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Abstract

Stochastic non-parametric efficiency measurement constructs production or cost frontiers

that incorporate both inefficiency and stochastic error. This results in a closer

envelopment of the mean performance of the companies in the sample and diminishes the

effect of extreme outliers. This paper uses the Land, Lovell and Thore (1993) model

incorporating information on the covariance structure of inputs and outputs to study

efficiency across a panel of 14 electricity distribution companies in the UK during the

1990s. The purpose is to revisit the 1999 distribution price control review carried out by

the UK regulator. The regulator’s benchmarking is contrasted with the stochastic non-

parametric efficiency results and with other comparative efficiency models offering close

envelopment of the data. Some conclusions are offered about the possible regulated price

effects in the UK case1.
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distribution
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1 Comments from seminar participants at Aston, Warwick and Cambridge are acknowledged. Usual
disclaimer applies. This paper reports work in progress.
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Introduction.

Yardstick competition, or more loosely benchmarking, is a principal component of

price cap regulation for groups of network monopolies. Considerable theoretical and

applied research by economists has been directed to this, and several regulatory

benchmarking exercises have been carried out, for example in the UK, Netherlands,

Norway and Australia. There is a developing interest in the subject by many European

electricity and gas regulators with the possibility of cross border comparative efficiency

studies. The single electricity and gas market directives of the European Union have also

discussed the possibility of forms of yardstick competition.

Three major issues arise in applying this principle:

­ Data comparability and coverage

­ Translations of the yardstick competition results into price caps

­ The nature of the models used to implement comparative efficiency studies.

These issues have been central to the exchanges between regulators and regulated

companies in different countries. While all three issues are discussed in the paper, the

major emphasis is on the last of these concerning the different models of efficiency and

productivity analysis used by regulators. The major candidate models in use are non-

parametric efficiency measurement or data envelopment analysis, DEA, stochastic

frontier analysis, SFA, and other regression based but deterministic models such as

corrected ordinary least squares, COLS. The trade off between DEA and SFA is well

known. DEA models, which include the non-convex free disposal hull FDH, do not

impose the assumptions: (a) that all companies share the same production function and

(b) that the distribution function of inefficiencies is known. SFA models, which do
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impose these assumptions, do not assume that all of the variation amongst companies is

due to inefficiency and are able to accommodate stochastic errors. Nevertheless it is true

that SFA is rarely used by regulators, perhaps due to lack of data, and several regulatory

judgements have made use of DEA (Netherlands, Norway, Australia) or some version of

COLS (UK, but an idiosyncratic version).

The choice of model clearly affects the way in which companies participate in the

regulatory process. Participation or individual rationality constraints are important to the

game theoretic justification of regulation by yardstick competition and consequently the

choice of model must affect the outcome of the regulatory game. One possible resolution

of the DEA-SFA trade off lies in the use of stochastic non-parametric efficiency

measurement, i.e. stochastic data envelopment analysis, SDEA. This model incorporates

a fuzzy frontier which allows for both inefficiency and stochastic error to determine the

relative positions of the companies. Only a limited amount of research has been done in

applying SDEA in a regulatory framework or in contrasting its results with other models,

and consequently this paper is written to compare the use of DEA and SDEA in the

context of a particular regulatory experience. The regulation in question is the 1999 UK

electricity distribution review carried out by the Office of Gas and Electricity Markets,

OFGEM (previously OFFER). That review was based partly on a form of COLS and led

to some controversial price cap changes.

The paper will revisit the 1999 review of electricity company operating

expenditures, OPEX, by applying DEA and SDEA models in order to gauge the effect of

allowing for stochastic error in regulatory benchmarking. In particular it will be

interesting to compare the OFGEM benchmarks with the DEA and SDEA results to
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determine whether company rankings are greatly affected by the choice of model. These

comparisons can also be applied to the price caps actually implemented since it may be

the case that a particular price cap is not sensitive to the choice of OPEX benchmarking

model. The advantage of revisiting the 1999 UK review is that  well documented datasets

and outcome sets have been published. The object is not ot suggest new price caps but to

investigate the sensitivity of price cap outcomes to the choice of model particularly where

the model incorporates stochastic errors.

The structure of the paper is as follows. Section 2 sets the context for yardstick

competition using an argument due to Bogetoft (1997) about the choice of model in a

game theoretic framework. Section 3 develops the idea of the closest envelopment of the

data implicit in the choice of model. Section 4 describes the SDEA model suggested by

Land, Lovell and Thore (1993) and explains how it is implemented. Section 5 describes

the data while Section 6 presents the results of the exercise. Section 7 offers conclusions

about the regulatory implications of the analysis.

Incentives and Yardsticks

Although Shleifer (1985) is the classic theoretical basis for yardstick competition

there have been further developments and among the most notable of these has been a

series of papers by Peter Bogetoft and others, see especially Bogetoft (1997) and Agrell,

Bogetoft and Tind (2000). In these papers the authors explore the relationship between

yardstick competition and the use of data envelopment analysis, DEA which has been one

of the most widely used methods of comparative efficiency measurement amongst

regulated utilities. This section presents  a very simplified summary of the Bogetoft
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models rather than a detailed analysis. The aim is to do no more than capture Bogetoft’s

insight that yardstick competition requires the regulator to think about the choice of

benchmark model in terms of the way it will envelop the data2. The timeline for

Bogetoft’s regulatory principal agent game, illustrated in figure 1, is essentially similar to

that of Shleifer but a different range of possibilities is explored.  Among n different

utilities the typical firm is observed to have input expenditures of wx where x is a vector

of inputs and w is a vector of input prices,  a vector of outputs y and possibly a vector of

non-controllable inputs z.  This data is verifiable in the sense that the regulator can

measure and check the data on outputs, input expenditures and non-controllable inputs.

