
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Towards a framework to make robots learn to dance

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

© Ibrahim S. Tholley

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Tholley, Ibrahim S.. 2019. “Towards a Framework to Make Robots Learn to Dance”. figshare.
https://hdl.handle.net/2134/9856.

https://lboro.figshare.com/

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Towards A Framework To Make Robots Learn To Dance

Towards A Framework To Make Robots
Learn To Dance

by

Ibrahim S. Tholley

A Doctoral Thesis
Submitted in partial fulfillment of the requirements

for the award of

Doctor of Philosophy

Of

Loughborough University

14th May 2012

© by Ibrahim S. Tholley, 2012

Towards A Framework To Make Robots Learn To Dance

 ii

CERTIFICATE OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this thesis, that
the original work is my own except as specified in acknowledgments or in
footnotes, and that neither the thesis nor the original work contained therein has
been submitted to this or any other institution for a degree.

……………………………………………. (Signed)

……………………………………………. (Date)

Towards A Framework To Make Robots Learn To Dance

 iii

Dedicated to Mummy and Daddy

Towards A Framework To Make Robots Learn To Dance

 iv

Abstract

A key motive of human-robot interaction is to make robots and humans interact through

different aspects of the real world. As robots become more and more realistic in

appearance, so has the desire for them to exhibit complex behaviours. A growing area of

interest in terms of complex behaviour is robot dancing. Dance is an entertaining activity

that is enjoyed either by being the performer or the spectator. Each dance contain

fundamental features that make-up a dance. It is the curiosity for some researchers to

model such an activity for robots to perform in human social environments. From current

research, most dancing robots are pre-programmed with dance motions and few have the

ability to generate their own dance or alter their movements according to human

responses while dancing.

This thesis explores the question “Can a robot learn to dance?”. A dancing

framework is proposed to address this question. The Sarsa algorithm and the Softmax

algorithm from traditional reinforcement learning form part of the dancing framework to

enable a virtual robot learn and adapt to appropriate dance behaviours. The robot follows

a progressive approach, utilising the knowledge obtained at each stage of its development

to improve the dances that it generates.

The proposed framework addresses three stages of development of a robot’s

dance: learning ability; creative ability of dance motions, and adaptive ability to human

preferences. Learning ability is the ability to make a robot gradually perform the desired

dance behaviours. Creative ability is the idea of the robot generating its own dance

motions, and structuring them into a dance. Adaptive ability is where the robot changes

its dance in response to human feedback. A number of experiments have been conducted

to explore these challenges, and verified that the quality of the robot dance can be

improved through each stage of the robot’s development.

Towards A Framework To Make Robots Learn To Dance

 v

Acknowledgement

There are many people that I must thank for achieving this thesis. I would first begin by

sincerely thanking my supervisors, Dr Qinggang Meng and Professor Paul Chung for

giving me the opportunity to do this PhD and the patience and guidance they provided me

throughout the journey. There were many challenges that this PhD faced and both my

supervisors were there at every hurdle to help me overcome them. This thesis would have

been next to impossible to write without their help and guidance. Second, I am extremely

grateful to the Computer Science Department at Loughborough University for taking me

on as first an Undergraduate student and second as a research student, and funding this

research. I give many thanks also to Professor Chris Hinde for providing interesting

discussions on future possible directions of this research. Special thanks go to Dr Eran

Edirisinghe, Ms Judith Poulton, Jo McOuat, Dr Iain Phillips and Patrick Holligan for the

authorisation and assistance on all funding matters to go to conferences and present my

publications. Also, I give thanks to Christine Bagley for being there to deal with all

general matters, and Mr Samra, Kip Sahnsi and Richard Mee for providing IT support for

my computing needs and the robot used in this research.

 There were many others who helped me through this journey by simply being

there when I needed research advice. In particular, I give thanks to Sazalinsyah Razali,

and Afizan Azman for providing their own insight into research and academia. For those

who were there to provide me with some emotional comfort, I give special thanks to all

my friends. They played a vital role in giving me strength to continue the research, but

the most important people of all who always held on strong for me and provided love and

support to rescue and pick me up, every time I fell and keep me motivated are my family.

I owe my deepest gratitude to my Mother, my Grandmother, my Father, my sister and my

brother for without them, this journey would not have been necessary.

Towards A Framework To Make Robots Learn To Dance

 vi

Table of Contents

List of Figures ……………………………………………………………………. viii
List of Tables …………………………………………………………………….. X
List of Algorithms ……………………………………………………………….. xi
Glossary of Terms ……………………………………………………………….. xii
Chapter 1: Introduction ………………………………………………………….. 1
1.1 Overview ...………………………………………………………………... 1
1.2 Aims & Objectives ………………………………………………………... 5
1.3 Research Methodologies ………………………………………………….. 6
 1.3.1 Learning To The Beat ….…………………………………………. 6
 1.3.2 Generating Dance Motions ………………………………………. 8
 1.3.3 Adapting To Human Preferences ……………………………….... 9
1.4 Thesis Contributions ………………………………………………………. 10
1.5 Structure of Thesis ………………………………………………………... 11

Chapter 2: Literature Review – Robot Dancing ..……………………………… 13
2.1 What Is Dancing? ..………………………………………………………... 13
2.2 Current Progress in Robot Dancing ………………………………………. 16
2.3 Learning in Robot Dance .…………………………………………………. 18
2.4 Generating Dance Motions in Robot Dance…………………………… 20
 2.4.1 The Structure of Dance ……..……………………………………. 23
 2.4.2 The Relationship in Gestures ……………………………………... 25
 2.4.3 The Number Two ………………………………………………… 28
2.5 Adaptation in Robot Dance ……...….…………………………………….. 33
 2.5.1 Interactive Evolutionary Computation …………………………… 34
 2.5.2 Interactive Reinforcement Learning ……………………………… 36
2.6 Summary ……………….………………………………………………….. 37

Chapter 3: The Robot Dancing Framework ……………………………………. 40
3.1 General Overview …………………………………………………………. 40
3.2 The Robotic Test Bed ……………………………………………………... 43
 3.2.1 Sony AIBO Robotic Dog …………………………………………. 43
 3.2.2 Webots ……………………………………………………………. 44
3.3 Synchronising To The Music ……………………………………………... 46
3.4 Learning Algorithm ……………………………………………………….. 46
 3.4.1 How Reinforcement Learning Works ….………………………… 47
 3.4.2 Comparison Between Q-Learning and Sarsa …………………….. 49
 3.4.3 Action-Selection Method …………………………………………. 54
3.5 Summary ……………….………………………………………………….. 56

Chapter 4: Learning To Dance To The Beat …………………………………… 58
4.1 Methodology ………………………………………………………………. 58
4.2 Experimental Procedure …………………………………………………... 60
 4.2.1 Experiment 1 (Learning Parameters) ………………………...…… 60

Towards A Framework To Make Robots Learn To Dance

 vii

 4.2.2 Experiment 2 (Bop To The Beat) ………………………………… 60
 4.2.3 Experiment 3 (Dance To The Strongest Beat) …………………… 62
4.3 Results & Observations …………………………………………………… 66
 4.3.1 Experiment 1:Results & Analysis …………...…………………… 66
 4.3.2 Experiment 2:Results & Analysis …………...…………………… 73
 4.3.3 Experiment 3:Results & Analysis …………...…………………… 74
4.4 Summary ……………….………………………………………………….. 76

Chapter 5: Generating Dance …………………..……………………………….. 77
5.1 Methodology ………………………………………………………………. 77
 5.1.1 Generating Dance Actions ………………………………………... 77
 5.1.2 Structuring A Dance ……………………………………………… 85
5.2 Experimental Setup ………….…………………………………………….. 91
 5.2.1 Experiment Procedure ……………………………………………. 91
 5.2.2 Data Gathering ……………………………………………………. 92
5.3 Results & Observations …………………………………………................ 95
 5.3.1 Algorithm Analysis ………………………………………………. 95
 5.3.2 Experiment 1: Results & Analysis ………...……………………... 96
 5.3.3 Experiment 2: Results & Analysis …………………….................. 99
 5.3.4 Experiment 3: Results & Analysis …………………….................. 102
5.4 Summary …………………………………………………………………... 105

Chapter 6: Adapting Dance To Human Preferences …………………………... 107
6.1 Methodology ………………………………………………………………. 107
 6.1.1 Buffering ………………………………………………………….. 109
 6.1.2 Pattern Matching …………………………………………………. 112
 6.1.3 Learning From Human Partners ………………………………….. 115
 6.1.4 Feedback From Multiple Observers ……………………………… 118
6.2 Experiment Procedure …………………………………………………….. 118
 6.2.1 Experiment 1 ……………………………………………………... 119
 6.2.2 Experiment 2 ……………………………………………………... 119
 6.2.3 Experiment 3 ……………………………………………………... 122
 6.2.4 Data Gathering ……………………………………………………. 123
6.3 Results & Observations …………………………………………................ 126
 6.3.1 Experiments 1 & 2: Results & Analysis ………………………….. 127
 6.3.2 Experiment 3: Results & Analysis …………………….................. 139
6.4 Summary ………………………………………………………………….. 142

Chapter 7: Concluding Remarks & Future Works .…………………………... 144
7.1 Thesis Achievements ……………………………………………………… 144
7.2 Future Work …………….…………………………………………………. 146

References ………………………………………………………………………… 149

Towards A Framework To Make Robots Learn To Dance

 viii

List of Figures

Figure 2.1 The relationship between language and the structure of dance …………... 15
Figure 2.2 Conceptual design structure of dance proposed by McGreevy-Nichols et

al. (2005) …………………………………………………………………. 24
Figure 2.3 Symmetrical and asymmetric movements that work with each other

(opposition) and against each other (succession) ………………………… 26
Figure 3.1 Integrated framework for dancing robots ………………………………… 41
Figure 3.2 Sony AIBO Real Robot Dog (ERS-7 model) ……………………………. 43
Figure 3.3 Image of Sony AIBO Dog used (ERS-7 model) in Webots ……………… 45
Figure 4.1 Description of on-the-beat and off-the-beat rhythms …………………….. 61
Figure 4.2 Positions of the different dance motions for Experiment 3 ………………. 64
Figure 4.3 Average occurrence of dance motions with the discount factor made low

(γ = 0.2) …………………………………………………………………... 67
Figure 4.4 Learning performance of dance motions with the discount factor made

low (γ = 0.2) ……………………………………………………………… 68
Figure 4.5 Average occurrence of dance motions with the discount factor made high

(γ = 0.8) …………………………………………………………………... 68
Figure 4.6 Learning performance of dance motions with the discount factor made

high (γ = 0.8) ……………………………………………………………... 69
Figure 4.7 Average occurrence of dance motions with the learning rate made low (α

= 0.2) ……………………………………………………………………... 70
Figure 4.8 Learning performance of dance motions with the learning rate made low

(α = 0.2) …………………………………………………………………... 71
Figure 4.9 Average occurrence of dance motions with the learning rate made high (α

= 0.8) ……………………………………………………………………... 71
Figure 4.10 Learning performance of dance motions with the learning rate made high

(α = 0.8) …………………………………………………………………... 72
Figure 4.11 Experiment 2 results of learning to select the head movement in real time

on the beat using Sarsa …………………………………………………... 74
Figure 4.12 Experiment 3 results of learning to perform actions on the correct states

using Sarsa …... 75
Figure 4.13 Experiment 3 results of learning to perform actions on the correct music

states using Sarsa ...……………………………………………………….. 75
Figure 5.1 Data flow diagram for developing dance motions ……………………….. 80
Figure 5.2 State flow diagram for developing dance motions ……………………….. 83
Figure 5.3 Illustration of dance structure where Gt represents gestures performed on

time t ……………………………………………………………………… 86
Figure 5.4 Illustration of online questionnaire ………………………………………. 92
Figure 5.5 Learning performance of algorithm in five trials (runs) ………………….. 95
Figure 5.6 Perceived dance quality vs. number of joints moved …………………….. 96
Figure 5.7 Dance quality vs. skilled dances …………………………………………. 99
Figure 5.8 Dance quality vs. dance style …………………………………………….. 103
Figure 6.1 Illustration of buffered sequences ……...………………………………… 110
Figure 6.2 Buffering of dance actions based on human feedback …………………… 111

Towards A Framework To Make Robots Learn To Dance

 ix

Figure 6.3 Pattern matching of trainer preferences …………………………………... 112
Figure 6.4 Illustration of Experiment 1 ……………………………..……………….. 119
Figure 6.5 Illustration of Experiment 2 .……………………………………………... 120
Figure 6.6 Example illustration of a dance generated with 75% of one participant’s

preferences and 25% of another participant’s preferences ……………….. 121
Figure 6.7 Illustration of experiment 3 ………………………………………………. 123
Figure 6.8 Screenshot of one of the dances shown to participants and the questions

asked on the online questionnaire ………………………………………... 124
Figure 6.9 Participant satisfaction rating for Experiments 1 & 2 ...………………….. 128

Figure 6.10 Score of how well participants felt their preferences were followed for
Experiments 1 & 2 ………………………………………………….…….. 130

Figure 6.11 Average score of the number of newly generated preferred combinations
for Experiments 1 & 2 ……………………………………………………. 131

Figure 6.12 Average score number of newly preferred combinations in Experiment 3 . 139

Towards A Framework To Make Robots Learn To Dance

 x

List of Tables

Table 2.1 The number two in a 4/4 time signature ………………………………….. 29
Table 2.2 Common time signatures and their respective music styles (Craig, 2005) . 30
Table 2.3 Children's Dance Moves (Kramer, 2010) based on the number two …….. 32
Table 2.4 Symmetrical movements in paired dancing (Schaffer and Stern, 2009) …. 32
Table 4.1 Summary of what state to perform actions ……………………………….. 65
Table 4.2 Summary results of Experiment 1 …………..……………………………. 73
Table 5.1 Exclusive disjunctions of gestures to generate dance motions on two time

steps ………………………………………………………...……………..
82

Table 5.2 Experiments and the variables captured …………………………………. 94
Table 5.3 Experiment 1: Descriptive statistics for participant preferences between

comparisons among dances with number of joints alternatives …………..
98

Table 5.4 Experiment 1: Statistics for participant satisfaction ratings between
comparisons among dances with number of joints alternatives …………..

98

Table 5.5 Experiment 2: Descriptive statistics for participant preferences between
comparisons among dances with skills alternatives …….………………...

100

Table 5.6 Experiment 2: Descriptive statistics for participant satisfaction ratings
between comparisons among dances with skills alternatives ..……………

101

Table 5.7 Experiment 2: Descriptive statistics for participant difficulty ratings
between comparisons among dances with skills alternatives .…………….

101

Table 5.8 Experiment 3: Statistics for participant preferences between dances types
…………………………………………………………………………..…

104

Table 5.9 Experiment 3: Statistics for participant performance ratings between
dances types ..……………………………………………………………..

104

Table 6.1 Pattern matching example ………………………………………………... 114
Table 6.2 Experiments and the variables captured ………………………………….. 126
Table 6.3 Dance preferences rankings for Experiments 1 and 2, where 1 indicates

the most preferred dance and 6 indicates the least preferred dance ………
132

Table 6.4 Experiment 1 dance satisfaction ………………………………………….. 133
Table 6.5 Experiment 1 preferences followed ………………………………………. 134
Table 6.6 Experiment 1 newly preferred generated moves …………………………. 135
Table 6.7 Experiment 2 dance satisfaction ………………………………………….. 136
Table 6.8 Experiment 2 preferences followed ………………………………………. 137
Table 6.9 Experiment 2 newly preferred generated moves …………………………. 138
Table 6.10 Research questions and statistical result for Experiment 3 …..………….. 141

Towards A Framework To Make Robots Learn To Dance

 xi

List of Algorithms

Algorithm 3.1 Traditional Sarsa Algorithm ………………………………………….. 52
Algorithm 4.1 Sarsa Algorithm for Learning To Follow The Beat ………………….. 59
Algorithm 5.1 Generation of Dance Actions ……………………………………….... 88
Algorithm 5.2 Structuring A Dance ………………………………………………….. 89
Algorithm 6.1 Adapting To Human Feedback ………………..……………………… 117

Towards A Framework To Make Robots Learn To Dance

 xii

Glossary of Terms

Throughout the content of this thesis, the following terms where used:

Action database (Movement database)
A repertoire of sequences and dance actions that have undergone the process of
pattern matching or were generated by the robot. These sequences would
typically be of varying lengths (number of dance motions) and chosen to generate
a different dance.

