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3Department of Optics, Palacký University, 772 00 Olomouc, Czech Republic
4Institute of Microelectronics, Tsinghua University, Beijing 100084, China

5Tsinghua National Laboratory for Information Science and Technology (TNList), Beijing 100084, China
6Department of Physics, Loughborough University, Loughborough LE11 3TU, United Kingdom

7Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
(Dated: September 23, 2014)

An arbitrary initial state of an optical or microwave field in a lossy driven nonlinear cavity can be changed
into a partially incoherent superposition of only the vacuum and the single-photon states. This effect is known
as single-photon blockade, which is usually analyzed for a Kerr-type nonlinear cavity parametrically driven
by a single-photon process assuming single-photon loss mechanisms. We study photon blockade engineering
via a nonlinear reservoir, i.e., a quantum reservoir, where only two-photon absorption is allowed. Namely, we
analyze a lossy nonlinear cavity parametrically driven by a two-photon process and allowing two-photon loss
mechanisms, as described by the master equation derived for a two-photon absorbing reservoir. The nonlinear
cavity engineering can be realized by a linear cavity with a tunable two-level system via the Jaynes-Cummings
interaction in the dispersive limit. We show that by tuning properly the frequencies of the driving field and the
two-level system, the steady state of the cavity field can be the single-photon Fock state or a partially incoherent
superposition of several Fock states with photon numbers, e.g., (0,2), (1,3), (0,1,2), or (0,2,4). At the right (now
fixed) frequencies, we observe that an arbitrary initial coherent or incoherent superposition of Fock states with
an even (odd) number of photons is changed into a partially incoherent superposition of a few Fock states of
the same photon-number parity. We find analytically approximate formulas for these two kinds of solutions for
several differently-tuned systems. A general solution for an arbitrary initial state is a weighted mixture of the
above two solutions with even and odd photon numbers, where the weights are given by the probabilities of
measuring the even and odd numbers of photons of the initial cavity field, respectively. This can be interpreted
as two separate evolution-dissipation channels for even and odd-number states. Thus, in contrast to the standard
predictions of photon blockade, we prove that the steady state of the cavity field, in the engineered photon
blockade, can depend on its initial state. To make our results more explicit, we analyze photon blockades for
some initial infinite-dimensional quantum and classical states via the Wigner and photon-number distributions.

PACS numbers: 42.50.Dv, 42.50.Gy, 42.50.Lc

I. INTRODUCTION

The progress in realizing macroscopic quantum coherent
states in a variety of systems (in particular, involving super-
conducting devices [1]) makes many recently purely academic
problems very relevant for experimental research. Some such
problems are related to the interaction of photons in a cav-
ity with non-standard reservoirs (e.g., reservoirs with en-
tanglement). In this paper we consider the case of a two-
photon absorbing reservoir [2–15] coupled to a nonlinear cav-
ity. Such a system can be realized, e.g., in the microwave
range, using a superconducting quantum interference device
(SQUID) [7, 16]. A general framework of two- and multi-
photon dissipating models, within the Lindblad master equa-
tions, was recently described in Ref. [15]. It is worth noting
that in the years 2010s there has been a renaissance of interest
in quantum-reservoir engineering (also known as dissipation
engineering) (see, e.g., Refs. [7, 13–23]), which might be con-
sidered a new paradigm not only for quantum state engineer-
ing but even for universal quantum computation [22]. Here we
show how to realize photon blockade (PB) via a two-photon
absorbing reservoir.

The term PB corresponds to the interpretation that a single
photon in a nonlinear cavity can block the transmission of a

second photon. Thus PB can be considered a photonic analog
of solid-state blockades including phonon blockade [24] for
quantum oscillations of nanomechanical resonators, the cele-
brated Coulomb blockade observed in single-electron tunnel-
ing experiments, or the related Pauli spin blockade of elec-
tron transport due to spin correlations. A detailed comparison
showing the equivalence between the photon and Coulomb
blockades was given recently in Ref. [25]. We also note
that, e.g., PB can be used to demonstrate the occurrence of
phonon blockade in optomechanical systems in the microwave
regime [26], where both photon-photon and phonon-phonon
interactions are induced by a qubit (real or artificial two-level
atom).

In the last two decades there has been considerable the-
oretical and experimental interest in generating nonclassical
light via PB [27] in strongly coupled systems in cavity quan-
tum electrodynamics (QED) [28–34], and more recently also
in circuit QED [25, 26, 35, 36] and quantum optomechan-
ics [37–40]. PB was demonstrated experimentally, e.g., in
an optical cavity with a single trapped atom [41], in a pho-
tonic crystal cavity with a quantum dot [42], and in microwave
transmission-line resonators with a single superconducting ar-
tificial atom [35, 36]. Photon-induced tunneling, experimen-
tally demonstrated in Refs. [34, 42, 43], can also be explained
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in terms of PB. Closely related experiments [44, 45] demon-
strated an observable optical nonlinearity (photon-photon in-
teraction) induced by a single atom in a cavity. Photon block-
ade was also studied in the context of single-photon turnstile
devices [27]. For example, Ref. [46] reports an experimen-
tal photon turnstile device dynamically controlled by a sin-
gle atom in a microscopic optical resonator. The usual ex-
perimental realizations of single-photon turnstile devices are
based on Coulomb blockade in various semiconductor sys-
tems [32] (see Ref. [47] for a review). Finally, it is worth
noting that typical optical nonlinearities require strong light
and macroscopic media. The above-cited impressive experi-
ments, which can be considered as landmarks in quantum and
atom optics, showed the possibility to induce and apply opti-
cal nonlinearities at the level of a single atom and one or few
photons.