The regulator contracts with the firms at the beginning of the game to pay a revenue cap

b according to a formula that depends on the observed costs and outputs of the firms.

FIGURE 1 HERE

The utility (but not the regulator) knows the minimal cost of using current

technological possibilities to produce the outputs given the inputs, input prices and non-

controllable inputs:

( ) { }ymakecanzandxwxwzyC
x

:min, =

The firm (or the managers) can choose a degree of slack, s, which is also unknown to the

regulator, so that the actual cost experienced by the firm is:

( ) swzyC +,

 The regulated firm’s ex-ante utility is assumed to depend on the difference

between (i)  its allowed revenue cap b and its actual verified input expenditure wx, plus

                                               
2 The description here is an abuse of notation in combining the ideas from two different papers, Bogetoft
(1997) and Agrell Bogetoft and Tind (2000)
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(ii) a fraction ρ of the difference between the expenditure on inputs and the cost

(including slack) of producing its output target:

( )( )szwyCwxwxbU −−+−= ,ρ .

where the strict inequalities 10 << ρ  are satisfied. The slack is consumed by the firm in

converting inputs into outputs using the available technological possibilities. The

restrictions on the marginal utility of the slack, ρ,  ensure that at the margin the firm

prefers to increase profit rather than to consume slack although both yield positive utility.

The regulator is unaware of the minimal cost function, but  knows or estimates the firm’s

marginal utility of slack, and endeavours to minimise the informational rent paid to each

regulated firm through the revenue cap.

Bogetoft et al show that generally an optimal (individually rational and incentive

compatible) revenue cap contract which will minimise the amount of informational rent

to be paid to the firms takes the following form for each firm:

[ ]

( )wxcb

ei

wxcwxb

ρρ

ρ

−+=

−+=

1*

..

*

where c* is a “best practice cost norm” or “minimal extrapolation cost standard” set to

act as a benchmark for the firm in question. In other words the firm is paid its observed

input cost plus a proportion of the difference (positive or negative) between a benchmark

of the cost of meeting the firm’s observed output level and its observed input cost.. This

best practice cost norm is  “the maximal cost of producing the firm’s outputs that is

consistent with the a priori assumptions about possible cost structures and the realised

production plans [costs and outputs] of the other firms” (Bogetoft (1997) p.285). The

term maximal cost is used because the role of the benchmark is to provide an upper
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bound on the informational rent paid to the firm so  it is essential that it at least exceeds

the minimal technological cost of production:

( )zwyCc ,* ≥

To ensure that the informational rent required to encourage participation and

correct revelation of costs is minimised the benchmark should reflect the cost that would

be observed if some other frontier efficient firm was to supply the output of the firm in

question. Clearly too low a benchmark c* will discourage the firm from participating in

the regulatory game. On the other hand too high a benchmark will lead to inefficiently

high payments to the firm. Consequently it is required that c* is the least upper bound of

the possible values of the cost of production. Without knowing the minimal technological

cost of production the regulator has to find the least upper bound of the set which

contains this unknown function. The observed input expenditures, outputs and non-

controllable inputs of the firms that are subject to the yardstick competition can provide

information about this least upper bound. In particular, under assumptions of

disposability and convexity of the production possibility set, the DEA efficient cost under

constant returns to scale, CDEA-CRS could be a candidate for c*:

nj

yy

xxts

wxC

j

nj

j
jj

nj

j
jj

CRSDEA

Κ1,0

..

min

1

1

=≥

∑≤

∑≥

=

=

=

=

=

−

λ

λ

λ

However, for incentive reasons the benchmark should exclude the cost and output of the

firm in question from the reference set for which the frontier is calculated. In this respect

his suggestion replicates the DEA model of Andersen and Petersen (1993) which was
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initially suggested as a way to rank firms all of which are efficient according to the

standard DEA model. In general however, these arguments provide both a model of

yardstick competition and an analytical justification for using the DEA frontier efficiency

measure.

Bogetoft  argues that, in the presence of significant uncertainty about the

technology on the part of the regulator, the  DEA based cost norm has several

advantages:

1. it requires very little a priori technological information

2. it allows flexible non-parametric modelling of multiple output and multiple input

production processes

3. it is essentially conservative is determining the informational rents.

Closest Envelopment Models and Nested Costs

The essence of Bogetoft’s argument is that to encourage participation in the

regulatory game the agent must be offered a contract based on an upper bound of the

possible costs he or she could incur, but to minimise information rents the principal will

seek a least upper bound to the set of possible costs. Within the range of comparative

efficiency models it is possible to discover some that are nested and some that are not.

This allows the researcher to examine different least upper bounds for the cost set under

different assumptions. Begin with the basic distinction between parametric and non-

parametric models. Parametric, i.e. regression based models assume that each company

uses the same underlying technology represented by the production function3. Within this

group stochastic frontier models allow some of the variation in cost to be random while
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corrected ordinary least squares models attribute all of the variation to inefficiency.

Consequently, in this case the relationship between the minimal cost extrapolation or

least upper bound of the of the relative frontier cost levels is:

SFACOLS CC ≤

This means that the efficient benchmark for cost performance in the corrected ordinary

least squares model is at a lower total cost level than the efficient benchmark for the

stochastic frontier cost model.

