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1. Introduction

Facilitated by the development of various direct-write 
tech-niques and of functional materials such as polymer-
based conductors and semiconductors, printed electronics are 
flourishing both commercially and as a research topic. This is 
not only because of simpler manufacturing routes and 
lower costs, but also as a result of lower processing 
temperatures and better compatibility with flexible 
substrates, along with other breakthroughs such as low 
temperature and nanocomposite inks developed [1, 2], 
compared with their conventional coun-terparts. Inkjet 
printing, as one of the numerous direct-write techniques, 
has been receiving great attention over the past decade 
due to its merits such as being noncontact, maskless, and 
compatible with flexible substrates along with consuming 
less materials. It has been utilized to print functional com-
ponents such as strain sensors [3], RF power amplifiers 
[4], 

magnetic cores [5], supercapacitors [6], conductive tracks [7], 
transistors [8, 9] and OLEDs [10] in electronics applications. 
The development of conventional electronics has been guided 
by Moore’s Law, the driver for which lies in the demand for
electronic devices with better performance and portability at 
lower prices. Therefore, one can expect a similar trend for 
printed electronics to guide its development. Multi-layered 
printing could be adopted in printed electronics to achieve 
higher density integration, so that this development trend can 
be maintained. In such circumstances, the creation of vertical 
interconnections in printed electronics will be required in the 
future when scaling and system integration are necessary to 
further reduce costs and improve performance.

Inkjet deposition of materials may however lead to inhomo-
geneous deposition due to the coffee ring effect. This effect, 
also known as the coffee stain effect, exists as a commonly 
observed phenomenon where drying of a sessile drop results in 
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Abstract
A penetration limit has been experimentally demonstrated for inkjet etching of holes in thin 
polymer layers. A mechanism combining the competing coffee ring flow, polymer dissolution 
and diffusion into the solvent drop, and the interaction between the contact line during 
evaporation and the softened deformable polymer, is proposed to explain the existence of 
such a penetration limit. The height-averaged velocity of the coffee ring flow within the 
evaporating sessile drop is calculated during the initial stage of this etching process when the 
spherical cap geometry assumption is valid. This is compared with the diffusion velocity of 
the disentangled polymer into the solvent. The two competing flows are used to elucidate why 
a hole could be formed initially. The complex wetting dynamics of the receding contact line 
is included to explain the via hole profile evolution in the later stage of the etching process 
and the existence of a penetration limit. These two stages are differentiated by the drop 
volume with respect to the volume of the via hole produced by the preceding drop. The 
competition between the coffee ring flow transferring polymer away from the central region 
and the polymer diffusion within the solvent drop is postulated to contribute to either via hole 
formation or a penetration limit, depending on which one of the two processes is dominant 
within the solvent evaporation time scale.
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material suspended or dissolved in the liquid being deposited 
as a ring. The occurrence of the coffee ring effect is generally 
unfavourable for printing of functional materials, such as for 
conductive tracks, as the inhomogeneous material deposition 
inhibits the conductivity of the structure [11]. Interestingly 
however, several investigations of deliberately utilizing the 
coffee ring effect as a means of generating structural patterns 
in various polymers have also been reported [12–16]. These 
polymer patterning investigations can be potentially useful in 
some structural or functional applications. Bonaccurso et al 
[17] and Pericet-Camara et al [18] used inkjet printing to 
fabricate microvessels and microlenses while Xia et al [19, 
20] and Lu et al [21] demonstrated using the same technique
to create cavities for display applications.

