduction factors are the same in both cases and are equal to 0.36. It can be 

seen from Figs. 15 and 16 that there is an increase in attenuation of the signal transmitted 

through both these arrays of square lattice. These results demonstrate that the attenuation of 

Rayleigh waves depends strongly on the size of vertical holes. This means that the arrays of 

vertical holes with bigger diameter and deeper holes bring better reduction of the signal than 

arrays of vertical holes with small diameter and depth.  

      For measurements of Rayleigh wave reflection, two incident angles were considered as in 

the previous cases, with the corresponding reflection angles being equal to the incident 

angles: (θi = 30o, θr = 30o) and (θi = 60o, θr = 60o). The results of the measurements of the 

reflection coefficients of Rayleigh waves from the square lattice, D12h92a32 and from the 

square lattice D12h92a29 are shown in Figs. 17 and 18 respectively.  

      It can be shown that the reflection coefficients from the square lattice, D12h92a32, are 

0.20 and 0.15 for 30o and 60o respectively. And the reflection coefficients from the square 

lattice, D12h92a29, are 0.20 and 0.11 for 30o and 60o respectively. Approximately the same 

values of reflection coefficients have been observed for both arrays with different lattice 

parameters.  

 

 

5   CONCLUSIONS  

      It has been demonstrated in this paper that reduced-scale ultrasonic modelling of Rayleigh 

wave interaction with periodic arrays of vertical holes used as seismic barriers can be a useful 

tool for experimental investigations of the properties of different types of seismic barriers as 

mitigation measures against railway- and traffic-induced ground vibrations.  

      The advantage of reduced-scale ultrasonic modelling of periodic arrays of vertical holes 

over full-scale experimental measurements is that it is compact and much less expensive. It is 
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easy to manufacture numerous experimental samples to model different configurations of the 

arrays.  

      The relationship between geometrical dimensions of real seismic barriers and their 

reduced-scale replicas depends on the relationship between the real characteristic frequency 

of ground vibrations and the central frequency of ultrasonic signal in a model sample, as well 

as on Rayleigh wave velocities in the ground and in the material of the experimental sample.  

       One of the disadvantages of reduced-scale ultrasonic modelling is that standard 

ultrasonic transducers used for generation and reception of Rayleigh waves are relatively 

narrow band devices designed for specific central frequencies, in contrast to real sources of 

railway- and traffic-induced ground vibrations that are broadband, typically between 10 and 

100 Hz. Broadband sources of ground vibrations can be modelled using measurements with 

several pairs of ultrasonic transducers having different central frequencies.  

        Regarding the specific measurements on a number of Aluminium samples modelling the 

periodic arrays of vertical holes with different geometrical parameters, it can be concluded 

that, for the parameters used in the experiments, periodic arrays of vertical holes provide 

rather moderate suppression of transmitted Rayleigh waves.  
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List of Figure captions  

 

Fig. 1. Photograph of an Aluminium rectangular plate with an array of vertical 

holes (on the left); the right-hand side of the plate is used for 

measurements of a reference signal transmission.  

 

Fig. 2.  Close up photographs of the arrays of vertical holes drilled on the surface 

of Aluminium rectangular plates: (a) D06h50a32; (b) D06h50a29; (c) 

D12h92a32; (d) D12h92a29 and (e) D06h50a32b90.  

 

Fig. 3.  Photograph of the experimental setup showing the Perspex wedge 

transducers of 1 MHz, an Aluminium rectangular block with an array of 

vertical holes drilled on the surface, a Sitescan150, and a Laptop with 

SDMS 3 installed.  

 

Fig. 4.  Schematic of the experimental arrangement for different angles showing 

the position and the angles of the transmitter (T) and the receiver (R) for 

measuring the transmission and reflection of ultrasonic Rayleigh waves 

on the surfaces of Aluminium rectangular plates: (a) transmission over the 

array of vertical holes, (b) reflection from the array of vertical holes.  

