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This paper presents road-map–assisted standoff tracking of a
ground vehicle using nonlinear model predictive control. In model
predictive control, since the prediction of target movement plays an
important role in tracking performance, this paper focuses on
utilizing road-map information to enhance the estimation accuracy.
For this, a practical road approximation algorithm is first proposed
using constant curvature segments, and then nonlinear
road-constrained Kalman filtering is followed. To address
nonlinearity from road constraints and provide good estimation
performance, both an extended Kalman filter and unscented Kalman
filter are implemented along with the state-vector fusion technique
for cooperative unmanned aerial vehicles. Lastly, nonlinear model
predictive control standoff tracking guidance is given. To verify the
feasibility and benefits of the proposed approach, numerical
simulations are performed using realistic car trajectory data in city
traffic.

Manuscript received October 28, 2013; revised June 25, 2014; released
for publication September 1, 2014.

DOI. No. 10.1109/TAES.2014.130688.

Refereeing of this contribution was handled by W. Koch.

Authors’ addresses: H. Oh, Department of Aeronautical and Automotive
Engineering, Loughborough University, Loughborough, Leicestershire,
LE11 3TU, United Kingdom; S. Kim, Department of Aerospace
Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu,
Daejeon, 305-764, Republic of Korea (South), E-mail:
(skim78@cnu.ac.kr); A. Tsourdos, Institute of Aerospace Science,
Cranfield University, Cranfield, MK43 0AL, United Kingdom.

0018-9251/15/$26.00 C© 2015 IEEE

I. INTRODUCTION

Surveillance, and subsequent tracking, of a stationary
or moving ground target of interest is one of the important
capabilities of UAVs (Unmanned Aerial Vehicles) since it
is essential to increase an overall knowledge of the
surrounding environment [1–3]. To produce appropriate
surveillance data to be used by UAVs, a ground moving
target indicator (GMTI) is a well-suited sensor due to its
wide coverage and all-weather, day/night, and real-time
capabilities [4]. From these sensor data, such as range,
azimuth, or elevation of the target with respect to the
sensor location (along with appropriate target dynamics), a
certain level of accurate estimation could be obtained
using conventional filtering techniques. However, as
ground target tracking is a challenging problem due to the
uncertainty of the target maneuvers, all available
information sources should be exploited: its own sensor
data, data from other UAVs, and contextual knowledge
about the sensor performance and the environment. In
other words, information fusion is required to improve the
estimation accuracy.

In particular, in many applications for ground target
tracking, the majority of ground vehicles are moving on
road networks for which topographical coordinates could
be known with a certain accuracy. Such road-map
information can be used for improving the quality of
tracking significantly by constraining the state of the
ground target of interest, especially in its position,
velocity, and acceleration within the road geometry. This
is known as a road-constrained target tracking problem,
and there are largely three categories of techniques for
making use of the information about the roads. The first
one is the postprocessing correction technique, which runs
a tracking algorithm first without the road information,
and correction is then applied. Tang et al. [5] and
Kanchanavally et al. [6] proposed a Bayesian filtering
method with the hospitability map, which provides a
likelihood for each point proportional to the ability of a
target to move at that location. Along with this approach,
Kassas et al. [7] added the concept of a synthetic
inclination map, which describes how the target will be
synthetically inclined to move in different directions with
a certain velocity component. The second one is the
preprocessing of target state or sensor measurements.
Road information is exploited by defining the target state
in road coordinates and performing transformations
between the road and ground coordinate system to
consider the sensor measurements in the filter update step
[8, 9]. Herrero et al. [10] proposed the preprocessing of
sensor measurements with map restriction. Moreover, they
introduced a map-tuned interactive multiple model (IMM)
structure, which consists of constant speed, a longitudinal
acceleration model, and a curvilinear model incorporating
map information. The third one is a constrained filtering
framework. Dan et al. [11] proposed Kalman filtering with
state equality constraints and used road information as
equality constraints. Zhang et al. [12] used a
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pseudomeasurement approach, which treats the road
constraints as additional fictitious measurements based on
the work of Tahk and Speyer [13]. To deal with a road
network that has road junctions and crossing of several
roads, the variable structure IMM filtering concept was
also proposed by [14, 15]. Even though the particle filter
might result in better tracking performance depending on
the situation, particularly for a highly nonlinear system
and non-Gaussian noise as described in [16, 17], it would
require a significant computational cost. Since this paper
considers the use of small and low-cost UAVs rather than a
single UAV with high computation power, this paper
mainly uses Kalman filter–based algorithms.