One potential application of this patterning technique is dis-
solving via holes in dielectric layers to allow creation of ver-
tical connections between layers in printed electronics. Inkjet 
etching of via holes can provide good integration with other 
inkjet-printed features simply by switching firing nozzles. 
This is of particular interest as it facilitates all-inkjet-printing 
by providing a subtractive manufacturing means. Using inkjet 
printing as an etching tool for producing via holes was first dem-
onstrated by Kawase et al [8, 22, 23]. Kawase et al successfully 
demonstrated all-polymer thin film transistor circuits, with the 
via holes used for the vertical interconnection structures made 
by inkjet etching utilizing the coffee ring effect. Lennon et al 
[24] also used inkjet printing as an etching method to create 
openings in inorganic SiO2 layers for solar cell applications. 
A process of using a single resist layer for multiple patterning 
steps was also reported [25]. Both applications demonstrated 
by Lennon used dissolution of a polymer layer to form an inter-
mediate patterning mask rather than the final product. Yang  
et al [26, 27] used inkjet printing to dispense a silver particle 
loaded ink onto a polymethylmethacrylate (PMMA) surface 
so that the silver particles were embedded into the dielectric 
layer as a result of polymer swelling and dissolution to create 
an electrically conductive path between layers. Even though it 
has been more than a decade since inkjet etching was first used 
to dissolve via holes for applications in electronics, it is still 
an underdeveloped method and more systematic investigations 
are needed to allow a detailed understanding of the underlying 
physics and chemistry. Previous work has identified the factors 
which influence the size of the inkjet-etched via holes and the 
penetration of the polymer layer [28, 29]. It is postulated that 
using such a technique to fabricate via holes can only achieve a 
certain aspect ratio, i.e. ratio of hole diameter to film thickness. 
This paper aims to demonstrate experimentally a penetration 
limit and to provide a mechanism to explain why such a limit 
exists instead of it being possible to excavate the polymer layer 
completely as the polymer layer thickness increases. This study 
is of essential importance for the evaluation of inkjet etching 
of via holes before it can ultimately find suitable applications.

2. Materials and methods

Acetone (CHROMASOLV®, for HPLC, ⩾99.8%, Sigma-
Aldrich UK) and Decon 90 (Fisher Scientific UK) were used 
to clean glass substrates before spin coating them with a thin 

film of polymer. Poly(4-vinyl phenol) (PVPh) (molecular 
weight Mw 11 000, ⩽0.2% wt% monomer, density 1.16 g ml−1, 
glass transition temperature Tg 130–185 °C, Sigma-Aldrich 
UK) was used as the dielectric polymer and dissolved into IPA 
(isopropyl alcohol) (Sigma-Aldrich UK) using an ultrasonic 
bath to produce a clear solution, which was subsequently spin 
coated on the cleaned glass substrates. Various PVPh thick-
nesses were achieved by varying the concentration of the 
polymer solution and the spin coating parameters. A much 
thicker crack-free polymer layer was used to demonstrate the 
penetration limit using poly (acrylic acid) (molecular weight 
Mw 100 000, 35 wt% in H2O, 1.14 g ml−1, Sigma-Aldrich 
UK). A CLA (chromatic length aberration) gauge with a ver-
tical resolution of 10 nm was utilized to measure the polymer 
film thicknesses. IPA was also used as the etchant and was 
dispensed using a Microfab Jetlab® 4 inkjet printer onto the 
PVPh coated glass. A WLI (white light interferometry) micro-
scope was used to scan the topography of the holes 
produced.

When the voltage changes in a waveform, it first gener-
ates two negative pressure waves heading towards the 
reser-voir and the orifice at both ends of the channel, which 
fills it with ink from the reservoir and retracts the meniscus. 
The negative pressure wave bounced back from the orifice 
conserves its phase while the one reflected from the reservoir 
inverts into a positive pressure wave. The voltage plateau is 
essential to allow these two reflected waves to travel to the 
piezoelectric actuator before a positive wave is generated by 
the actuator following a further voltage change to cancel the 
reflected negative pressure wave and reinforce the reflected 
positive pressure wave. This inverts the meniscus outward 
to eject a drop. The travelling wave inside the channel of 
the print head and the consequent meniscus oscillation are 
believed to be the principle of drop formation during inkjet 
printing [30, 31]. Waveform parameters need to be optimized 
for the material being printed so that the generated drops have 
no satellite drops or trajectory deviation. Satellite drops are 
formed from the tail thread occurring behind the main drop 
when an excessive amount of solvent is jetted out of the inkjet 
nozzle, as shown in figures 1(a) and (b). The tail thread can 
either forward-merge into the main drop, as demonstrated 
in figure 1(a), or back-merge into one or several satellite 
drops, as shown in figure 1(b), or could become infinite 
satellites which travel at the same speed as the main drop 
without merging [32]. Satellite droplets can lead to variation 
in the total amount of solvent jetted out for each dispensing 
event and cause issues of trajectory deviation and therefore 
poor landing location repeatability, as shown in figure 1(a), 
accordingly resulting in bad via hole formation. Figure 1(c) 
illustrates an example of IPA drop formation ideal for via 
hole production. The drop trajectory is perpendicular to 
the substrate and no satellite drops are formed.