Buffer (Buffering)

Defined as the process of caching n number of dance motions from human
partners.

Dance action (Dance pattern)

Action selected by the robot based on the action-selection algorithm. There are
three different types of dance actions. These are referred to as dance motion,
dance phrase and dance section in this research.

Dance motion

Basic and shortest component of dance actions. Generated after gestures are
performed on one time step or two time steps. It is a start gesture and an end
gesture.

Dance phrase

A dance action generated after dance motions have been performed after two
time steps. This is achieved by the robot performing one dance motion on one
time step, followed by moving the same dance motion or another dance motion
on the next time step.

Dance section

The longest dance action. Generated after dance phrases have been performed
after two time steps. This is achieved by the robot performing one dance phrase
on one time step, followed by moving the same dance phrase or another dance
phrase on the next time step.

Formation

Defined as a “back-and-forth” motion. A human-like movement in which the
same joints moved in one direction on one time step are moved again on the next
time step in the opposite direction.

Gesture

Joints selected to move in one of their individual specific directions on one time
step. The number of joints ranges from 1-15, but their respective directions vary.

Towards A Framework To Make Robots Learn To Dance

 xiii

Opposite

Defined as the human-like movement in which the same joints mirrored on the
robot’s body are moved at exactly the same time on one time step regardless of
their directions.

Pattern matching

Defined as the process of comparing human preferences and extracting common
(the same) combinations between human preferences.

Preference database

A repertoire of sequences and their respective feedback values extracted from the
preferences of human partners.

Symmetry

Defined as the human-like movement in which the same joints mirrored on the
robot’s body are moved on two time steps regardless of their directions. This is
achieved by the robot moving a set of joints on one side of the body on one time
step and moving the opposite set of joints on the other side of the body on the next
time step.

Towards A Framework To Make Robots Learn To Dance

 1

Chapter 1
Introduction

This Chapter introduces the idea of dancing robots as a research project and sets out the

aims and objectives of the research presented in this thesis as well as the proposed stages

of improving a robot dance as a robot dancing framework.

1.1. Overview

The research in Artificial Intelligence (AI) has enabled the development of machines and

robotic systems that are more realistic in appearance in human-robot interaction. It is the

aim of many researchers and scientists to continue to push the boundaries that separate

man and machine, and artificial learning and art, by developing systems that demonstrate

human ability in non-sentient agents in practical and social environments. Dance is one

such application and is the topic of this thesis.

The idea of robots learning to dance opens up an area of research for social

robots. Getting robots to learn to dance, would help to prepare them for more advanced

tasks particularly to do with dynamic non-verbal communication, and help to establish

new ways of communicating with them. Also, in terms of entertainment, human dance is

already one established form of entertainment. Robot dancing can be then next best thing.

Dance in particular is a complex area of study; therefore, in the field of robotics, it

is indeed a grand challenge. But applying it robots would not only provide advancements

in robot dancing, but would also help to provide more understanding of dance itself.

What makes this area of study interesting is the fact that dancing robots

demonstrate an activity that many humans gain satisfaction from. There is a

Towards A Framework To Make Robots Learn To Dance

 2

psychological stimulation that is obtained through robot dancing as it allows one to either

become the entertainer or the spectator. By being the entertainer, the person creates dance

motions which can be performed by a robot. By being the spectator, people can observe a

dance and provide an assessment of it. Being the entertainer and the spectator are both

human roles and it is this application to robots is what makes robot dancing socially

interactive.

Great progress has been made in dancing robots. The state-of-the-art in robot

dancing tells us that robots can dance and interact with human partners (Aucouturier et

al., 2008a). The common approach to robot dancing is to program a robot with pre-

programmed dance steps, or to make them imitate visual motions observed from human

dancers, which are either randomly selected during the robots dance, or are

choreographed accordingly for a particular music signal. These approaches rely on the

trainer to initialise a robot with dance steps rather than for the robot to explore for itself

the dance steps to perform. This therefore limits their human-like creative ability with

dance motions and means that a dance would quickly become uninteresting and

predictable. Furthermore, their dancing becomes less interactive as many do not take in

feedback from human observers, and ultimately do not learn the appropriate dance

motions to perform or adapt their dance to the preferences of human partners. This is

therefore not good for social interaction between humans and robots.

Creativity is often expressed through the randomisation of actions. To achieve

learning and adaptation, machine learning algorithms form part of the obvious solution.

The common technologies employed to make robots learn and adapt their dance motions

to the preferences of human partners, are Interactive Evolutionary Computation (IEC)

Towards A Framework To Make Robots Learn To Dance

 3

(Takagi, 2001) and Interactive Reinforcement Learning (IRL) (Thomaz et al., 2005),

which are generally based on genetic algorithms (or neural networks) and reinforcement

learning respectively. Other machine learning algorithms are also used such as Hidden

Markov Models (HMM). However, their typical use has been for example, for predictive

behaviour in mapping dance motions to the changing musical signal and not to achieve

learning from human observers.

The general problem between human-robot interactions is the length of time

required in order for the robot to learn to perform the desired behaviour and the fatigue

that humans experience doing the interaction. Both IEC and IRL technologies have

proven to be affective in demonstrating adaptive behaviour in robots, but little work has

been done on them to solve the problems of human-robot interaction, particularly in robot

dance, due to the factors of human interaction (Thomaz et al., 2005).

IEC has been the more popular choice to explore dance in robots, whereas IRL

(and reinforcement learning in general) on the other hand has rarely been used in robot

dancing. Many people may consider dance to be innately driven, and perhaps it is for this

reason that biologically inspired algorithms (e.g. genetic algorithms) are used in robot

dancing. Some, on the other hand would perceive dance to be a conscious activity in

which case, it would be psychologically driven.

Reinforcement learning is considered as being inspired from psychology because

of the way in which the algorithm learns. A reinforcement learning agent learns through

interacting with the environment through trial-and-error and explores its possible actions

in order to find gradually the desired behaviour. It can learn through certain (example-

specific) solutions and uncertain solutions, and can change (or adapt) what it has learnt as

Towards A Framework To Make Robots Learn To Dance

 4

learning progresses. This is a psychological explanation of how biological systems learn,

so reinforcement learning is considered as a psychologically inspired approach.

Similarly, dance can be seen to follow this same process. It involves interacting

with the environment which may consist of other dancers, the music and spectators, and it

undergoes changes as the music changes or based on the responses provided by others.

Dance steps are explored through trial-and-error either mimicking the dance steps of

other dancers or through personal exploration, and the dancing improves the more it is

carried out. Dancers can therefore be described as reinforcement learners, and the use of

reinforcement learning in robots would help to make their dancing more human-like.

Making robots dance using IRL would make dancing robots dance in a more human-like

manner.

There is currently no complete robot system that makes a robot express creativity,

as well as learning from human partners and adaptation, to their preferences. This thesis

therefore proposes a dancing framework that explores these three stages of development

for robot dance. The ambition in this research is to develop a computational dance system

that learns and perceptually improves in performance. This research proposes a learning

computational framework based on reinforcement learning, to move us beyond these

limitations. A virtual robot (Sony AIBO Dog) is programmed to simulate the

development of an algorithm that meets these stages of development, in a way that

humans may learn to dance.

Towards A Framework To Make Robots Learn To Dance

 5

1.2. Aims & Objectives

The principal aim of this thesis is to develop an introductory robot dancing framework

(robot dance system) that improves a robot’s dance at each stage of its development. This

will be achieved by the following additional aims:

2nd Aim:- Use and justify a suitable learning algorithm from the reinforcement learning

approach.

3rd Aim:- Demonstrate a robot’s improvement based on the proposed robot dancing

framework.

These aims were achieved through specific objectives, which were to:

1. Identify and propose the stages in a robot’s dance for a robot dancing framework

based on current state-of-the-art that would improve its dancing (Chapter 2).

2. Integrate the tools that would enable a robot to improve its dancing and

synchronise its dance motions to the beat of the musical signal (Chapter 3).

3. Implement each stage of a robot’s improvement based on previously learnt

behaviour (Chapters 4, 5 and 6).

4. Implement knowledge of human dance (Chapter 5).

5. Demonstrate the improvement of a robot dance based on human observation

(Chapter 5) and human interaction (Chapter 6).

The project to develop an introduction to a robot dancing framework is a result of

achieving these aims and objectives, which as been achieved in this thesis.

Towards A Framework To Make Robots Learn To Dance

 6

1.3. Research Methodologies

There are at least, three stages of improvement that are critical to make dancing robots

improve their dance: learning, in terms of learning what dance actions to perform to the

music; creativity, in terms of generating new movements as opposed to utilising pre-

programmed moves, so that robots form their own dance motions and their own dance,

and structuring these movements into what can be defined as a “good dance”; and

adaptation, whereby a dance is changed according to human feedback. The three stages

of improvement are described further in the following sections.

1.3.1. Learning To The Beat

Human learning is based on how others judge their dancing and how successful the

dancer’s movements match the expression of the music. Human learning is continuous

and this would be expected of robot dancers. Many current dancing robots do not learn

how to dance and cannot respond to human feedback. They rely on the trainers to

initialise desirable dance steps for them to perform. With such an approach, everytime a

new dance step is required, the robot would have to be re-programmed. Like humans,

robot dancers are expected to receive feedback of their dancing and learn from it.

Therefore, the first challenge is to give a robot the ability to learn the fundamentals

necessary for dance.

Reinforcement learning is the chosen approach to learning in this thesis for two

reasons. The first reason is that it can be used to “evaluate” a learning agent’s behaviour,

as well as provide “instructions” as to what the learning agent should do more often than

other actions. Dancing is an activity whereby guidance and feedback is required in order

Towards A Framework To Make Robots Learn To Dance

 7

for it to be accomplished. Therefore dance can be considered both evaluative and

instructional as a dance agent must undergo criticism in order for it to improve its

dancing.

Dancers improve their dance as they receive guidance from their trainers. This

makes reinforcement learning a potential solution to learning to dance because dancing

requires feedback concerning how good the movements are, and not necessarily what are

the best moves. Indeed, in using reinforcement learning, many varying rewards can be

given to the agent at anytime, to indicate subjective opinions, and the agent is left to

make its own judgement on the feedback. This is what makes dancing evaluative. The

robot will have to compare the feedback it gets to make valued judgements. What makes

dance instructive, is the fact that, upon performing a movement, the dancer experiences a

direct response, internally (e.g. pleasure) and/ or externally (e.g. from the audience) as

feedback. In other words the dancer is told what moves to do and what moves not to do.

The second reason for choosing reinforcement learning is because with the help of

this approach learning can occur through the learning agent’s exploration of behaviours

i.e. a trial-and-error approach. When dancers first encounter music, they are not informed

of what dance steps to take and so they begin to dance by moving and observing their

own movements and the movements of other dancers. Dancers create and experiment

with new and old movements to the music throughout the dance. It is for these two

reasons that reinforcement learning is selected to explore learning in dancing robots.

Towards A Framework To Make Robots Learn To Dance

 8

1.3.2. Generating Dance Motions

Human dancers have the ability to create their own movements by combining joint

movements in different ways and different directions, and even when taught dance

routines, humans combine different dance steps during their dance. This enables

observers to comment on the dance. The pre-programmed or imitated dance steps

programmed in current robots do not allow robots to explore or create movements for

themselves. Dancing robots require the ability to form their own movements that appear

not to be random or pre-sequenced, but autonomous, as pre-programmed routines and

movements quickly become uninteresting and predictable.

 Current robots are able to initially maintain human interest because their dance

already consists of whole motions. That is, their movements are human-like in

appearance and the transition between dance motions are logical and also human-like.

This is often achieved by pre-programming a robot with primitive human-like behaviours

(e.g. moving the head up and down as one dance motion) and connecting each dance

motion to the next by terminating each dance motion to the same position or adjusting the

dynamics of each motion to balance the robots posture using Zero Moment Point (ZMP)

(Vukobratovic, 2004).

Robots can be provided with some initial dance behaviours. However, restricting

robots with initial dance steps, limits the robots exploration of dance steps. The important

thing is how dancing robots generate their own dance behaviours, and combine them to

generate dance patterns to form different dances. Like humans, robot dancers are

expected to explore their own movements and learn the fundamental features of dance

motions so that the dancing is more autonomous and progressive in appearance.

Towards A Framework To Make Robots Learn To Dance

 9

Therefore, the second stage of development is to give a robot the ability to generate its

own dance motions, which can be structured to form a dance.

1.3.3. Adapting To Human Preferences

Adaptive behaviour closely follows from learning. Whilst learning in this research

focuses on identifying the generic individual desirable dance steps to perform, adaptation

in this research is concerned with the ability to make robots change their dance according

to human preferences. The adaptive ability of current robot dancers focuses on mimicking

audio or visual rhythms, for example the dynamics of the music or the motions of human

partners perceived in the environment. Little work has been done in robots being able to

adapt their movements based on how human partners judge a robot’s dance.

Human preferences are subjective in nature and sometimes conflict, and so the

ability to alter a dance to accurately match the preferences of one or more trainers is what

would make a robot dance adaptive. The challenge for dancing robots in achieving

adaptation is to maintain human interest whilst satisfying and correctly evaluating their

preferences. Maintaining human interest can be achieved by being creative with dance

motions, but this does not achieve adaptation. For true adaptive behaviour, robot dancers

are expected to explore further the human response they receive in order to learn human

preferences and adapt to them as this is typically, how humans learn to dance.

As described above, this thesis proposes an introductory framework to robot

dancing and aims to address all these three stages of development. These will be further

explored in Chapters 4, 5 and 6 respectively.

Towards A Framework To Make Robots Learn To Dance

 10

1.4. Thesis Contributions

This thesis serves its purpose as an introductory framework to improve a robot’s dance as

one area of social interaction between humans and robots, by implementing learning

ability in a robot, as well as the ability generate its own dance motions suitable for human

judgement, and the ability to respond to human feedback. It is a stepping stone towards

understanding the process of dance mechanics, combining abstract disciplines of art,

rhythm and perception, necessary for dance in robots. This thesis addresses three stages

of improving a robot’s dance. These are: the ability to learn while synchronising dance

motions to the music; the ability to generate dance motions autonomously without the

need to re-program the robot each time; and the ability to generate an improved dance

based on the preferences of human partners. These stages of development are linked to

form the proposed dancing framework for robots. This is the first contribution of this

thesis.

 The second contribution is the learning and development of human-like attributes

from dance studies in order to make the robot generate its own dance motions that are

suitable for human judgement and help the robot in expressing creativity.

The third contribution is the use of the Sarsa algorithm and Softmax algorithm

from reinforcement learning for learning and action-selection respectively in robot dance

to help make the robot learn and adapt its dancing based on the direct interaction of

human partners. Human partners are able to interact with a dancing robot and simply

specify the parts they like and dislike unlike common approaches, which only take into

consideration the parts the observer prefers.

Towards A Framework To Make Robots Learn To Dance

 11

The thesis presents some interesting results of dance that were not evident in the

current state-of-the-art. It tells us that the increasing number of joints used in the robots

dance, increases the quality of the dance up until a certain point, which suggests that the

quality of dance may perhaps level off. Furthermore, the research confirms the theory that

a robot dance can improve significantly when it incorporates the fundamental mechanics

of dance and the preferences of human partners. The research shows that dance must have

a structure; dance motions must be sequenced in order to develop a dance and joints must

be moved in certain ways to each other to ensure aesthetic appeal.

