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Strong Gröbner bases for polynomials over a principal ideal

ring ∗

Graham H. Norton, Dept. Mathematics, Univ. of Queensland, Brisbane

Ana Sălăgean, Dept. Mathematics, Nottingham Trent Univ., Nottingham, U.K.

Abstract

Gröbner bases have been generalised to polynomials over a commutative ring A in several
ways. Here we focus on strong Gröbner bases, also known as D-bases. Several authors have
shown that strong Gröbner bases can be effectively constructed over a principal ideal domain.
We show that this extends to any principal ideal ring: we characterise Gröbner bases and
strong Gröbner bases when A is a principal ideal ring. We also give algorithms for computing
Gröbner bases and strong Gröbner bases which generalise known algorithms to principal ideal
rings. In particular, we give an algorithm for computing a strong Gröbner basis over a finite-
chain ring, for example a Galois ring.

Subject Classification: 13F10, 13M10, 13P10.

1 Introduction

The notion of a Gröbner basis, introduced by Buchberger for ideals of polynomials when the
coefficient ring A is a field, has been generalised to the case when A is a principal ideal domain (for
an overview and references see [2, Chapter 10 and Appendix]) and to a Noetherian ring (see [1,
Chapter 4]). We consider two possible generalisations, which we will call Gröbner bases and strong
Gröbner bases as in [1]. As the names suggest, strong Gröbner bases are Gröbner bases but not
conversely. In fact over certain rings, there are ideals which have a Gröbner basis but do not have
a (finite) strong Gröbner basis (see [1, Example 4.5.7]). We show that strong Gröbner bases always
exist for ideals of polynomial rings over any principal ideal ring and give algorithms to construct
them. In view of previous work (see [1, 2] and the works cited there), we concentrate on rings with
zero-divisors.

We begin by giving structure theorems for principal ideal rings and collecting typical examples.
In Section 3 we recall the definitions of (strong) reduction and (strong) Gröbner bases over a
commutative ring, following [1]. We show that when A is a finite-chain ring, i.e. a ring with
finitely many ideals which are linearly ordered by inclusion, the notions of Gröbner basis and strong
Gröbner basis coincide. Strong Gröbner bases consisting of a single polynomial are characterised
in Subsection 3.3.

As a first step towards characterising strong Gröbner bases over a principal ideal ring, we see in
Section 4 that the characterisation of Gröbner bases over Noetherian rings using syzygies (see [1,
Theorem 4.2.3]) can be simplified for the particular case of a principal ideal ring: we give an
explicit finite set of generators for the syzygy module in this case. The main problem encountered
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over a ring with zero-divisors is that multiplying a polynomial by a ring element may annihilate
the leading term. We characterise Gröbner bases using classical S-polynomials and certain ’A-
polynomials’, see Theorem 4.10.

Theorem 5.10 characterises a strong Gröbner basis G as a Gröbner basis for which all G-polynomials
(the latter being defined as in [2]) are ‘strongly reducible’ wrt. G. Based on these characterisations,
Section 6 develops algorithms for computing strong Gröbner bases when A is a computable principal
ideal ring, and includes proofs of correctness and termination. When A is a field or a principal ideal
domain, our characterisations and algorithms reduce to the known ones. Finally, Section 7 recalls
the notion of minimal strong Gröbner basis and gives several characterisations and properties of
them over a principal ideal ring.

An outline and some applications of these results were presented at the Workshop on Coding and
Cryptography, Paris, 2001, [9]. Allan Steel has implemented a strong Gröbner basis algorithm in
Version 2.8 of Magma [3] using Corollary 5.13 below, generalising Faugère’s algorithm [5] to Galois
rings.

2 Principal Ideal Rings

We recall the structure of principal ideal rings and give some examples.

2.1 Commutative rings

Throughout, A will denote an arbitrary commutative ring with 1 6= 0. We denote by 〈a1, . . . , ak〉A
the ideal of A generated by a1, . . . , ak ∈ A, and ⊂ denotes strict inclusion. Let A =

∏m
i=1 Ai be a

product of commutative rings and denote by πi : A → Ai the canonical projections. For any a ∈ A
we will write a = (a1, . . . , am), where ai = πi(a). Let ei ∈ A be 1 in the i-th component and 0’s
elsewhere. An element a ∈ A is a unit if and only if each πi(a) is a unit in Ai and a is a zero-divisor
if and only if for some j, πj(a) is a zero-divisor in Aj . It is well-known that any ideal I of A has
the form I1 × · · · × Im where Ii an ideal in Ai and that Ann(a) = Ann(π1(a))× · · · ×Ann(πm(a))
where each Ann(πi(a)) is computed in Ai.

2.2 The structure of principal ideal rings

Throughout the paper, we denote by R a (commutative) principal ideal ring. It is well-known and
easy to see that a quotient of a principal ideal ring and a finite product of principal ideal rings
are principal. Before recalling a general structure theorem for principal ideal rings, it is useful to
recall that a chain ring is a ring whose ideals are linearly ordered by inclusion; see [6].

Definition 2.1 (Finite-chain ring) A finite-chain ring is a chain ring with finitely many ideals.

We will need the following properties of a finite-chain ring:

Proposition 2.2 Let A be a finite-chain ring. Then:

(i) A is a principal ideal ring

(ii) A is a local ring with maximal ideal M say

(iii) the elements of M are nilpotent and the elements of A \M are units.

Let γ be a fixed generator of M and ν the nilpotency index of γ i.e. the smallest positive integer
for which γν = 0. Then

(iv) the distinct proper ideals of A are 〈γi〉A, i = 1, . . . , ν − 1
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(v) for any element a ∈ A \ {0} there is a unique i and a unit u ∈ A such that a = uγi where
0 ≤ i ≤ ν − 1 and u is unique modulo γν−i

(vi) Ann(γi) = 〈γν−i〉A.

Proof. (i) If I is a non-zero ideal of A, then I = ∪a∈I〈a〉A. Since A is a finite-chain ring, this is
a finite union of ascending ideals. Thus I is the largest ideal of the union and A is principal. For
parts (ii)-(v) see [10, Vol.1, Ch. 4, Section 15]. ¤

Henceforth, γ and ν will always be used in the sense of the previous proposition. A finite-chain
ring is a field if and only if ν = 1. A principal ideal domain is not a finite-chain ring unless it is
a field. In [10, Vol.1, Ch. 4, Section 15], a principal ideal ring is called special if it has a unique
proper nilpotent prime ideal. It is also shown loc.cit that a ring is a special principal ideal ring if
and only if it is a finite-chain ring (as defined above).

The following are examples of finite-chain rings: Zpk , the integers modulo pk with p a prime and
k ∈ Z, k ≥ 1; Galois rings GR(pk, n) = Zpk [x]/〈f〉 where 〈f〉 is the ideal generated by a monic
irreducible polynomial f ∈ Zpk [x] of degree n whose image modulo p is irreducible in GF (pn)[x]
(here γ and ν can be taken to be p and k, respectively); finite rings which are chain rings (these are
completely characterised as certain homomorphic images of GR(pk, n)[x], see [7, Theorem XVII.5];
of course, not all finite-chain rings are finite); K[x]/〈fk〉 with K a field, f an irreducible polynomial
and k ∈ Z, k ≥ 1 (here γ and ν can be taken to be f and k, respectively); D/〈ak〉D with D a
principal ideal domain, a an irreducible element and k ≥ 1.

Of course, Zm is a finite-chain ring if and only if m is a power of a prime. The following theorem
describes the structure of principal ideal rings.

Theorem 2.3 ([10, Vol.1, Ch. 4, Section 15, Theorem 33]) Any principal ideal ring is isomorphic
to a finite product of principal ideal domains and finite-chain rings.