 However since non-parametric models allow each company to have a different

technology it is clear that parametric and non-parametric models are not nested even

when one is deterministic and the other is stochastic:

SFADEA CC ,  cannot be unambiguously ranked before calculation.

Within DEA based models variable returns to scale possibilities allow some of the

variation in cost to be attributable to inefficient scale rather than pure technical

inefficiency so that nesting is possible on the basis of scale assumptions. This means that

the efficient frontier cost benchmark is at a lower overall level for constant returns to

scale models than for variable returns to scale models:

VRSDEACRSDEA CC −− ≤

It is however possible to obtain a larger least upper bound to the frontier costs by

using as an alternative to the conventional DEA methodology  the free disposal hull

(FDH) method - see Desprins, Simar and Tulkens (1984), and  Tulkens (1993). This

method imposes a further constraint on each of the elements of the intensity vector,

namely that  λj is either zero or unity: { } njj Κ11,0 =∈λ . This turns the conventional

                                                                                                                                           
3 The assumption may be relaxed in random parameters models but the nesting effect is not clear.
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LP problem of DEA into a mixed integer programming problem (MIP). Actual

calculation of the FDH frontier can proceed by MIP or more easily by Tulkens’ (1993)

complete enumeration algorithm based on vector dominance. The economic impact of the

change is quite profound, and can be best illustrated by a diagram.

FIGURE 2 HERE

In figure 2 we see observations represented by the points a – f. The DEA isoquant

is the piecewise linear frontier connecting a, b, d , and  f , with c and e as inefficient

points. Reducing inputs radially at points c and e brings those input-output observations

back onto the frontier on the segments connecting a to d and d to f respectively. However

this means points c and e are being compared with hypothetical but potentially efficient

combinations of the actual observations at b, d and f. Supporters of the FDH methods do

not recognise the validity of this comparison with hypothetical input-output

combinations, and seek to compare efficiency scores of an observed firm only with other

observed firms. The FDH isoquant is the stepped line connecting a, b, c, d, e, and f. Each

of these points is then regarded as efficient. Only observed point g in the diagram now

counts as actually inefficient since unlike any of the others it is dominated by the actual

observations c and d. Desprins, Simar and Tulkens (1984, p.264) put the case for this

approach on two grounds: it rests on the weakest assumptions regarding the production

set and identification of dominating observations reveals an information set of direct use

for managers
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The assumptions required are simply input and output disposability (i.e. the firm

can reduce slack or unused inputs or use them to expand  outputs without using up other

additional resources). No assumption is made regarding the nature of the returns to scale.

Nevertheless the method is controversial in the context of identifying potential efficiency

gains. Two contrasting views illustrate the issue. The first can be stated thus: we should

seek the frontier which shows the firm in the best light: “evaluation of a given unit under

the most favourable conditions has been claimed as one of the advantages of DEA” -

Petersen (1990). This suggests the tightest envelopment surface is to be preferred, and

this is the FDH frontier. The second argument is that we should seek potential efficiency

gains for firms: “at the heart of the method [DEA] is the assumption that we may

interpolate between any number of units within the comparator set to construct efficient

units which could have existed in principle even if not observed in practice. This way we

create an efficient boundary of units, some observed some not, and then the distance of a

unit from the boundary gives us a measure of its efficiency” - Thanassoulis (1999). This

suggests that convexity is an important comparator property for identifying potential

efficiency gains, hence the DEA frontier is preferred from this point of view.

It is possible to read into actual regulatory decisions the views of the players in

the process. For example the Netherlands regulator specifically resisted the use of the

FDH model using arguments based on the importance of allowing for potential

competition, DTE (2000). The key argument was that ignoring potential comparators

would cause the regulator to lose credibility with consumer groups. In contrast, US

regulatory commissions have indicated a reluctance to compare a regulated company

with anything but other actual companies.
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By ignoring potential combinations of efficient companies the FDH frontier

implies market entry or performance is not feasible at that combination. However, in the

context of a group of regulated monopolies, customer groups are unlikely to believe this,

and rival companies certainly will not.

We can rank the DEA technical efficiency scores (θ) that arise from relaxing

assumptions as follows:

10 ≤≤≤≤ −− FDHVRSDEACRSDEA θθθ

and consequently obtain the nested frontier costs:

FDHVRSDEACRSDEA CCC ≤≤≤ −−0

so that FDH will always show companies in at least as good a light and usually better

than DEA under variable returns to scale, and this in turn is at least as good as and

usually better than DEA under constant returns to scale.

When stochastic models are considered the SDEA approach will always permit a

closer envelopment of the data than the deterministic model so that:

CRSSDEACRSDEA CC −− ≤

However it is not possible to argue which relaxation will have the greater effect

compared to deterministic constant returns to scale DEA: stochastic DEA or non-convex

DEA so that CRSSDEAFDH CC −, for example are not nested costs. As well as the choice of

technique, other factors such as sample size and model specification also affect the

minimal extrapolation costs. These are summarised in table 1.
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Efficiency
Study context

Companies
loosely
enveloped =
low mean
efficiency

Companies
closely
enveloped =
high mean
efficiency

Regulatory
credibility

Comment

Scale CRS VRS → FDH VRS yes, FDH
no?

Potential
comparators

Sample Size Large Small Want large
comparator set

Data
comparable?