Having estimated target information, UAVs should be
able to keep a certain distance from the moving target with
prescribed intervehicle angular spacing in order to track it
without being noticed and at the same time to acquire
accurate target information. The certain relative distance
from the target is called the standoff distance, and
therefore this approach is known as standoff target
tracking. For this standoff tracking problem, Lawrence
[18] first proposed the application of Lyapunov vector
fields for standoff coordination of multiple UAVs. This
Lyapunov vector field guidance (LVFG) was further
investigated by Frew et al. [19, 20] and Summers et al.
[21] to include phase keeping as well as standoff distance
tracking. They invented a decoupled control structure in
which the speed and rate of heading change are separately
controlled for the standoff distance and phase angle
keeping, respectively. Similarly, Kingston et al. [22] used
the vector field approach; however, they introduced a
sliding mode control and orbit radius change without
velocity change for phase-keeping of multiple UAVs.
Yoon et al. [3] applied the stabilization of a spherical
pendulum to the conical motion of the aircraft motion in
order to obtain the standoff tracking guidance commands.
Oh et al. [23] used the solution of differential geometry
between the UAV and the target, which provides rigorous
stability along with its inherent simplicity. Oh et al. [24]
also introduced cooperative standoff tracking of groups of
multiple targets using Lyapunov vector fields and an
online local replanning strategy. Kim et al. [25] applied a
receding horizon model–based predictive control by
combining heading and speed control in a decentralized
manner. Wise and Rysdyk [26] surveyed and compared
the different methodologies for standoff tracking: These
were the Helmsman behavior, Lyapunov vector field,
controlled collective motion, and model predictive control.

This paper presents road-map–assisted standoff
tracking of a moving ground vehicle using nonlinear
model predictive control (NMPC) based on our previous
work [25]. In the previous work, the NMPC method was
able to contribute toward acquiring optimal performance
in terms of standoff tracking performance and fuel
consumption compared with using the existing decoupled
guidance structure. However, in this sort of model
predictive control, since the prediction of the target
movement plays an important role in the tracking

performance, this paper focuses on utilizing road-map
information to enhance the target estimation accuracy.
There are not many works on road-constrained estimation
using real road-map data in the literature, and
road-constrained estimation has rarely been dealt or
combined with target tracking guidance, even though a
ground vehicle of interest is moving only on the road in
many cases. Having this in mind, this paper firstly
proposes a practical road approximation algorithm using
constant curvature segments. Secondly, to exploit road
information for precise target estimation, nonlinear
road-constrained Kalman filtering is applied using a
pseudomeasurement approach. Furthermore, to address
nonlinearity of road constraints and provide good
estimation performance, both an extended Kalman filter
(EKF) and unscented Kalman filter (UKF) are
implemented along with the state-vector fusion technique
for cooperative UAVs. Lastly, nonlinear model predictive
control standoff tracking guidance is explained briefly, and
numerical simulations with a pair of UAVs are performed
using realistic car trajectory data in city traffic in the
United Kingdom. In the simulation results, the effect of
improved estimation accuracy on the tracking guidance
performance is analyzed for both broadly used LVFG and
the proposed NMPC guidance.

The overall structure of this paper is given as follows.
Section II contains a definition of the UAV dynamic
model, the ground target, and the sensor model considered
in this study. Section III explains the road-constrained
tracking filter design and sensor fusion utilizing the road
approximation technique. Section IV explains the
decentralized structure, definition of performance index
and constraints, and nonlinear model predictive controller
design for cooperative standoff tracking. Section V
presents numerical simulation results of a standoff
tracking scenario using realistic ground vehicle trajectory
data. Lastly, conclusions and future works are given in
section VI.