Besides the usual examples of principal ideal rings, we note that R[x]/〈f〉 is a principal ideal ring
if R is a finite-chain ring and f mod γ is square-free (for a proof see [4, Corollary to Theorem 6]
or [8, Corollary 3.20, Remark 3.26]).

3 Strong Gröbner Bases

3.1 Polynomials and reduction

The monoid of terms in x1, . . . , xn is denoted by T . We fix an admissible order ‘<’ on T . If
f =

∑
t∈T ftt ∈ A[x1, . . . , xn] \ {0} and v = max{t ∈ T : ft 6= 0} then v is called the leading

term, fv the leading coefficient and fvv the leading monomial of f , denoted lt(f), lc(f) and lm(f)
respectively. If S ⊂ A[x1, . . . , xn] \ {0}, we write lm(S) for {lm(g) : g ∈ S}, and similarly for
lc(S) and lt(S). Note that the terminology ‘leading term’, ‘leading monomial’ etc. differs from [1].

When A is a ring rather than a field, reduction of polynomials in A[x1, . . . , xn] can be generalised
in several ways: reduction and strong reduction as defined in [1, Definition 4.1.1 and p. 252] are
two such possibilities. We recall their definitions:

Definition 3.1 (Reduction, Strong reduction) Let f ∈ A[x1, . . . , xn] \ {0} and let G be a
finite, non-empty subset of A[x1, . . . , xn] \ {0}.
(i) We say that f reduces to h wrt. G in one step (and that f is reducible wrt. G) if h =
f − ∑k

i=1 citigi, where ci ∈ R, ti ∈ T , gi ∈ G, lm(f) =
∑k

i=1 citi lm(gi) and ci 6= 0 implies
ci lc(gi) 6= 0 and lt(f) = ti lt(gi). We write this as f →G h.
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(ii) We say that f strongly reduces to h wrt. G in one step (and that f is strongly reducible wrt.
G) if h = f −mg where g ∈ G and m is a monomial such that lm(f) = m lm(g). We write this as
f→→Gh.

(iii) The reflexive and transitive closures of the relations →G and →→G are denoted →∗
G and →→∗

G

respectively. When f →∗
G h we say that f reduces to h wrt. G. If, moreover, h is not reducible

wrt. G then we say that h is a remainder of f wrt. G (by reduction) and we denote the set of all
such remainders by Rem(f, G). Similarly for strong reduction. The set of remainders of f wrt. G
(by strong reduction) is denoted by SRem(f, G). We adopt the convention that 0 →∗

G 0, 0→→∗
G0

and that Rem(0, G) = SRem(0, G) = {0}.

Note that if f reduces or strongly reduces to h then lt(f) > lt(h). So for any polynomial f ,
Rem(f, G) and SRem(f, G) are non-empty. Note that we can have f→→∗

Gh1 and f→→∗
Gh2 for

distinct h1, h2 even if g ∈ G is fixed. For example, let f = 4x2 + 1, G = {g} = {2x + y} in Z6[x, y].
Then f→→∗

Gf − 2xg = 4xy + 1 and f→→∗
Gf − 5xg = xy + 1.

Clearly if f→→∗
Gh, then f →∗

G h. The converse is in general false: for example in Z[x, y] with x > y,
f = x + 2 is reducible but not strongly reducible wrt. G = {2x + y, 3x + 1}. For finite-chain rings
however we do have equivalence:

Proposition 3.2 Let R be a finite-chain ring, let G ⊂ R[x1, . . . , xn] \ {0} be a finite set and
f, h ∈ R[x1, . . . , xn]. Then f is reducible wrt. G if and only if f is strongly reducible wrt. G.

Proof. Let f be reducible wrt. G as in Definition 3.1. Proposition 2.2 implies that there is a j
such that lc(gj)| lc(gi) for 1 ≤ i ≤ k. Then lm(gj)| lm(f) i.e. f is strongly reducible wrt. G. ¤

See also Corollary 5.9(iv) below.

Remark 3.3 Strong reduction is called D-reduction in [2, Definition 10.1] when A is a principal
ideal domain. Strong reduction is computationally more efficient than reduction. When A is
Noetherian, strong reduction is in general not sufficient for computing Gröbner bases and reduction
needs to be used. It will turn out that in the case when A is a principal ideal ring we can always
avoid reduction and use only strong reduction to compute a ‘strong Gröbner basis.’

We denote the ideal generated by a set F ⊆ A[x1, . . . , xn] by 〈F 〉 and write 〈f1, . . . , fk〉 for
〈{f1, . . . , fk}〉. Next we generalise the notions of standard representation and t-representation
of [2, p.218-219] to polynomials over a ring.

Definition 3.4 (Standard representation) Let t ∈ T and 0 6∈ G ⊂ A[x1, . . . , xn]. We define

Rep<t(G) =

{
k∑

i=1

citigi : gi ∈ G, ci ∈ A \ {0}, ti ∈ T, and ti lt(gi) < t for i = 1, . . . , k

}

and similarly for Rep≤t(G). If f ∈ Rep≤lt(f)(G) we say that f has a standard representation wrt.
G. We write Std(G) for the polynomials which have a standard representation w.r.t G.

Note that in the preceding definition the gi ∈ G need not be distinct. One can easily check that if
f →∗

G h or f→→∗
Gh then f − h ∈ Std(G). It is also clear that Std(G) ⊆ 〈G〉. We easily have:

Lemma 3.5

(i) If t1 < t2 then Rep≤t1(G) ⊆ Rep<t2(G).

(ii) If f ∈ Rep<t1(G) then there is t2 < t1 such that f ∈ Rep≤t2(G).

(iii) If f ∈ Rep≤t(G) then rt1f ∈ Rep≤t1t(G) for any r ∈ A and t1 ∈ T .
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3.2 Definitions of Gröbner Bases and Strong Gröbner Bases

The following two theorems generalise some of the well-known equivalent definitions of Gröbner
bases over fields.

Theorem 3.6 ([1, Theorem 4.1.12]) Let I be a non-zero ideal of A[x1, . . . , xn] and let G be a
finite subset of I \ {0}. The following assertions are equivalent:

(i) 〈lm(G)〉 = 〈lm(I \ {0})〉
(ii) f ∈ I if and only if f →∗

G 0

(iii) I = Std(G).

Theorem 3.7 ([1, Exercise 4.5.1]) Let I be a non-zero ideal of A[x1, . . . , xn] and let G be a finite
subset of I \ {0}. The following assertions are equivalent:

(i) any f ∈ I is strongly reducible wrt. G

(ii) f ∈ I if and only if f→→∗
G0.

Note that when A is a field, Theorems 3.6 and 3.7 are equivalent, but in general the conditions of
Theorem 3.7 are strictly stronger than those of Theorem 3.6.

Definition 3.8 (Gröbner basis, strong Gröbner basis) ([1, Definitions 4.1.13 and 4.5.6])
Let I be a non-zero ideal of A[x1, . . . , xn] and let G be a finite subset of I \ {0}. Then:

(i) G is called a Gröbner basis for I if it satisfies any of the equivalent conditions of Theorem 3.6.

(ii) G is called a strong Gröbner basis for I if it satisfies any of the equivalent conditions of
Theorem 3.7.

By Theorems 3.6 and 3.7, if G is a (strong) Gröbner basis for I then I = 〈G〉. We will often just
say ‘ G is a (strong) Gröbner basis’, meaning that G is a finite subset of R[x1, . . . , xn], 0 6∈ G and
G is a (strong) Gröbner basis for 〈G〉. (In [2, p. 462] strong Gröbner bases are called D-bases and
remainders are called D-normal forms.) Over a Noetherian ring, any non-zero ideal has a Gröbner
basis, [1, Corollary 4.1.17]. It is clear that a strong Gröbner basis is a Gröbner basis, but the
converse fails in general (see [1, Example 4.5.7]). We will show that when A is a principal ideal
ring any non-zero ideal has a strong Gröbner basis. Proposition 3.2 yields:

Proposition 3.9 Let R be a finite-chain ring. Then G is a Gröbner basis if and only if G is a
strong Gröbner basis.