1.5. Structure of Thesis

Following from this chapter, Chapter 2 is a literature survey of the current state-of-the-art

in robot dancing. It focuses on the limitations of current robot dancing approaches and

highlights the observable and measurable features of human dance that can be modelled

and conceptualised for the robot dancing framework proposed in this thesis.

Chapter 3 provides an overview of the dancing framework and the components

for creating the framework necessary for addressing the stages of its development. In

particular, it describes the experimental platform; the robot; the beat detection algorithm

used in this research and the learning algorithm and action-selection method used in this

research.

Chapter 4 describes a simple approach to make the robot learn to be rhythmic to

the musical beat with the direct use of traditional reinforcement learning. Initial

experiments were conducted to determine what learning coefficient values can be used

throughout the further experiments in this research.

Towards A Framework To Make Robots Learn To Dance

 12

In Chapter 5, the learning achieved in Chapter 4 is built upon. Here, the robot

learns the desirable movements, by exploring the combination of primitive motions.

These primitive motions are performed in different ways to generate autonomous

behaviour and the robots own dance motions. These dance motions are then combined to

generate different dance patterns and help structure the dance. The robot also learns the

structure of dance. Empirical results are obtained to determine what improves the robots

dance.

Chapter 6 builds further on the learning achieved in Chapters 4 and 5. In this

chapter, the robot adapts its dance in response to the preferences of at most two observers

whilst still maintaining creative, by generating new patterns with the preferences received

from human partners. Empirical results are obtained to determine whether or not there is

a significant difference in satisfaction when different preferences are combined in a robot

dance.

Chapter 7 concludes this thesis and identifies future directions for the research.

Towards A Framework To Make Robots Learn To Dance

 13

Chapter 2
Literature Review - Robot Dancing

This chapter provides a literature survey on the current approaches that researchers have

used to explore robot dance, focusing on three stages of development that are required for

a dancing framework: learning appropriate behaviours, creating dance motions, and

adapting to human feedback. Each of these is discussed based on the current state-of-the-

art in robot dancing. This chapter also identifies the measurable fundamental attributes of

human dance necessary for robot dance.

2.1. What Is Dance?

Dance is a creative and entertaining art form, driven by bodily movement and music,

often expressed for social interaction, live performances, cultural practices and sport (for

example gymnastics, skating, swimming and martial arts). Dance is a non-verbal

communication human attribute that conveys the emotions of dancers. It is a discipline in

itself that branches into many areas such as style (e.g. Ballet, Ballroom, Waltz, and

Tango), composition (commonly known as dance choreography), health (e.g. for losing

weight and exercise) and therapy (e.g. for boosting personal confidence). Even animals

dance, for example, during mating season.

There are many definitions of dance, of which most still remain vague. Like all

human behaviour, it is difficult to clearly define what is actually meant by dance, but it

can be generally defined from two perspectives – as an art form in relation to music and

conceptually as a series of connected patterns of movement. For example, as a general

description, the Babylon English dictionary defines dance as a “move [done]

Towards A Framework To Make Robots Learn To Dance

 14

rhythmically to music, often following pre-composed steps and movements; skipping or

bouncing about in a dance-like manner”.

Van Camp (1981, p. 22) elaborates further by saying the components of human

movement are:

“…formalized (e.g. by being stylized or performed in certain patterns),

with such qualities as grace, elegance, and beauty, to the accompaniment

of music or other rhythmic sounds … [and it is] an art performed by

individuals or groups of human beings, in which the human body is the

instrument and movement is the medium. The movement is stylized, and

the entire dance work is characterized by form”.

From the two definitions, it is possible to obtain an idea of what dance is,

however, they do little to help us take practical steps towards teaching robots to dance.

For example, using Van Camp’s definition, which “formalized patterns” can be used to

demonstrate dance? How can qualities such as “grace, beauty, and elegance” be

measured? What is a “stylised movement” and how can we compute “form”? Is music

necessary in dance? What is “rhythm”?

What appear to be the answers to these questions rely on human judgement and so

therefore, the evaluation of whether robots can dance and how well they dance is

determined by the results obtained from people. Robots do not understand these

definitions and so are typically provided with well connected dance motions in order to

express these definitions.

Towards A Framework To Make Robots Learn To Dance

 15

A more conceptual definition on the other hand of dance is a definition proposed

by McGreevy-Nichols et al. (2005) who say:

“Communication through movement should be the goal when building a

dance. … Movements are like words. You put words together to make

sentences. In dance, these sentences are called dance phrases. Sentences

are put together to make paragraphs in the same way that dance phrases

are linked to make sections. Sections, when linked together, make a

dance”.

Figure 2.1 shows a more conceptual understanding of this definition.

Figure 2.1 – The relationship between language and the structure of dance

In this definition, language is built up of words that are put into phrases that are

joined to form meaningful sentences and paragraphs. Dance can similarly be understood

as the structure of components that are connected together in human-like ways. The basic

Towards A Framework To Make Robots Learn To Dance

 16

component of dance might be called a gesture which is a simple single movement.

Generally, in relation to movement, a gesture can be described as a whole motion such as

a hand wave as a form of greeting, or a stand alone posture such as a “thumbs up” to

indicate approval. In dance, a gesture is considered literal like sign language, making it

possible to develop dance notations illustrated as written scripts (The Chicago School of

Media Theory, 2004).

 In this research, a gesture is interpreted as a stand alone posture of single or

multiple joints that are moved in one direction (the same or different) at each moment.

Gestures performed on two time steps make dance motions, which in turn build up to

form sequences. In other words, a dance motion can be defined as a start gesture and an

end gesture.

Dance motions are chained together to create dance phrases and dance sections,

which together create the dance performance. So, combining the definitions above, a

dance can be observed as one piece, built up step by step of sequences of dance motions

in human-like transit, synchronised to the music (Aucouturier et al., 2008a). The next

section goes through this in greater detail.

2.2. Current Progress in Robot Dancing

The first documented sign of a dancing robot goes as far back as 60AD created by a

Greek engineer by the name of Hero (NewScientist, 2007). He was responsible for

constructing a “three-wheeled cart” that could move around on its own accord, powered

by “a falling weight that pulled on a string wrapped round the cart’s axle” (NewScientist,

2007). This invention was said to be “dancing” because it moved around with no

Towards A Framework To Make Robots Learn To Dance

 17

assistance, except by the shifting weight attached to it. The robot did not move to music

and the dancing only continued until the string ran out.

Much progress has been made since the work of Hero. Today, robots are able to

dance by detecting the dynamics (intensity and tempo) of the music and mimicking the

movements of human partners (for example in Jens et al. (2010)). Research into robot

dancing has been strongly associated to entertainment and social interaction (Aucouturier

et al., 2008a). However, the reasons behind robot dance vary between different

researchers. For some, robot dance is used to allow robots to have the ability to detect

rhythmic movement in humans (for example the work of Oliveira et al. (2008) and

Tanaka & Suzuki (2004)). For others, it’s to preserve and perform dance motions (for

example, the work of Nakaoka et al. (2004)) so that it can be passed down to future

generations; or to help researchers obtain better understanding of human movement

(Shiratori et al., 2006), Shiratori & Ikeuchi (2008) and animal behaviour (Landgraf et al.,

2010). Other reasons include the better understanding of human-robot interaction (Tanaka

et al., 2006); and to become physical dance partners to humans (Jens et al. 2010).

The widely accepted approaches to robot dance include pre-programmed motions,

which are either randomly selected or sequenced for a chosen music signal (for example,

the work of Grunberg et al., (2009) and Santiago et al. (2011)); motion capture (for

example in (Shiratori & Ikeuchi, 2008)) to extract key poses of human movement, which

again can be either randomly selected or sequenced to music; dance with human partners

(e.g. for example in Jens et al., (2010), Takeda et al., (2007), and Gentry & Murray-

smith (2003)) and by receiving dance motions from stand alone computer applications,

Towards A Framework To Make Robots Learn To Dance

 18

which are controlled by human operators (e.g. the work of Shiratori et al., (2006) and

Ellenberg et al., (2008)).

Whilst these ideas are all aspects of dance and have shown to be successful in

robot dance, they limit the exploration of more advanced behaviours in robot dance, such

as the ability for learning, generating dance actions and adaptation. For example, most

robots do not have any learning ability and so can only demonstrate some form of

creative behaviour in their dance, whilst others can adapt their dance motions to the

music, but cannot adapt to human feedback. Some researchers suggest some form of

framework for dancing robots (e.g. Oliveira et al., (2008); Aucouturier et al., (2008b) and

Kim et al., (2007)) that combines aspects of the current approaches to robot dance.

However, these frameworks do not address learning, creativity and adaptation in their

development. Typically, these advanced behaviours are explored individually and, as of

yet, there is no complete system for dancing robots that combines them. This is important

as it would help to maintain human interest and interaction in social environments. The

following sections describe how researchers have currently addressed these advanced

behaviours in robot dance.

2.3. Learning in Robot Dance

The most recent advancement in robot dance is the use of motion caption technology.

This works by using special cameras to capture motion data as moving regions of a

human partner (Nakaoka et al., 2010). These motions are either stored in a database to be

reused or are imitated in real time. The primary difficulty in using these data for robot

Towards A Framework To Make Robots Learn To Dance

 19

dance is that robots do not have the same degrees of freedom as humans. Thus, some

processing is necessary to convert the human poses into usable robot poses.

The HRP humanoid robot (Nakaoka et al., 2004) was one robot which was used

to accomplish the task of converting human motion capture data into a form that provided

realistic movements in the robot, while maintaining balance. The robot learnt dance

motions by observing movements in real time, performed by a human partner, using a

method known as Learning From Observation (LFO) and a method known as Zero

Moment Point (ZMP) for dynamic balance control (Nakaoka et al., 2004). Nakaoka, et al.

(2005), on the other hand, analysed motion capture data to build a database of basic

motions and instructions that were then used by the robot to perform dance moves.

Although robot dancing based on motion capture is representive of how humans

may generally learn to dance from other human dancers, it is typically combined with

learning algorithms which are either biologically inspired or probabilistic in nature. For

example, the QRIO robot was used to explore a Recurrent Neural Network with

Parametric Bias (RNNPB) to keep a record of and learn simple human gestures which

were imitated dynamically (e.g. to different speeds) from human partners (Tanaka &

Suzuki, 2004). Tanaka et al., (2005), on the other hand, used Bayesian inference to

update its knowledge base of action sequences whilst in different interactive states. This

was achieved by increasing the robot’s belief (probabilities) if the robot had observed a

response to its action sequences, and decreasing when the reaction from the human

partner stopped.

As an alternative to motion capture (and pre-programmed movements), the

MIURO robot was made to dance using a neural network based model known as

Towards A Framework To Make Robots Learn To Dance

 20

FitzHug-Nagumo (FHN) in order to generate Chaotic Itinerancy (CI), which is the idea of

randomly generating seemingly autonomous behaviour, synchronised to music

(Aucouturier et al., 2008b). Although a neural network was used to make the robot dance,

the robot underwent no learning, but rather the input parameters of the network were

altered and updated to encourage varying synchronised and spontaneous behaviours.

Some researchers employed predictive algorithms to achieve robot dancing. For

example, the Ms DanceR robot was programmed with knowledge of ballroom dance

steps to dance with a human partner, moving in directions estimated by the human

partner, using Hidden Markov Models (HMM) (Takeda et al., 2006) and Neural

Networks (Hirata et al., 2005).

The current state-of-the-art for learning in robot dancing, tells us that learning

algorithms are used in two ways. Either, to make dancing robots autonomously respond

to the dynamics (speed and intensity) of music or, be able to adjust their movements to

imitate human partners and synchronise with perceived rhythmic motions. There is no

attempt to use these learning algorithms to actually distinguish between “good” and

“bad” dance steps judged by a human partner or the appropriate behaviours to perform.

Instead, they are used to illustrate the idea of dance in robots and not make robots learn to

dance. Nor can they learn the appropriate dance steps that are suitable to develop their

own dance.

2.4. Generating Dance Motions in Robot Dance

The most common way to make robots dance is by pre-programming single dance

motions that are either choreographed in sequences by a trainer to be performed to

Towards A Framework To Make Robots Learn To Dance

 21

predefined music, or selected at random and altered dynamically to match changing audio

or visual rhythms in real time for example, in the work of Michalowski et al. (2007),

Sinozaki et al. (2007), Oliveira et al. (2008) and Nakaoka et al. (2010), and in robots

such as the hexapod dancing robot (Gizmodo, 2008); the Adam Frucci White Guy Dance

Robot; the Hasbro iDog Robotic Puppy and Ampbot robots (TrendHunter, 2001).

 The problem with pre-programming dance motions is that first of all, it limits the

robots ability to generate its own motions and maintain human interest (Tanaka and

Suzuki, 2004) and secondly, in order to change or improve a dance, the robot will have to

be re-programmed each time, if different dance steps are required for a dance. This

approach is neither desirable nor practical and therefore, autonomous behaviour is

required of them.

There is no doubt that the above creative robots can be recognised as dancing, but

the interest is finding the actual aesthetic characteristics that they display and the syntax

that dance follows. The question in particular is what are the characteristics of dance

behind the different approaches to creativity in robot motions that make their movements

become a dance?

As described above, dance is a combination of imitation and patterns, consisting

of structured rhythmic behaviours and related motions in succession (Michalowski et al.,

2007). A dance can be detected if the movements are human-like (Sinozaki et al., 2007)

or at least resemble the way in which humans move. Most non-salient dancing platforms

(e.g. robots or animated characters) are humanoid or human-like in appearance (e.g. in

the work of Oliveira et al. (2008); Tanaka et al. (2005), and Solis et al. (2005)) excluding

Towards A Framework To Make Robots Learn To Dance

 22

few (e.g. the work of Michalowski et al. (2007) and Sinozaki et al (2007)), but all

demonstrate the aesthetic characteristics of dance motions.

Dance consists of dance motions that are made up of basic motion primitives

synchronised to the music. Music itself has patterns and consists of a structure. The

correct mapping of movements to music requires that the musical structure and patterns

be perceived and therefore, visible in a dance (Nakaoka et al., 2007).

From the current state-of-the-art, dance steps containing selected primitive

motions were pre-programmed in dance motions and consequently the robot dances

appeared human-like and natural. But this made the robots less autonomous in their

dancing. Therefore, the logical step to achieve autonomous and creative dance steps

would be to first have a set of predefined gestures that can be combined and sequenced to

form chains of dance sequences. Shinozoki, et al. (2007) explored this idea by developing

a system that enabled robots to construct dance routines from basic pre-programmed

dance steps. Similarly, Riley et al. (2000) used human examples to generate dance

movements for the robot.

The idea of having single dance steps in robots that can be grouped together to

generate varying sequences and dance patterns is a promising approach as it is a

conceptual way to describe human dance. But the science of dance is more than just

grouping dance motions in sequences. Dance motions themselves have a syntactic

description (Erdem et al., 2008), which can be observed in dance in general. There are

certain ways in which gestures are related and move together in order to achieve

creativity in dance and enhance aesthetic pleasure. The following sections go into this in

more detail.

Towards A Framework To Make Robots Learn To Dance

 23

2.4.1. The Structure of Dance

Like music, dance is a combination of related patterns consisting of structured rhythmic

behaviours (Michalowski et al., 2007). These rhythmic behaviours are made up of

primitive motions performed in real time to the music which are sequenced and combined

to form a dance.

Recall, the definition proposed by McGreevy-Nichols et al. (2005) of dance was:

“Communication through movement should be the goal when building a

dance. … Movements are like words. You put words together to make

sentences. In dance, these sentences are called dance phrases. Sentences

are put together to make paragraphs in the same way that dance phrases

are linked to make sections. Sections, when linked together, make a

dance”.