The diameter and volume of the jetted IPA droplets were 
analysed using the drop analysis function integrated within 
the printing system. A more trusted method for drop volume 
and diameter estimation was performed by weighing a large 
number of non-volatile ethylene glycol droplets collected 
in a vial to acquire the uncertainty of this estimation. The 
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discrepancy between these two estimation methods is roughly 
4.6%. The uncertainty in the weighing method as indicated 
by the resolution of the weighing scale used is of the order of 
2.0%, which implies an overestimation of the drop diameter 
by 4.6  ±  2.0% using the drop analysis in Jetlab 4. Therefore 
this does not significantly a ffect t he r esults h ere. O nce t he 
waveform was optimized for the etchant, the drop analysis 
was performed 10 times and the diameter was estimated to be 
38  ±  2 μm. The ejection frequency of jetting the IPA drops 
was set to 1Hz, which gives a 1s time interval between two 
consecutive drop jets. The evaporation time of an IPA sessile 
droplet is estimated to be approximately 0.6 s using the 
Schönfeld model [33]. Therefore in these experiments the
drops are believed to have evaporated almost entirely before 
the next one arrives. A script was written to define the number 
of drops to be dispensed at each location. After several drops, 
the PVPh layer is completely etched through, resulting in a 
crater-like hole. The complete removal of polymer from the 
bottom of such via holes has been confirmed previously using 
an electroplating technique [28].

3. Results

The first drop problem is a well-known issue in inkjet printing 
and is the inconsistency of the first few drops ejected by a 
nozzle after it has been sitting idle for some time and is caused 
by evaporation of the ink at the orifice [34]. This evaporation 
shifts the physical and chemical properties of the ink away 
from those required and causes problems with proper jetting, 
especially after prolonged idle times. The time that an ink can 
successfully wait in an orifice without jetting, termed as the 

ink latency, varies from a few seconds to a few minutes in com-
mercial drop-on-demand inkjet printers [35], so the frequency 
of 1 Hz used throughout this work corresponded to a smaller 
idle time. Additionally the fact that the ink loaded in the res-
ervoir is pure solvent, rather than one of the usual sol inks 
containing suspensions of particles, means that evaporation 
will not alter its properties. Therefore the ejection frequency 
of 1 Hz was not seen to sabotage the hole formation in terms 
of location repeatability and the resulting via hole dimensions. 
Figure 2 demonstrates optical microscopy images of via holes 
produced by various numbers of drops and the superimposi-
tion of their profiles. The fact that the outer diameter of the 
via hole produced by a single drop is approximately the same 
with that of the hole produced by 5, 20 and 40 drops confirms 
this. Experiments were carried out several times and could be 
repeatedly reproduced as long as the initial jetting was estab-
lished properly.

The inner diameter (Din), outer diameter (Dout), ridge 
height (Hr) and hole depth (Hd) are defined as in the inset in 
figure 3(a). Dout remains independent of Nd at the drop ejection 
frequency used as shown in figure 3(a). Din has been previ-
ously shown to decrease initially with the number of drops 
(Nd) and then stay constant regardless of Nd, once complete 
penetration has been achieved, when the jetting frequency 
allows for substantial solvent evaporation [28]. 7–10 drops are
usually needed for complete penetration, depending on pol-
ymer thickness, drop diameters, etc. Din versus Nd (Nd  ⩾  20) 
is plotted in figure 3(b) where it can be seen that the average 
equilibrium Din decreases with increasing polymer thickness. 
The average equilibrium Dout and Din are plotted against pol-
ymer thickness in figure 4. Due to the resolution limit of the 