Number of
variables

Low High Put a limit on
the dimensions
of comparison

Companies say
their operations
are all different

Stochastic No Yes Data
availability
limited

Some  limits
needed on
efficiency
differences

Table 1 factors affecting the data envelopment

Stochastic Data Envelopment Analysis

The procedure for DEA measurement of input based technical efficiency is well

known. We take each firm in turn and compare it with the reference set of the whole

industry. This is represented by the input requirements set for a given level of outputs,

which is bounded below by the isoquant. The object here is to find the largest reduction

in the firm’s actual input usage which will allow it to remain in the input requirements

set, i.e. achieve a position on the efficient frontier isoquant determined by the

observations on the industry as a whole.

Doing this for each firm in turn we identify the firm’s θ value. This is the firm’s

Farrell efficiency: 10 ≤≤ θ . Values of θ = 1 indicate that the firm is already one of those
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which defines the frontier and is 100 per cent efficient. The firm’s inefficiency is

( ) %1001 ×−θ . In what follows it is necessary to examine particular output and input

constraints which can be written in terms of s outputs:  njsryrj ΚΚ 1,1, == and m

inputs: njmixij ΚΚ 1,1, ==  for the n different producing units. The input requirement

set is defined by the following inequalities for each producing unit in turn. The producing

unit under observation is subscripted ‘0’ to distinguish it from all of the producing units

together: nj Κ1=

rth  typical output constraint:

sryyeiy r

nj

j
jrjrr ,,10..0 0

1
0 Κ=≥−∑≥−′ =

=
λλy

ith typical input constraint:

mixxeix i

nj

j
jijii ,,10..0 0

1
0 Κ=≤−∑≤−′ =

=
θλθλx

We measure the producing unit’s technical efficiency  by calculating the following

linear programme for the firm in question (now subscripted 0):

0

0

.min

0

0

≤−′
≥−′

θλ

λ

θ

ii

rr

x

y

ts

x

y

Now consider the chance constrained DEA problem described by Land, Lovell, and

Thore (1993). This allows the constraints to hold with probability level ( )1,0∈α  i.e. with

less than certainty:
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mix

sry

ts

ioi

ror

Κ

Κ

10Pr

10Pr

..

min

=≥




 ≤−′

=≥




 ≥−′

αθλ

αλ

θ

x

y

The argument for this formulation is as follows. The deterministic DEA problem allows

firms to lie on or inside the production frontier. The constraints in the deterministic

problem can be thought of as holding with probability one. Land, Lovell and Thore

(LLT) allow a small number of firms to be super-efficient, i.e. to lie beyond the

production frontier. For these firms the output and input constraints in the envelopment

DEA model will be violated. In the general statement of the problem the constraints will

hold with probability less than one. The implication of this is that the frontier is not

defined by these outlier firms but lies closer to the observations of the mass of firms in

the sample. In a sense the frontier is defined in a more fuzzy manner. After developing

the statement of the model, an alternative interpretation of chance constrained DEA due

to Olesen and Petersen (1995) is presented which reinforces this idea of stochastic

variation in the constraints.

The basic probability statement to be used is the conventional result for the normal

distribution:

( ) ( )00

0

)(Pr zdzzzz
z

Φ=∫=≤
∞−
φ

where z is the standard normal deviate with probability density function:

( )
2

2
1

2

1 z
ez

−=
π

φ .
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and ( )zΦ is the cumulative distribution function of the normally distributed variable.

Since the cumulative distribution function is non-decreasing  over the support [ ]∞∞− , , it

has the inverse function:

)(1 α−Φ=z for given α .

Though not amenable to analytical evaluation, the inverse is well known from the

tables of the standard normal distribution, e.g.:

( ) ( ) 96.1975.0and645.195.0 11 =Φ=Φ −−

The symmetry of the distribution around zero provides the two additional properties (a)

and (b) below which are used in the construction of the tables for z. Symmetry implies:

( ) ( )zz −= φφ and this together with integration by change of variable easily establishes

property (a) and it is this property which is used in the Charnes Cooper derivation.

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )95.0645.105.0e.g.1)(

Pr1PrPr:and

PrPr1Pr:i.e.

1)(

1111

000

000

00

−−−− Φ−=−=ΦΦ−=−Φ

−≤−=≤=−≥

≥=≤−=−≤

Φ−=−Φ

ααb

zzzzzz

zzzzzz

zza

We now return to the chance constrained DEA problem:

mix

sry

ts

ioi

ror

Κ

Κ

10Pr

10Pr

..

min

=≥




 ≤−′

=≥




 ≥−′

αθλ

αλ

θ

x

y

Charnes and Cooper (1963) show how to use the idea of a modified certainty

equivalent to transform this stochastic linear programming problem into a deterministic

non-linear programming problem. As we noted earlier, the difference between the firm’s
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output and the reference weighted outputs of all the firms is treated as a random variable.

The difference between the firm’s input adjusted for its efficiency and the reference

weighted inputs of all the firms in the industry is also treated as a random variable.