Conceptually, this can be illustrated as shown below in Figure 2.2:

Towards A Framework To Make Robots Learn To Dance

 24

1. Movements (words) … produce Dance Phrases (sentences)

2. Dance Phrases (sentences) … produce Dance sections (i.e. parts of the dance)

3. Dance sections, linked together … produce a Dance!

Figure 2.2 – Conceptual design structure of dance proposed by McGreevy-Nichols et al.
(2005)

Where i, j and k are the total number of movements, phrases and sections

respectively. Movements (or dance motions) are the fundamental building blocks of

dance, which could be a build up of skilful gestures in transition. It is the transition from

whole dance motions to sequenced dance motions that gives a dance a structure. This

would help to generate interlocking patterns of coordinated movements that are cyclic

(repetitive) in behaviour as well as seemingly autonomous.

Dance

+ ... +

Dance

Section 1

Dance

Section k

Dance
Section

+ ... +

Dance
Phrase1

Dance
Phrasej

Dance
Phrase

M1

Mi + ... +

Towards A Framework To Make Robots Learn To Dance

 25

Many robots today are pre-programmed with whole dance motions so in order to

achieve autonomous creativity and skilful gestures, dancing robots first need to develop

their own dance motions.

2.4.2. The Relationships in Gestures

Whilst some researchers have limited robot dance to specific music and dance genres

(e.g. the work of Hirata et al. (2005) and Yuuki et al. (2009)), the fundamentals of dance

are much more generic and can be applied to different dance and music genres. In

everyday human movement, there are specific ways in which joints move in order to

achieve a task. Some examples include, walking, running, and jumping. All these skilful

actions are executed in certain ways, using certain joints and muscular contractions. The

joints and muscles used are what provide humans with the fundamentals to perform

hierarchical tasks, but it is their relationships that determine their desirability and

aesthetic appeal. These basic concepts are what form dance techniques and make the

movements appear more skilled, because, in their use, they demonstrate an improved

performance and can be used to produce more interesting motions.

Human dance is largely made up of perceptually meaningful and skilful gestures.

From dance studies, there are at least three ways in which gestures are related for

aesthetic appeal, necessary for any human dance and movement in general. They are

called Symmetry, Canon and Form.

Symmetry is defined as the movement of opposite joints (Smith-Autard, 1988) in

unison. These specific joints must be moved at the exact same time and can either be

symmetric (i.e. moving in the same direction) or asymmetric (i.e. moving in opposite

Towards A Framework To Make Robots Learn To Dance

 26

directions) (Figure 2.3). Symmetric images are perceived as calmer, but not

psychologically stimulating, whilst asymmetric images are more interesting and realistic

(Humphrey, 1959).

Canon also requires the movement of opposite joints, but these can be moved one

after the other (Smith-Autard, 1988). This helps to give the sequential effect in dance and

looks progressive. Both Symmetry and Canon are largely due to the mechanics of the

human body and understanding of body movements. Human bodies are very much

symmetrical and everyday movements include the movements of opposite joints, both

against each other and working with each other. This is known as Opposition and

Succession (Figure 2.3) respectively in dance studies and can be performed in sequential

succession (i.e. one after each other) or simultaneously (i.e. in unison), e.g. standing or

walking.

Figure 2.3 – Symmetrical and asymmetric movements that work with each other (opposition) and
against each other (succession) (Humphrey, 1959)

Towards A Framework To Make Robots Learn To Dance

 27

Form is the skill that actually gives the dance a “shape” and sense of style,

(Smith-Autard, 1988). It is what completes a dancers movements and a dance. There are

many ways in which form can be achieved, but the most common and basic form is

known as Ternary Form (Smith-Autard, 1988), which is whereby gestures follow a “back

and forth” motion, for example, a set of joints starting from position A, which move to

position B and then back to position A. This way of dancing is very common and one of

the easier forms to learn for humans. It is a way of movement that is very pleasing to

observe as perceptually, it gives the impression of completeness and ensures the

satisfaction of an observer’s expectations (Smith-Autard, 1988). Forms can be used for

the development of dance sequences and dance routines as well as to create different

effects with dance steps.

Human gestures are made up of a set of joints which are moved at chosen speeds

and directions. These dynamics of movements combined with fundamental ways of

relating gestures (i.e. Symmetry, Canon and Form) form basic motions, which are

common amongst dancers and can be combined in different ways to give each dancer

their own style of dancing (Erdem et al., 2008). Many robots already dance with given

primitive (basic) motions containing already aspects of Symmetry, Canon and Form; for

example, in the work of Sinozaki et al. (2007) and Shiratori et al. (2004). However,

autonomous behaviour would be better achieved if these gestured relationships were

explored and learnt while dancing, as this will engage human partners as the robot

demonstrates improvement in its dancing. This would not only teach the robot what to do,

but also, keep a record of how to do specific motions.

Towards A Framework To Make Robots Learn To Dance

 28

2.4.3. The Number Two

The definition proposed by McGreevy-Nichols et al. (2005) gives a practical solution to

model the structure of dance, but it does very little to specifically quantify each part of

the dance structure. For example, how many “movements” make up a dance phrase? How

many dance phrases produce a dance section? At what point do dance sections become a

dance?

In Western culture (and many others), there is a significant relationship between

the number two and dancing. Establishing this simple relationship provides a powerful

building block from which more complicated dance moves can be constructed. It is

possible to establish this simple relationship by looking at the mechanisms of the human

body of which the main expressive components of the body in dance typically include

arms and legs. These individual components and their combinations, are based on the

power of two, and can immediately be synchronised with rhythmic sound (e.g. most

popular music and poetry), both written and oral (Hall, 2005).

Rhythm is the main component of rhythmic sound and dance. Rhythm is an

intrinsically mathematical concept. This is because rhythm is measured and counted in

distinct, repeating, segments. In speech and music, rhythm is measured by patterns of

syllables and sections respectively. Rhythm is subdivided into units known as measures,

and each measure contains a set number of beats (meter).

Arguably, the concept of the number two in rhythm was used before even music

and dance, with its fundamental roots in spoken word and poetry. For example, as early

as 200 B.C. a system of rhythm for speech had been devised based on two time units -

short and long (Hall, 2005) which were used and combined in speech and poetry. This

Towards A Framework To Make Robots Learn To Dance

 29

same idea of long and short also became the basis for musical rhythm and dance and

structure.

(1) The Number Two in Music

In music, the number two is very prominent, particularly in relation to the time signature

of Western music. A time signature is denoted by two numbers written as a fraction (e.g.

¾). The top number in a time signature designates how many beats are used per measure.

The bottom number indicates the type of note that is used to count the beat. For the top

number, the number two is not so important here. It is in the bottom number that the

number two is important. The longest note in musical notation (without adding additional

modifiers) is known as the whole note. A whole note consists of four beats of equal

length. From there, notes are defined that are each one-half the duration. For example, in

a time signature of 4/4, there are four beats per measure (top number) and the quarter note

(indicated by the bottom number 4 to mean ¼ of a whole note) gets a beat. In other

words, each beat within a measure will last for a ¼ of a whole note. Table 2.1 below

shows the breakdown of musical notes in a 4/4 time signature.

Note Type
Duration of note

in beats
Bottom Number of

Time Signature
Power of 2

For note duration
Whole Note 4 1 22

Half Note 2 2 21

Quarter Note 1 4 20

Eighth Note ½ 8 2-1

Sixteenth Note ¼ 16 2-2

Table 2.1 – The number two in a 4/4 time signature

Towards A Framework To Make Robots Learn To Dance

 30

As can be seen above, all of the fundamental musical notes are related to powers

of two. In conventional music, it is not possible to have time signatures with numbers

other than two (bottom number) since it determines the length of a beat with reference to

the whole note. This, therefore, forms the first mathematical basis for understanding

music and rhythm. Of course, this does not mean that all musical rhythms are based on

the power of two, but it is certainly the case for most other common musical rhythms

such as 2/4, 3/4 and 6/8 time signatures. As a result of this fact, many different types of

music and dance have been created based on these musical rhythms. Table 2.2 below

shows some common time signatures and the types of music and dance associated with

them for which the number two in human movement is important.

Time signature Music Style (genre)

4 / 4 Folk, blues, rock, jazz, pop, classical

3 / 4 Waltz time

2 / 4 Latin music, marching bands

6 / 8 Strauss Waltzes, Viennese Waltz

2 / 2 Latin samba music

Table 2.2 - Common time signatures and their respective music styles (Craig, 2005)

Table 2.2 reveals that many forms of music and dance are based on time

signatures that are fundamentally based on the power of two. The significance of this

relationship is that it demonstrates how music and dance are closely related and that it is

possible to model this same behaviour on robots.

Towards A Framework To Make Robots Learn To Dance

 31

(2) The Number Two in Dance

In addition to the definition proposed by Van Camp (1981) of dance (Section 2.1), she

also stated that dance is a “stylized movement synchronized with music and rhythm”. The

most significant element of the definition is that the movements are synchronised to the

rhythm of the music. Since the mathematical basis for most popular music is the number

two, it is no surprise that many dances (Table 2.2) also have the same basis as a result of

the mechanics of the human body. It is the dual symmetry of the human body that allows

dance movements to be tightly tied to the number two found in the rhythm of popular

music.

The human body is composed of many pairs e.g. two feet, two arms, two legs.

Human joints are typically also made to move in two directions (e.g. same and opposing

directions), therefore, making it possible to perform movements such as nodding the head

forwards and backwards and side to side; and lifting the arms and legs up then down.

Some joints can even move in two ways for example, the forearm can be extended and

bent. It is for this reason that logically, popular dance movements can be broken down

into movements that alternate between two body positions. Mathematically, this neatly

corresponds and synchronises to all meters of rhythm that are based on the number two.

Dance instructors take advantage of this simple fact when teaching children how to

dance. Table 2.3 shows some common body movements that are taught to children as part

of music and dance education.

Towards A Framework To Make Robots Learn To Dance

 32

Movement Description

The Rocker The child sits with legs crossed and rocks back and forth.

The Squirrel The child sits and makes forward and backward circles

with his/her arms.

The Owl The child rocks his/her head forward and back or side to

side.

The Starfish The child lies on the floor and alternates lifting his/her

arms and legs up and down.

Table 2.3 - Children's Dance Moves (Kramer, 2010) based on the number two

In much the same way there is a relationship between human gestures using the

number two, that is also applied to dancing partners. For example, Table 2.4 shows four

ways in which symmetry can be established between dancing pairs.

Symmetry Description

Translation Movements are done with all dancers facing the same direction. E.g. if

the leader raises his/her right hand the dancers raise his right hand.

Reflection Movements are mirrored with the dancers mimicking the leader who

faces them. If the leader raises his right hand, the dancers raise his/her

left hand.

Rotational The leader faces the dancers. If the leader raises his/her right hand, the

dancers raise their right hand.

Glide Movements are done with all dancers facing the same direction. If the

leader raises his right hand the dancers raise his left hand.

Table 2.4 - Symmetrical movements in paired dancing (Schaffer and Stern, 2009)

Again, the combinations of the dance steps, are all based on the number two, and

can be combined in multiple combinations that can be synchronised to music and to other

Towards A Framework To Make Robots Learn To Dance

 33

dancers. It is therefore the mechanics of the human body and interaction with other

dancers that is used to achieve synchrony with the music.

Typically, many dancing robots are humanoid in appearance and therefore already

have these human-like attributes, making their dancing appear natural and human-like,

but not all robots are humanoid in appearance and so knowledge of the syntax of dance

would benefit human-robot interaction in dance in general, and give dancing robots more

autonomous and creative dance behaviours. This can be achieved by making them learn

the fundamental ways in which the body and bodily components relate to each other, and

use this knowledge to generate dance patterns and sequences that follow the musical

rhythm.

2.5. Adaptation in Robot Dance

Adaptation is the process by which a learning agent (e.g. humans) change behaviours

through interacting with the environment. Most dancing robots in the current state-of-the-

art show adaptation by directly responding to the audio or visual changes in the

environment, such as changes in the dynamics of the music (e.g. the work of Shiratori et

al. (2006) and Solis et al. (2005)) or in the rhythmic motions detected of human dancers

(e.g. the work of Riley et al. (2000) and Tanaka et al. (2006)). The primary limitation in

these dancing robots is two-fold. Firstly, the robots do not learn from their adapted

behaviours, but instead, just mimic changing rhythms. Secondly, these robots cannot

receive feedback from human partners on their dancing. Thus, changes in the robots

selection of dance motions would have to undergo re-programming. To achieve real time

adaptation, without the need to re-program the robot, it is clear that a logical approach to

Towards A Framework To Make Robots Learn To Dance

 34

this would require the robot to have real time interaction with human partners, so that the

desired and undesired preferences can be explored and performed. The advantage of this

is that the observers can influence the way a robot improves its dancing without having to

program the robot each time or even have knowledge of dance or robots. Instead the

observer only needs to express their likes and dislikes, to guide the robot’s dancing. The

most common way in which this has been achieved is though the exploration of two main

technologies known as Interactive Evolutionary Computation (IEC) and Interactive

Reinforcement Learning (IRL).

2.5.1. Interactive Evolutionary Computation

Interactive evolutionary computation (IEC) is a biologically inspired interactive learning

approach based on evolutionary computations (Suga et al., 2005) and works by using

genetic algorithms (Graf, 1995) or neural networks (Dozier, 2001) and the evaluation is

determined by human feedback. During the process, different variations of generated

behaviour are tested to see if a solution closer to the trainer’s preferences has been found.

Randomness is introduced into the process by allowing a certain percent of generations to

occur so that no part of the search space is excluded for exploration. This approach has

proved satisfactory in different areas such as 3D modelling (Nishino et al., 2001), image

processing (Poli and Cagnoni, 1997) and robot dancing (Vircikova and Sincak, 2010).

The advantage of IEC is that it replaces a pre-programmed fitness operation with

a human agent. However, the disadvantage is that first, a person cannot make decisions as

fast as a computer. Therefore, the use of a human agent reduces the progress of

convergence (reaching a “best” dance) and greatly limits the number of possibilities that

Towards A Framework To Make Robots Learn To Dance

 35

can be tested. Second, unlike machines, humans quickly get tired and bored, making it

more and more difficult for the human agent to make decisions regarding the fitness of

the current generation, after hundreds of generations of samples have been presented

(Takagi, 2001).

 For many researchers who have explored the idea of human feedback on robotic

dance systems, the common experimenting approach is to limit the feedback of dance

partners to one dance partner at a time, and limiting human feedback to only positive

rewards. For example, in the work of Dozier (2001), the robot interacted with one

observer for a limited time (4 seconds). Vircikova and Sincak (2010) implemented an

interactive system, in which human agents observed the dance of seven humanoid robots,

each with varying dance moves. Each observer was required to rate the overall dance

quality from 1 – 5. The work in both papers showed successful results and suggested that

the robots could adapt their movements to a human observer, however the results were all

based on the feedback of a single observer and participants were limited to give one type

of feedback, to express one type of preference. Little was shown to determine the result

of the robot responding to preferred and non-prefered dance behaviours. This however,

has been demonstrated using Interactive Reinforcement Learning (IRL).

Towards A Framework To Make Robots Learn To Dance

 36

2.5.2. Interactive Reinforcement Learning

Interactive reinforcement learning (IRL) (Thomaz et al., 2005) is a psychologically

inspired interactive learning approach, based on traditional reinforcement learning

algorithms and like IEC, the reward signals are replaced by a human agent as opposed to

a pre-programmed model. The human agent can interact with the learning agent (e.g. a

robot) at anytime and vary the rewards as they wish, during the robots learning process.

 Like IEC, IRL has shown to be successful in areas that require adaptive

interactive learning (e.g. the work of Leopold et al. (2008) and Liu & Su (2004)), but

little has been used in robot dance. Of particular interest is the work by Thomaz and

Breazeal (2007). The authors implemented a reinforcement learning approach which

allowed humans to interact with a real robot and a computer game. They used the idea of

positive and negative rewards in their work to guide learning in two ways: 1) learning by

refining a sequence of actions towards a goal; 2) learning as a means to encourage

exploration. In their implementation, after the execution of each action, the robot system

had a “small delay to allow for human reward”.