Figure 1. (a) Drop formation featuring a satellite drop forward-merging into the main drop and its deviation from the ideal trajectory; (b) 
drop formation featuring a main drop with two satellite drops merging into one as they traverse the nozzle–substrate distance; (c) an ideal
drop formation for inkjet etching of via holes without satellite drops or trajectory deviation from being perpendicular to the stage.
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inkjet printer and the difficulty of further increasing the thick-
ness of spin coated PVPh without cracking, the penetration 
limit was not obtained experimentally for PVPh. However, 
extrapolating from figure 4 implies there should be a thick-
ness limit above which a droplet of a specific volume cannot 
completely etch through the entire polymer layer. A different 
polymer, PVA, was therefore used to demonstrate that pol-
ymer residue cannot be removed from the bottom of via holes 
completely above a certain thickness, and the results from this 
experiments are plotted in figure 5. The PVA polymer thick-
ness was approximately 6.1 μm. Dout remained constant with 
Nd, as illustrated in figure 5, while Din is not sketched as the 
profile quickly shifts to a more concave shape and prevents 
Din from being determined clearly. However it can be seen 
that Hd remains far below the polymer thickness (H0) even at 
Nd  =  50, which implies incomplete penetration.

The fact that PVPh films up to 5 μm thick can be etched com-
pletely seemingly makes the case less important, as thicknesses 
of this order maybe too thick for typical printed electronics 
applications. Nonetheless there are technologies to further 
reduce inkjet nozzle sizes and thereby to bring the drop size 
down to a few microns, while printed transistors with channel 
feature sizes of several microns or even sub-micron have already 
been demonstrated [36–42]. Droplets of a smaller diameter gen-
erated with a high-resolution inkjet printer will undoubtedly 
diminish the maximum penetration thickness far below 5 μm 
and will therefore make this issue relevant to printed electronics 
applications. We propose in the following sections a mechanism 
to explain why such a hole feature could be form in the polymer 
layer initially, and a penetration limit exists eventually instead 
of it being possible to keep dissolving polymer from the hole 
bottom and thereby increase the aspect ratio.

4. The coffee ring flow and polymer diffusion

In the coffee stain effect, suspended particles accumulate 
at the border of the sessile drop as a result of outward flow 
within the evaporating drop induced by the greater rate of 

evaporation from the edge and a pinned contact line between 
liquid and solid substrate due to the roughness or chemical 
heterogeneity of the substrate [43–45]. There are two principal 
evaporating modes for a sessile drop, known as the constant 
contact angle mode and the constant contact area mode. The 
constant contact angle mode is an evaporation process where 
the contact line recedes as the volume drops while the contact 
angle remains constant, while the constant contact area mode 
is an evaporation process where the contact line is pinned and 
the contact angle therefore decreases as the volume reduces.

In this study it is assumed that PVPh does not dissolve into 
the IPA drop during the initial impact and spreading phrase, 
which is supported by the estimation of the time scales asso-
ciated with each process later. The initial contact angle can 
therefore be calculated from the drop volume and maximum 
wetting diameter based on a spherical cap geometry. This 
geometry assumption holds true when the bond number 

ρ σ=Bo gD /2  (where D is the drop diameter, ρ is the den-
sity, g is the gravitational acceleration and is σ the kinematic 
viscosity) is small (Bo�1) [46]. Based on this spherical cap 
assumption and geometry relationships, the initial contact 

Figure 2. Profile superimposition for holes together with inset 
optical microscopy photos (scale bar 100 μm) of holes produced by 
1, 5, 10, 20 and 40 IPA drops.

Figure 3. (a) Outer diameter (Dout) and (b) inner diameter (Din) 
versus the number of drops (Nd) dispensed for different polymer 
thicknesses.
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angle for the IPA sessile drops on the PVPh layer was cal-
culated to be approximately 14° with a known contact diam-
eter (equivalent to Dout) and drop volume. Figure 6 shows a 
cross section  of an evaporating drop and defines the cylin-
drical coordinate system used to derive an expression for the 
outward velocity caused by the coffee ring effect assuming a 
height-averaged coffee ring flow as a function of radius.