3.3 Strong Gröbner bases of cardinality one

When g ∈ A[x1, . . . , xn] and A has zero-divisors, {g} is not necessarily a Gröbner basis:

Example 3.10 Let g = px2 + x + 1 ∈ Zp2 [x]. Since lt(pg) < lt(g), {g} is not a Gröbner basis.
Likewise {2x2 + 3x + 1} ⊂ Z6[x] is not a Gröbner basis.

We characterise the polynomials g for which {g} is a (strong) Gröbner basis.

Theorem 3.11 Let g ∈ A[x1, . . . , xn] \ {0}. The following assertions are equivalent:

(i) {g} is a strong Gröbner basis

(ii) {g} is a Gröbner basis

(iii) zg = 0 for all z ∈ Ann(lc(g)).
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Proof. (ii) ⇒ (iii) Assume {g} is a Gröbner basis and let z ∈ Ann(lc(g)). If zg 6= 0 then
lt(zg) < lt(g). Since {g} is a Gröbner basis, lt(g)| lt(zg) and so lt(g) ≤ lt(zg), for a contradiction.

(iii) ⇒ (i) Assume that zg = 0 for all z ∈ Ann(lc(g)). Let f ∈ 〈g〉\{0} and let h ∈ A[x1, . . . , xn] be
such that f = gh and lt(h) is minimal among all polynomials with this property. If lc(g) lc(h) = 0,
then lc(h)g = 0. Putting h1 = h − lm(h), we have 0 6= gh = g lm(h) + gh1 = gh1 and lt(h1) <
lt(h) contradicting the minimality of lt(h). Hence lc(g) lc(h) 6= 0 so lm(gh) = lm(g) lm(h) i.e.
lm(g)| lm(f), as required. ¤

Thus if A is a domain, any {f} ⊂ A[x1, . . . , xn] \ {0} is a strong Gröbner basis. Also, if R is a
finite-chain ring and g ∈ R[x1, . . . , xn] is monic, then for any r ∈ R \ {0}, {rg} is a strong Gröbner
basis. More generally, we have the following easy consequence of Theorem 3.11.

Corollary 3.12 Let a ∈ A \ {0} and g ∈ A[x1, . . . , xn] \ {0}. If lc(g) is not a zero-divisor, then
{ag} is a strong Gröbner basis.

See Proposition 4.2 for a converse to Corollary 3.12.

4 Characterisation of Gröbner bases over R

Buchberger’s characterisation of a Gröbner basis over a field was generalised to the case of a
Noetherian ring by generalising S-polynomials to certain polynomial combinations obtained from
the generators of the syzygy modules of leading monomials (see [1, Theorem 4.2.3]). We simplify
this characterisation for the case of R, a principal ideal ring, as a first step towards characterising
strong Gröbner bases over R. We begin with some additional results on divisibility in R.

4.1 Divisibility in a principal ideal ring

If a, b ∈ R are such that b|a, then a = bc does not of course specify c uniquely, but the following
proposition provides a ‘natural choice’ for c:

Proposition 4.1 (i) Let a, b ∈ R be such that b|a. There is an element c ∈ R, unique up to
associates, such that a = bc and 〈c〉R = (〈a〉R : 〈b〉R). In particular, if 〈a〉R = 〈b〉R then there is a
unit u ∈ R such that a = ub.

(ii) Any element r ∈ R can be written as r = bc where b is not a zero-divisor and c such that
Ann(Ann(c)) = 〈c〉R. The elements b and c are unique up to associates.

Proof. (i) The result is trivial if R is a domain. Assume that R is a finite-chain ring but not a
field and let a = uγi, b = vγj with u and v units. Since b|a, we have j ≤ i. Put c = uv−1γi−j .
Obviously (〈a〉R : 〈b〉R) = 〈γi−j〉R = 〈c〉R. For the general case, decompose R using Theorem 2.3.
Then use the fact that the operations are component-wise and that the assertion holds in each
component.

(ii) By Theorem 2.3, R is isomorphic to
∏m

i=1 Ri with Ri either a domain or a finite-chain ring.
For r ∈ R, define b, c ∈ R by πi(b) = πi(r) if πi(r) is not a zero-divisor and πi(b) = 1 otherwise
and πi(c) = πi(r) if πi(r) is a zero-divisor and πi(c) = 1 otherwise, where i = 1, . . . , m. The rest
of the proof is a simple exercise. ¤

An application of the foregoing is a converse to Corollary 3.12:

Proposition 4.2 Let g ∈ R[x1, . . . , xn] \ {0} and let {g} be a strong Gröbner basis. Then g = cg′

for some c ∈ R, g′ ∈ R[x1, . . . , xn] for which lc(g′) is not a zero-divisor.
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Proof. Let {g} be a strong Gröbner basis. By Proposition 4.1(ii), lc(g) = bc where Ann(Ann(c)) =
〈c〉R, b is not a zero divisor and Ann(lc(g)) = Ann(c). It suffices to prove that for any t ∈ T , gt 6= 0
implies c|gt. Let z generate Ann(lc(g)). Then, by Theorem 3.11, zg = 0 i.e. zgt = 0 for all t ∈ T
i.e. gt ∈ Ann(z) = Ann(Ann(c)) = 〈c〉R. ¤

As usual, for k ≥ 1 and r1, . . . , rk ∈ R \ {0}, we say that r ∈ R \ {0} is a greatest common
divisor of r1, . . . , rk if r|ri for all i = 1, . . . , k and for any r′ ∈ R with the property that r′|ri for
i = 1, . . . , k, we have r′|r. A least common multiple of r1, . . . , rk is similarly defined. We denote
by gcd(r1, . . . , rk) and by lcm(r1, . . . , rk) the set of greatest common divisors and the set of least
common multiples of r1, . . . , rk, respectively. If S = {r1, . . . , rk} we also write gcd(S) and lcm(S)
for gcd(r1, . . . , rk) and lcm(r1, . . . , rk), respectively. The following result is straightforward:

Lemma 4.3 Let k ≥ 2 and r, r1, . . . , rk ∈ R. Then

(i) r ∈ gcd(r1, . . . , rk) if and only if 〈r〉R = 〈r1, . . . , rk〉R
(ii) r ∈ lcm(r1, . . . , rk) if and only if 〈r〉R = 〈r1〉R ∩ . . . ∩ 〈rk〉R
(iii) Any two greatest common divisors of r1, . . . , rk are associate. Likewise for any two least
common multiples of r1, . . . , rk.

Note that we can have 0 ∈ lcm(r1, . . . , rk) for r1, . . . , rk ∈ R \ {0}, in which case lcm(r1, . . . , rk) =
{0} and r1 · · · rk = 0.

4.2 Syzygies over a principal ideal ring

Syzygies of elements of R will play an important role in computing strong Gröbner bases. We
generalise some of the results presented in [1, Section 4.5] from principal ideal domains to principal
ideal rings.

Definition 4.4 Let k ≥ 1 and let (r1, . . . , rk) ∈ Rk. The set of syzygies of (r1, . . . , rk) is

Syz(r1, . . . , rk) = {(c1, . . . , ck) ∈ Rk |
k∑

i=1

ciri = 0}.

It is trivial that Syz(r1, . . . , rk) is a finitely generated submodule of Rk, but we are interested in
finding explicit generators. We first need the following lemma:

Lemma 4.5 (cf. [1, Lemma 4.5.2]) If r, r1, . . . , rk ∈ R, (〈r1, . . . , rk〉R : r) =
∑k

j=1(〈rj〉R : r).