Thomaz and Breazeal (2007) limited human input to scalar values in the scale of

+1 to -1 for preferred and non-preferred actions respectively. Their results showed that

participants gave more positive rewards than negative rewards. This same approach of

positive and negative rewards for IRL had been explored by others such as Leopold et al.

(2008); Austermann & Yamada (2008) and Dozier (2001). The use of positive and

negative rewards is a simple way for a robot to gain knowledge of the preferred and

unwanted dance steps of a dance. However, this has a number of problems. In particular,

if the rewards are not consistent then contradictions can occur in the observer’s feedback

Towards A Framework To Make Robots Learn To Dance

 37

(Thomaz et al., 2005). For example, a “good” dance move in one part of the robot’s

dance maybe a “bad” dance move in another, which could cause contradiction in the

robot’s understanding of the true reward. Also, as rewards are given in real time, the

wrong movements may be rewarded, in which case, the robot may learn to do the wrong

actions. Therefore, an effective way of processing such rewards would have to be

adopted. Nevertheless, compared to IEC, the ability to do this in IRL makes it a better

approach for representing the likes and dislikes of observers.

2.6. Summary

This chapter summarised the important developments that have been made in the quest to

first enable robots to dance and then instil in them the capacity to create autonomous

adaptive behaviour. Although progress has been made in this area of robot dancing, the

fundamental limitation is that dancing robots dance as a result of pre-programmed

human-like examples and the quality of their dancing do not improve with this approach.

Approaches to robot dance have ranged from choreographed dance patterns to

mimicking visual motions based on motion capture and predicting dance steps based on

human dance partners. Whilst, these approaches have successfully established dance in

robots, the creativity and autonomous behaviour of dancing robots is limited because they

typically cannot generate their own dance motions and cannot adapt their dance motions

to human preferences. For example, most robots do not have any learning ability and so

can only demonstrate some form of autonomous behaviour in their dance, whilst others

can adapt their dance motions to the music, but cannot adapt to human feedback.

Towards A Framework To Make Robots Learn To Dance

 38

In order to improve a robot dance, it is necessary that dancing robots posses

mechanisms that encourage them to learn the appropriate dance behaviours to perform;

adapt to the preferences of human partners, and be creative with their dance motions, in

order to maintain human interest. These stages in the robots development can be achieved

by highlighting the attributes of dance that give dance its aesthetic appeal. This is evident

in the ways humans move.

In everyday human movement, apart from the relationship between gestures, it is

also clear that dance motions have a numerical commonality as part of their definition.

The description of skilful dance motions suggests that they occur in two time steps or

factors of two. Using the definition from dance literature, both Canon and Form require

two time steps in order to be achieved, whereas Symmetry requires one time step. For this

reason, the number two is a good indication of a quantifiable value for each part of the

dance structure. To achieve seemingly natural, human-like movement in dancing robots,

many researchers automatically provide this knowledge to them as opposed to making

them learn them.

The number two is necessary for aesthetic beauty as perceptually this is what

humans are familiar with in everyday movement e.g. the mechanics of the human body.

Therefore, naturally, if we can break down dance motions into gestures of two time steps

then this enables skilled motions (whole motions that contain Canon, Form and

Symmetry) to be performed as well. Robots can then form their own primitive dance

motions and learn which ones are more desirable through their interaction with human

partners.

Towards A Framework To Make Robots Learn To Dance

 39

A learning approach of particular interest in this thesis that can be used to enable

human subjects to interact with a robot is Interactive Reinforcement Learning (IRL). This

is a promising approach to interactive learning because it is based on an adaptive learning

algorithm (reinforcement learning) that makes the learning agent adapt its behaviour as

the environment changes, and is capable of evaluating both preferred and non-preferred

preferences.

Towards A Framework To Make Robots Learn To Dance

 40

Chapter 3
The Robot Dancing Framework

This chapter provides an overview of the proposed framework and in particular, the robot

and the beat detection algorithm that was used in this research and the learning approach.

3.1. General Overview

The fundamental problem with the way in which current robots dance is that there is no

system that gives them the ability to learn appropriate dance steps, create their own

movements and adapt to human preferences. The current state-of-the-art can do one or

the other, but not all. Furthermore, existing implementations require that robots be re-

programmed each time a new dance is required and therefore the trainers need to have

knowledge of how to program the robots. In this thesis, a robot dancing framework is

presented that addresses these key points. The fundamentals explored in this dancing

model include:

 Real time analysis and extraction of key music features;

 Development and learning of a collection (repertoire) of desirable dance steps;

 Creative dance steps and sequences that are synchronised to the music;

 Adaptation of dance steps and arrangement of dance steps into different

combinations based on human feedback.

Figure 3.1 shows how these fundamentals are combined in this thesis to form a

dancing framework.

Towards A Framework To Make Robots Learn To Dance

 41

In Figure 3.1, Pre-programmed gestures refers to the initial simple movements

available to the robot, which are joint and direction specific e.g. raising an arm, which is

different to dropping the arm, or the head rotating to the left, different to its rotation to the

right. These gestures are then explored to form primitive and sequenced dance steps (e.g.

a dance action that moves the head up and down), which are then stored as a repertoire in

the Action Database as actions. These are then evaluated using the Sarsa learning

algorithm based on rewards defined by the trainer. The actions are then selected by the

Softmax action-selection method for the robot to perform.

The Music is analysed and the musical beat is extracted in real time, while the

learning algorithm is running and the robot performs the chosen actions in time with the

beats detected. The music is not stored in the robot’s repertoire. This means that the robot

can learn the appropriate behaviours whilst different music is being played. The

Feedback Controller (e.g. the trainer) then observes the robot’s movements and provides

 Figure 3.1 – Integrated framework for dancing robots

Towards A Framework To Make Robots Learn To Dance

 42

feedback, and the Feedback Extractor receives the feedback and stores these in the

Action Database for the learning of which actions are preferred and non-preferred by the

Feedback Controller. The result is a file containing a sequential list of actions, sent to the

Robot for it to perform.

The focus of this research is to develop an adaptive dancing model that learns in

real time in a real environment (i.e. with real music and real people), without the need to

re-program the robot. Like humans, the learning for dancing robots must be achieved in

stages of development. In this thesis, the robot gradually improves the quality of its dance

as it learns the desired behaviours which are 1) learning to perform movements to the

beat, 2) combining basic movements to create its own sequences and 3) learning from the

preferences of human partners. These will be explored respectively in Chapters 4, 5 and

6.

The implementation and experiment of the robot’s stages of development were

conducted using a virtual environment. The robotic test bed was the Sony AIBO dog and

its dancing was demonstrated using a simulation package known as Webots (Cyberbotics,

2011). The Sarsa algorithm and Softmax method were implemented for learning and

action-selection respectively. The output of the system was the complete dance sequence

generated. This was read directly by the robot and the actions were performed on each

beat detected by the beat detection algorithm. The beat was extracted in real time, using

the BPM Detection Library (adionSoft, 2007) which was integrated into the Webots

environment for real time processing. All integrations and processing (i.e. the learning

algorithm; the action-selection algorithm; the Webots environment and the beat detection

Towards A Framework To Make Robots Learn To Dance

 43

algorithm) were programmed in C++. The following sections will go into more detail of

these components of the dancing framework.

3.2. The Robotic Test Bed

3.2.1. Sony AIBO Robotic Dog

The Sony AIBO dog is a small robotic dog in appearance (Figure 3.2), developed by

Sony, whose name is an abbreviation of Artificial Intelligence Robot (AIBO). Different

models have been developed. The model used in this research was the ERS-7 model. The

robot had previously been successfully programmed by Sony to demonstrate realistic dog

behaviours as well as emotions using gestured movements and coloured lights. It has the

ability to recognise faces and voices using built-in pattern matching and detection

algorithms and currently posses predefined dance routines that are performed to

predefined music.

The Sony AIBO dogs (ERS-Model), are equipped with a 576 MHz on board

processor with 64 MB RAM. The operating system is Aperios, developed by Sony, built

Figure 3.2 – Sony AIBO Real Robot Dog (ERS-7 model)

Towards A Framework To Make Robots Learn To Dance

 44

on the Open-R architecture (Operating System, 2009) and it has a total of 20 degrees of

freedom (DOF). These consist of head: 6 DOFs (neck: 3, ears: 2, and mouth: 1), legs: 12

DOFs (3 for each leg), and tail: 2 DOFs. All joints are used in this research except those

pertaining to the ears, mouth and the tail as they were not considered to be significant

joints necessary for dance.

The AIBO dogs are a popular choice for robotic research because they are

relatively inexpensive; have many degrees of freedom and already possess a variety of

useful capabilities such as distance and touch sensors, a camera (for image recognition),

and microphones for audio input. The Sony AIBO dogs are sufficient enough to

demonstrate the stages of dance development explored in this thesis.

3.2.2. Webots

In order to simulate the robots dancing, the Webots software simulator developed by

Cyberbotics (Cyberbotics, 2011) was used. Webots is a development software

environment that comes with many industrial robots including the Sony AIBO dog

(Figure 3.3) and the robots can be programmed using popular languages such as C++,

Matlab and Java.

Towards A Framework To Make Robots Learn To Dance

 45

The Webots simulation package was used to demonstrate the robot’s dancing to

human partners as well as receive human preferences. The learning algorithm and the

action-selection algorithm were not integrated with the Webots simulator, but instead

were processed separately after the robot had finished dancing. In other words, the

learning and action-selection did not take place while the robot was dancing. Each dance

that human partners observed was pre-generated prior to their feedback. This was because

processing the learning and action-selection of human feedback while the robot was

dancing was a computational expense and resulted in huge delays in synchronising the

robot’s movements to the music, which in turn affected the appearance of the robot’s

dance and mixed up the rewards given (i.e. the wrong rewards were given to the wrong

behaviours). This also conflicted with the music, causing it to stop and repeat itself at

different times. For this reason, the learning algorithm and action-selection algorithm

were performed separately from the Webots environment and a file was generated of an

entire dance that was directly read by the robot. This not only increased the learning

speed, but also ensured that the robot’s dance could be observed and human trainer

preferences could be recorded, without adding more work to the CPU.

Figure 3.3 – Image of Sony AIBO Dog used (ERS-7 model) in Webots

Towards A Framework To Make Robots Learn To Dance

 46

3.3. Synchronising To The Music

In order to detect the beat of the music in real time, the BPM Detection Library

(adionSoft, 2007) was used and integrated with the developed system. This enabled the

robot to move its joints at the same time to the beats of the music as detected by the

algorithm. The BPM Detection Library is an open-source real time rhythm detection

program, which can be used to detect the rhythm (beat, tempo and time signature) of

music either as real time input from a microphone or decompressed music files on a

computer stored in various formats, for example, .mp3 or .wav files. The program is

particularly suited for music genres which have steady beats, which is typical of Western

music. To perform real time dancing to the music, the robot executed each dance step

from the generated dance sequence on each detected beat. When no beats were detected

(e.g. the music stopped playing) then the robot would stop dancing at that point.

3.4. Learning Algorithm

The learning approach taken in this thesis is from reinforcement learning. Reinforcement

learning is an adaptive computational approach in the field of machine learning which

works by applying the same principles of reinforcement in psychology, which are used by

animals and humans to learn. The basis of reinforcement learning is a direct feedback

system, whereby the learner is either rewarded or punished based on the actions that are

performed. Positive reinforcements encourage behaviour to be reproduced, while

negative reinforcements discourage behaviour from being repeated (Dayan, 2005).

Research in machine learning use Supervised Learning and Unsupervised

Learning. Supervised Learning is learning from examples provided by the environment

Towards A Framework To Make Robots Learn To Dance

 47

(Sutton and Barto, 1998). The learning approach is example-specific, only learning what

it has been instructed to learn in specific environments. The learning agent is specifically

told what to do for every example in the training set, and then it simply replicates the

correct answers as defined by the trainer. Unsupervised Learning, on the other hand,

makes use of unlabelled data. The learning approach is required to categorise and cluster

the data as a way of labelling the data. Reinforcement Learning lies somewhere between

Supervised Learning and Unsupervised Learning, which works with some level of

supervision from the trainer, but the level of supervision is less than in Supervised

Learning. That is, the agent is only instructed of the correct behaviours once it has

performed actions.

Reinforcement learning has the advantage of applying what it has learnt in related

environments, as well as the ability to modify what it has learnt, which is what makes it

suitable for adaptive behaviour. A reinforcement learning agent learns through trial-and-

error from its own experience. The learning framework works by making the agent adapt

through directly interacting with its environment in order for it to learn efficiently (Sutton

and Barto, 1998).

3.4.1. How Reinforcement Learning Works

Reinforcement learning works by “defining the interaction of an agent and its

environment in terms of states, actions, and rewards” (Sutton and Barto, 1998). It

provides a mapping of perceived states to actions known as policy. A policy can be

defined as “what actions to take in what states” (Sutton and Barto, 1998). The agent

keeps a record of the actions performed in each state and associates the link with a value

Towards A Framework To Make Robots Learn To Dance

 48

function, used for action selection in future states. The value function for actions

performed in different states (or state-action pairs) is determined by the rewards the agent

receives in doing actions in states. The value function estimates the value of taking an

action in a state. It is the expected return (total rewards received over time) of doing

actions in different situations (states) in the future. It is therefore the aim of the learning

agent to maximise some measure of its future performance (Sutton and Barto, 1998).

Actions with greater returns increase the value of state-action pairs, which in turn,

encourage the performance of more desirable behaviours.

For reinforcement learning a balance must be made by an agent between choosing

more desirable actions and choosing unexplored actions, just in case there are “better” or

other desirable actions that have not been discovered yet. The agent’s interaction with the

environment is the sequential process of selecting actions modelled as a Markov Decision

Process (MDP). This works by dividing the learning problem into four elements – a set of

states; a set of actions; state transition probabilities and a set of rewards that are

associated to an action performed in a state.

Reinforcement learning can take place in two modes – offline learning whereby

the agent learns by interacting with a simulation (model) of the environment, and online

learning where the interaction is with the real environment. In both approaches, learning

is achieved, but their actual use is problem dependent, for example, learning problems

that are too big, complex or dangerous to model in a real environment may be best suited

for offline learning as opposed to online learning. The problem of making dancing robots

learn to dance is a complex problem and although it is possible for them to learn through

online learning, due to the computational costs on the real robot (e.g. the amount of work

Towards A Framework To Make Robots Learn To Dance

 49

that the motors have to undergo or the dangerous positions that joints can be in), it is

better for them to learn through offline learning e.g. using a virtual robot that responds to

music being played and human feedback in real time.

Typically, the standard application of reinforcement learning is for the learning

agent (e.g. a robot) to explore different states and perform behaviours that put it in

another (or the same) state. Often, a weighted positive or negative reinforcement (reward/

punishment) is recorded for the state the learning agent ends up in or the actions it takes.

This cycle continues until the agent has reached the desired goal. The value function is

applied to each state (or state-action pair) for effective action selection and then the cycle

is repeated. That is, the value function tells the algorithm what state to go to or action to

perform in the next time step that would put the robot in a better situation (i.e. maximise

the total expected rewards). After a sufficient number of trials have been run, each state

(or state-action pair) in the MDP will have a probability that will drive the agent towards

better and better solutions. Once an acceptable performance level is found, the learning

algorithm will still continue to run as before but without updating any of the probabilities

(Gosavi, 2003).

3.4.2. Comparison Between Q-Learning and Sarsa

As a solution to learning in dancing robots, two of the most popular algorithms, known as

Q-Learning and Sarsa, from traditional reinforcement learning are considered. Both

algorithms are similar in their procedure and in the updates of value functions of state-

action pairs. However, the fundamental difference between them is how the decision

policy (the mapping of actions to states) is applied.

Towards A Framework To Make Robots Learn To Dance

 50

As described above, a policy is a rule that determines the choice at each situation.

In Q-Learning, a particular policy is chosen (exploited) and applied throughout the

learning process. In Sarsa, the policy is evaluated and updated after each action selection.