Using this coordinate system, the vertically averaged out-
ward radial flow of the liquid v(r,t) caused by the coffee ring 
effect can be expressed as [45]:

( ) ( )∫ρ
ρ= − +

∂
∂

+
∂
∂

⎜ ⎟
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where ( )v r t,  is the averaged radial flow of the liquid (m s−1);
R is the wetting radius of the sessile drop on the substrate 
(m); θ is the contact angle (rad); ρ is the density of the liquid 
(kg m−3); h is the height of the sessile drop at radius r (m); and 

( )J r t,  is the mass loss from the sessile drop per unit area per
unit time (kg m−2 s−1).

Equation (1) can be expressed as (2) following the detailed 
derivation described in the appendix:
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The diffusion coefficient of IPA in air, D, can be calculated 
with the formula in the literature [47] to be ≈ × −D 9.96 10 7 
m2 s−1; = =R D /2 53out  μm; = × −c 1.046 10v

7 g m−3; 
ρ = 786 kg m−3. The outward coffee ring flow velocities at 
different contact angles within the sessile drop can now be 
calculated and are sketched as a function of radial location and 
contact angle in figure 7.

The diffusion rate of polymer into the solvent can be calcu-
lated by (please refer to the appendix for details):

  ( )πµ= =v L t k T n ltd /d / 6 .d B (3)

The viscosity of the solvent drop is taken to be that of the 
pure solvent and the temperature gradient within the droplet 
is neglected to simplify the scenario, while l is taken to be 
the C–C bond length, 0.154 nm [48]. The diffusion velocity
now can be approximated by  µ≈ −v t178/ m sd

1. According
to Hu and Larson, the decreasing rate of the drop height 
is nearly constant during evaporation [49]. This gives 
( )≈−�h t h t˙ 0, /0 e, where ( ) �h t˙ 0, is the drop height reduction

rate, h0 is the initial drop height and te is the drop evaporation 
time. The drop height h(t) at any time t can therefore be esti-
mated as ( ) ( )≈ −h t h h t t/0 0 e . The drop height h(r, t) can be

expressed as ( ) ( )θ θ= − −h r t R r R, / sin /tan2 2 2 , based on
the spherical cap geometry. Now the contact angle can be cor-
related with time so that the diffusion velocity can be sketched 
along with the coffee ring flow in the same diagram as illus-
trated in figure 7.

It should be noted here that the infinite diffusion velocity 
singularity at =t 0 (corresponding to an initial contact angle 
θ  =  14°) is not sketched in figure  7. The singularity at the
contact line occurs due to the evaporation flux singularity 
there when using ( ) ( )( ) ( )θ= − λ θ−�J r t J r, 10

2 . In addition, the 
actual polymer diffusion velocities would be smaller than as 
sketched at the corresponding contact angle in figure 7 as the 

Figure 4. The relationship between outer diameter (Dout) and inner 
diameter (Din) of completely etched holes and polymer thickness.

Figure 5. Profile evolution with Nd for holes produced in poly 
(acrylic acid) with deionized water (profiles are not sketched to 
scale).

Figure 6. Cross section of an evaporating sessile drop in a 
cylindrical coordinate system with relevant parameters: evaporation 
flux J(r,t), fluid velocity v(r,t), contact angle θ(t), drop height h(r,t) 
and maximum wetting radius R.
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viscosity increases with ongoing evaporation signi�cantly. 
However, the coffee ring velocity curve shifts upward and the 
diffusion velocity line shifts downward as the contact angle 
decreases with ongoing evaporation, implying an increasing 
outward coffee ring �ow and decreasing polymer diffusion 
with evaporation. When the contact angle �  �   10°, the coffee
ring �ow is equal to the diffusion �ow at point A, as sketched 
in �gure� 7. When the contact angle decreases to �  �   6°, the
location at which these two �ows are equal shifts to B, sug-
gesting more regions within the hole are in�uenced more 
strongly by the coffee ring �ow. It is therefore concluded that 
during the initial stage the coffee ring �ow will be dominant 
while the spherical cap shape assumption is valid. Therefore 
for the �rst few drops, when the solvent can still be assumed 
to have a spherical cap shape, at least in the central region of 
the via hole, within the evaporation time scale of the sessile 
drop te, it is likely that h (r, t) �  L. It should be noted that the 
pro�les of the via holes are not shown to scale and they actu-
ally have large diameters with respect to their very shallow 
depths. Therefore horizontal etching of the sidewall can be 
neglected compared with the vertical downward etching when 
considering the central region away from the contact line in 
the early stages. The coffee ring �ow transfers the dissolved 
polymer outwards so that the process is �ow dominant [15] 
and more polymer can be dissolved each time a new droplet 
is dispensed and transferred outwards to the periphery. This 
contributes to the initial increase of the via hole depth with an 
increasing Nd.