Proof. If R is a principal ideal domain, the assertion is proved in [1, Lemma 4.5.2]. If R is a
finite-chain ring, write r = uγl and rj = ujγ

ij , where u, uj are units and l, ij ∈ {0, . . . , ν − 1} and
j = 1, . . . , k. Then:

(〈r1, . . . , rk〉R : r) = (〈γmin{i1,...,ik}〉R : γl) = 〈γmax{0,min{i1,...,ik}−l}〉R,

k∑

j=1

(〈rj〉R : r) =
k∑

j=1

〈γmax{0,ij−l}〉R = 〈γmin{max{0,i1−l},...,max{0,ik−l}}〉R

and max{0,min{i1, . . . , ik} − l} = min{max{0, i1 − l}, . . . , max{0, ik − l}} is a simple exercise.
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If R =
∏m

i=1 Ri with each Ri a principal ideal domain or finite-chain ring, then using the fact that
the theorem holds in each Ri, we have:

k∑

j=1

(〈rj〉R : r) =
k∑

j=1

m∏

i=1

(〈πi(rj)〉Ri : πi(r)) =
m∏

i=1

k∑

j=1

(〈πi(rj)〉Ri : πi(r))

=
m∏

i=1




k∑

j=1

〈πi(rj)〉Ri
: πi(r)


 =




m∏

i=1

k∑

j=1

〈πi(rj)〉Ri
:

m∏

i=1

〈πi(r)〉Ri




=




k∑

j=1

〈rj〉R : r


 = (〈r1, . . . , rk〉R : r).

The result for an arbitrary principal ideal ring now follows easily from Theorem 2.3. ¤

Theorem 4.6 (cf. [1, Proposition 4.5.3] Let (r1, . . . , rk) ∈ Rk. For each i, 1 ≤ i ≤ k, let ai ∈ R
be such that 〈ai〉R = Ann(ri). For any pair i, j with 1 ≤ i < j ≤ k let ri,j ∈ lcm(ri, rj). If ri,j 6= 0,
let bi,j , b

′
i,j ∈ R be such that ribi,j = rjb

′
i,j = ri,j. Then

S = {aiei : 1 ≤ i ≤ k} ∪ {bi,jei − b′i,jej : 1 ≤ i < j ≤ k, lcm(ri, rj) 6= {0}}
generates Syz(r1, . . . , rk).

Proof. It is easy to check that S ⊂ Syz(r1, . . . , rk). Now let c = (c1, . . . , ck) ∈ Syz(r1, . . . , rk).
We have to prove that c can be written as a linear combination of the elements of S. We induct
on the number l of non-zero components of c.

For l = 1, c = ciei for some i. We have ciri = 0, so ci ∈ Ann(ri) = 〈ai〉R. Hence there is an
r ∈ R such that ci = rai i.e. c = raiei. For l = 2, c = ciei + cjej for some 1 ≤ i < j ≤ k. The
syzygy ciri + cjrj = 0 implies that ciri ∈ 〈ri〉R ∩ 〈rj〉R = 〈ri,j〉R. If ri,j = 0 then ciri = cjrj = 0
and we can apply case l = 1 to the syzygies ciei and cjej . Otherwise, ciri = rri,j = r(ribi,j) for
some r ∈ R. Also, cjrj = −ciri = −rri,j = −r(rjb

′
i,j). We have ri(ci − rbi,j) = rj(cj + rb′i,j) = 0,

so ci − rbi,j ∈ Ann(ri) = 〈ai〉R and cj + rb′i,j ∈ Ann(rj) = 〈aj〉R. If ci = rbi,j + sai and
cj = −rb′i,j + s′aj , then c = r(bi,jei − b′i,jej) + saiei + s′ajej .

Now let l > 2. Without loss of generality assume that c =
∑l

i=1 ciei. The syzygy
∑l

i=1 ciri = 0
implies that cl ∈ (〈r1, . . . , rl−1〉R : rl) =

∑l−1
i=1(〈ri〉R : rl), by Lemma 4.5. We can then write

cl = d1 + · · · + dl−1 with di ∈ (〈ri〉R : rl) i.e. dirl = viri for some vi ∈ R. This means that
diel − viei ∈ Syz(r1, . . . , rk) and we can write

c =
l−1∑

i=1

ciei +
l−1∑

i=1

diel =
l−1∑

i=1

(ci + vi)ei +
l−1∑

i=1

(diel − viei).

Since c and each diel − viei are in Syz(r1, . . . , rk), so is c′ =
∑l−1

i=1(ci + vi)ei. By the inductive
hypothesis, c′ and all the diel− viei are linear combinations of elements of S, as they have strictly
less than l non-zero components. Hence c is a linear combination of elements in S. ¤

The reader may check for example that {(5, 0, 0), (0, 0, 2), (1,−8, 0), (0, 10,−1)} is a basis for
Syz(4, 3, 10) ⊂ Z3

20.

4.3 S-polynomials and A-polynomials

We first adapt the definition of S-polynomials to polynomials over R.
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Definition 4.7 (S-polynomial) Let g1, g2 ∈ R[x1, . . . , xn] \ {0} be distinct polynomials. An S-
polynomial of g1 and g2 is any polynomial c1t1g1 − c2t2g2 where

c1 lc(g1) = c2 lc(g2) ∈ lcm(lc(g1), lc(g2)) 6= {0},
ci ∈ R and ti = lcm(lt(g1), lt(g2))/ lt(gi). If lcm(lc(g1), lc(g2)) = {0}, we define 0 to be the only
S-polynomial of g1, g2. We write Spol(g1, g2) for the set of S-polynomials of g1 and g2.

Note that if h ∈ Spol(g1, g2) then lt(h) < lcm(lt(g1), lt(g2)). If R is a domain, two S-polynomials
of g1 and g2 differ by multiplication with a unit of R, so we can safely speak of ‘the’ S-polynomial
of g1 and g2. This is no longer the case when R has zero divisors.

Example 4.8 Let g1 = 2x2 + 3x + 1 and g2 = 5xy + 2y + 1 in Z20[x, y]. We have 10 ∈ lcm(2, 5).
Consider the S-polynomials h1 = 5yg1 − 2xg2 = 11xy + 18x + 5y and h2 = 5yg1 − 10xg2 =
15xy + 10x + 5y. If there were a unit u ∈ Z20 such that h2 = uh1 then 15 would be a unit in Z20.

We will see that our results do not depend on which S-polynomial is chosen. The main additional
difficulty encountered when trying to construct Gröbner bases over rings with zero divisors is that
we do not necessarily have lt(g) = lt(cg) for all c ∈ R and so {g} is not necessarily a Gröbner basis,
as we saw in Example 3.10. This motivates the following definition:

Definition 4.9 (A-polynomial) Let g ∈ R[x1, . . . , xn] \ {0}. An A-polynomial of g is any poly-
nomial of the form ag where a ∈ R is such that 〈a〉R = Ann(lc(g)). We write Apol(g) for the set
of A-polynomials of g.

Note that if h ∈ Apol(g) then lt(h) < lt(g) and that any two A-polynomials of g differ by mul-
tiplication by a unit of R. Of course if R is a principal ideal domain, then Apol(g) = {0} for all
g ∈ R[x1, . . . , xn] \ {0}.

4.4 Characterisation of Gröbner Bases over R

We characterise Gröbner bases over R using Theorem 4.6 to obtain generators for a syzygy module
of leading coefficients.

Theorem 4.10 Let G ⊂ R[x1, . . . , xn] \ {0}, |G| < ∞. Then G is a Gröbner basis if and only if

(A) for any g1, g2 ∈ G with g1 6= g2, there is an h ∈ Spol(g1, g2) such that h →∗
G 0 and (B) for

any g ∈ G, there is an h ∈ Apol(g) such that h →∗
G 0.