Photon-photon interactions induced by a two-level system
in a linear cavity can be effectively described as a Kerr non-
linearity. The occurrence of nonstationary PB in such Kerr
nonlinear cavity was predicted in Ref. [48], and then studied
in various single-mode [49–51] and two-mode [52, 53] mod-
els. It should be stressed that all these works discuss only the
short-time evolution of dissipation-free or sometimes dissipa-
tive nonlinear systems, so the predicted effects can be referred
to as nonstationary PB. This is the opposite of the standard
description of PB effects, which are only considered in the
steady-state limit. We also note that this nonstationary Kerr-
based PB is often referred to as a nonlinear optical-state trun-
cation or nonlinear quantum scissors (see reviews [54, 55]).
By contrast, the effects of a linear optical-state truncation or
linear quantum scissors [56] are based on linear systems and
conditional measurements.

Nonclassical light generated via the standard single-photon
blockade [27, 48] is a partially incoherent superposition of the
vacuum and single-photon states. Recently, the occurrence of
two-photon blockades was predicted, where the transmission
of more than two photons can be effectively blocked by single-
and two-photon states [57]. Thus, the generated nonclassical
light is a partially incoherent superposition of the n-photon
states for n = 0, 1, 2. This approach can be further general-
ized for multiphoton blockades [57, 58].

In all these PB phenomena, the generated state of light was
independent of its initial state. Here we describe nonclassical
light, generated via a generalized PB, which can be sensitive
to its initial state, thus providing an additional method of its
(limited) measurement.

Namely, we predict here the occurrence of photon block-
ades in Kerr nonlinear systems driven by a two-photon process
and dissipating by a two-photon absorption. We will show that
there is no mixing of number states of different parity during
the evolution of such Kerr nonlinear systems. Thus, this evo-
lution can be described by two solutions obtained for separate
Hilbert spaces spanned either by even- or odd-number states.
By considering only initial states of the same parity, the steady
state does not depend on the initial photon statistics. However,
the general solution for an initial state, which is a superposi-
tion of the even- and odd-number Fock states, is a weighted
mixture of the above two solutions for different parities. The

weights are determined by the probabilities of measuring the
even and odd photon numbers of the initial field, respectively.
Thus, even this simple analysis reveals that the steady state
can depend on the initial state, although in this limited man-
ner. We will discuss this problem in detail in this work.

We will study photon-number statistics and a phase-space
description to compare various PB effects. In particular, we
will apply the standard Wigner function which, for a given
state ρ̂, is defined by [59]:

W (β) ≡W (q, p) =
1

π

∫
〈q − x| ρ̂ |q + x〉 exp (2ipx) dx,

(1)
where q = Reβ and p = Imβ are the canonical position
and momentum operators, respectively. The Wigner function
for the nonclassical states generated in PB can be experimen-
tally reconstructed by quantum state tomography [60] or even
directly measured by applying the method of Ref. [61]. The
power of the latter method was demonstrated experimentally
for the superpositions of a few photons in cavity QED [62]
and circuit QED [63] systems.

The paper is organized as follows. Engineered photon
blockade is studied in the model described in Sec. II. In par-
ticular, by applying the Jaynes-Cummings model with a two-
photon drive in the dispersive limit, we derive an effective
Hamiltonian describing a driven Kerr-type nonlinearity. In
Sec. III, we present analytical solutions describing nonstation-
ary photon blockades and Rabi-type oscillations for the model
without dissipation. In Sec. IV and Appendix A, we find and
analyze steady-state solutions of a master equation describing
the two-photon loss mechanism. We discuss in Sec. V how
photon blockade depends on specific initial fields. We sum-
marize our main results in the concluding section.

II. KERR NONLINEARITY WITH TWO-PHOTON DRIVE

Here we derive an effective interaction model, describing
a Kerr-type nonlinearity driven by a two-photon process. We
start from the driven Jaynes-Cummings (JC) model in the dis-
persive limit.

We analyze a two-level system (qubit), with a tunable tran-
sition frequency ωq, interacting with a cavity mode, with fre-
quency ωcav, via the Jaynes-Cummings (JC) model, described
by the Hamiltonian ĤJC . We assume that the cavity field
is parametrically driven by a two-photon process (with fre-
quency ωd), described by the Hamiltonian Ĥd. Thus, the total
Hamiltonian Ĥ for our system, including the free Hamiltonian
Ĥ0 for the qubit and the cavity field, can be given as follows:

Ĥ = Ĥ0 + ĤJC + Ĥd, (2)

Ĥ0 = ~ωcavâ
†â+ ~ωq

σ̂z
2
, (3)

Ĥ
JC

= ~g(â†σ̂− + âσ̂+), (4)

Ĥd = ~ε0[â2eiωdt + (â†)2e−iωdt]. (5)

Here, g is the qubit-field coupling strength, ε0 is a driving
field strength, for simplicity, assumed to be positive; â (â†)
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is the annihilation (creation) operator of the cavity mode; the
spin operators are σ̂z = |g〉〈g| − |e〉〈e|, σ̂+ = |e〉〈g|, and
σ̂− = |g〉〈e|, where |g〉 (|e〉) is the ground (excited) state of
the qubit.

We analyze the Jaynes-Cummings interaction in the disper-
sive limit, which occurs if the absolute value of the detuning
∆ = ωq−ωcav is much larger than the qubit-field coupling g,
i.e., we assume |λ| � 1 for the parameter λ = g/∆.