 

Fig. 5. The received signals of ultrasonic Rayleigh waves propagating over a 

smooth surface at θi = 0 and θr = 0: (a) the time-domain waveform, (b) the 
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full-wave rectifier, (c) the expanded time-domain waveform, and (d) the 

corresponding frequency spectrum.  

 

Fig. 6. The received signals of ultrasonic Rayleigh wave propagating over the 

array of vertical holes, D06h50a32, as a reduced-scale model of the 

seismic array of boreholes experimentally investigated in Ref. 16;  θi = 0 

and θr = 0:  (a) the time-domain waveform, (b) the full-wave rectifier, (c) 

the expanded time-domain waveform, and (d) the corresponding 

frequency spectrum.  

 

Fig. 7. The full-wave rectifier signal of ultrasonic Rayleigh wave propagating 

over the array of vertical holes, D06h50a32; receiver at normal position, 

θr = 0: (a) Transmitter at θi = 30o, (b) Transmitter at θi = 60o.  

 

Fig. 8. The full-wave rectifier signal of ultrasonic Rayleigh wave reflecting from 

an array of vertical holes, D06h50a32:  (a) θi = 30o, θr = 30o,  (b) θi = 60o, 

θr = 60o. 

 

Fig. 9. The received signals of ultrasonic Rayleigh waves, θi = 0 and θr = 0: (a) 

the full wave rectifier signal transmitted over a smooth surface, and (b) 

the corresponding Frequency spectrum; (c) the full wave rectifier signal 

transmitted over the rectangular lattice (a,b)=(3.2, 9) mm, D06h50a32b90, 

and (d) the corresponding Frequency spectrum.  

 



16 
 

Fig. 10.  The received signals of ultrasonic Rayleigh waves, θi = 0 and θr = 0: (a) 

the full wave rectifier signal transmitted over a smooth surface, and (b) 

the corresponding Frequency spectrum; (c) the full wave rectifier signal 

transmitted over the square lattice, D06h50a29, and (d) the corresponding 

Frequency spectrum.  

 

Fig. 11. The full-wave rectifier signal of ultrasonic Rayleigh wave propagating 

over the rectangular lattice, D06h50a32b90; receiver at the normal 

position, θr = : (a) Transmitter at θi = 30o, (b) Transmitter at θi = 60o.  

 

Fig. 12. The full-wave rectifier signal of ultrasonic Rayleigh wave propagating 

over the square lattice, D06h50a29; receiver at normal position, θr = 0o: (a) 

Transmitter at θi = 30o,  (b) Transmitter at θi = 60o.  

 

Fig. 13. Full-wave rectifier signal of ultrasonic Rayleigh wave reflection from the 

rectangular lattice D06h50a32b90:  (a) θi = 30o, θr = 30o,  (b) θi = 60o, θr = 

60o.  

 

Fig. 14. Full-wave rectifier signal of ultrasonic Rayleigh wave reflection from 

square lattice, D06h50a29.  (a) θi = 30o, θr = 30o,  (b) θi = 60o, θr = 60o.  

 

Fig. 15. Signals of ultrasonic Rayleigh waves, θi and θr = 0o: (a) Full wave 

rectifier signal transmitted over a smooth surface, (b) The corresponding 

frequency spectrum, (c) Full wave rectifier signal transmitted over a 

square lattice D12h92a32, and (d) The corresponding frequency spectrum.  
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Fig. 16. Signals of ultrasonic Rayleigh waves, θi and θr = 0o: (a) Full wave 

rectifier signal transmitted over a smooth surface, (b) The corresponding 

frequency spectrum, (c) Full wave rectifier signal transmitted over a 

square lattice D12h92a29, and (d) The corresponding frequency spectrum.  

 

Fig. 17. Full-wave rectifier signal of ultrasonic Rayleigh wave reflection from the 

square lattice, D12h92a32:  (a) θi = 30o, θr = 30o,  (b) θi = 60o, θr = 60o.  