Both algorithms have two learning coefficients referred to as the learning rate (α) and

discount factor (γ). The learning rate is used to determine if new information should be

considered (when 0 < α ≤ 1) or not (when α = 0). The discount factor weights the value of

future rewards after taking an action in the next state. For example, if γ = 0, then future

state-action pairs are not considered, whilst 0 < γ < 1 would mean that future state-action

pairs are considered. This is particularly important during the robots transition from one

state-action pair to another as it determines to what degree the next state-action pair

influences the robot’s learning.

Although both Q-Learning and Sarsa have been successfully applied to learning

problems, Q-Learning has been widely used in the field of robotics “due to its algorithmic

simplicity” (Martinson et al., 2002) and the speed at which it finds the optimum policy

(Poliscuk 2002). Sarsa on the other hand is more consistent in choosing policies in the

learning process than that of Q-Learning, which suggests that it is more suited in areas

where consistency and dynamic learning are more important than the speed of learning

(Poliscuk, 2002 and Srinivasan, 2005).

Sarsa has also been found to outperform Q-Learning in environments that require

learning without previous exploration. For example, in what is called the cliff-walking

task (Sutton and Barto, 1998), Q-Learning and Sarsa were compared to determine their

difference in learning. The task was for each algorithm to reach the goal state, without

entering detrimental states. The end result was that, although Q-Learning found the

Towards A Framework To Make Robots Learn To Dance

 51

optimum (shortest) path to the goal state from the initial state, it was more likely to walk

the learning agent “off the cliff” (i.e. enter the detrimental states) than Sarsa. The Sarsa

algorithm reached the goal state by learning the longer but safer path. This is because it is

possible for Q-Learning to exploit sub-optimal actions during the learning process,

whereas Sarsa, would evaluate each choice as it is made before taking the next action,

making it less likely to walk off the cliff. This suggests that Sarsa is better in situations

where there is no prior knowledge (Poliscuk, 2002). This makes Sarsa a better choice for

environments that cannot be adequately pre-modelled and simulated. Furthermore, it is

suggested that real-world biological systems (i.e. humans and animals) are more likely to

learn in a way that is similar to Sarsa rather than Q-Learning (Morris et al., 2006).

Learning to dance can be Q-Learning-like or Sarsa-like. For example, in break

dancing competitions dancers often perform the same signature moves throughout their

dancing to win points, or a belly dancer may continue to drop her hips up and down to

please the crowd. These actions are exploited behaviours and so would follow a Q-

Learning-like approach. On the other hand a social dancer at a celebration may simply

copy the dance moves from other dancers and observe the feedback from the audience.

This is more like a Sarsa approach to dance. The difference in these two types of dancing

is that in the former the dancer already has knowledge of the “better” dance move (and

the response), whereas in the latter, the dancer may not have any prior knowledge of the

“correct” dance steps and, therefore, be ready to adapt its dance behaviours according to

the feedback. Therefore, a Sarsa implementation would be a logical choice for a dancing

robot in terms of learning and adaptation.

Towards A Framework To Make Robots Learn To Dance

 52

A Q-Learning approach to robot dancing would suggest that there are “optimal”

(“best”) dance steps in which dancing robots must select during their dance, and as a

result, is more likely to make them learn the wrong dance steps, because it would be

possible for the algorithm to consider sub-optimal dance actions as the optimal dance

behaviours. A Sarsa approach would ensure that dancing robots evaluate the feedback

they receive from their dance steps and so, therefore, slowly, but carefully learn the

appropriate dance steps. Algorithm 3.1 shows the traditional Sarsa algorithm.

Algorithm 3.1: Traditional Sarsa Algorithm (Sutton and Barto, 1998)

1. Initialise parameters

2. Repeat (for each episode)

3. Initialise the starting state (
ts)

4. Choose action (
ta) from state (

ts) using derived policy from Q

5. Repeat (for each episode)

6. Perform action (
ta), receive reward (r)

7. Agent is in next state (
1ts)

8. Choose action (
1ta) from

1ts using policy from Q

9. Update value function, current state and action

        

1

1

11 ,,,,












tt

tt

tttttttt

aa

ss

asQasQrasQasQ 

10. Until terminal state is reached

Towards A Framework To Make Robots Learn To Dance

 53

In this algorithm, the parameters (line 1) would be the value function (otherwise

known as the Q-factor,  asQ ,); the set of states (Ss); the set of actions (Aa); the

reward function (r) for transiting from one state to another.  is the learning rate; and 

is the discount factor and t is the time step moment for being in a state (s) or performing

an action (a). An episode (line 2) is a sequence of actions in the set A that leads the

agent from an initial state to the goal state.

The algorithm iteratively explores a possible action in a state until a terminal state

(i.e. the goal state) is reached. An action (a) is selected using an action-selection method,

of which the most common implementation is to use an approach that always embody

exploitation (e.g. an greedy approach). That is, the idea of choosing an action

believed to be the “best” most of the time, and on occasion, choosing an action at random

as part of the exploration.

The actual processing of the reward signal is carried out in line 9 where the value

function ( tt asQ ,) for the current state (
ts) and action (

ta) undergoes the update by

taking into consideration the value function ( 11 ,  tt asQ) of the next action (
1ta)

performed in the next state (
1ts). The reinforcement learning agent therefore learns

which actions it should do in different states that maximise the expected cumulated

rewards.

The crucial difference between the traditional Sarsa algorithm and the traditional

Q-Learning algorithm is in the update of the value function (line 9). The update equations

for traditional Sarsa (equation 3.1) and traditional Q-Learning (equation 3.2) are shown

below.

Towards A Framework To Make Robots Learn To Dance

 54

 The difference is that traditional Sarsa selects an action based on the next

observed policy, whereas traditional Q-Learning selects the action based on the next

optimum policy. In computational terms traditional Q-Learning learns by computing the

difference between the current Q-factor and the maximum Q-factor observed, whereas

traditional Sarsa learns by computing the difference between the current Q-factor and the

next observed Q-factor. Traditional Sarsa actually uses the value of the next action to

guide its learning whereas, Q-Learning uses the maximum value observed.

3.4.3. Action-Selection Method

During learning, an important concept is choosing between actions that have previously

been explored and those which have been unexplored. One of the main challenges of

reinforcement learning is balancing the exploration and exploitation of actions. The aim

is to determine when best to make use of existing knowledge and when to search for

other options, which is known as exploitation and exploration respectively. greedy is

a popular action-selection method (Sutton and Barto, 1998). However, the problem with

greedy is that during exploration, each action is equally considered as the next and it

does not distinguish between sub-optimal actions and the worse actions. A logical

solution to this is to have a weighted value for each action and this is implemented in the

Softmax action-selection algorithm (Sutton and Barto, 1998).

        tttttttt asQasQrasQasQ ,,,, 11   (3.1)

        ttttttt asQasQrasQasQ ,,max,, 1   (3.2)

Towards A Framework To Make Robots Learn To Dance

 55

Softmax works by increasing the probability of selecting an action in a state, if the

expected reward for the action is perceived to be higher (Dandurand et al., 2007). An

example of the Softmax calculation is shown in equation 3.3. In other words, each state-

action pair has a weighted probability associated with it and the algorithm works by

selecting higher weighted state-action pairs more often, similar to how humans may make

decisions (Dandurand et al., 2007).

Softmax is based on a set of assumptions, which are represented by different

parameter values. Their use simplifies the action-selection process by having parameter

values that help a learning agent to make the correct choice. The primary parameter is

known as the temperature (Sikora, 2005). The temperature is a value greater than 0 and is

essentially a weight that is added to the actions of each state-action pair.

Softmax can be used to exploit and explore actions gradually by using the Gibbs

or Boltzmann distribution (Gray, 2007). The idea behind the temperature parameter is

that at higher temperatures (Sikora, 2005) the learning agent explores more actions and as

the temperature decreases exploration decreases also. Therefore, the temperature

parameter effectively controls the trade off between exploitation and exploration. Fu &

Anderson (in Gray, 2007, p. 168) have shown that Softmax is closer to the way humans

and animals make decisions compared to a method like greedy . Therefore Softmax

would provide a more realistic approach for dancing robots to select dance steps.

(3.3)

 



n

i

asQ

asQ

ie

e
as

1

/),(

/),(

),Pr(




Towards A Framework To Make Robots Learn To Dance

 56

In equation 3.3),Pr(as is the probability of selecting an action (a) in state (s).

),(asQ is the value function (otherwise known as the Q-value or Q-function) of an action

(a) in state (s) and n is the number of actions available in a state (s).  is the

temperature parameter described above.

 The temperature () parameter is set by assigning to it a value or a series of

different values. For example, Dandurand et al. (2007) used values from 1-10, where 1

represented hardmax (greedy) and all other numbers represented different Softmax

values. This was to determine a suitable Softmax value for balancing exploitation and

exploration. Sikora (2005) used values of 5, 50, 500 and a meta learning mechanism to

dynamically select a value that appeared to be the best for action-selection. Both

researchers concluded that if a fixed temperature value was required (for stationary

environments), then a value of five was the best to achieve weighted probabilities

between actions. This also coincides with findings from psychological research and

appears to be the same value for “estimates of [the] human working memory size”

(Dandurand et al., 2007).

3.5. Summary

The underlining structure of the dancing model consisted of the integration of a real time

beat detection algorithm, as well as a robotic system to demonstrate the dance. C++ is a

supporting language of Webots and the beat detection algorithm is written in C++. This

means that the entire system can be developed using C++. The Sony AIBO robotic dog

can be used as a test bed for this research project and the Webots simulator can be used to

Towards A Framework To Make Robots Learn To Dance

 57

demonstrate the robots dancing and receive human feedback. The Adion beat detection

program can be integrated into the system so that the robot would synchronise its

movements to the musical beat in real time.

Using knowledge of reinforcement learning, a dancing framework can be

developed for dancing robots to learn to dance. Reinforcement learning works by trial-

and-error, enabling behavioural adaptation in response to changes in the environment and

reward signals. Adaptation is an important part of dance, and dancers typically explore

different dance actions in order to improve their performance. Therefore, reinforcement

learning is a suitable approach to model dance in robots.

Two main algorithms from reinforcement learning, Q-Learning and Sarsa, were

considered in this chapter. Q-Learning is widely used by researchers. However, in

relation to learning to dance, it is less appropriate than Sarsa as the Sarsa algorithm has

shown to be closer to the way in which humans learn.

For action-selection, the Softmax algorithm is considered better than greedy

because greedy is equally likely to pick the “worst” or the “best” action but Softmax

distinguishes the suitability of actions by weighting them.

Towards A Framework To Make Robots Learn To Dance

 58

Chapter 4
Learning To Dance To The Beat

This chapter explains a simple approach to make the robot learn to perform actions on the

beat in real time through the application of the Sarsa algorithm and the Softmax

algorithm from traditional reinforcement learning. Initial experiments were first

conducted in order to determine which parameter values can be used to assist the robot in

learning.

4.1. Methodology

In this first stage, the research began with the direct implementation of the Sarsa

algorithm for learning and the Softmax algorithm for action-selection in order to

determine suitable parameter values that can be used to help the robot learn to follow the

beat of a musical signal in real time. With the suitable parameters obtained, the robot was

then to learn to bop its head to the beat, followed by learning to perform predefined dance

motions on the strong and weak beats of the music signal.

After each action-selection, the robot received scalar rewards which were defined

internally to the system. The states were where the robot was in relation to the music (e.g.

on-the-beat or off-the-beat), and the robot’s actions were the decisions that the robot

could make e.g. what movement to make depending on the strength of the music signal.

These are described in more detail below.

Algorithm 4.1 shows the complete algorithm used in these experiments.

Towards A Framework To Make Robots Learn To Dance

 59

Algorithm 4.1: Sarsa Algorithm for Learning To Follow The Beat

1. Initialise parameters

Sarsa parameters:  asQ , , r , α, 
 Softmax parameters: 
2. Play music
3. Repeat (while music is playing)

4. Randomly choose beat state (ts)

5. Select an action (ta) to do

6. Check state-action pair (tt as ,) in action database

7. If in action database Then
8. Select (as,) according to Softmax (),Pr(as)
9. Perform action (a) in chosen state (s)
10. Else

11. Perform action (ta)

12. Write (tt as ,) in action database

13. Update value-function for state-action (tt as ,) pair

        

1

1

11 ,,,,












tt

tt

tttttttt

aa

ss

asQasQrasQasQ 

14. For all state-action pairs (as,) Update Softmax

  
 

 



n

i

asQ

asQ

tt
it

tt

e

e
as

1

/,

/,

,Pr




In the above algorithm, the robot learns to perform dance actions on the beat by

randomly selecting dance behaviours and being rewarded (or punished) accordingly.

Q(st,at) is the value of the current decision (at) whilst in the current state (st); α is the

learning rate;  is the discount factor. Both the learning rate and the discount factor are

of values between the range [0,1].  is the temperature parameter that controls how far

apart are the probability values of state-action pairs; rt is the immediate reward given for

the current decision (at) performed in the current state (st) and Q(st+1,at+1) is the value of

the next decision (at+1) performed in the next state (st+1) the robot will be in.

Towards A Framework To Make Robots Learn To Dance

 60

4.2. Experimental Procedure

Learning to dance to the rhythm was divided into three experiments. The first experiment

was an initial exploration of the traditional Sarsa algorithm to determine what parameter

values to use. The second was for the robot to learn to perform a single head motion in

real time with the music to on-the-beat rhythms (i.e. on each time-signature). The third

was for the robot to learn to perform correct dance motions to the correct strength of the

music signal in real time. The following sections go into these in more detail.

4.2.1. Experiment 1 (Learning Parameters)

In this experiment, the Sarsa algorithm was explored offline (without the music and

robot) with the input of different parameter values for the learning rate (α) and the

discount factor (γ) to determine the suitable parameters that can be used for all the

experiments that will be conducted in this research. Only one state was defined in the

system containing four actions (named Dance Action 1, Dance Action 2, Dance Action 3

and Dance Action 4) of which a reward of +1 was associated to one action (Dance

Motion 1) and the remaining actions given a reward of 0.

4.2.2. Experiment 2 (Bop To The Beat)

In this experiment, the robot was programmed to learn to bop its head (move its head up

and down) as a single dance motion in real time to the beat of the musical signal using the

Sarsa algorithm. The music file used was “Any Dream Will Do” by Jason Donovan. This

was used because of the simple beat structure. The robot could move its head anytime

while the music was being played. The states of the system were defined as on-the-beat

Towards A Framework To Make Robots Learn To Dance

 61

and off-the-beat which meant “bopping the head on the beat” and “bopping the head off

the beat” respectively. These two states were the choices for the robot when deciding to

perform the head motion.

The robot could perform the head movement on any state while the music was

being played. The states were specifically defined to help with the learning. Although, the

robot could have been programmed to move its head anywhere while the music was

being played, the actual detection of distinctive states would have proved much harder as

the chances of actually performing the head movement on a beat were very slim. The

consistent performance of the head movement to off-the-beat rhythms with little attempts

(or no attempts) performed on on-the-beat rhythms would cause the robot to learn the

wrong behaviour due to the accumulation of the wrong rewards or the lack of exploration

of on-the-beat rhythms. For this reason, the robot was programmed to perceive the music

as two states defined as on-the-beat and off-the-beat and were given threshold ranges to

categorise them.

Figure 4.1 illustrates the states of the music in which the robot can perform the

movement. Here, once the beat detection algorithm had made a prediction (ηt) as to when

Figure 4.1 – Description of on-the-beat and off-the-beat rhythms where t is the time for each
beat occurrence and ηt is the predicted number of seconds between each beat. The shaded
region is on-the-beat state and outside of this range is off-the-beat state.