Following the approach of Ref. [64], one can apply the
transformation U = exp[−f(λ)(â†σ̂− − âσ̂+)] to the Hamil-
tonian Ĥ , and expand the transformed Hamiltonian Ĥ ′ in
power series of λ, which results in

Ĥ ′ = Û†ĤÛ = ~ω′cavâ†â+ ~ω̂′q
σ̂z
2

+ ~χâ†â(â†â− 2)σ̂z + Ĥ ′d +O(λ4). (6)

Here, ω′cav = ωcav + χ, ω̂′q = ωq − η + 2(2χ − η)â†â,

η = −gλ(1− λ2), and χ = −gλ3 is a Kerr-type nonlinearity
coupling. Note that χ > 0 if ωcav > ωq. Moreover, f(λ)

is given explicitly in Ref. [64], while Ĥ ′d = Û†ĤdÛ will be
specified below. By assuming that the qubit is in its ground
state, we have

〈g|Ĥ ′|g〉 = ~(ωcav + 3χ− η)â†â+ ~χâ†â(â†â− 2)

+ Ĥ ′d + 1
2 (ωq − η) +O(λ4). (7)

The annihilation operator transforms as [64]:

â′ = U†âÛ = âx̂+ λŷσ̂− + λ3â2σ̂+ +O(λ4), (8)

where x̂ = 1 + λ2σ̂z/2 and ŷ = 1 − 3λ2(â†â + 1/2). By
transforming the driving interaction Ĥd according to this ex-
pansion of â′, and assuming the qubit to be in its ground state,
we find that

Ĥ ′d = ~ε[â2eiωdt + (â†)2e−iωdt] +O(λ4), (9)

where ε = (1+λ2)ε0. We note that by assuming that the qubit
is in its excited state, then it would be ε = (1−λ2)ε0. Now we
apply another unitary operation Ûrot = exp[−i(ωd/2)â†ât],
which transforms the Hamiltonian Ĥ ′ into

Ĥ ′′ = Û†rotĤ
′Ûrot − i~Û†rot

∂

∂t
Ûrot. (10)

Here we also use the following operator-algebra theo-
rems [65]: âf̂(â†â) = f̂(â†â + 1)â and f̂(â†â)â† =

â†f̂(â†â + 1), which are valid for any function f̂ of â†â.
Then it is easy to observe that the time-dependent Hamilto-
nian Ĥ ′d is transformed by Ûrot into the time-independent one
Ĥ ′d ≈ ~ε(â2 + â†2) − ~(ωd/2)â†â. Thus, in this rotating
frame, we arrive at the following time-independent effective
Hamiltonian:

〈g|Ĥ ′′|g〉 = Û†〈g|Ĥ ′|g〉Û = Ĥs +O(λ4) (11)

with

Ĥs(Ω02,Σ02) = ~Ω02â
†â+ ~χâ†â(â†â− 2)

+~ε[â2 + (â†)2] + ~Σ02, (12)

where

Ω02 = ωcav + 3χ− η − 1
2 ωd,

Σ02 = 1
2 (ωq − η). (13)

These frequencies Ω02 and Σ02 can be simultaneously equal
to zero by properly changing the detuning ∆ (i.e., the qubit
transition frequency ωq or, equivalently, the cavity frequency
ωcav) and the classical driving-field frequency ωd. Thus, un-
der the above conditions, the effective Hamiltonian describing
our system, referred here to as Model 1, is given by

Ĥ02 = Ĥs(Ω02 = 0,Σ02 = 0)

= ~χâ†â(â†â− 2) + ~ε(â†2 + â2) (14)

depending on the driving field strength ε and the Kerr nonlin-
ear coupling χ. One can also rearrange terms in Eq. (12) to
obtain the following Hamiltonian

Ĥs(Ωkl,Σkl) = ~Ωklâ
†â+ ~χ(â†â− k)(â†â− l)

+~ε[â2 + â†2] + ~Σkl, (15)

where

Ωkl = ωcav + (k + l + 1)χ− η − 1
2 ωd,

Σkl = 1
2 (ωq − 2klχ− η). (16)

Analogously to the former case, one can avoid the contribu-
tion of the terms proportional to the frequencies Ωkl and Σkl

by properly changing the detuning ∆ and the driving-field fre-
quency ωd. This results in the following Hamiltonian

Ĥkl =Ĥs(Ωkl = 0,Σkl = 0)

=~χ(â†â− k)(â†â− l) + ~ε(â2 + â†2). (17)

Hereafter, we specify the Hamiltonian in Eq. (17) to the
two special cases of Ĥ13 (referred to as Model 2) and Ĥ02

(Model 1) in our analytical approaches and numerical simu-
lations shown in Figs. 1–13. For clarity, we will usually ex-
plicitly denote by ρ̂kl, the state generated by the action of the
corresponding Hamiltonian Ĥkl.

This Kerr nonlinear oscillator driven by a two-photon (or
two-phonon) process is sometimes referred to as the Cassinian
oscillator, since its classical phase-space trajectories are the
ovals of Cassini (see, e.g., Ref. [66] and references therein).
Various realizations of the Cassinian oscillator have been pro-
posed. In our context, the most promising implementations
seem to be those based on SQUIDs [7, 16, 67].

In particular, Ref. [67] reports the experimental realization
of a parametric phase-locked oscillator (PO), also referred to
as a parametron. It is composed of a dc SQUID and a super-
conducting coplanar waveguide linear resonator at a static res-
onant frequency ωPO

0 . The SQUID, which is formally equiv-
alent to a qubit, introduces a Kerr-type nonlinearity (as de-
scribed by the nonlinearity parameter χ′) into the system.
Thus, the PO can be described as an anharmonic oscillator.
The driving microwave field, at a frequency ωp, is applied to a



4

TABLE I: Comparison of various kinds of photon blockades assuming m driving photons and d dissipating photons (due to absorption), with
d,m = 1, 2. In particular, it is seen that the steady states of these photon blockades can depend on the initial states only for d = m > 1. Our
illustrations of the steady states include their Wigner functions and photon-number probabilities. Note that standard PB [27] is usually studied
in Model 3.

