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a b s t r a c t 

A crystal-plasticity model is developed to account for temperature-dependent mechanical behaviour of

magnesium in this paper. The constitutive description of plastic deformation accounts for crystalline slip

and twining as well as their interactions. The temperature dependence is incorporated into the constitu- 

tive equations for both slip and twin modes based on experimental observations. A bottom-up computa- 

tional modelling framework is proposed to validate the developed constitutive model. First, the crystal- 

plasticity model is calibrated with experimental results for plane compression at micro-scale. At meso- 

scale, a three-dimensional representative element volume was adopted to represent the microstructure of

polycrystalline magnesium. In the combination with the proposed constitutive theory, the effects of tem- 

perature on mechanical response and evolution of twins and texture in polycrystalline magnesium were

predicted. Comprehensive experimental validations at meso-scale were performed to consolidate further

the developed crystal-plasticity model incorporating temperature dependence in terms of stress-strain

curves, the Hall-Petch relationship and texture evolution. This work provides a useful modelling tool for

understanding temperature-dependent behaviour of magnesium, which could be used to improve the

formability of this family of materials.
© 2017 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/) 
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1. Introduction

With increasing demands for improved fuel efficiency in trans-

portation, there is a strong drive to reduce the weight of vehicles

without compromising their structural resilience. Therefore, mag-

nesium (Mg) and its alloys have attracted significant attention in

recent years thanks for their high specific strength ( Wei et al.,

2015; Zhou et al., 2016 ). However, the widespread structural appli-

cations of Mg have been substantially restricted by material’s poor

ductility and formability. This drawback is primarily due to the un-

derlying hexagonal close-packed (HCP) structure of Mg, which pro-

vides a limited number of slip systems for plastic deformation at

room temperature ( Mirzadeh, 2014 ). Additional slip systems may

be activated at elevated temperatures; consequently, hot process-

ing is advised to overcome the poor formability of Mg ( Figueiredo

et al., 2016; Mirzadeh, 2014 ). This needs to be performed with cau-

tion, as high temperatures may alter the material’s microstructure

with a concomitant change in an in-service mechanical response of
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 component ( Yuan et al., 2016 ). Thus, a thorough understanding of

ot deformation behaviour of Mg is necessary. 

In Mg and its alloys, micro-scale deformation mechanisms in-

lude both crystalline slip and deformation twinning. In addi-

ion, a significant transition of the dominant deformation mode

s observed with a temperature variation. In recent years, crystal-

lasticity-based approaches that can explicitly implement differ-

nt deformation modes have been widely used for fundamental

nvestigations on deformation mechanism of various metallic ma-

erials, including Mg, further providing guidelines for design of

ovel materials ( Zhang et al., 2016 ) and formability improvements

 Liu et al., 2016a, c ). 

Based on the modelling philosophy adopted in crystal plastic-

ty, the respective modelling technique can be categorised into top-

own and bottom-up approaches ( Zhang and Joshi, 2012 ). The top-

own approach is well-suited to model polycrystalline behaviour

t macro-scale, from which single-crystal parameters are inferred.

he commonly used top-down approaches can be classified into

sostrain ( Taylor, 1938 ), isostress ( Sachs, 1928 ) and self-consistent

 Eshelby, 1957 ) schemes. There are some successful examples for

hese different top-down approaches, for instance, the isotrain-

ype ( Ardeljan et al., 2016; Knezevic et al., 2009 ), isostress-type

 Toth et al., 1990 ) and visco-plastic self-consistent (VPSC) models
 CC BY license. ( http://creativecommons.org/licenses/by/4.0/) 
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D e + W e = F e F , D p + W p = L + L + L . (6)
 Beyerlein and Tomé, 2008; Kabirian et al., 2015 ). The top-down