The issue with using a height-averaged �ow lies in the fact 
that the radial coffee ring �ow velocity changes with height. 
The coffee ring �ow has been shown using mathematical 
models to be strong along the liquid–gas interface and gradu-
ally become weaker nearer the liquid–substrate interface [50].��
Additionally the viscosity of the drop may decrease from the 
contact line to the centre in practice, causing a decreasing dif-
fusion velocity gradient accordingly. This explanation given 
above in this section���may only be a reasonable approxima-
tion when the etching depth is small, so that the polymer 
dissolution and topography do not affect the sessile drop 

shape signi�cantly and the models of the sessile drop evapo-
ration adopted still apply. As the etching depth increases, the 
spherical cap assumption is not valid anymore and the wetting 
conditions change signi�cantly, which will be discussed in the 
following section.

5. Effect of w etting dynamics

The molar mass of the PVPh used here at 11 000 g mol�1 , is less 
than half of the reported entanglement molar mass, 29 300 g 
mol�1 , for this polymer [51]. Therefore the dissolution rate of 
PVPh into the solvent, i.e. polymer disentanglement rate, is 
faster than the diffusion rate of solvent into the polymer, i.e. 
polymer swelling rate. That is to say the glassy state PVPh can 
absorb just a small fraction of solvent before converting into 
the solid swollen glassy state or the viscoelastic rubber-like 
state and then quickly disentangles and disperses into the sol-
vent. The effect of the solid non-deformable substrate strongly 
affects the deformation of the elastomer �lm by the capillary 
pressure when the polymer layer is thin [52]. As a result, it 
is reasonable to believe that thin polymer layers are easier to 
penetrate than thick ones since the pattern pro�le deformed 
in thick polymer approaches a predicted parabolic curve [52, 
53]. Nonetheless the thickness range of the polymer layers 
used here is postulated to fall within the thin polymer cate-
gory in the work by Pericet-Camara et al [52]. However, both 
solvent evaporation and polymer dissolution are involved and 
cannot be neglected in our work. In addition, multiple drops 
are dispensed at the same location, which makes the situation 
far more dynamic and complex.

Let us therefore now consider the situation when only one 
drop is dispensed on the polymer layer. The timescale for drop 
impact, i.e. the time for a drop to spread from the moment of 
impact until when the maximum spreading is achieved, can 
be estimated by �t D v�8 /3c 0  (where D0 is the drop diameter 
and v is the impact velocity) [54]. For a �40–50 �m IPA
drop with impact velocities of 1–3 m/s, tc is estimated to be
0.04–0.13 ms, which is in agreement with the timescale of the
signi�cant stages of a �40–50 �m drop impact and sessile
drop formation reported to be 0.1 ms by Dong et al [34]. The 
polymer dissolution process is taken to be of a similar time-
scale as solvent absorption into the polymer, which happens 
in a few milliseconds [55]. The estimated evaporation time 
of an IPA drop has already been calculated to be approxi-
mately 0.6 s. Therefore it is postulated that the droplet �rst 
lands on the substrate and spreads out into a sessile drop in the 
shape of a spherical cap with a negligible gravitational effect 
when the bond number Bo is small. When quasi-equilibrium 
is achieved, the three phase contact line attains its maximum 
spreading diameter. Polymer dissolution and solvent evapora-
tion occur subsequently, with evaporation being the longest 
process. It should be noted that estimation of the evaporation 
time for a sessile drop by the Schönfeld model is used here
for a qualitative purpose only due to the lack of mathemat-
ical models for soluble substrates. However, if the evapora-
tion time of the drop on soluble substrates were comparable 
to drop spreading, it is unlikely a hole will be created due to 

Figure 7.  Plot of the outward �ow velocity and the inward diffusion 
velocity as a function of distance from the centre at different contact 
angles (i.e. times) within the sessile drop.
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