Model Hamiltonian Eq. Kerr m-photon d-photon initial state populated state examples
nonlinearity driving dissipation Fock statesa dependence

1 Ĥ02 (14) n̂(n̂− 2) m = 2 d = 2 even-number state |0〉, |2〉 no Figs. 6(a,b)
odd-number state |1〉 no Figs. 6(c,d)
mixed-parity stateb |0〉, |1〉, |2〉 yes Fig. 10

2 Ĥ13 (17) (n̂− 1)(n̂− 3) 2 2 even-number state |0〉, |2〉, |4〉 no Figs. 7(a,b)
odd-number state |1〉, |3〉 no Figs. 7(c,d)
mixed-parity stateb |0〉, |1〉, |2〉, |3〉, |4〉 yes Fig. 11

3 Ĥusual (20) n̂(n̂− 1) 1 1 any |0〉, |1〉 no Figs. 14(a,b)
3’ Ĥusual (20) n̂(n̂− 1) 1 2 any |0〉, |1〉 no Figs. 14(a,b)
4 Ĥ ′

usual (21) n̂(n̂− 2) 1 1 any |0〉, |1〉, |2〉 no Ref. [57]
5 H01 (17) n̂(n̂− 1) 2 1 any |0〉 no Figs. 14(c,d)

aThe steady states generated via PB are partially incoherent superpositions
of these Fock number states.

bThis can be a superposition or mixture of the even- and odd-number Fock
states.

pump line being inductively coupled to the SQUID. This driv-
ing field modulates the resonant frequency around ωPO

0 . The
static system Hamiltonian reads [67]:

Ĥsys(t) = ~ωPO
0

[
â†â+ ε̄ cos(ωdt)(â+ â†)2

]
+~χ′(â+ â†)4,

(18)
where â is the annihilation operator of the resonator, while
ωd and ε̄ stand for the frequency and strength of the paramet-
ric modulation, respectively. We rewrite this Hamiltonian in
normal order. We also transform it into a rotating frame by
applying the unitary operation Ûrot = exp[−i(ωd/2)â†ât],
according to Eq. (10), and omit both the rapidly oscillating
and constant terms. Thus, one finally obtains the following
approximate Hamiltonian

H ′sys(t) = ~Ω′a†a+ ~ε′
(
a2 + a†2

)
+ ~(6χ′)a†a(a†a− 1),

(19)
where Ω′ = ωPO

0 + 12χ′ − ωd/2 and ε′ = ωPO
0 ε̄/2. At the

resonant condition Ω′ = 0, one obtains the Hamiltonian of the
Supplement of Ref. [67] corresponding to our Hamiltonian
H01, which is a special case of Eq. (17) for χ = 6χ′ and
ε = ε′. The general Hamiltonian Hkl, given by Eq. (17), with

k, l = 0, 1, 2..., is obtained by properly choosing ωd to satisfy
the condition Ω′ + 6(k + l − 1)χ′ = 0.

For a comparison, it is worth noting that the standard pre-
dictions of photon blockade were reported for systems de-
scribed by the following Hamiltonian [27, 48]

Ĥusual =~χâ†â(â†â− 1) + ~ε(â+ â†), (20)

referred here to as Model 3, assuming a single-photon driving,
as described by the last term. Only for a brief comparison, we
show the solutions for Ĥ01 and Ĥusual in Fig. 14.

Let us also briefly consider the case when the frequency of
the single-photon driving field ωd is equal to the sum of the
Kerr nonlinearity χ and the cavity resonance frequency ωcav.
Then, as shown in Ref. [57], Eq. (20) can be replaced by

Ĥ ′usual =~χâ†â(â†â− 2) + ~ε(â+ â†), (21)

referred here to as Model 4, which can lead to two-photon
blockade (two-photon state truncation) if ε� χ.

For the benefit of the reader, the various models defined
here are listed in Table I.

III. NONSTATIONARY PHOTON BLOCKADES AND
RABI-TYPE OSCILLATIONS

Here we briefly describe the evolution of the systems de-
scribed by Models 1 and 2 for some initial Fock states assum-
ing no dissipation. These evolutions lead to time-dependent
PB (or nonstationary PB), which can also be interpreted as an
optical-state truncation.

Assuming that the driving field strength ε is much weaker

than the Kerr nonlinearity χ, one can find that the pure-state
evolution of the system, described by the Hamiltonian Ĥ02

(Model 1), from the initial Fock states |0〉 and |2〉 can be
approximately given as follows

|ψ(0)
02 (t)〉 ≈ cos(

√
2εt) |0〉 − i sin(

√
2εt) |2〉,

|ψ(2)
02 (t)〉 ≈ −i sin(

√
2εt) |0〉+ cos(

√
2εt) |2〉, (22)

respectively. These solutions are in a very good agreement
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FIG. 1: (Color online) Model 1: Dissipation-free evolution of
the photon-number probabilities pn(t) = |〈n |ψ(m)

02 (t)〉|2 and the
photon-blockade fidelities F (t) =

∑
n pn(t) for the Hamiltonian

Ĥ02, given by Eq. (14), for several initial Fock states |m〉 (as indi-
cated in the panel titles). We set ε = χ/6 = 5. Panels (a) and (c)
show Rabi-type oscillations between the levels |0〉 and |2〉, if at least
one of them is initially populated. Rabi-type oscillations are not ob-
served if the other levels are the only initially populated states, such
as |1〉 and |3〉, as shown in panels (b) and (d), respectively. These
results have a simple physical explanation in terms of the resonances
shown in Fig. 2.