Proof. (Cf. [1, Theorem 3.2.5]) The necessity of conditions (A) and (B) is obvious. Let G =
{g1, . . . , gk} and put ri = lc(gi) for i = 1, . . . , k . First we give a basis for Syz(r1, . . . , rk). For
each i, let hi = aigi ∈ Apol(gi) ∩ Std(G). For each 1 ≤ i < j ≤ k with lcm(ri, rj) 6= {0}, let
hi,j ∈ Spol(gi, gj) ∩ Std(G) be given by

hi,j = bi,jgi lcm(lt(gi), lt(gj))/ lt(gi)− b′i,jgj lcm(lt(gi), lt(gj))/ lt(gj).

Applying Theorem 4.6 and the definitions of S-polynomials and A-polynomials, we see that

S = {aiei : 1 ≤ i ≤ k} ∪ {bi,jei − b′i,jej : 1 ≤ i < j ≤ k, lcm(ri, rj) 6= {0}}
generates Syz(r1, . . . , rk). Now let f ∈ 〈G〉 \ {0} =

⋃
t∈T Rep≤t(G). We need to prove that

f ∈ Std(G) i.e f ∈ Rep≤lt(f)(G). Let f ∈ Rep≤t(G) with t minimal, and assume that t > lt(f).
Write f = h +

∑l
j=1 cij tij gij where h ∈ Rep<t(G), l ≤ k, 1 ≤ i1 < · · · < il ≤ k, cij ∈ R,

tij ∈ T , tij lt(gij ) = t and cij rij 6= 0 for j = 1, . . . , l. Then
∑l

j=1 cij rij = 0 i.e.
∑l

j=1 cijeij ∈
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Syz(r1, . . . , rk). We have lt(gij )|t, for j = 1, . . . , l. So by Theorem 4.6, there are uij , vil,ij ∈ R such
that

f − h =
l∑

j=1

cij tij gij =
l∑

j=1

uij tij hij +
∑

1≤l<j≤l

vil,ij til,ij hil,ij ,

where til,ij = t/ lcm(lt(gil
), lt(gij )). Obviously, tij lt(hij ) < t and til,ij lt(hil,ij ) < t. Conditions

(A), (B) and Lemma 3.5 imply that all the summands are in Rep<t(G), so f ∈ Rep<t(G). By
Lemma 3.5 again, f ∈ Rep≤t′(G) for some t′ < t, which contradicts the minimality of t. ¤

In particular, {g} ⊂ R[x1, . . . , xn] \ {0} is a strong Gröbner basis if and only if Apol(g) = {0}, cf.
Corollary 3.12 and Proposition 4.2.

5 Characterisation of Strong Gröbner Bases over R

We have seen that over a field, the notions of strong Gröbner basis and Gröbner basis coincide.
Thus the classical effective characterisation of Gröbner bases in terms of S-polynomials holds for
strong Gröbner bases as well. Over a principal ideal domain however, a strong Gröbner basis G
can be characterised by: for any pair of polynomials in G (i) their S-polynomial reduces to 0 wrt.
G and (ii) their ‘G-polynomial’ is strongly reducible to 0 wrt. G; see [2, Section 10.1] and the
references therein. We generalise this to principal ideal rings in Corollary 5.12 below.

5.1 G-polynomials

Let us recall the definition of a G-polynomial (see [2, Definition 10.9]).

Definition 5.1 (G-polynomial) Let F = {f1, . . . , fk} ⊂ R[x1, . . . , xn] \ {0}. A G-polynomial of
F is any polynomial

∑k
i=1 citifi where

k∑

i=1

ci lc(fi) ∈ gcd(lc(F )),

ci ∈ R and ti = lcm(lt(F ))/ lt(fi). We write Gpol(F ) or Gpol(f1, . . . , fk) for the set of G-
polynomials of {f1, . . . , fk}.

Note that f ∈ Gpol(f) and that if h ∈ Gpol(F ) then lt(h) = lcm(lt(F )) and lc(h) ∈ gcd(lc(F )).
Hence by Proposition 4.3, if h1, h2 ∈ Gpol(F ) then lm(h1) = u lm(h2) for some unit u ∈ R. If R is
a domain, any two G-polynomials of f1 and f2 differ by multiplication with a unit, so we can safely
speak of ‘the’ G-polynomial of f1 and f2. This is no longer the case when R has zero divisors, but
we will see that our results do not depend on which G-polynomial is chosen.

Example 5.2 For f1, f2 ∈ Z20[x, y] as in Example 4.8, h1 = xf2 − 2yf1 = x2y − 4xy + x − 2y
and h2 = 5xf2 − 2yf1 = x2y + 4xy + 5x− 2y are G-polynomials of f1 and f2. If there were a unit
u ∈ R such that h1 = uh2 then 5 would be a unit in Z20.

5.2 A first construction of strong Gröbner bases over R

We begin by generalising the construction of strong Gröbner bases over principal ideal domains
given in [1, Theorem 4.5.9] to principal ideal rings.
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Definition 5.3 (Saturated subset) (cf. [1, Definition 4.2.4]) Let S, S′ be finite sets and ∅ 6=
S′ ⊆ S ⊂ T . We say that S′ is saturated wrt. S if

S′ = {t ∈ S : t| lcm(S′)}.

Theorem 5.4 (cf. [1, Theorem 4.5.9]) Let I be a non-zero ideal of R[x1, . . . , xn] and let G be a
Gröbner basis for I. For each F ⊆ G choose an hF ∈ Gpol(F ). Then the set

{hF : F ⊆ G and lt(F ) is saturated wrt. lt(G)}

is a strong Gröbner basis for I.

Proof. The proof is similar to [1, Theorem 4.5.9]. ¤

For an alternative proof, see Remark 5.11(i) below.

5.3 Gpol-closure

If f is reducible wrt. G, it is easy to see that there is an F ⊆ G and an h ∈ Gpol(F ) such that f
is strongly reducible wrt. G ∪ {h}. This suggests the following definition.

Definition 5.5 (Gpol-closed, Gpol-closure) Let G be a finite non-empty subset of
R[x1, . . . , xn] \ {0}. We say that

(i) G is Gpol-closed if for all g1, g2 ∈ G with g1 6= g2, there is an h ∈ Gpol(g1, g2) which is strongly
reducible wrt. G.

(ii) G is a Gpol-closure of G′ ⊆ G if G is Gpol-closed and

G ⊆
⋃

∅6=F ′⊆G′
Gpol(F ′). (1)

Note that any strong Gröbner basis is Gpol-closed, if G is a Gpol-closure of G′ then 〈G〉 = 〈G′〉
and if G′ is Gpol-closed then G′ is a Gpol-closure of itself.

Proposition 5.6 If R is a finite-chain ring, any non-empty subset of R[x1, . . . , xn] \ {0} is Gpol-
closed.

Proof. Let G ⊆ R[x1, . . . , xn] \ {0} and let g1, g2 ∈ G be distinct. If h ∈ Gpol(g1, g2), then h is
reducible wrt. {g1, g2}, so by Proposition 3.2, h is strongly reducible wrt. G. ¤

The following properties of G-polynomials follow easily from the definition:

Lemma 5.7 Let F = {f1, . . . , fk}, F ′ = {f ′1, . . . , f ′k′} be subsets of R[x1, . . . , xn] \ {0} and let
h ∈ Gpol(F ), h′ ∈ Gpol(F ′). Then:

(i) Gpol(h, h′) = Gpol(F ∪ F ′).

(ii) If k = k′ and lm(fi)| lm(f ′i) for i = 1, . . . , k then lm(h)| lm(h′).

Proposition 5.8 Let G,G′ ⊂ R[x1, . . . , xn] \ {0} be finite sets satisfying condition (1). The
following assertions are equivalent:

(i) G is a Gpol-closure of G′

(ii) for all non-empty F ′ ⊆ G′, there is an h ∈ Gpol(F ′) which is strongly reducible wrt. G
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(iii) for all non-empty F ′ ⊆ G′ such that lt(F ′) is saturated wrt. lt(G′), there is an h ∈ Gpol(F ′)
which is strongly reducible wrt. G.