pproach is relatively easy to implement numerically and can re-

uce computational cost by incorporating a coarse finite-element

FE) mesh. However, this approach suffers from a high computa-

ional time cost at element-level simulation, which impedes paral-

el computation in FE analysis. Thus, the top-down approach may

ssentially decrease computational efficiency. Its another drawback

s the fact that the choice of a homogenization scheme affects sig-

ificantly the estimation of single-crystal parameters ( Ardeljan et

l., 2016 ). By contrast, the bottom-up approach involves the use

f a calibrated (based on experiments) small-scale single-crystal-

lasticity (SCP) model, incorporating typical deformation modes

uch as slip, twinning or both. To predict a response of polycrys-

alline component, individual crystal grains and orientations are

epresented via the SCP model, which is then employed to as-

ess a stress-strain response and texture evolution during the de-

ormation process. Here, the intra-grain interaction is modelled in

 physically representative manner (in contrast to the use of ho-

ogenization). Successful implementations of the bottom-up ap-

roach were developed for a variety of crystalline materials, FCC

 Cyr et al., 2015 ), BCC ( Lim et al., 2015 ) and HCP metals ( Abdolvand

nd Daymond, 2013; Cheng and Ghosh, 2015 ) and references there

n. Compared to the top-down approach, the bottom-up approach

as a higher demand on computational resources, but such an ap-

roach is amenable for parallelisation in an FE solver. 

In Mg and its alloys, much of the modelling effort involves

he use of top-down approach. For example, VPSC models were

mployed to provide an insightful understanding activity of slip

nd twin mode at different temperatures in AZ31 alloy ( Kabirian

t al., 2015; Zhang et al., 2016 ). In the works, the so-called pre-

ominant twin reorientation (PTR) scheme proposed by Tomé et

l. (1991) was widely adopted to determine the twin-phase for-

ation. In the PTR scheme, only one twin phase with a high-

st contribution to total volume fraction was activated in a grain.

n these VPSC-based approaches, a critical resolved shear stress

CRSS) needs to be calibrated at different temperatures, which is

heir primary drawback. Recently, Ardeljan et al. (2016) proposed

 Taylor-type modelling scheme, in which the temperature depen-

ence was incorporated into constitutive laws, thus addressing its

ffect with introduction of appropriate parameters. 

For bottom-up approaches, several SCP-based models were de-

eloped recently, with their parameters identified through single-

rystal experiments ( Becker and Lloyd, 2016; Gan et al., 2016;

hang and Joshi, 2012 ). Additionally, these models were also

mployed to characterise polycrystals at meso-scale ( Chang and

ochmann, 2015; Zhang and Joshi, 2012 ). However, these studies

ere limited to investigations at room temperature. To date, only

ome limited attempts were made to capture temperature depen-

ence with different sets of model parameters were used for differ-

nt temperature conditions ( Hidalgo-Manrique et al., 2015 ). Thus,

t is imperative to incorporate temperature dependence into con-

titutive laws for bottom-up approaches, which will allow for mod-

lling across a wider temperature range exploiting a broader de-

ign space. 

The aim of this paper is to develop a SCP model to account

or the temperature dependence of Mg, henceforth, referred to

s T-SCP (temperature-dependent single-crystal plasticity) model.

his model was incorporated into a bottom-up modelling frame-

ork to investigate the effects of temperature on the mechani-

al response and texture evolution of single-crystal and polycrys-

alline Mg. This paper is organized as follows: in Section 2 , a self-

ontained description of the governing relations of the proposed

-SCP model was presented. Section 3 presents a modelling strat-

gy of the bottom-up approach based on a commercial FE software

ackage ABAQUS. In Sections 4 and 5 , simulation results and exper-

mental validations are presented and discussed for single-crystal
nd polycrystalline case at meso-scale, respectively. We end with

ome concluding remarks in Section 6 . 

. Constitutive formulas

In this section, a phenomenological T-SCP model is presented to

ccount for the temperature-dependence of single Mg crystals (or

rains). In the T-SCP model, four slip and two twin systems were

onsidered for the Mg crystal as listed in Table 1 . Here, four slip

lanes are considered: basal, prismatic, pyramidal 〈 a 〉 and pyrami-

al 〈 c + a 〉 and two twin planes: tensile twin (TT) and compressive

win (CT) (see Fig. 1 ). Standard notation is adopted here: scalars

re in italics, vectors and tensors are indicated with lower-case and

pper-case bold letters. 