FIG. 2: (Color online) Model 1: Explanation of the occurrence of
photon blockade via the energy levels of the Hamiltonian Ĥ corre-
sponding to Ĥs(Ω02 = Ω,Σ02 = 0), given by Eq. (12), in the limit
of a very small driving strength, ε � χ. The Kerr-nonlinear term,
proportional to χ, changes the harmonic spectrum (shown in the left
spectrum) into an anharmonic non-equidistant one (right side) with
En+1 − En 6= const, where En = n~Ω + n(n − 2)~χ (with
n = 0, 1, ...) are the eigenvalues of the Hamiltonian Ĥ . It is seen
that the two-photon transitions between the levels |0〉 and |2〉 (shown
by a solid double arrow in the right spectrum) can be induced by a
driving field with frequency ωd = (E2 − E0)/~ = 2Ω, which is
the same as for the harmonic system. The other transitions between
the levels, e.g., |1〉 and |3〉, as well as |2〉 and |4〉 (as shown by the
dashed double arrows) are off-resonance with Ω or its multiples.

FIG. 3: (Color online) Model 2: Same as in Fig. 1, but for the prob-
abilities pn(t) = |〈n |ψ(m)

13 (t)〉|2 obtained for the Hamiltonian Ĥ13,
given by Eq. (17) with k = 1, l = 3. Panel (a) [(b) and (d)] show
Rabi-type oscillations between the levels |0〉 and |4〉 ( |1〉 and |3〉),
if at least one of these levels is initially populated. Rabi-type oscil-
lations are not observed if the other levels are the only ones, which
are initially populated, such as |2〉, shown in panel (c). The physi-
cal meaning of these results, analogously to those in Fig. 1, can be
simply understood in terms of the resonances shown in Fig. 4.

FIG. 4: (Color online) Model 2: Same as in Fig. 2, but for the
Hamiltonian Ĥ corresponding to Ĥs(Ω13 = Ω,Σ13 = 0), given
by Eq. (15) with k = 1, l = 3 assuming ε � χ. Here the two-
photon (four-photon) transitions between the levels |1〉 and |3〉 (|0〉
and |4〉), shown by solid double arrows in the right spectrum, can be
induced by a driving field with frequency ωd = (E3 −E1)/~ = 2Ω
[ωd = (E4 − E0)/~ = 4Ω], which are the multiples of the same
frequency Ω of the harmonic system.

with the precise numerical solutions plotted in Figs. 1(a)
and 1(c). In the derivation of Eq. (22), we have ignored
the contribution of (ε/χ)2. The solution |ψ(0)

02 (t)〉 can be
referred to as a three-dimensional squeezed vacuum [49] or
qutrit squeezed vacuum.

The solutions in Eq. (22) can be interpreted as Rabi-type
oscillations between the states |0〉 and |2〉 in an artificial
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two-level system dynamically truncated (or generated) from
the infinite-dimensional anharmonic system described by the
Hamiltonian Ĥ02 for ε � χ. Thus, this phenomenon cor-
responds to a two-photon blockade, where the excitation of
more than two photons is prohibited [57]. The evolutions
shown in Figs. 1(b) and 1(d) are practically negligible. This
photon blockade can be physically understood via the en-
ergy spectrum and resonances shown in Fig. 2. Note that our
model, which leads to two-photon blockade induced by two-
photon driving, differs from that in Ref. [57], where a single-
photon driving was assumed. We also mention that the state
|2〉 in the solution |ψ(0)

13 (t)〉 is not populated, which is in con-
trast to the dissipative evolution analyzed in the next section
(see Table I for comparison).

The dissipation-free system, given by the Hamiltonian Ĥ13

(Model 2), evolves from the initial Fock states |m〉 (for m =
0, 1, 3, 4) as follows:

|ψ(0)
13 (t)〉 ≈ cos( 1

5εt) |0〉 − i sin( 1
5εt) |4〉,

|ψ(1)
13 (t)〉 ≈ cos(

√
6εt) |1〉 − i sin(

√
6εt) |3〉,

|ψ(3)
13 (t)〉 ≈ −i sin(

√
6εt) |1〉+ cos(

√
6εt) |3〉,

|ψ(4)
13 (t)〉 ≈ −i sin( 1

5εt) |0〉+ cos( 1
5εt) |4〉, (23)

respectively. These are relatively good approximations of
our precise numerical solutions plotted in Figs. 3(a), 3(b),
and 3(d). In the derivations of these approximate solutions
for |ψ(n)

13 (t)〉, the same as for |ψ(n)
02 (t)〉, the contribution of

(ε/χ)2 was omitted.
We interpret the solutions in Eqs. (23) analogously to those

in Eqs. (22), i.e., as generalized two-photon (four-photon)
blockades and Rabi-type oscillations between the states |1〉
and |3〉 ( |0〉 and |4〉) in an artificial two-level system dy-
namically truncated from the infinite-dimensional system of
the Hamiltonian Ĥ13 if ε � χ. The contributions of other
Fock states are practically negligible, as seen in Figs. 3. These
phenomena can be easily understood by analyzing the energy
spectra and resonances shown in Fig. 4.

For a comparison, we also recall the well-known approxi-
mate solutions for the pure-state evolutions, under the interac-
tion described by the Hamiltonian Ĥusual [48]:

|ψ(0)
usual(t)〉 ≈ cos(εt) |0〉 − i sin(εt) |1〉,

|ψ(1)
usual(t)〉 ≈ −i sin(εt) |0〉+ cos(εt) |1〉, (24)

assuming the initial vacuum and single-photon states, respec-
tively. These solutions can be interpreted as single-photon
blockade in the dissipation-free regime and two-dimensional
(or qubit) coherent states [68].