(iv) for all f ∈ R[x1, . . . , xn], f is reducible wrt. G′ if and only if f is strongly reducible wrt. G.

Proof. We will prove the equivalence of (ii) with the other assertions, starting with (ii) ⇔ (i).
For the forward implication we need only show that G is Gpol-closed, so let h1, h2 ∈ G. From
condition (1), there are F ′′, F ′ ⊆ G′ such that h1 ∈ Gpol(F ′) and h2 ∈ Gpol(F ′′). By (ii), there is
an h ∈ Gpol(F ′ ∪ F ′′) which is strongly reducible wrt. G. By Lemma 5.7, h ∈ Gpol(h1, h2), so G
is Gpol-closed.

We prove (i) ⇒ (ii) by induction on the cardinality of F ′ = {f1, . . . , fk}. For k = 1, 2 it obviously
holds. Assume that k ≥ 3 and that (i) ⇒ (ii) for subsets of cardinality less than k. Then by the
inductive hypothesis, there are h1 ∈ Gpol(f1, f2) and h2 ∈ Gpol(f3, . . . , fk) which are strongly
reducible wrt. G i.e. there are gi ∈ G such that lm(gi)| lm(hi) for i = 1, 2. Since G is Gpol-
closed, there is a g ∈ Gpol(g1, g2) which is strongly reducible wrt. G. Let h ∈ Gpol(h1, h2). By
Lemma 5.7, h ∈ Gpol(F ′) and lm(g)| lm(h), so h is strongly reducible wrt. G.

For (iii) ⇒ (ii), let F ′ ⊆ G′ and h ∈ Gpol(F ′). Let F ′′ = {f ∈ G′ : lt(f)| lcm(lt(F ′))}. Trivially
lt(F ′′) is saturated wrt. lt(G′), so there is a g ∈ Gpol(F ′′) which is strongly reducible wrt. G.
Since F ′ ⊆ F ′′, lc(g)| lc(h) and by construction lt(g)| lt(h), so lm(g)| lm(h) and h is also strongly
reducible wrt. G.

We prove now (ii) ⇒ (iv). Assume first that f is reducible wrt. G′. Then there is an F ′ =
{f1, . . . , fk} ⊂ G′ such that lt(fi)| lt(f) for i = 1, . . . , k and lm(f) =

∑k
i=1 citi lm(fi) for some

ci ∈ R and ti ∈ T . Hence lcm(lt(F ′))| lt(f) and lc(f) is divisible by any element of gcd(lc(F ′)) so
lm(h)| lm(f) for all h ∈ Gpol(F ′). By (ii), there is an h ∈ Gpol(F ′) which is strongly reducible
wrt. G, so f is strongly reducible wrt. G.

Next assume that f is strongly reducible wrt. G. There is then an h ∈ G such that lm(h)| lm(f).
We know from condition (1) that h ∈ Gpol(F ′) for some F ′ ⊆ G′. It can be easily checked that f
is reducible wrt. F ′.

For (iv) ⇒ (ii), let F ′ ⊆ G′ and h ∈ Gpol(F ′). From the definition of a G-polynomial, we see that
h is reducible wrt. G′. Hence, by (iv), h is strongly reducible wrt. G. ¤

For the particular case G′ = G, Proposition 5.8 yields:

Corollary 5.9 Let G ⊂ R[x1, . . . , xn]\{0} be a finite set. The following assertions are equivalent:

(i) G is Gpol-closed

(ii) for all non-empty F ⊆ G, there is an h ∈ Gpol(F ) which is strongly reducible wrt. G

(iii) for all non-empty F ⊆ G such that lt(F ) is saturated wrt. lt(G), there is an h ∈ Gpol(F )
which is strongly reducible wrt. G

(iv) for all f ∈ R[x1, . . . , xn], f is reducible wrt. G if and only if f is strongly reducible wrt. G.

5.4 Characterisation of strong Gröbner bases over R

Our first characterisation does not use Theorem 4.10.

Proposition 5.10 Let G ⊂ R[x1, . . . , xn] \ {0} be a finite set. The following assertions are equiv-
alent:

(i) G is a strong Gröbner basis

(ii) G is a Gröbner basis and G is Gpol-closed

(iii) G is a Gpol-closure of some Gröbner basis G′ ⊆ G.
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Proof. For (iii) ⇒ (i), let f ∈ 〈G〉 = 〈G′〉. Since G′ is a Gröbner basis, f is reducible wrt. G′, so
f is strongly reducible wrt. G by Proposition 5.8(iv). ¤

Remark 5.11 The implication (iii) ⇒ (i) of Proposition 5.10 together with Proposition 5.8(iii)
yields another proof of Theorem 5.4.

Theorem 4.10, Proposition 5.10 and Proposition 5.6 easily yield:

Corollary 5.12 Let G ⊂ R[x1, . . . , xn] \ {0} be a finite set. Then G is a strong Gröbner basis if
and only if

(A) for any g1, g2 ∈ G with g1 6= g2, there is an h ∈ Spol(g1, g2) such that h→→∗
G0,

(B) for any g ∈ G, there is an h ∈ Apol(g) such that h→→∗
G0 and

(C) for any g1, g2 ∈ G with g1 6= g2 there is an h ∈ Gpol(g1, g2) which is strongly reducible wrt. to
G.

Corollary 5.13 Let R be a finite-chain ring and G ⊂ R[x1, . . . , xn] \ {0} be a finite set. Then G
is a strong Gröbner basis if and only if

(A) for any g1, g2 ∈ G with g1 6= g2, there is an h ∈ Spol(g1, g2) such that h→→∗
G0 and

(B) for any g ∈ G, there is an h ∈ Apol(g) such that h→→∗
G0.

6 Strong Gröbner Basis Algorithms

6.1 The principal ideal ring case

We say that R is computable if there are algorithms which compute: sums; negation; products; an
lcm; a generator of the annihilator ideal of an element; for any r1, r2 ∈ R there is an algorithm
which computes c1, c2 such that c1r1 + c2r2 ∈ gcd(r1, r2); for any r1, r2 ∈ R, there is an algorithm
which decides whether r2|r1 and in the affirmative case, produces an r3 ∈ R such that r1 = r2r3.

Examples of computable principal ideal rings are Z and Zm. If K is a computable field then K[X]
is a computable. Also, a quotient ring of a computable principal ideal ring and a finite product
of computable principal ideal rings are computable. When R is a finite-chain ring in which γ
and ν are given and there are algorithms which compute sums, negations and products, then R is
computable (see Proposition 2.2). For example GR(pk, n) is computable . Throughout this section
we will assume that R is computable.

Theorem 4.10 enables us to compute a Gröbner basis as follows:

Algorithm 6.1 (Gröbner basis)

G ← GB-PIR(F )

Input: F a finite subset of R[x1, . . . , xn], where R is a computable principal ideal ring.
Output: G a Gröbner basis for 〈F 〉.
Notes: B is the set of pairs of polynomials in G′ whose S-polynomials still have to be computed.

C is the set of polynomials in G′ whose A-polynomials still have to be computed.

begin
G ← F
B ← {{f1, f2} : f1, f2 ∈ G, f1 6= f2}
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C ← F
while B ∪ C 6= ∅ do

if C 6= ∅ then
select f from C
C ← C \ {f}
compute h ∈ Apol(f)

else
select {f1, f2} from B
B ← B \ {{f1, f2}}
compute h ∈ Spol(f1, f2)

end if
compute g ∈ Rem(h,G)
if g 6= 0 then

B ← B ∪ {{g, f} : f ∈ G}
C ← C ∪ {g}
G ← G ∪ {g}

end if
end while
return(G)
end

Proposition 6.2 Algorithm GB-PIR is correct and terminates.