.1. Kinematics 

Following a classical crystal plasticity (CP) theory, the defor-

ation gradient F can be decomposed into the elastic and plastic

arts, as, 

 = F e F p , (1) 

here the subscripts ‘e’ and ‘p’ denote the elastic and plastic pa-

ameters, respectively. The velocity gradient L is introduced follow-

ng its definition L = 

˙ F F −1 , as, 

 = ̇

 F e F 
−1 
e + F e ( ̇ F p F 

−1 
p ) F 

−1 
e = L e + L p . (2) 

For Mg crystal, the plastic deformation is assumed to arise from

oth crystalline slip and twinning due to its HCP structure with a

arge aspect ratio. Consequently, the plastic velocity gradient, L p ,

ncorporates contributions from the slip and twin modes as 

 p = L sl 
p + L tw 

p + L sl−tw 

p . (3)

Here L sl 
p , L tw 

p and L sl−tw 

p represent the plastic velocity gradient

nduced by the slip in the untwined region (or parent phase), de-

ormation twinning in the untwinned region and secondary slip in

he twinned region (or child phases), respectively ( Kalidindi, 1998 ).

n this paper, the assumption of pseudo slip is adopted for twin-

ing, and its effectiveness has been demonstrated in prior work

 Ardeljan et al., 2016; Gan et al., 2016; Kalidindi, 1998 ). For the

ake of clarity, the superscript α is used to represent the slip sys-

em in the parent phase, β for the twin system in the parent phase

nd ˜ α for the secondary slip system in the child phase. The three

erms in Eq. (3) can be further expressed as 

L sl 
p = 

(
1 −

N tw ∑ 

β

f β

)
N s ∑ 

α=1

˙ γ (α) s α � m 

α

L tw 

p = 

N tw ∑ 

β=1

˙ γ βs β � m 

β

L sl−tw 

p = 

N tw ∑ 

β=1

f β
N s ∑ 

˜ α=1

˙ γ ˜ αs ˜ α � m 

˜ α (4) 

here ˙ γ α is the shear slip rate on the slip system α, f β is the vol-

me fraction of child phase β , and ˙ γ β is the shear strain rate aris-

ng from deformation twinning. N s and N tw 

are the total numbers

f slip and twin systems, respectively. The unit vector s represents

he direction of slip/twin and m is the unit vector normal to the

orresponding slip/twin plane. Furthermore, the velocity gradient

an be expressed in terms of a symmetric rate of stretching D and

n antisymmetric rate of spin W : 

L = D + W = ( D e + W e ) + ( D p + W p ) . (5) 

From Eqs. (2) ∼(5) , we obtain 

˙ −1 sl tw sl−tw 
e p p p 
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Fig. 1. Schematic diagrams of slip and twin systems in Mg crystal. 

Table 1 

Slip and twin systems considered for Mg. 

Slip/twin plane Slip/twinning direction Number of modes 

Basal {0 0 01} < 11 ̄2 0 > 3 

Prismatic { 10 ̄1 0 } < 11 ̄2 0 > 3 

Pyramidal < a > { 10 ̄1 1 } < 11 ̄2 0 > 6 

Pyramidal < c + a > { 11 ̄2 2 } < 11 ̄2 3 > 6 

Tensile twin (TT) { 10 ̄1 2 } < 10 ̄1 1 > 6 

Compressive twin (CT) { 10 ̄1 1 } < 10 ̄1 ̄2 > 6 
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2.2. Constitutive laws 

Average Cauchy stress σ̄ is evaluated at each material point, by

accounting the contributions from both parent and child phases: 

σ̄ = 

( 

1 −
N tw ∑ 

β

f β

) 

σm 

+ 

N tw ∑ 

β

f βσtw (β) , (7)

where σm 

and σtw ( β) denote the Cauchy stress in the parent and

child ( β) phases. In each phase, following the work of Huang

(1991) , the constitutive law is expressed as the relationship be-

tween the elastic part of the symmetric rate of stretching, D e , and

the Jaumann rate of Cauchy stress, 
∇ 

σ , i.e. 