IV. STEADY-STATE PHOTON BLOCKADES VIA
TWO-PHOTON DISSIPATION

Here we explain in detail the occurrence of various kinds
of steady-state engineered PB effects, when the systems de-
scribed by the Hamiltonians Ĥ02 and Ĥ13 are affected by two-
photon loss mechanisms, as schematically shown in Fig. 5.

FIG. 5: (Color online) An intuitive explanation of the engineered
photon blockades in Models 1 and 2 with two-photon dissipation,
and the standard photon blockade in Model 3 with single-photon
dissipation. The diagrams schematically show the energy levels of
three Kerr-type nonlinear systems driven by a classical field with
frequency ωd in resonance with the desired transitions, as shown
in Fig. 2 for Model 1 and Fig. 4 for Model 2. The red ellipses
with arrows describe these [(a),(b)] two-photon and (c) single-photon
drivings, together with the Rabi-type oscillations between the corre-
sponding levels. The systems are described by the Hamiltonians: (a)
Ĥ02, given by Eq. (14), (b) Ĥ13, given by Eq. (17) for k = 1, l = 3,
and Ĥusual, given by Eq. (20). The system dissipation is governed
by the master equations describing either [(a), (b)] two-photon or (c)
single-photon absorption for γ � ε � χ. The numerous green sin-
gle arrows pointing down describe these dissipations (absorptions).
These figures intuitively explain the occurrence of several kinds of
the engineered photon blockades, as well as two independent evolu-
tions of the initial Fock states with even and odd numbers of photons
for Models 1 and 2. This implies that the engineered PB effects in
panels (a,b) can depend on the initial state of a cavity, although in a
limited way, as they depend solely on the ratio of the probabilities
of measuring the photon numbers of different parity. In contrast to
this, the steady state generated in standard PB, as shown in (c), is
independent of the cavity initial state.

A. Master equation describing two-photon absorption

We assume that the system (s), described by the Hamilto-
nian Ĥkl, is coupled to an engineered reservoir (r) via two-
photon processes (see, e.g., Refs. [2–15]) as described by
Ĥ = Ĥs + Ĥr + Ĥsr, where

Ĥsr = ~gsr[â2Γ̂† + (â†)2Γ̂], (25)

and Ĥr can be given, depending on the physical realization,
by, e.g., ~

∑
n ωnσ̂

(n)
z or ~

∑
n ωnâ

†
nân, while the collec-

tive reservoir annihilation operator Γ̂ is given by
∑

n σ̂
(n)
− or∑

n ân, respectively. Moreover, gsr is the system-reservoir
coupling strength; ωn is the frequency of the nth mode of
the reservoir, σ̂(n)

z and σ̂(n)
− are the spin operators for the nth

qubit, defined analogously to those below Eq. (5), and ân(â†n)
is the annihilation (creation) operator of the nth mode of the
reservoir. Thus, the evolution, under the Markov approxi-
mation, of the reduced density matrix for the system can be
given by the following two-photon-absorption master equa-
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tion in the Lindblad form assuming zero temperature of the
reservoir [2, 3, 5, 12],

dρ̂

dt
= Lρ̂ ≡ − i

~
[Ĥs, ρ̂] + γD[â2]ρ̂, (26)

where the superoperator D is defined by D[L̂]ρ̂ = L̂ρ̂L̂† −
1
2 (L̂†L̂ρ̂ + ρ̂L̂†L̂), and L is sometimes referred to as the Li-
ouvillian (or Lindbladian) superoperator. Moreover, γ = γ2
is the two-photon damping constant (two-photon decay rate).

It is worth noting that a single-mode squeezed state can be
generated by this two-photon absorption process via pure dis-
sipation [3]. This can be readily concluded by noting that the
Hamiltonian in Eq. (25) corresponds to a prototype squeez-
ing Hamiltonian in the parametric approximation, when the
collective reservoir operator Γ̂ is treated classically. Thus,
Eq. (26) can be considered a master equation obtained for
a squeezing-generating reservoir. Note that this equation is
completely different from the standard master equation for
an amplifier whose reservoir consists of squeezed white noise
(squeezed-vacuum reservoir) [69].

A more general form of the master equation can read [7]

dρ̂

dt
= L′ρ̂ = − i

~
[Ĥs, ρ̂] + γ⊥D[â†â]ρ̂+ γ1D[â]ρ̂+ γ2[â2]ρ̂,

(27)
to include also single-photon absorption with its decay rate γ1,
and pure dephasing with its rate γ⊥, in addition to two-photon
absorption. Note that it is still assumed in this equation that
the reservoir is at zero temperature, so there is no transfer of
reservoir fluctuations into the system.

Our former studies [24, 57] showed that the standard re-
alizations of photon blockade can be very sensitive to these
thermal fluctuations. Nevertheless, for simplicity, we apply
here the zero-temperature master equations, given by Eq. (26)
or, equivalently, by Eq. (27) assuming that

0 ≈ γ⊥ ≈ γ1 � γ2 � ε� χ. (28)

In order to visualize the steady-state solutions of the two-
photon-loss master equation, given by Eqs. (26), we plot
their Wigner functions and photon-number probabilities pn =
〈n|ρ̂ss|n〉 in Figs. 6–13. Moreover, Fig. 14 shows analogous
solutions of the single-photon-loss master equation, given in
Eq. (27) assuming that the single-photon decay rate γ1 is dom-
inantly larger than the two-photon decay rate γ2 and the de-
phasing rate γ⊥.

B. Steady-state solutions of the master equation

Now we present our precise numerical and approximate an-
alytical steady-state solutions of the two-photon absorption
master equation, given by Eq. (26), to show explicitly how
photon blockade in the discussed engineered reservoir de-
pends on initial states.