We begin with the constraints relating to the outputs, and re-write them as below. In

these steps we assume that the random variable has a finite positive variance so that the

standard deviation: 
2
1

var 




 





 −′
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Now assume the random variable representing the output shortfall is normally

distributed:

( )1,0~var
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We use z to replace the first expression in the preceding probability statement to

obtain:
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This step uses the symmetry property (a) described earlier. Now we use the

definition of the probability statement in terms of the distribution function to write:
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This completes the transformation of the probabilistic version of the linear output

constraint into a deterministic non-linear form using what Charnes and Cooper (1963)

refer to as a modified certainty equivalent. It is useful to write it in a slightly more

general form as follows.
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Turning now to the input constraints, these are initially expressed as:
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we obtain the transformed probability statement:
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Proceeding as before we therefore write:
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This completes the transformation as in the output case, but again we can write the

transformed non-linear constraint in a slightly more general form:
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With these results we can write the stochastic DEA model in the LLT formulation

as follows:
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Here we are measuring the efficiency of the mean performance of the firm

temporarily labelled with the 0 subscript. We may be more interested in measuring the

efficiency of an actual realisation, in which case ior ExEy and0  are replaced by

ior xy and0 .

The effect of the Charnes and Cooper algebra is to transform a stochastic linear

programming problem into a deterministic non-linear programming problem. There are

significant additional data requirements as a result and these concern the means and

variances of the outputs and inputs and their covariances across different firms. For each

output and each input the following data are required.

The expected value of  usage of output and input for each firm:

njmiEx

njsrEy

ij

rj

ΚΚ

ΚΚ
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==

and the variance-covariance matrix of usage of each output and each input across all

firms, i.e. (s + m) variance covariance matrices:
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The deterministic non-linear constraints which have replaced the probabilistic linear

constraints of the original chance-constrained problem contain composite variance terms.
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These differ according to whether the efficiency of the firm’s mean performance or a

realisation is being assessed. Each uses the relevant variance-covariance matrix of an

output or input compared across all the firms, i.e.: ir ΞΨ or . When the mean

performance is being assessed the scalar composite variance terms are computed as

follows:
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In these expressions, λ̂ is the vector which has 2
1−jλ in the position corresponding

to the firm whose efficiency is being measured, and jknkk ≠= ,1, Κλ  elsewhere, and i0

is the column of the (n by n) identity matrix which has the value 1 in the position

corresponding to the firm whose efficiency is being measured. When a realisation is

being assessed the composite variance terms are computed as:
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For clarity of setting up the model, LLT (1993) suggest that the problem can be

restated in non-matrix terms.  Using Z1-α to denote the critical value of z from the

standard normal tables, we have for the mean performance case:
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In this restatement:
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and
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This is a non-linear programming problem in the variables: θ, λj, µj and νj.

Specifically it has a linear objective and (s + m) quadratic inequality constraints with

additional restrictions on the variables to ensure positive variance terms. For the single

realisation case the implementation is shown below, and this version is stated in Lovell

(1993, pp 34-5):
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This version is slightly simpler because the choice variables in the variance terms

are independent of the efficiency score θ. To implement this programme we have used

the algorithm  of Lasdon et al (1978) which is widely available in many spreadsheet and

symbolic programming applications, see Kendrick (1996).

What is the intuition behind SDEA? LLT provide one form of insight using the

density function of the random error, but we can also borrow another diagrammatic

intuition from the paper by Olsen and Petersen (1995). This is shown in figure 3 below.

In this diagram we illustrate observations on a panel of producing or decision

making units (DMUs 1 –3) for the case of two inputs and one output. The boundary of

the input requirements set is defined by the isoquant. In deterministic DEA the

individually most efficient realisations define the frontier shown by the solid line.

However, in implementing SDEA we are in effect looking for confidence regions around

each producing unit’s observations within the panel. These are shown as grouped within

the ellipses shown around sets of observations. Olesen and Petersen describe the SDEA

frontier as being evaluated relative to the centre of these confidence regions. As a

consequence, the SDEA frontier associates extreme outliers with the stochastic error term

and this has the effect of moving the frontier closer to the bulk of the producing units.

Some realisations will then lie above the frontier and in evaluating the realisation model

these observations will have a super-efficiency larger than unity.

FIGURE 3 HERE

In the diagram the DEA frontier passes through the most extreme observations of

the three DMUs 1, 2, and 3, while the SDEA frontier passes through the centre of the
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confidence regions around the observations for these DMUs. We can see that particular

observations will have a SDEA efficiency larger than unity. The observation at A has two

efficiency scores: OB/OA for the DEA frontier and OB*/OA for the SDEA frontier. The

SDEA score will usually be greater but never lower than the DEA efficiency score. The

distance between the two frontiers represents the role of the stochastic error term in

accounting for the variation in production performance. The larger is the variance of the

sample, the larger will be the confidence ranges for the data and therefore the greater will

be the distance between DEA and SDEA frontiers. In other words a sample with a wide

variation in inputs and outputs observed for each unit will ascribe more of the variation in

performance to the stochastic error than a sample with a narrow variation over the panel.

In some cases we may find that a widely varying panel has two properties:

The mean performance of the units clusters around unity (100 percent efficiency)

because the SDEA frontier has shifted so far towards the units which lie below the DEA

frontier, and the extreme performance or individual realisation of some of the most

successful observations lies well in excess of 100 percent. Such results would indicate

that the sample contained a very large degree of measurement error and other stochastic

influences, and consequently only the mean performance frontier is of relevance in using

the results for such purposes as yardstick competition.

Data and case study

To demonstrate the effect of different forms of envelopment including SDEA

consider the 1999 electricity distribution price control review (DPCR) carried out in the

UK. 14 electricity distribution companies, known as the regional electricity companies or
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RECs, featured in the review. An efficiency comparison was made covering their

individual operating expenditure performance, OPEX, in 1998. The raw OPEX data was

adjusted prior to the exercise in various ways to arrive at a variable called base cost,

OFGEM (1999). This was compared with three output variables: customer numbers, units

of electricity distributed, and length of lines. Prior to the regression the three outputs were

combined into a single composite size variable using a first order binomial expansion

with predetermined exponents. The plot of base cost against composite size for the 14

RECs was adjusted by altering its slope coefficient so that it passed through the lowest

cost observation while maintaining the intercept value of base cost per unit of composite

size at a level judged to be correct by a panel of expert advisers.