II. PROBLEM FORMULATION

A. UAV Dynamic Model

Assuming each UAV has a low-level flight controller
such as a stability/controllability augmentation system for
heading and velocity hold functions, this study aims to
design guidance inputs to this low-level controller for
standoff target tracking. Consider a two-dimensional UAV
kinematic model [25] as:

⎛
⎜⎜⎜⎜⎜⎝

ẋ

ẏ

ψ̇

v̇

ω̇

⎞
⎟⎟⎟⎟⎟⎠ = f (x, u) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v cos ψ

v sin ψ

ω

− 1

τv

v + 1

τv

uv

− 1

τω

ω + 1

τω

uω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)
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where x = (x, y, ψ , v, ω)T are the inertial position,
heading, speed, and yaw rate of the UAV, respectively; τ v

and τω are time constants for considering actuator delay;
and u = (uv , uω)T are the commanded speed and turning
rate constrained by the following dynamic limits of
fixed-wing UAV:

|uv − v0| ≤ vmax (2)

|uω| ≤ ωmax (3)

where v0 is the nominal speed of the UAV. The continuous
UAV model in (1) can be discretized by Euler integration
into:

xk+1 = fd (xk, uk) = xk + Tsf (xk, uk) (4)

where xk = (xk, yk, ψk, vk, ωk)T, uk = (uvk , uωk)T, and Ts is
a sampling time.

B. Ground Target and Sensor Model

General target tracking filters have traditionally been
developed for monitoring aerial targets such as airplanes,
missiles, and so on. Although ground vehicles move with
much lower speeds than aerial targets, they often perform
irregular stop-and-go maneuvers with a much smaller turn
radius. The constant-velocity model usually used for radar
target tracking is thus unsuitable for tracking ground
vehicles, and hence an acceleration or jerk model is a
more suitable candidate. Considering general car behavior,
because the jerk is not negligible, but the acceleration can
be best modelled using a piecewise constant profile over a
specific duration of time, a good model to apply to the
tracking of ground targets is the acceleration dynamics
model [25]. This acceleration model defines the target
acceleration as a correlated process with a decaying
exponential autocorrelation function, which means if there
is a certain acceleration at a time t, then it is likely to be
correlated via the exponential at a time instant t + τ . A
discretized system equation for this acceleration model for
a ground vehicle is thus expressed in the form:

xt
k = Fkxt

k−1 + ηk (5)

where the state vector is xt
k = (xt

k, ẋ
t
k, ẍ

t
k, y

t
k, ẏ

t
k, ÿ

t
k)T ,

and where ηk is a process noise, which represents the
acceleration characteristics of the target. The state
transition matrix Fk is given by:

Fk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 Ts � 0 0 0

0 1
(1 − e−αTs )

α
0 0 0

0 0 e−αTs 0 0 0

0 0 0 1 Ts �

0 0 0 0 1
(1 − e−αTs )

α

0 0 0 0 0 e−αTs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

where � = (e−αTs + αTs – 1)/α2, and α is a correlation
parameter that models different classes of targets: a small

α for targets with relatively slow maneuvers and a high α

for targets with fast and evasive maneuvers. The details of
the covariance matrix Qk, the process noise ηk, and other
characteristics of this model can be found in [27, 28].

In addition, this study assumes the UAVs are equipped
with a GMTI sensor to localize the position of the target.
Because the measurement of GMTI is composed of the
range and azimuth of the target with respect to the radar
location, the actual measurements are the relative range
and azimuth with respect to the position of the airborne
UAV. Note that in the present paper, the range rate
measurement is not considered. The radar measurement
zk = (rk, φk)T can be defined as the following nonlinear
relation using the target position (xt

k, y
t
k)T and the UAV

position (xk, yk)T as:

zk =h(xt
k) + νk =

⎛
⎜⎜⎝

√
(xt

k − xk)2 + (yt
k − yk)2

tan−1 yt
k − yk

xt
k − xk

⎞
⎟⎟⎠+νk (7)

where νk is a measurement noise vector, and its noise
covariance matrix is defined as:

V [νk] = Rk =
[

σ 2
r 0

0 σ 2
φ

]
(8)

III. ROAD-CONSTRAINED TRACKING FILTER

To make use of road-map information for the
estimation of a target traveling on a road, it is required to
express the road map as a certain type of mathematical
equation. This section first presents a road approximation
algorithm using constant curvature segments and then
applies it to one of the constrained estimations based on
Kalman filtering along with decentralized sensor fusion
using multiple UAVs.