Towards A Framework To Make Robots Learn To Dance

 62

the next beat (Beat(t+1)) would occur, on-the-beat states were defined to be in the range

+/-0.1 seconds of the predicted time (ηt). This was so that the robot could perceptually be

seen to be in sync with the music if, for example, the beat actually occurred earlier or

later than the predicted time. This range is indicated by the shaded area in the diagram

above (Figure 4.1). If the head movement occurred outside the on-the-beat state, then the

robot was recorded as being in state off-the-beat. Furthermore, the robot was

programmed to move its head in one state at a time. For example, if the first state

selection was on-the-beat, then the robot would perform the head movement once on the

next on-the-beat rhythm. If after this, the next state selection was for off-the-beat, then

the robot would perform the head movement once, immediately after or wait for the next

off-beat state. In other words, the robot would select what state to perform the head

movement and if the robot found itself in the selected state then it would perform the

head movement, otherwise it would record the state it found itself in and perform the

action the next time the desired state came up. The learning rate was made high (α = 0.8)

and the discount factor was made low (γ = 0.2) based on the initial results obtained from

Experiment 1.

4.2.3. Experiment 3 (Dance To The Strongest Beat)

In the third experiment, the emphasis was to explore dance using more dance motions.

The robot was to learn to perform a dance motion to the strongest beat of the musical

signal detected and all other dance motions on the weaker beats, whilst the music is

playing. The strongest beat was used as an indication of the downbeat in music literature,

which is defined as the first count of a music signal’s time-signature (i.e. the “1” in the

Towards A Framework To Make Robots Learn To Dance

 63

count of “1-2-3-4” of a 4/4 time-signature or in a “1-2-3” of a 3/4 time-structure). In

dance choreography and music conducting for example, it is usually used to indicate

when a particular dance movement or instrument in the orchestra should come in to the

music. In this experiment, only one dance motion was required to be performed on the

strongest beat and all other dance motions performed on weaker beats.

Using the Adion beat detection algorithm (adionSoft, 2007), the strongest beat

was determined by determining the strength of beats of the musical signals by isolating

the energies (intensity/frequency signals) of each beat detected. This was determined by

setting a threshold. If the energy of the next detected beat was greater than the threshold

then it was a strong beat, otherwise a weak beat. The threshold was calculated to be a

continuous working average of all the previous beat intensities detected.

This approach was based on the assumption that if the human ear detects beats

based on the different loud sounds of the musical signal, at varying periodic intervals, and

the beats can be classified as either strong or weak, then the loudest sound of a strong

beat is a good indication of the beginning of a time signature, i.e. the downbeat. There are

other algorithms for detecting the beat and determining the downbeat of the music,

however, the approach proposed here worked really well for this experiment. The same

music signal as in Experiment 2 was used to test the strong beat, and the robot was

programmed to receive immediate rewards using the Sarsa algorithm.

The robot was rewarded after each dance motion performed. Five predefined

dance motions were used. The predefined dance motions are described in Figure 4.2,

where A was defined to be the initial home position of the joints, and B was the position

moved to by the joints in question.

Towards A Framework To Make Robots Learn To Dance

 64

Figure 4.2 – Positions of the different dance motions for Experiment 3

Dance Motion 1 = {head; 10 degrees upwards}

(Position A) (Position B)

Dance Motion 2 = {leg1 and leg2; 45 degrees sideways}

(Position A) (Position B)

0 degrees

10 degrees

Dance Motion 3 = {leg1; 90 degrees upwards}

(Position A) (Position B)

Dance Motion 4 = {leg2; 90 degrees upwards}

(Position A) (Position B)

Dance Motion 5 = {leg1 and leg2; 90 degrees upwards}

(Position A) (Position B)

leg1

leg2

leg1

leg2

Towards A Framework To Make Robots Learn To Dance

 65

The transition from position A to position B, and from position B back to A,

formed two single movements (gestures) into one motion. This meant that the robot’s

joints always started and ended in the same state (i.e. position A); ready to undertake the

next action.

The robot’s rhythmic ability was to perform actions only to on-the-beat rhythms.

For this, it was not necessary to define a beat range as was done for Experiment1. Instead,

when the beat was detected, the robot would automatically perform the action chosen.

 The five dance motions were internally defined in the robot’s system prior to

learning. The robot selected actions using the Softmax algorithm and learnt to perform

the actions on the beats.

Dance Motion 2 was pre-programmed to be the designated dance motion that the

robot was to learn to perform on the downbeat (strongest beat), and all the other four

dance motions could be performed on any of the other weaker beats. Table 4.1 summaries

this expectation.

Action Name State

Dance Motion 1 Weaker Beat

Dance Motion 2 Strongest Beat

Dance Motion 3 Weaker Beat

Dance Motion 4 Weaker Beat

Dance Motion 5 Weaker Beat

Table 4.1 – Summary of what state to perform actions

Towards A Framework To Make Robots Learn To Dance

 66

A scalar reward of +1 was always given to the desired dance motions performed

at the right place. Credit (reward) was distributed according to the previous state-actions

pairs that the robot performed prior to receiving the reward. The learning rate was made

high (α = 0.8) and the discount rate was made low (γ = 0.2) based on the initial results

obtained from Experiment 1.

4.3. Results & Observations

4.3.1. Experiment 1: Results & Analysis

The idea of Experiment 1 was to explore which parameters can be used for the learning

rate (α) and the discount factor (γ) in the Sarsa algorithm for the robot to learn the

appropriate behaviours while following the music. The temperature (τ) value of the

Softmax action-selection method was kept constant at a value of five. The algorithm was

defined with one state and four possible dance motions that could be performed in that

state. A fixed reward value of +1 was given to Dance Motion 1 and all other dance

motions (Dance Motions 2, 3 and 4) were given a reward value of 0. The experiment was

run over five trials with 20,000 time steps for each trial. The results can be seen in the

figures below.

(1) Results of Exploring the Learning Rate

To begin with, the learning rate was explored with increasing values from zero to one,

whilst the discount factor was kept at a fixed low (γ = 0.2) the first time, and at a fixed

high (γ = 0.8) the second time. A record of the average total occurrence of dance motions

over five trials of running the algorithm was kept, with each trial terminating after 20,000

Towards A Framework To Make Robots Learn To Dance

 67

time steps. Figures 4.3 and 4.4 show the results with a low discount factor and Figures

4.5 and 4.6 show the results with a high discount factor.

From Figure 4.3, we see that higher values of the learning rate produced the

desired motion (Dance Motion 1) to be selected more often, when the discount factor

remained fixed at a value of 0.2. This is supported by Figure 4.4 shown below.

0

5000

10000

15000

20000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Learning Rate

A
v
er
ag
e
To

ta
l o

f
D
an

ce
 M

o
ti
o
n
 O
cc
u
rr
e
n
ce
s

Dance Motion 1

Dance Motion 2

Dance Motion 3

Dance Motion 4

Figure 4.3 – Average occurrence of dance motions with the discount factor made low (γ = 0.2)

Towards A Framework To Make Robots Learn To Dance

 68

 From Figure 4.4, we see that when the learning rate (alpha) was zero, there was

no learning in the algorithm and the performance of the algorithm improved with time for

increasing values of the learning rate.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Learning Rate

A
v
er
ag
e
 T
o
ta
l O

cc
u
rr
e
n
ce
 o
f
D
an

ce
 M

o
ti
o
n
s

Dance Motion 1

Dance Motion 2

Dance Motion 3

Dance Motion 4

Figure 4.5 – Average occurrence of dance motions with the discount factor made high (γ = 0.8)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Number Of Actions

A
v
er
a
ge

 R
e
w
a
rd
s
R
ec
e
iv
e
d

alpha = 0.0

alpha = 0.1

alpha = 0.2

alpha = 0.3

alpha = 0.4

alpha = 0.5

alpha = 0.6

alpha = 0.7

alpha = 0.8

alpha = 0.9

alpha = 1.0

Figure 4.4 – Learning performance of dance motions with the discount factor made low (γ = 0.2)

Towards A Framework To Make Robots Learn To Dance

 69

Figure 4.5 shows the result with a high value of the discount factor (γ = 0.8).

From Figure 4.5, we see that the increasing values of the learning rate produced the

desired motion (Dance Motion 1) to be selected more often for all values of the learning

rate up until a value of approximately 0.7, but performed rather unpredictably after that.

Generally, the performance appeared to be worse in comparison to the low value of the

discount factor explored, with the total occurrence of dance motions being selected more

closely together at γ = 0.8 than at γ = 0.2. This is supported by the results shown in Figure

4.6 below.

 Figure 4.6 shows that the increase in the learning rate (alpha) did not encourage

the algorithm to perform the desired behaviour (Dance Motion 1) with increasing time,

when the discount factor was at a value of 0.8. In fact, for some values of the learning

rate, the performance worsened. There appears to be no learning taking place. Based on

these details, it can be concluded that higher values of the learning rate would perform

better with a low discount factor of 0.2 than with a high discount factor of 0.8.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Number of Time Steps

A
v
er
ag
e
R
ew

ar
d
s
R
ec
ei
ve
d

alpha = 0.0

alpha = 0.1

alpha = 0.2

alpha = 0.3

alpha = 0.4

alpha = 0.5

alpha = 0.6

alpha = 0.7

alpha = 0.8

alpha = 0.9

alpha = 1.0

Figure 4.6 – Learning performance of dance motions with the discount factor made high (γ = 0.8).

Towards A Framework To Make Robots Learn To Dance

 70

 (2) Results of Exploring the Discount Factor

The discount factor was explored in the same way as the learning rate was explored, by

testing out increasing values of the discount factor against a low learning rate (α = 0.2)

and a high learning rate (α = 0.8). As was carried out above, a record of the average total

occurrence of dance motions over five trials of running the algorithm was kept, with each

trial terminating after 20,000 time steps. Figures 4.7 and 4.8 show the results with a low

learning rate and Figures 4.9 and 4.10 show the results with a high learning rate.

Figure 4.7 shows that an increase in the discount factor, while the learning rate

remained low (α = 0.2), actually made the total occurrence of the dance motions closer

together, decreasing the learning performance of the algorithm. This too can be supported

from the results shown in Figure 4.8 below.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Discount Factor

A
ve
ra
ge

 T
o
ta
l O

cc
u
rr
e
n
ce
 o
f
D
an

ce
 M

o
ti
o
n
s

Dance Motion 1

Dance Motion 2

Dance Motion 3

Dance Motion 4

Figure 4.7 – Average occurrence of dance motions with the learning rate made low (α = 0.2)

Towards A Framework To Make Robots Learn To Dance

 71

Looking at Figure 4.8, performance seemed to improve with smaller values of the

discount factor at a low learning rate of α = 0.2.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Discount Factor

A
ve
ra
ge

 T
o
ta
l O

cc
u
rr
e
n
ce
 o
f
D
an
ce
 M

o
ti
o
n
s

Dance Motion 1

Dance Motion 2

Dance Motion 3

Dance Motion 4

Figure 4.9 – Average occurrence of dance motions with the learning rate made high (α = 0.8).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Number of Time Steps

A
ve
ra
ge

 R
ew

a
rd
s
R
e
ce
iv
e
d

discount factor = 0.0

discount factor = 0.2

discount factor = 0.4

discount factor = 0.6

discount factor = 0.8

discount factor = 1.0

Figure 4.8 – Learning performance of dance motions with the learning rate made low (α = 0.2).

Towards A Framework To Make Robots Learn To Dance

 72

On the other hand, from Figure 4.9, as the discount factor approached a value of

one, the occurrence of the desired dance motion (Dance Motion 1) decreased if the

learning rate remained fixed at a high value of 0.8. Figure 4.10 below supports this

conclusion, showing that the algorithm performs more optimally over time with

decreasing values of the discount factor, and a high value of the learning rate (α = 0.8).

In conclusion, the algorithm showed good results when the discount factor was

low and poor results when set high. Table 4.2 below summarises these results obtained

and shows a ranking of the experiment based on performance, where the best

performance is ranked first place, then the next best performance is ranked second place,

and so on, down to fourth place.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Number of Time Steps

A
ve
ra
ge

 R
ew

ar
d
s
R
e
ce
iv
ed

discount factor = 0.0

discount factor = 0.1

discount factor = 0.2

discount factor = 0.3

discount factor = 0.4

discount factor = 0.5

discount factor = 0.6

discount factor = 0.7

discount factor = 0.8

discount factor = 0.9

discount factor = 1.0

Figure 4.10 – Learning performance of dance motions with the learning rate made high (α = 0.8).

Towards A Framework To Make Robots Learn To Dance

 73

Learning Rate (α) Discount Factor (γ) Result Performance
Ranking

Low Low Good 2

Low High Bad 3

High Low Good 1

High High Bad 4

Table 4.2 – Summary results of Experiment 1

These results were obtained with one state defined and a possibility of choosing

an action from four actions. Setting the learning rate high (α = 0.8) and the discount

factor low (γ = 0.2) seemed to produce a better learning performance compared to the

other combinations explored. Therefore, these parameter values will be used for all

experiments in this research.

4.3.2. Experiment 2: Results & Analysis

For Experiment 2 (bopping to the beat), the performance of the robot on each attempt to

move its head on the beat and the percentage average of selecting the desired behaviour

(on-the-beat) over five trials was recorded. Each trial constituted to a complete run of the

robot bopping its head to the music and consisted of on average 600 time steps of action

selection. Figure 4.11 below shows the result.

Towards A Framework To Make Robots Learn To Dance

 74

 Looking at Figure 4.11, we see that the robot gradually increased the number of

times it selected the optimal action to perform the head movement as the music was

playing. Although 100% optimality was not reached, we can see that this would have

been achieved given that the music had continued playing.

4.3.3. Experiment 3: Results & Analysis

For Experiment 3, recall that the idea was for the robot to learn to perform Dance Motion

2 on the strongest beat intensity (otherwise known as downbeat in this research) detected

and all other dance motions (Dance Motions 1, 3, 4 and 5) to be selected on any of the

weaker beats.

Figure 4.12 below shows the results of Experiment 3. The graph shows the results

of the average rewards received out of the first 600 time steps in five trials (runs) of the

robot’s dance to the music in real time.

Figure 4.11 – Experiment 2 results of learning to select the head movement in real time on
the beat using Sarsa

0%

25%

50%

75%

100%

0 100 200 300 400 500 600

Number of Time Steps

%
 A

v
e

ra
g

e
 o

f
"o

n
-t

h
e

-b
e

a
t"

 s
e

le
c

ti
o

n

Towards A Framework To Make Robots Learn To Dance

 75

The reward that the algorithm could receive after performing dance motions in the

correct states, was one. All other dance motions performed in the wrong states of the

system received a reward of zero. Figure 4.12 shows the robot’s explorative behaviour in

the initial stages leading to a gradual progression in performance as the music continued

playing. Here, the graph shows that it would gradually converge to one, given that the

music had continued playing and the robot was allowed to continue selecting actions.

Figure 4.12 – Experiment 3 results of learning to perform actions on the correct music
states using Sarsa.

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

Number of Time Steps

A
v

e
ra

g
e

 R
e

w
a

rd
s

 R
e

c
e

iv
e

d

Figure 4.13 – Experiment 3 results of learning to perform actions on the correct
states using Sarsa

0

20

40

60

80

100

A
ve

ra
g

e
A

ct
io

n

O
cc

u
rr

en
ce

1 2 3 4 5

Action Number

Downbeat

Other beats

Towards A Framework To Make Robots Learn To Dance

 76

Figure 4.13 specifically shows the average occurrence of the five dance motions on the

detected downbeat and the weaker beats of the music signal. As can be seen from Figure

4.13, on average, dance motions were selected on the correct states.

4.4. Summary

Three simple experiments were carried out to show the working behaviour of

reinforcement learning applied to robot dancing. Their main purposes were to explore

the fundamentals that are necessary for learning in the dancing framework. These

included obtaining the values for learning coefficients, following the beat correctly and

learning to do dance steps on the correct beat intensities. The results demonstrate that

both the Sarsa algorithm and the Softmax algorithm can be used for the learning

framework and action selection respectively.

Whilst this implementation of the reinforcement learning algorithms can be used

to learn desirable behaviours, it does not provide a complete dancing model by itself.