A number of problems exist with this procedure. There is some doubt about whether a

sensible output vector has been chosen because of the use of lines (circuit length) as an

output. The difficulty arises because lines expenditure is recognised as an important

component of total company expenditure. Lines therefore has the status of a ‘cost driver’

in the management literature, but it is not strictly an output in the sense of providing a

commodity for customers to purchase. Energy and customer numbers are feasible proxy

variables for the service and commodity outputs which customers purchase. Lines can

represent the difficulty of reaching customers in delivering products but is not an output

of the production process in the sense normally used by economists.

Other problems with the OFGEM model concern the question of the appropriate

adjustment to the raw OPEX data, the procedure for arriving at the composite output

variable is arbitrary, and the fact that the frontier regression does not correspond to

deterministic corrected ordinary least squares because the slope rather than the intercept
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was adjusted to ensure non-negative errors. However since the primary interest in this

paper is the effect of model choice rather than specification, it makes sense to adopt this

OFGEM model as a benchmark. The objective is to investigate the effect that different

envelopment models would have had if applied to this data set and specification for 1998.

The  data therefore consist of the variables described in table 2. Since the base

operating cost figure is derived by OFGEM only for the year 1997/8 this paper will only

evaluate the single realisation corresponding to that year. The data for base cost was

subjected by OFGEM to considerable refinement and will be treated as a set of non-

stochastic constants rather than random variables. In other words the input constraint will

be treated in this exercise as deterministic. The output constraints are treated as stochastic

and the output slacks for each company are therefore normally distributed random

variables with constant mean and variances estimated from the data for 1991/2 to 1997/8.

Variable Category Units Source
Base Operating Cost Input £mn in 1997 prices

for 1997/8 only
OFGEM 1999 (table 2.6,
p.19)

Customers Output Thousands for
1991/92 to 1997/8

Electricity Association,
OFGEM  and Company
reports

Electricity delivered Output GigaWatthours for
1991/92 to 1997/8

Electricity Association,
OFGEM  and Company
reports

Length of network
(overground +
underground)

Output Circuit kilometres
for 1991/92 to
1997/8

Electricity Association,
OFGEM  and Company
reports

Table 2  sample data
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The mean values of the data in the period 1991/2 to 1997/8 are shown in table 3.

Company Base Cost (£m, 97/8 only) Customers Units (GWh) Lines (km)
Eastern 74 3151370 30477 87410
East Midlands 81 2244429 24472 66958
London 66 1951571 20246 29801
Manweb 58 1346143 18137 44227
Midlands 94 2204571 24271 63932
Northern 67 1432330 15148 40645
NORWEB 93 2158857 22346 58680
SEEBOARD 62 1999966 18065 44323
Southern 63 2573937 27180 70733
SWALEC 48 953731 11243 31944
South Western 64 1288200 13148 47546
Yorkshire 80 2031268 22725 53406
Scottish Power 71 1781540 21019 68150
Hydro-Electric 49 620574 7716 44883

mean of sample 69 1838463 19728 53760
standard deviation of sample 14 663415 6311 16288

Table 3 data summary

As a model selection procedure the array of variables described above has several

serious gaps. Customers and electricity delivered are frequently chosen as outputs but

maximum demand may also be used to measure the power load which impacts on the

network. It is difficult to defend the use of lines as an output other than as a proxy

measure for the difficulty of providing distribution service to consumers. More

conventionally lines and transformer capacity may be used as inputs representing the

capacity of the network to deliver energy and customer services. Line losses are an

important resource requirement in well dispersed systems but could be captured by the

second power of lines. On the input side, lines and transformer capacity should be

supplemented by a measure of short run variable inputs. In state controlled networks with

no outsourcing numbers of full time equivalent employees may be used but in privatised
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companies operating cost is a better measure because it can capture the cost of contracted

input services. Finally, some measures of quality of supply may be included as additional

output variables. Such measures could include the number of interruptions per customer

and minutes of load lost. The Information and Incentives Project initiated in OFGEM

(2000) is designed to resolve some of these issues.

Huang and Li (2001) in a review of different types of input-output disturbance

formulation note that the SDEA model is very demanding in its parameter requirements.

Although the model used here is less general than the core model in the Huang and Li

paper it too requires many parameters. The dilemma can be put in context as follows. A

deterministic DEA of n companies each making s outputs from m inputs requires

knowledge of )( msn + parameters, i.e. the outputs and inputs of each of the companies

needed to make up the envelopment model’s constraints. The whole sample of

observations is used to generate these parameters so that a deterministic DEA has in

practice zero degrees of freedom. The degrees of freedom is distinct from the number of

columns )1( +n minus the number of rows )( ms +  in the envelopment constraints matrix.