 

Fig. 18. Full-wave rectifier signal of ultrasonic Rayleigh wave reflection from the 

square lattice, D12h92a29:  (a) θi = 30o, θr = 30o,  (b) θi = 60o, θr = 60o.  
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Fig. 1. Photograph of an Aluminium rectangular plate with an array of vertical 

holes (on the left); the right-hand side of the plate is used for 

measurements of a reference signal transmission.  
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Fig. 2.  Close up photographs of the arrays of vertical holes drilled on the surface 

of Aluminium rectangular plates: (a) D06h50a32; (b) D06h50a29; (c) 

D12h92a32; (d) D12h92a29 and (e) D06h50a32b90.  
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Fig. 3.  Photograph of the experimental setup showing the Perspex wedge 

transducers of 1 MHz, an Aluminium rectangular block with an array of 

vertical holes drilled on the surface, a Sitescan150, and a Laptop with 

SDMS 3 installed.  
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Fig. 4.  Schematic of the experimental arrangement for different angles showing 

the position and the angles of the transmitter (T) and the receiver (R) for 

measuring the transmission and reflection of ultrasonic Rayleigh waves 

on the surfaces of Aluminium rectangular plates: (a) transmission over the 

array of vertical holes, (b) reflection from the array of vertical holes.  
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Fig. 5. The received signals of ultrasonic Rayleigh waves propagating over a 

smooth surface at θi = 0 and θr = 0: (a) the time-domain waveform, (b) the 

full-wave rectifier, (c) the expanded time-domain waveform, and (d) the 

corresponding frequency spectrum.  
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Fig. 6. The received signals of ultrasonic Rayleigh wave propagating over the 

array of vertical holes, D06h50a32, as a reduced-scale model of the 

seismic array of boreholes experimentally investigated in Ref. 16;  θi = 0 

and θr = 0:  (a) the time-domain waveform, (b) the full-wave rectifier, (c) 

the expanded time-domain waveform, and (d) the corresponding 

frequency spectrum.  
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Fig. 7. The full-wave rectifier signal of ultrasonic Rayleigh wave propagating 

over the array of vertical holes, D06h50a32; receiver at normal position, 

θr = 0: (a) Transmitter at θi = 30o, (b) Transmitter at θi = 60o.  
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Fig. 8. The full-wave rectifier signal of ultrasonic Rayleigh wave reflecting 

from an array of vertical holes, D06h50a32:  (a) θi = 30o, θr = 30o,  (b) θi 

= 60o, θr = 60o. 
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Fig. 9.  The received signals of ultrasonic Rayleigh waves, θi = 0 and θr = 0: (a) 

the full wave rectifier signal transmitted over a smooth surface, and (b) 

the corresponding Frequency spectrum; (c) the full wave rectifier signal 

transmitted over the rectangular lattice (a,b)=(3.2, 9) mm, D06h50a32b90, 

and (d) the corresponding Frequency spectrum.  

 

 

 



27 
 

 

 

 

 

 

 

 

Fig. 10. The received signals of ultrasonic Rayleigh waves, θi = 0 and θr = 0: (a) 

the full wave rectifier signal transmitted over a smooth surface, and (b) 

the corresponding Frequency spectrum; (c) the full wave rectifier signal 

transmitted over the square lattice, D06h50a29, and (d) the corresponding 

Frequency spectrum.  
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Fig. 11. The full-wave rectifier signal of ultrasonic Rayleigh wave propagating 

over the rectangular lattice, D06h50a32b90; receiver at the normal 

position, θr = : (a) Transmitter at θi = 30o, (b) Transmitter at θi = 60o.  
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Fig. 12. The full-wave rectifier signal of ultrasonic Rayleigh wave propagating 

over the square lattice, D06h50a29; receiver at normal position, θr = 0o: (a) 

Transmitter at θi = 30o,  (b) Transmitter at θi = 60o.  

 

 

 

 