There is more to dancing than demonstrating rhythmic behaviour by using predefined

movements. Dancing requires the formation and coordination of dance steps and

combinations and not just the use of the same actions all the time. Although a simple

solution was explored in Experiment 3, i.e. by selecting different actions to perform on all

beats except the downbeat, the robot was still limited to predefined movements.

Furthermore, these experiments did not consider feedback from human observers. The

next chapter explores the fundamentals necessary for creative and structured dance steps

in robots, followed by learning from human feedback in Chapter 6.

Towards A Framework To Make Robots Learn To Dance

 77

Chapter 5
Generating Dance

The previous chapter shows how it is possible to implement traditional reinforcement

learning to enable the robot learn to perform predefined actions to the beat of the music in

real time. While the use of reinforcement learning in the previous chapter gave the robot

the ability to learn the appropriate dance behaviours, it did not teach the robot how to

generate its own actions and be creative with them. This chapter describes how a robot

can generate its own dance actions (using internally defined positive and negative

reinforcements), which can be grouped together to generate more aesthetically pleasing

dances, whilst dancing to music.

5.1. Methodology

5.1.1. Generating Dance Actions

In the previous chapter, the robots initial training was to learn to perform dance actions to

on-the-beat rhythms, using the underlying structure of the Sarsa algorithm. Rewards were

fixed and pre-assigned throughout the learning process. The approach taken in this stage

of the research begins with the robot only moving to the beat (i.e. not off-the-beat

rhythms) and generating dance actions based on the knowledge described earlier of the

definition of a dance (Chapter 2) and the fundamental movements/ skills (Chapter 2)

necessary for aesthetic display. The aim in this chapter is for the robot to learn to perform

meaningful (human-like) dance actions, as opposed to unrelated movements, which can

be combined to form longer, repetitive sequences in its dancing. To achieve this, the

Towards A Framework To Make Robots Learn To Dance

 78

robot is programmed to randomly choose any number of joint combinations to do on any

beat and is rewarded (or punished) for each selection it makes.

There are three skills (fundamental movements) necessary for the robot to learn.

They are known as Opposite, Symmetry and Formation in this research and are defined as

follows:

 Opposite skill is the movement of opposite joints that are on opposite sides of the

robot’s body moved together in unison. For example, the movement of the left

and right joints or front and behind joints, at the exact same time on a beat.

 Symmetry skill is the movement of the same opposite joints moved one after the

other. In dance literature, symmetry refers to the exact mirroring of the body at

the same time, which is the same definition in this research for Opposite skill

above. However, in this research, Symmetry is used to mean movements that are

mirrored, shortly after each other, for example, on the next beat. In dance

literature, this is known as Canon.

 Formation skill is defined as a “back and forth” motion of joints, for example left

and right movements or upwards and downwards on a beat. This is known as

Form in dance studies.

These definitions are based on the literature reviewed in Chapter 2 and are

initially predefined in the system for the robot to learn. Each accomplished skill is

weighted with fixed reward values (internal to the system) so that after many selections

the robot learns to dance with skilled dance motions only. The robot retains a repertoire

of each newly generated skilled and unskilled dance motion that is created from the

Towards A Framework To Make Robots Learn To Dance

 79

random selection of joints and their directions. This is the basic component of a dance

motion, called a gesture. A gesture is described in this thesis as “the movement of one or

more joints in one direction (the same or different) on one time step”. A time step is the

selection of a dance behaviour typically on a beat. Dance motions are formed when two

sets of gestures are performed on two time steps. These dance motions become “skilled”

when the gestures that make up the dance motions can be classified as either Opposite,

Symmetry or Formation as described above. Opposite skill by definition requires only

one time step. Therefore, with the exception of Opposite dance motions, all dance

motions (skilled or unskilled) require two time steps.

The complete history of generated dance motions performed by the robot is stored

in the action database. The robot performs random gestures on every beat. For each

gesture that is selected, the action database is scanned for dance motions that exactly

match the current and previous gestures selected. If one or more matches of gestures

(current and previous) are found in the action database, then an action will be selected

according the Softmax rule. If no match is found, then the algorithm considers the

selected movement a “new” movement (i.e. because it is not in the action database) and

the gestures form a new dance motion, for the robot to perform and is recorded in the

action database and rewarded accordingly. The decision to choose (explore/ exploit) a

dance motion on each beat is based on the Softmax algorithm, which provides varying

probability values for each dance motion. Figure 5.1 below shows a flow diagram of the

formation of dance motions. This approach is employed so that the robot is guaranteed to

explore new dance behaviours since, on every beat, it randomly chooses gestures to

Towards A Framework To Make Robots Learn To Dance

 80

perform, but would only perform those movements if they were new (i.e. not in the action

database) or according to Softmax.

 Figure 5.1 shows the complex architecture used to generate initial dance motions

for the robot. Each component of the architecture is numbered for the purpose of

explaining the component parts. The robot begins generating motions as soon as a beat is

detected. Once a beat is detected, this is registered as the first time step (process 1). The

robot then selects one or more joints to move in random directions for each joint selected

(process 2). The robot does not perform these gestures but merely temporarily stores

 Figure 5.1– Data flow diagram for developing dance motions

Towards A Framework To Make Robots Learn To Dance

 81

them as a movement it would “like” to do. In order to decide properly, whether or not this

gesture should be performed, the robot must first check its action database to see whether

or not it has performed this gesture before (process 3). If the selection is in the action

database, then the robot would select and perform the dance action according to Softmax.

In other words, there is no guarantee that that particular selection would be performed.

On the other hand, if there is no such history for the selected gesture in the action

database, then the robot performs the behaviour, in order to obtain immediate feedback

on the behaviour and then add the gesture to the action database as an action for future

selections. However, before adding the selection to the action database, the robot must

first check what type of behaviour it is. As described above, dance behaviours consisting

of two gestures performed on two time steps are stored in the action database as dance

motions, with the exception of an Opposite dance motion, which is generated after one

time step. Dance motions that have been generated after two steps can be either skilled or

unskilled in their definition. This is shown in processes 5 – 10 in Figure 5.1.

 In process 8, the robot does a check on the current (t+1th) and previous (tth)

gestures performed to determine their exclusive disjunctions (xor). In other words, a

dance motion is only generated (process 9) if both gestures performed on the tth and

t+1th time steps are either both Opposite skills or not. If the check results to false (i.e.

“No” in Figure 5.1), then a dance motion is generated and this is stored as an action in the

action database (process 10). Both current and previous gestures must be the same type in

order for a dance motion to be generated. Table 5.1 shows the possible logical outcomes

and the equivalent exclusive disjunctive bitwise values after gestures have been

performed on two time steps.

Towards A Framework To Make Robots Learn To Dance

 82

Gt
Gesture Type

Gt+1
Gesture Type

Gt
Bitwise
Value

G t+1
Bitwise
Value

G t xor
Gt+1

Bitwise
Value

Dance
Motion
Type

(Gt xor Gt+1)

Stored In
Action

Database?

Non-Opposite Non-Opposite 0 0 0 Dance
Motion

Yes

Non-Opposite Opposite 0 1 1 Not A Dance
Motion

No

Opposite Non-Opposite 1 0 1 Not A Dance
Motion

No

Opposite Opposite 1 1 0 Dance
Motion

Yes

Table 5.1 – Exclusive disjunctions of gestures to generate dance motions on two time steps. For the last
row, although Opposite gestures form dance motions themselves, when two Opposites have been
performed on two time steps, it’s possible to generate dance motions that contain more than one skill,
producing more interesting movements. See text for details.

 It is possible for non-opposite joints performed on two time steps to form a dance

motion. The final dance motion (Opposite and Opposite) shown in Table 5.1, would

produce very interesting motions. Opposite moves performed after each other does

constitute to a dance motion, but would not be an Opposite dance motion, but rather a

dance motion with a Symmetry skill or a Formation skill. The movement could consist of

opposite joints moved on opposite sides of the body (i.e. Symmetry skill) or the same

joints moved in a “back and forth” motion on two time steps (i.e. Formation skill). This

differs from an Opposite dance motion in that, to achieve an Opposite dance motion,

opposite joints need only be performed on one time step and not two.

This approach generates a series of dance motions that are intertwined and are

related, demonstrating more control in the robot’s autonomous behaviour. Figure 5.2

shows a conceptual view of two examples of the generation of dance motions (DM) on

different time steps (t).

Towards A Framework To Make Robots Learn To Dance

 83

 Figure 5.2a, shows the generation of intertwined dance motions where the most

recent gesture becomes the previous gesture for another dance motion. Figure 5.2b,

shows a mixture of dance motions generated on one and two time steps. DM(t), DM(t+1),

DM(t+2) and DM(t+5) from Figure 5.2b can be representations of Opposite dance motions

generated. Notice here that this type of dance motion is not connected to neighbouring

gestures, but becomes a dance motion performed on its own. However, it is possible for

Opposite gestures (Opposite dance motions), performed one after the other on two time

steps, to form new dance motions (i.e. a dance motion of two Opposites) as described

above in Table 5.1. This produces a rather special case dance motion that has more than

one skill. For example, if DM(t) and DM(t+1) were the same Opposite gestures performed

in opposing directions then this dance motion would be a Formation dance motion

consisting of Opposite gestures. On the other hand, if the gestures were exactly opposite

Figure 5.2– State flow diagram for developing dance motions. a) is an example of dance
motions generated on two time steps. b) is a an example of a series of dance motions generated
on one and two time steps.

Towards A Framework To Make Robots Learn To Dance

 84

to each other on the body, then this would generate a Symmetry dance motion with

Opposite gestures in its definition.

Once a dance motion has been generated, this could be a skilled or an unskilled

dance motion depending on what joints were moved on gesture Gt and gesture Gt+1.

Gestures on their own are not stored in the action database except if they are Opposite

skills, in which case, they are known as Opposite dance motions. However, gestures are

randomly selected (but not necessarily performed) so that new dance combinations can be

explored and generated.

 Steps 1 to 14 in Figure 5.1 describe the robots exploration of “new” dance

behaviours i.e. dance motions that are generated and are not listed in the robot’s action

database. During these steps, the robot autonomously performs a mixture of movements

and generates desirable initial dance motions which are stored in the action database, and

rewarded depending on the dance motion generated.

Steps 15 to 17 are used for both the exploration and exploitation of existing

actions. This is achieved by the Softmax algorithm (process 15).

Towards A Framework To Make Robots Learn To Dance

 85

5.1.2. Structuring A Dance

Whilst it is necessary for the robot to have a repertoire of basic dance motions, this alone

is not sufficient enough for a dance. The dance motions should be arranged in such a way

to demonstrate control and more interesting dance patterns. From Chapter 2, McGreevy-

Nichols et al. (1995) proposed a definition of dance being a build up of basic dance

motions which, when combined, form longer sequences known as a dance phrase and

dance section. Their definition was in relation to the way humans structure and develop

their dancing. It is therefore a logical approach that can be applied to dancing robots and

this chapter makes use of this knowledge.

As described above, a dance motion is generated after two time steps (beats), or in

the case of the Opposite skill, this was after one time step. These dance motions were

then combined to form dance phrases and dance sections in a similar way to the

generation of dance motions. The logic in this research was that, in order for a dance

phrase to be generated, two dance motions would have to be performed sequentially, i.e.

one dance motion immediately following another dance motion. Similarly, to generate a

dance section, dance sections were formed after two dance phrases were performed

sequentially i.e. one dance phrase immediately following another dance phrase. Figure

5.3 shows an illustration of this structure.

Towards A Framework To Make Robots Learn To Dance

 86

Figure 5.3 shows the typical structure of generated patterns that use dance

motions generated after two time steps. It shows that dance motions are generated after

gestures are performed after two steps. Dance phrases require four gestures (or two dance

motions) and dance sections require eight gestures (or two dance phrases). Of course, if

any of the dance patterns (i.e. dance motions, phrases and sections) contain at least one

dance motion that is an Opposite skill, then the length (number of gestures) of each dance

pattern would be less and variable, for example, an Opposite dance motion would result

in a dance phrase of at least two time steps and a dance section would have at least for

time steps.

This build up of dance actions (dance motion; dance phrase or dance section)

forms the robot’s dance into a long continuous series of movements, where each

movement follows from the other. However, each dance motion, dance phrase and dance

section is stored individually as actions in the action database and treated as individual

actions that the robot can select. Each of these is rewarded accordingly and the robot

gradually learns which type of dance pattern (i.e. a dance motion, dance phrase or dance

section) it should do more often.

 Figure 5.3 – Illustration of dance structure where Gt represents gestures performed on time t

Towards A Framework To Make Robots Learn To Dance

 87

The reasoning to implement this dance structure was two-fold. First, this

approach allowed repetitions to occur in the robots dance to a degree similar to human

dance. Second, a smooth transition could be perceived in the dancing that resembled the

way humans dance and organise their motions.

The complete algorithm integrated with reinforcement learning is shown in

Algorithm 5.1 and 5.2 below. Algorithm 5.1 shows the main algorithm used for the

generation of gestures, while Algorithm 5.2 shows the approach taken to structure and

build sequences of the robot’s dance motions in dance phrases and dance sections. With

reference to reinforcement learning, the state of the robot was always on-the-beat (learnt

in Chapter 4) and the action was any selection the robot performed e.g. a dance motion,

dance phrase or dance section. All rewards were internally defined and the robot was

always rewarded immediately after each action.

Towards A Framework To Make Robots Learn To Dance

 88

Algorithm 5.1: Generation Of Dance Actions
__

Initialise parameters

 Sarsa parameters:  asQ , =0, r ={1,2,3}, α=0.8,  =0.2
 Softmax parameters:  =5
Play music
While music is playing

 Choose joints & direction (i.e. gesture,
tG) randomly

 Search
tG in action database (KBaction )

 If
tG is in KBaction  Then

 Select action (
ta) from KBaction  using Softmax

 Perform
ta

 Call Algorithm 5.2
 Else

 Perform gesture (
tG)

 If
tG is an Opposite skill Then

 Add gesture (
tG) to action database (KBaction )

 Update KBaction 

        

1

1

11 ,,,,












tt

tt

tttttttt

aa

ss

asQasQrasQasQ 

 For all state-action pairs (as,) Update Softmax

 
 

 


 n

i

asQ

asQ

tt
it

tt

e

e
as

1

/,

/,

,Pr




 Else

 Cache gesture (
tG)

 Choose joints & direction (
1tG) randomly

 Check
tG and

1tG is an action in KBaction 

 If an action is Formation or Symmetry skill Then

 Select action (
ta) with highest Softmax

 Perform
ta

 Call Algorithm 5.2
 Else

 Add
tG and

1tG to KBaction 

 Update action database (KBaction )

Towards A Framework To Make Robots Learn To Dance

 89

        

1

1

11 ,,,,












tt

tt

tttttttt

aa

ss

asQasQrasQasQ 

 For all state-action pairs (as,) Update Softmax

 
 

 



n

i

asQ

asQ

tt
it

tt

e

e
as

1

/,

/,

,Pr




Algorithm 5.2: Structuring A Dance

1. Check
ta is a Dance Motion (DM) or Dance Phrase (DP) in KBaction 

2. If action
ta is DM or DP Then

3. Check previous action (
1ta) in KBaction 

4. If
1ta not in KBaction  Then

5. tt aa 1

6. Call line 4 of Algorithm 5.1
7. Else

8. Check dance action type (i.e. DM or DP) for both
1ta and

ta

9. If
1ta and

ta are same dance action type Then

10. Check
1ta and

ta are an action (a) in KBaction 

11. If action Then
12. Update action database (KBaction )

         111111 ,,,,   tttttttt asQasQrasQasQ 

13. Else

14. Group
1ta and

ta as an action (
1ta)

15. Write
1ta to KBaction 

16. Update action database

         tttttttt asQasQrasQasQ ,,,, 11  

17. Else
18. Update action database (KBaction )

         111111 ,,,,   tttttttt asQasQrasQasQ 

19. Call line 4 of Algorithm 5.1