The number of rows )( ms +  determines the number of basic variables in a DEA solution,

i.e. the number of efficient peer companies less one. In the stochastic model used here

based on LLT there are ( ) ( )( ){ }22 msnmsn +++  parameters to be imposed in the

constraint set because the model allows for non-zero but symmetric covariances amongst

outputs and amongst inputs but not between outputs and inputs. Unless hypothetical or

exogenously calibrated covariance terms are used, these have to be estimated from a

panel data sample containing T periods. The number of observations is then )( msnT + so

that the degrees of freedom in the LLT model is: ( ) ( )( ){ }2)( 2 msnmsnmsnT +++−+ .
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This is likely to be much larger than the zero degrees of freedom in the deterministic

model and may still be relatively large in econometric terms despite the large number of

parameters used in the envelopment constraints. In the primary model to be examined in

the next section the observation panel where 4)(,14,8 =+== msnT  provides 448

observations from which ( ) ( )( ){ }22 snmsn ++   = 350 independent parameters are

constructed leaving 98 degrees of freedom in the statistical sense.

In summary, this paper adopts as a framework for comparing different envelopment

techinques the single, well documented model of OFGEM despite the apparent gaps in

the range of variables used in that model.

Empirical Results and interpretations

The empirical results consist of the efficiency scores for the 14 companies for

1997-8 from five basic models: the price control DPCR, DEA-CRS, FDH, SDEA (α =

0.95) and SDEA (α = 0.8). These are shown in table 4.

company DPCR 99 DEA-CRS FDH SDEA, 0.95 SDEA, 0.80
1 0.700 0.650 0.793 0.727 0.705
2 0.820 0.577 1.000 0.624 0.607
3 1.040 1.000 1.000 1.118 1.085
4 0.730 0.666 0.995 0.683 0.677
5 0.870 0.773 1.000 0.828 0.814
6 0.760 0.750 0.899 0.778 0.763
7 0.630 0.559 0.680 0.620 0.601
8 0.690 0.536 0.926 0.586 0.568
9 0.640 0.602 0.673 0.674 0.653

10 0.800 0.710 1.000 0.794 0.770
11 0.810 0.723 0.958 0.809 0.785
12 0.770 0.751 1.000 0.769 0.763
13 1.000 1.000 1.000 1.079 1.063
14 0.760 0.729 0.788 0.799 0.775

Table 4 Efficiency scores for UK RECs 1997-8
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In table 4 and subsequent tables the numerical company ordering has been

randomised. These empirical results confirm the role of the different models. DPCR is

taken directly from OFGEM 1999 while the others are all estimated for this paper. As

expected both FDH and SDEA models provide a closer envelopment of the data than the

DEA-CRS model. SDEA at the 0.95 level is a closer envelopment than SDEA at the 0.8

level. Since this is a particular realisation some of the companies in the SDEA have

efficiency scores in excess of unity reflecting the super-efficiency of those companies.

The DPCR scores also had this property. At a basic empirical level the closer

envelopment models do perform as predicted. However it is interesting to ask whether the

differences compared with the DEA-CRS model and the OFGEM DPCR are statistically

significant.

Statistical testing of empirical efficiency rankings is a rapidly developing area. For

large sample studies Henderson and Russell (2001) suggested non-parametric tests using

the integrated mean square error based on kernel densities to test the null hypothesis that

the probability density functions underlying two samples of efficiency results are the

same. The theory supporting these tests is described in Pagan and Ullah (1999, pp.60-69).

For small samples Banker (1996) suggests a variety of tests for the same null hypothesis,

including the non-parametric Kolmogorov-Smirnov two sample test which requires no

strong assumptions about the probability distributions. This test is based on the maximum

distance between the cumulative empirical distributions of the sample results. The

procedure and critical values for the test are described in Siegel and Castellan (1988), and

this is the test applied here.
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The empirical results can be separated into several pairwise comparisons using the

nesting categories described earlier. An elementary but little used pairwise test asks

whether a set of empirical efficiency rankings could differ from a uniform distribution for

which every efficiency score is unity. This one tailed test is applied to each of the

empirical envelopments: DEA-CRS, FDH and SDEA. Another set of tests is applied to

the null hypothesis that the empirical efficiency scores come from the same probability

distribution. The pairs are: [DEA-CRS, FDH], [DEA-CRS, SDEA], and [FDH, SDEA].

The first two comparisons are one tailed again because of the nesting arguments

developed earlier, while the last pairing is a two tailed test since there is no theoretical

prediction about the nesting of SDEA and FDH. Finally another set of two tailed test can

be applied to the comparison of the empirical models with the regulatory scores in

DPCR. Siegel and Castellan (1988, p.144)) describe the hypotheses as follows. The null

hypothesis, H0,  is that the samples come from populations with the same probability

distribution. In the one tailed test the alternative hypothesis H1 is that values in the

population from which one of the samples is drawn are stochastically larger than the

values of the population from which the other sample was drawn. In the two tailed test.

‘larger’ is replaced with ‘different’. Formally the test statistic is written (Banker 1996,

p.142):

( ) ( ){ }θθ ˆˆˆˆmax 21 nn FFD −=

where ( )θ̂ˆ
nF  is the empirical cumulative relative frequency distribution function of the

estimated efficiency scores for sample group n. Siegel and Castellan (1988) have

tabulated the 1, 5, and 10 percent critical values of  Dnn 21  and the relevant figures are

shown in table 5.
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Critical values for rejection of H0 in the
Kolmogorov-Smirnov test for two samples of 14

One tailed test: Two tailed test:

10 per cent level 84 98
5 percent level 98 112
1 percent level 112 126

Table 5 Kolmogorov-Smirnov test critical values

The comparative pairwise test statistics are presented in table 6 and the results are

illuminating.