Proof. We first show that the algorithm terminates. Any new polynomial g to be added to
G is not reducible wrt. G i.e. lm(g) 6∈ 〈lm(G)〉. Thus 〈lm(G)〉 increases strictly each time a
new polynomial is added to G. Such a strictly ascending chain of ideals has to be finite because
R[x1, . . . , xn] is Noetherian and so eventually no new polynomials are added to G, as required. Let
I = 〈F 〉. We have 〈G〉 = I on initialising and all polynomials subsequently added to G are in I, so
the property I = 〈G〉 is preserved. Any polynomial in G \ C has an A-polynomial which reduces
to 0 wrt. G and any pair of polynomials g1, g2 ∈ G with {g1, g2} 6∈ B has an S-polynomial which
reduces to 0 wrt. G. Thus on termination, G satisfies conditions (A) and (B) of Theorem 4.10 and
G is therefore a Gröbner basis. ¤

Each iteration of Algorithm GB-PIR computes either an A-polynomial or an S-polynomial. For
the correctness of the algorithm, it does not matter which one is done first. We have preferred
the former whenever possible since A-polynomials are easy to compute, have lower degree and
can be used in subsequent reductions. Thus computing A-polynomials first is likely to be more
efficient. A first method for computing a strong Gröbner basis G for an ideal 〈F 〉 could be based
on Proposition 5.10(iii). Namely, we compute a Gröbner basis G′ for 〈F 〉 and then compute a
Gpol-closure G of G′ using the algorithm below.

Algorithm 6.3 (Gpol-closure)

G ← Gpol-closure(G′)

Input: G′ a finite subset of R[x1, . . . , xn] \ {0}.
Output: G a finite subset of R[x1, . . . , xn] which is a Gpol-closure of G′.

begin
G ← G′

for all F ′ ⊆ G′ do
if lt(F ′) is saturated wrt. lt(G′) then
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compute h ∈ Gpol(F ′)
if h is not strongly reducible wrt. G then G ← G ∪ {h}
end if

end if
end for
return(G)
end

However, reduction is less efficient than strong reduction and in each reduction step we basically
compute a G-polynomial and then discard it. Thus to compute a strong Gröbner basis as above
we would have to recompute the discarded G-polynomials. The following algorithm, also based on
Theorem 4.10 and Proposition 5.10, maintains a Gpol-closure G of the current basis G′ and only
uses strong reduction wrt. G rather than reduction wrt. G′ (see Proposition 5.8(iv)).

Algorithm 6.4 (Strong Gröbner basis)

G ← SGB-PIR(F )

Input: F a finite subset of R[x1, . . . , xn] \ {0}, where R is a computable principal ideal ring.
Output: G a strong Gröbner basis for 〈F 〉.
Notes: G′ ⊆ G, so G is a Gpol-closure of G′; on termination, G′ will be a Gröbner basis for 〈F 〉.

B is the set of pairs of polynomials in G′ whose S-polynomials still have to be computed.
C is the set of polynomials in G′ whose A-polynomials still have to be computed.

begin
G′ ← F
B ← {{g1, g2} : g1, g2 ∈ G′, g1 6= g2}
C ← F
G ← Gpol-closure(G′)
while B ∪ C 6= ∅ do

if C 6= ∅ then
select g from C
C ← C \ {g}
compute h ∈ Apol(g)

else
select {g1, g2} from B
B ← B \ {{g1, g2}}
compute h ∈ Spol(g1, g2)

end if
compute g ∈ SRem(h,G)
if g 6= 0 then

B ← B ∪ {{g, f}|f ∈ G′}
C ← C ∪ {g}
G ← Gpol-closure-update(G′, g, G)
G′ ← G′ ∪ {g}

end if
end while
return(G)
end

The auxiliary algorithm Gpol-closure-update is described below.
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Algorithm 6.5 (Gpol-closure update)

G ← Gpol-closure-update(G′, g,G′′)

Input: G′ a finite subset of R[x1, . . . , xn] \ {0}
g ∈ R[x1, . . . , xn] \G′, g 6= 0
G′′ a Gpol-closure of G′.

Output: G a finite subset of R[x1, . . . , xn] which is a Gpol-closure of G′ ∪ {g}.

begin
G ← G′′ ∪ {g}
for all g′′ ∈ G′′ do

compute h ∈ Gpol(g, g′′)
if h is not strongly reducible wrt. G then G ← G ∪ {h}
end if

end for
return(G)
end

Example 6.6 Let g1 = 2x2 + 3x + 1 ∈ Z6[x] and F = {g1}. We will compute a strong Gröbner
basis for 〈F 〉. We have g2 = 3x+3 ∈ Apol(g1), Spol(g1, g2) = {0} and h1 = x2− 1 ∈ Gpol(g1, g2).
Then G = {g1, g2, h1} is Gpol-closed and so G is a strong Gröbner basis for 〈F 〉.

Example 6.7 (cf. [1, Example 4.2.12]) Let F = {g1, g2} ⊂ Z20[x, y], where g1 = 4xy+x and g2 =
3x2 +y. We will compute a strong Gröbner basis for 〈F 〉 wrt. the lexicographical order with x > y.
Initially G′ = F . The new polynomials introduced in G′ will be denoted g3, g4 etc. A Gpol-closure
of F will be G = {g1, g2, h1} where h1 = x2y +xy− y2 ∈ Gpol(g1, g2). We have 5x ∈ Apol(g1) and
5x is not strongly reducible wrt. G, so we put g3 = 5x. We update G by introducing g3 and adding
h2 = xy − x ∈ Gpol(g1, g3) to G. We compute 3x2 − 4y2 ∈ Spol(g1, g2) which strongly reduces
to g4 = 4y2 + y. Updating G will result in adding g4 to G only. We have g5 = 5y ∈ Apol(g4).
The updated G will be G = {4xy + x, 3x2 + y, x2y + xy − y2, 5x, xy − x, 4y2 + y, 5y, y2 − y}, the
last polynomial being h3 = y2 − y ∈ Gpol(g4, g5). This is also a final strong Gröbner basis, as any
further A-polynomials and S-polynomials strongly reduce to 0 wrt. G.

We prove now the correctness and termination of the algorithms.

Theorem 6.8 Algorithms Gpol-closure and Gpol-closure-update are correct and terminate.

Proof. The termination of both algorithms is obvious. The correctness of Algorithm Gpol-
closure follows from Proposition 5.8. To prove the correctness of Algorithm Gpol-closure-
update, let F ′ ⊂ G′ ∪ {g}. We have to show that there is an h ∈ Gpol(F ′) which is strongly
reducible wrt. G. If F ′ ⊆ G′, this follows from the fact that G′′ is a Gpol-closure of G′ and
G′′ ⊂ G. Otherwise, write F ′ = F ′′ ∪ {g} where F ′′ ⊂ G′. Since G′′ is a Gpol-closure of G′, there
is an h1 ∈ Gpol(F ′′) and a g′′ ∈ G′′ such that lm(g′′)| lm(h1), and we have Gpol(g, h1) = Gpol(F ′)
by Lemma 5.7(i). Algorithm Gpol-closure-update computes an h2 ∈ Gpol(g, g′′) and upon
termination h2 is strongly reducible wrt. G. Thus if h ∈ Gpol(g, h1), then h ∈ Gpol(F ′) and
lm(h2)| lm(h) by Lemma 5.7(ii), as required. ¤

The following lemma is an easy consequence of the definitions.

Lemma 6.9 Let G be a Gpol-closure of G′ ⊂ R[x1, . . . , xn] \ {0} and let f ∈ R[x1, . . . , xn]. If
f→→∗

Gh then f →∗
G′ h.
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Theorem 6.10 Algorithm SGB-PIR is correct and terminates.