Steady-state solutions ρ̂ss can be obtained by solving the
master equation, given in Eqs. (26) and (27), with the con-
dition d

dt ρ̂ss ≡
d
dt ρ̂ = 0, by using, e.g., the inverse power

method (as implemented, e.g., in Ref. [70]) or by a direct in-
tegration, for long enough evolution times: ρ̂ss = ρ̂(t → ∞).
All our numerical results, shown in Figs. 6–14, are based on
these two equivalent methods. We also applied an analytical
approach of finding approximate solutions of the master equa-
tion, given in Eq. (26), as described below.

We assume that the ratio of the driving field strength ε
and the Kerr nonlinear coupling χ, and the ratio of χ and
the damping constant γ are small, i.e., δ = ε/χ � 1 and
δ′ = γ/ε � 1. Thus, we can analyze the cavity-field Hilbert
space of a small dimension. For example, let us truncate
the Hilbert space at the five-photon Fock state, which corre-
sponds to analyzing a six-dimensional Hilbert space. We have
obtained numerically a very good agreement between our
numerical solutions in the six- and 100-dimensional Hilbert
spaces for the parameters chosen in all figures.

In order to find compact-form analytical solutions, we ex-
panded our lengthy and complicated solutions (which are not
presented here) in power series of δ and δ′, and keeping linear
and quadratic terms only.

First, let us assume the initial state of our system is an even-
number state, i.e.,

ρ̂0,even =

∞∑
m=1

pm |ψm〉〈ψm| , |ψm〉 =

∞∑
n=0

c(m)
n |2n〉,

(29)
with arbitrary probabilities pm and complex amplitudes
c
(m)
n , satisfying the normalization conditions

∑
m pm =∑

n |c
(m)
n |2 = 1, for m = 1, 2, ... . Then we find the steady-

state solutions of the master equation, given by Eq. (26), for
the system described by the Hamiltonians Ĥ02 and Ĥ13, to be
given, in the standard Fock basis, by

ρ̂evenss ≈



p 0 a+ ib 0 c+ id 0

0 0 0 0 0 0

a− ib 0 q 0 e+ if 0

0 0 0 0 0 0

c− id 0 e− if 0 r 0

0 0 0 0 0 0


(30)

in terms of the coefficients given explicitly in Appendix A. By
further assuming that δ2 ≈ δ′2 ≈ δδ′ ≈ 0 then r ≈ c ≈ d ≈
f = 0 for Model 1 [see Eqs. (A1) and (A2)]. Thus, it is seen
that the steady state, which can be generated in this model,
assuming that the cavity field is initially in an even-number
state, is a partially incoherent superposition of effectively only
two number states, |0〉 and |2〉, while for Model 2, the steady
state is spanned by the number states |0〉, |2〉, and |4〉. See
Table I for comparison.

Now we assume that the initial state of our system is an
odd-number state, i.e.,

ρ̂0,odd =

∞∑
m=1

pm |ψm〉〈ψm| , |ψm〉 =

∞∑
n=0

c(m)
n |2n+ 1〉,

(31)
for any pm and c(m)

n , as in Eq. (29). Then the steady-state
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FIG. 6: (Color online) Model 1 with two-photon dissipation: (a,c)
The Wigner functions W (β) and (b,d) the photon-number probabil-
ities pn for the steady-state solutions ρ̂02ss of the master equation (26)
with the Hamiltonian Ĥ02, given by Eq. (14), assuming the cavity
field to be initially in an arbitrary (a,b) even- or (c,d) odd-number
state. We set the ratios of the driving field strength ε and the Kerr
nonlinear coupling χ, and of the damping constant γ and ε to be
small and equal to δ = ε/χ = 1/6 and δ′ = γ/ε = 1/25. The color
codes in panel (c) (and all other figures of the Wigner functions) are
the same as in panel (a). Note that the negative regions of the Wigner
functions are marked in blue.

solution for Ĥ02 and Ĥ13 can be approximately given by

ρ̂oddss ≈ p|1〉〈1|+(1−p)|3〉〈3|+[(a+ ib)|1〉〈3|+h.c.]. (32)

where the coefficients a, b, and p are given explicitly in Ap-
pendix A. It is seen that the steady state is spanned by the
number states |1〉 and |3〉 only. Actually, by also ignoring
the terms proportional to δ2, δ′2, and δδ′, the steady state for
Model 1 is just the single-photon state, which is not the case
for Model 2 (see also Table I for comparison).

As an illustration of these results, the Wigner functions and
photon-number probabilities for the numerically calculated
steady-state solutions ρ̂evenss and ρ̂oddss are shown in Figs. 6
and 7. On the scale of these plots, there is practically no differ-
ence between our approximate analytical and precise numer-
ical solutions. Figure 8 shows how the steady-state number
probabilities pn depend on the driving field strength ε in units
of the damping constant γ for an initial even-number state.
Analogous solutions for an initial odd-number state practi-
cally do not depend on ε/γ ∈ [0, 10]. Figure 9 shows how
the probabilities pn depend on the tuning frequencies Ω02 (as-
suming Σ02 = 0) and Ω13 (with Σ13 = 0).

We find that the steady-state solution of the master equa-
tion, given by Eq. (26) assuming γ � ε� χ, reads

ρ̂ss(ρ̂0) = peven(ρ̂0)ρ̂evenss + podd(ρ̂0)ρ̂oddss , (33)

for an arbitrary initial state ρ0. This solution is a weighted
sum of the steady-state solutions, given by Eqs. (30) and (32),

FIG. 7: (Color online) Model 2 with two-photon dissipation: Same
as in figure 6, but for the steady-state solutions ρ̂13ss of the master
equation (26) with the Hamiltonian Ĥ13, given by Eq. (17) for k =
1, l = 3.