A. Road Approximation Using Constant Curvature
Segments

To generate the road using onboard sensor
measurements or approximate the real road from a given
road map, this study uses constant curvature segments. In
this approach, assuming that some vertices on the road can
be obtained, those vertices are connected by arc segments
of constant curvature by introducing an intermediate point
with C1 contact (which represents that the first derivative
is continuous), as shown in Fig. 1. The curved line (arc)
between the two vertices represents the curved nature of
the real road. The mathematical details of the construction
of the curvature segments between vertices can be found
in [29].

The entire road map can then be modelled by a set of
road segments ri, where i ∈{1, . . . , nr}, and for each road
segment, the center position of the curve and its curvature
are given by the approximation algorithm. Fig. 2 illustrates
the road approximation using the UAV sensor and constant
curvature segments. As the UAV acquires some points on
the road from the visual image sensor (marked as a cross
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Fig. 1. Arc segments connecting two vertices with C1 contact at
intermediate vertex. Two arc configurations are possible with same

(orientation 2) or opposite (orientation 1) sign of curvature.

Fig. 2. Illustration of road approximation process using UAV visual
sensor.

in Fig. 2), the road is generated and extended successively.
If a new point lies on or around the tangent line of a
previous point, the road can be approximated as a straight
line. Especially in the case that road information is not
given in some area, the efficiency of this approach can be
of interest, since only some of the points on the road and
corresponding segment curvature by the algorithm are
required to approximate roads quite close to real roads.
This can be readily exploited for the precise estimation of
the succeeding ground target on the road.

Fig. 3 shows a sample road network of Devizes,
Wiltshire, United Kingdom, together with geographic

Fig. 3. Sample road network with GIS satellite data overlaid
(Google Map).

Fig. 4. Road approximation using constant curvature segments.

information system (GIS) satellite data. Information for
the road of interest, represented as the blue line, is
assumed to be known in this study. Figs. 4–5 show the
approximated road and curvature for each road segment
using some of the known points on the road. Apparently,
the more vertices that are used, the better is the fit to the
road. However, since too many road segments might cause
performance degradation in the constrained estimation, the
appropriate number of vertices on the road needs to be
determined to get a reasonable fit considering the
road-network structure.
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Fig. 5. Curvature of each road segment.

B. Road-Constrained Estimation

Now, assuming that the ground vehicle moves along a
given road map consisting of nr road segments, the
two-dimensional (2-D) position of the vehicle should lie
on one of the segments. This can be expressed as the
following constraint:

ri(x
t
k, y

t
k) = 0 (9)

where ri(·) denotes the ith road segment, which can be
modeled as a straight line, arc, or polynomials. For
example, if the road is straight, the above road constraint
can be expressed as:

ri(x
t
k, y

t
k) = tan θ · xt

k − yt
k = 0 (10)

where θ is a given road direction. In this study, since the
road is approximated using constant curvature segments,
as explained earlier, the road constraint is obtained as:

ri(x
t
k, y

t
k) = (xt

k−xi,ct )
2 + (yt

k−yi,ct )
2−

(
1

κi

)2

= 0 (11)

where (xi,ct, yi,ct) and κ i are the center position and the
curvature of the ith road segment, respectively.

Typically, there are two ways to deal with the road
constraint in a constrained filtering framework. One is to

Fig. 6. Different ways to handle road constraints in constrained filtering
framework.

use the road as equality constraints [12], and the other is to
use the concept of a directional process noise [15], which
represents uncertainty components along and orthogonal
to the road, as illustrated in Fig. 6. In Fig. 6a, the error
bound of a position estimate using conventional filtering
with Gaussian noise is represented as a circle, and
unconstrained estimate x̂unconst is projected onto the road,
resulting in a better estimate x̂const . In Fig. 6b, the process
noise uncertainty Qconst is represented as an ellipsoid
considering the higher motion uncertainty along the road
and the smaller uncertainty orthogonal to the road,
compared to Qunconst, which is represented as a circle. This
study uses a pseudomeasurement method, one of the
constrained Kalman filtering algorithms, which treats the
equality constraints as additional fictitious or
pseudomeasurements [13]. Unlike other approaches, such
as the maximum probability method and the projection
method [11], this approach has the advantage of enabling
consideration of the degree of constraint adherence, by
monitoring the magnitude of the additional
pseudomeasurement noise variance. The
pseudomeasurement model using road constraints can be
written as:

z
ri

k = hri
(xt

k) + ν
ri

k (12)
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