K-S Test values DEA-CRS FDH SDEA 0.95 SDEA 0.8 uniform
DPCR 56 112* 28 42 168*

DEA-CRS 112* 42 28 168*
FDH 112* 112* 98*

SDEA 0.95 28 168*
SDEA 0.8 168*

Table 6 K-S test results: * reject H0 at the 5 percent level

At the most basic level this size of sample does allow us to reject the null hypothesis that

all of the companies are equally efficient and on the frontier. OFGEM’s measured

efficiencies – despite the criticism of the methodology imposed – are not significantly

different from any of the other empirical models except FDH.  The FDH model on this

sample size is the only method which produces an efficiency distribution different from

that of the other models including uniform total efficiency. However it only just rejects

H0 compared with uniform total efficiency at the 5 percent level and fails to reject it at

the 1 percent level.. All of the non-FDH models including DPCR implicitly assume

convexity – i.e. that companies are compared with interpolated efficient points which

may not be observed. This results in the FDH model presenting the closest envelopment

of the data and consequently the least discrimination amongst the companies.
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Both of the SDEA models produce an intermediate stage of envelopment – more

discriminating than FDH but a closer envelopment than DEA-CRS. It appears that

allowing for stochastic error is feasible and produces the expected results that each of the

firms improves its position relative to the situation in which stochastic error is ignored.

However the improvement relative to DEA-CRS is not so strong that the results fail to

find efficiency differences amongst the companies. This suggests that SDEA is a useful

and practicable means of overcoming the outliers problem in comparative efficiency

studies.

Regulatory Implications

Are there significant regulatory conclusions to be drawn from this exercise? Three

may be offered. First it is important to understand what comparative efficiency studies

can achieve and why they are used. They do have a link with the theory of principal agent

regulation and the critical idea is the nesting of different minimal cost extrapolation

models. Second, it is clear that the stochastic DEA model can be implemented and

produces results directly in accord with the model’s predictions in the form of a closer

probabilistic envelopment. Third, in regulatory studies small samples are not particularly

helpful. This is a problem for both regulators and companies – but it is more serious for

regulators. Companies obviously need to be assured that the comparative efficiency

assessment is rigorous and plausible. Increased sample size can give better discrimination

to the empirical results but carries two penalties. For the companies already in the

comparison any increase in the sample size can never improve the companies’ relative

efficiency. Increased sample size can only produce more companies which are better or

the same. Worse companies are irrelevant. To increase the sample size the regulator may
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need to make international comparisons but the issue of whether data is comparable then

makes the agents less likely to wish to participate in the game. It remains true that

comparative efficiency regulation is not the straightforward task that it might appear at

first glance. On the other hand, stochastic non-parametric efficiency measurement can

provide feasible and incentive compatible improvements on deterministic models.

This paper has shown that different methods of comparative efficiency

measurement can produce different results for the scores of the firms even within the

same data set and input-output structure. In particular the case for closer envelopment of

the data leads to the use of stochastic and non-convex methods of nonparametric

efficiency measurment. It is possible to check very approximately what the effect of these

changes in efficiency scores will be on the regulated prices that are applied to the firms.

For example OFGEM (1999, annex 2 pp. 72-85) presented a stylised framework for the

calculation of the P0 initial prices for the next review period. Consider just two of the

companies, labelled firms 7 and 9 in table 4. They each received low efficiency scores

from OFGEM and even lower scores on DEA-CRS. However the FDH model increased

their efficiency scores relative to both OFGEM and DEA-CRS and the SDEA model

increased the efficiency score of one firm relative to DEA-CRS. Using the stylised

calculations in OFGEM’s P0 reports it is possible to conjecture adjusted OPEX figures

for these firms and therefore to make a very rough estimate of the effect on the regulated

price outcome. The procedure we follow is this. The regulation requires that the present

value of benchmarked costs (OPEX + depreciation + return) equals the present value of

benchmarked revenues.

( ) ( )REVENUESPVRABwaccDOPEXPV =++ )*(
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Here D is the depreciation, wacc is the weighted average cost of capital and RAB

is the regulatory asset base. The capped average revenue in current prices is given by the

formula:

( )tXRPIP −+10

Consequently:

( )[ ] ( )+=

it is possible to calculate the effect on P0 of different benchmarks for OPEX. For the two

examples in question the results are shown in table 7.

OPEX
calculations £m

Undiscounted
OPEX: DPCR

Undiscounted
OPEX: DEA

Undiscounted
OPEX: FDH

Undiscounted
OPEX SDEA
(0.95)

Firm 7 515 507 520 515
Firm 9 560 555 563 563

Table 7 OPEX recalculated with different models

In the case of firm 7 OPEX is 43 percent of the undiscounted costs and in the case

of firm 9 OPEX is 52 percent of  the undiscounted costs. The different models make a

difference of 1-2 percent in the undiscounted OPEX figures so that the likely impact on

the P0 figure after discounting is probably a variation of around 1 per cent .

In conclusion the paper has investigated the arguments for different types of non-

parametric efficiency measurement offering closer envelopment of the data than

conventional DEA. In particular the effects of FDH compared with chance constrained

DEA have been described. There are powerful arguments for the different models

described here. Curiously in the small sample case study to which they have been applied

the actual effects of choosing different methods of efficiency measurement have been

small, but it would be wrong to expect this effect in larger samples.
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Figure 1 Time line for the Bogetoft yardstick competition game
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Figure 2 boundaries of the FDH and DEA input requirement sets
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Figure 3 Olesen and Petersen’s model of chance constrained DEA
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