FIG. 8: (Color online) Model 1 with two-photon dissipation: The
photon-number probabilities pn = 〈n| ρ̂02ss |n〉 and the fidelity F =
p0 + p2 of the photon blockade versus the driving field strength ε, in
units of the damping constant γ, assuming the initial state to have an
even number of photons and γ/χ = 1/150. The analogous figure for
an initial odd-number state is omitted since p1 ≈ 1 [see Fig. 6(d)], at
least, for ε/γ ∈ [0, 10]. For brevity, analogous plots for Model 2 are
not presented here either.

with the weights

peven(ρ̂0) =

∞∑
n=0

〈2n|ρ̂0|2n〉, (34)

podd(ρ̂0) =

∞∑
n=0

〈2n+ 1|ρ̂0|2n+ 1〉. (35)

So, it holds peven(ρ̂0) + podd(ρ̂0) = 1. It is seen that

ρ̂evenss ≡ ρ̂ss(
∑
n

cn|2n〉) = ρ̂ss(|0〉), (36)

ρ̂oddss ≡ ρ̂ss(
∑
n

cn|2n+ 1〉) = ρ̂ss(|1〉). (37)
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FIG. 9: (Color online) Model 1 in panel (a) and Model 2 in (b,c)
with two-photon dissipation: The photon-number probabilities pn
and the fidelity F =

∑
n pn of the photon blockade versus the tuning

frequency Ωkl for the steady-state solutions ρ̂ss of the master equa-
tion (26), for the Hamiltonian Ĥs(Ωkl,Σkl) with fixed Σkl = 0,
assuming the initial state to have (a,b) an even or (c) odd number of
photons. Here we set δ = ε/χ = 1/6 and δ′ = γ/ε = 1/25. The
corresponding curves pn versus Ω02 for Ĥs(Ω02,Σ02 = 0) and the
initial state with odd number of photons are not presented here be-
cause p1 ≈ 1 and p3 ≈ 0 in the whole studied interval, and this is
fully apparent from Fig. 6(d) as well. It is seen that even if Ωkl 6= 0,
PB can still occur. Nevertheless, for an initial even (odd) number
state, the output steady state approaches the vacuum (single-photon)
state even for a relatively small Ωkl. Note that plots in panels (a) and
(c) look very similar but they correspond to different probabilities.

for any complex amplitudes cn.
Our result that

ρ̂ss(|0〉) 6= ρ̂ss(|1〉) (38)

sounds counterintuitive for the following reason: To find
the solution of the master equation, given by Eq. (26), one
can write separately the equations of motion for all the el-
ements ρij(t) of the density matrix ρ̂(t). The steady-state
solutions ρ̄ssij = limt→∞ ρij(t) can be obtained by setting

∂ρ̄ssij/∂t = 0. Then, it would appear that the elements
ρ̄ssij in the steady state do not depend on the initial condi-
tions. We will show below that they can depend on the initial
states of mixed parity. Namely, let us create two matrices ρ̂′

and ρ̂′′ with the only nonzero elements ρ′2i,2j = ρ̄ss2i,2j and
ρ′′2i+1,2j+1 = ρ̄ss2i+1,2j+1 for i, j = 0, 1, .... Then, the even
steady-state density matrix, given by Eq. (36), simply reads as
ρ̂sseven = ρ̂′/tr (ρ̂′). Analogously, the odd steady-state density
matrix, given by Eq. (37), is equal to ρ̂ssodd = ρ̂′′/tr (ρ̂′′). The
general solution, given in Eq. (33), is then state-dependent,
although in this limited manner.

These formulas can be confirmed numerically by compar-
ing them with the solutions for the master equation obtained
for sufficiently long evolution times. Moreover, the steady-
state density matrix elements ρ̄ssij can be directly calculated
numerically by finding a vector in the null space of the Liou-
villian superoperator L [70].

We note that the ratio

r =
podd(ρ̂0)

peven(ρ̂0)
=
podd(ρ̂ss)

peven(ρ̂ss)
(39)

is preserved during the system evolution. This is because the
two-photon driving and two-photon dissipation, together with
the photon-number-preserving Kerr interaction, do not mix
even and odd number states. To show how this engineered
photon blockade depends on the initial states ρ̂0, the ratio r is
plotted in Figs. 10–13 for a few states ρ̂0 discussed in the next
section.

Finally, we note that these steady-state solutions, as well
as our precise numerical solutions shown in all plots, depend
solely on the ratios δ = ε/χ and δ′ = γ/ε, and do not depend
on the absolute values of ε, χ, and γ.

V. PHOTON BLOCKADE FOR SPECIFIC INITIAL FIELDS

Here we analyze how the engineered photon blockade de-
pends on some typical classical and nonclassical initial states
of the cavity field.

For a coherent state (CS) |α〉, we have

peven(|α〉) =
1

2
[1 + exp(−2|α|2)],

podd(|α〉) =
1

2
[1− exp(−2|α|2)], (40)

so their ratio is r = tanh(|α|2). In the limiting cases, one
observes that

lim
〈n〉→0

peven(ρ̂0) = 1, lim
〈n〉→0

podd(ρ̂0) = 0, (41)

lim
〈n〉→∞

peven(ρ̂0) = lim
〈n〉→∞

podd(ρ̂0) =
1

2
, (42)

where ρ̂0 = |α〉〈α| and the intensity is given by 〈n〉 = |α|2. A
few illustrative examples of phase-space and photon-number
distributions for the steady-state solutions, for initial coherent
states, are shown in Fig. 10 for Model 1 and in Fig. 11 for
Model 2.
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