Proof. We first show that the algorithm terminates. The calls to Gpol-closure and Gpol-
closure-update ensure that G is a Gpol-closure of G′ throughout the algorithm. Now any new
polynomial g to be added to G′ is not strongly reducible wrt. G and so g is not reducible wrt. G′

by Proposition 5.8(iv). In other words, if g is to be added to G′, then lm(g) 6∈ 〈lm(G′)〉. Thus
〈lm(G′)〉 increases strictly each time a new polynomial is added to G′ and as above, eventually no
new polynomials are added to G′, as required. Let I = 〈F 〉. We have 〈G′〉 = I on initialising and
all polynomials subsequently added to G′ are in I, so the property I = 〈G′〉 is preserved.

For any polynomial g ∈ G′ \C, there is an h ∈ Apol(g) which strongly reduces to 0 wrt. G. Hence
by Lemma 6.9, h reduces to 0 wrt G′. For any pair of polynomials g1, g2 ∈ G′, if {g1, g2} 6∈ B then
there is an h ∈ Spol(g1, g2) which strongly reduces to 0 wrt. G. Again, h reduces to 0 wrt. G′

and on termination of the algorithm, G′ satisfies properties (A) and (B) of Theorem 4.10 and is
therefore a Gröbner basis. Finally, G will be a strong Gröbner basis by Proposition 5.10(iii). ¤

Remarks 6.11 (i) The efficiency of Algorithm SGB-PIR can be improved by adapting the usual
techniques used for computing Gröbner bases for polynomials over fields (e.g. avoiding unneces-
sary S-polynomials, strongly reducing the polynomials in the basis wrt. each other, processing the
polynomials in a ‘favourable’ order) and possibly devising new techniques specifically for principal
ideal rings. We will not investigate these issues here.

(ii) When R is a field, our algorithm reduces to the classical Buchberger algorithm. Hence the
complexity of Algorithm SGB-PIR for principal ideal rings is at least as high as the complexity
of the classical algorithm over fields.

6.2 Two special cases

If R is a finite-chain ring, Algorithm SGB-PIR simplifies as Algorithms Gpol-closure and Gpol-
closure-update are not needed in view of Corollary 5.13 i.e. in Algorithm SGB-PIR we can
delete ‘G ← Gpol-closure(G′)’, ‘G ← Gpol-closure-update(G′, g, G)’ and replace G′ by G. See
[9, Algorithm 3.9] for complete details.

Example 6.12 Let p be a prime and g1 = px + y ∈ Zp2 [x, y] with a term order such that x > y.
We have g2 = py ∈ Apol(g1) and y2 ∈ Spol(g1, g2). Any further A-polynomial and S-polynomial is
reducible to 0, so a strong Gröbner basis for 〈g1〉 is {px + y, py, y2}.

Example 6.13 As in Example 3.10, let g1 = px2 + x + 1 ∈ Zp2 [x]. We have g2 = px + p ∈
Apol(g1) and (1 − p)x + 1 ∈ Spol(g1, g2). As 1 − p is a unit, we put g3 = x + (1 + p). Since
S-polynomials of g1 and g3 and of g2 and g3 strongly reduce to 0, a strong Gröbner basis for 〈g1〉
is {x + 1 + p, px + p, px2 + x + 1}.

If R is a principal ideal domain, Algorithm SGB-PIR simplifies since A-polynomials are not
needed. So all instructions concerning C or Apol can be deleted. Algorithms Gpol-closure and
Gpol-closure-update are unchanged. The algorithm thus obtained is similar to [2, Algorithm
D-Gröbner, p. 461]. However, our algorithm is more efficient since it computes the S-polynomials
of pairs of polynomials in G′ rather than in G and in general G′ ⊂ G.
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7 Minimal strong Gröbner bases

7.1 Characterisation

We recall the definition of minimal strong Gröbner bases in A[x1, . . . , xn] and give a new charac-
terisation.

Definition 7.1 (minimal strong Gröbner basis) A strong Gröbner basis G is called minimal
if no proper subset of G is a strong Gröbner basis for 〈G〉.

The following equivalent definition of minimal strong Gröbner bases is well-known over a field and
holds over A by the same argument.

Proposition 7.2 Let G be a strong Gröbner basis in A[x1, . . . , xn]. Then G is minimal if and
only if for all distinct g, g′ ∈ G, lm(g) 6 | lm(g′).

Given a strong Gröbner basis G we can obtain a minimal strong Gröbner basis by the usual
algorithm, viz. as long as there are distinct g, g′ ∈ G such that lm(g)| lm(g′), remove g′ from G.

Example 7.3 For 〈px2 + x + 1〉 ⊂ Zp2 [x] of Example 6.13, a minimal strong Gröbner basis is
{x+1+p}. For 〈2x2+3x+1〉 ⊂ Z6[x] we obtain a minimal strong Gröbner basis {3(x+1), x2+3x+2}
using the strong Gröbner basis computed in Example 6.6. A minimal strong Gröbner basis for
〈4xy + x, 3x2 + y〉 ⊂ Z20[x, y] is {xy − x, 3x2 + y, y2 − y, 5x, 5y} using the strong Gröbner basis
computed in Example 6.7.

The following characterisation seems to be new:

Theorem 7.4 Let R be a principal ideal ring which is not a field and let G be a strong Gröbner
basis in R[x1, . . . , xn]. Then G is minimal if and only if for all distinct g, g′ ∈ G, lt(g)| lt(g′)
implies lt(g) 6= lt(g′) and 〈lc(g)〉R ⊂ 〈lc(g′)〉R.

Proof. Assume that G is a minimal strong Gröbner basis, g, g′ ∈ G are distinct and lt(g)| lt(g′).
If lc(g)| lc(g′) then lm(g)| lm(g′), which is impossible by Proposition 7.2. We now show that
lc(g′)| lc(g). Let h ∈ Gpol(g, g′). Then lc(h)| lc(g), lc(h)| lc(g′) and lt(h) = lt(g′) i.e. lm(h)| lm(g′).
Since h ∈ I, there is a g′′ ∈ G such that lm(g′′)| lm(h). Therefore lm(g′′)| lm(g′), which can
only happen if g′′ = g′ by Proposition 7.2. Hence lc(g′)| lc(h)| lc(g) and if lt(g′) = lt(g) then
lm(g′)| lm(g) which again contradicts Proposition 7.2. Thus lt(g) 6= lt(g′) and 〈lc(g)〉R ⊂ 〈lc(g′)〉R
as claimed.

The converse is an immediate consequence of Proposition 7.2. ¤

7.2 Leading monomials

Although minimal Gröbner bases are not unique, we can say something about their leading mono-
mials:

Theorem 7.5 Let F = {f1, . . . , fk} and G = {g1, . . . , gl} be minimal strong Gröbner bases for
the same ideal of A[x1, . . . , xn]. Then k = l and after renumbering if necessary, lt(fi) = lt(gi) and
〈lc(fi)〉A = 〈lc(gi)〉A for i = 1, . . . , k. If in addition A is a principal ideal ring, there are units
ui ∈ A such that lm(fi) = ui lm(gi) for i = 1, . . . , k.

Proof. As in [1, Proposition 1.8.4], we obtain k = l and after renumbering if necessary, lm(fi)
and lm(gi) divide each other for i = 1, . . . , k. This gives the first part. The second part now follows
from Proposition 4.1(i). ¤
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Corollary 7.6 If {g} ⊆ R[x1, . . . , xn] is a strong Gröbner basis, then any minimal strong Gröbner
basis of 〈g〉 is of the form {ug} for some unit u ∈ R.

Proof. Let {f} be another minimal strong Gröbner basis for I = 〈g〉. By Theorem 7.5, there
is a unit u ∈ R such that lm(f) = u lm(g). Hence if f − ug 6= 0 then lt(f − ug) < lt(g). This is
impossible since f − ug ∈ I and so lm(g)| lm(f − ug). ¤
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