∇ 

σ + σ(I : D e ) = C : (D −D p ) , (8)

where, I is the second-order unit tensor, C is the fourth-order, pos-

sibly anisotropic, elastic stiffness tensor. The Jaumann stress rate is

expressed as ( Liu et al., 2016b ) 

∇ 

σ = 

˙ σ−W e σ + σW e . (9)

The temperature dependence of elastic tensor C can be ex-

pressed as ( Olsson, 2015 ): 

 i jkl = C 0 i jkl −
s i jkl 

exp ( t i jkl /T ) − 1 

, (10)

where T is temperature (in Kelvin), s ijkl and t ijkl are material con-

stants with the same symmetry as the elastic tensor, C ijkl , and C 0 
i jkl 

corresponds to the elastic tensor in the limit of zero temperature. 

With the framework of the classical CP theory, the shear strain

rate on each slip system, ˙ γ α(or ˙ γ ˜ α) is related to the resolved

shear stress τα(or τ ˜ α) via a well-known power law proposed by

Hutchinson ( Hutchinson, 1976 ): 

˙ γ α = ˙ γ0 

∣∣∣τα

τα
c 

∣∣∣n 

sgn ( τα) . (11)

Here, ˙ γ0 is the reference shear rate, τα
c is the slip resistance

and n is the rate-sensitivity parameter. On each slip system, the

resolved shear stress, τα , is expressed by the Schmid law 

τα = s α � m 

α : σ. (12)

A  
Here, we take pause and observe that determining yield surface

n single crystals especially HCP metals is not a trivial matter. We

efer the reader to the seminal work of Tomé and Kocks ( Tomé and

ocks, 1985 ) and Ritz and co-workers ( Ritz et al., 2010 ). 

Next, assuming twinning to be essentially pseudo slip, the

chmid law is also adopted for twin systems, with a power-law re-

ation employed to describe evolution of the twin volume fraction,
˙ f β , i.e. 

˙ f β = 

˙ f 0 

∣∣∣∣∣
〈
τβ

〉
τβ

c 

∣∣∣∣∣
m 

, 
〈
τβ

〉
= 

⎧ ⎨ 

⎩ 

τβ, τβ > 0& f �

(
= 

N tw ∑ 

β

f β

)
≤ f cr 

0 , otherwise 

, 

(13)

here, ˙ f 0 is the reference rate of the twin volume fraction, τβ

s the corresponding resolved shear stress, τβ
c is the resistance to

eformation twinning, m is the rate-sensitivity parameter, and f cr 

epresents the critical twin volume fraction at which lattice reori-

ntation is invoked at the corresponding material point ( Kalidindi,

998; Zhang and Joshi, 2012 ). That is assumed to be 0.9. The shear

train rate on the twin system, ˙ γ β , may be related to the rate of

he twin volume fraction, ˙ f β , via constant shear strain rate, γ tw , as

˙ β = γ tw ˙ f β . (14)

Here γ tw is determined by the aspect ratio of crystal lattice,

= c/a , i.e. 

tw = 

{
γ tw 

tt = 

√ 

3 

χ
− χ√ 

3 

( TT ) 

γ tw 

ct = 

4 χ2 − 9 

4 

√ 

3 

( CT ) , (15)

here χ = 1 . 624 for Mg crystal. 

Lattice reorientation is introduced when the accumulated twin

olume fraction over all twin systems ( f �) exceeds the critical one

 f cr ) at a material point ( Eq. (13) ). In literature, the PTR scheme is

idely used to capture grain reorientation due to twinning. The

TR scheme allows one child phase to evolve in a crystal or grain

 Gan et al., 2016; Zhang and Joshi, 2012 ). In contrast, multiple

hild phases are allowed in our approach (similar to the work of

rdeljan et al., (2016) ). Here, a child phase is introduced when
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he volume fraction of the corresponding twin system reaches a

hreshold value (we assume this to be 1%). Therefore, there can be

 maximum of 12 child phases (6 phases resulting from TT and 6

rom CT). Though, in practice activating all twin systems simulta-

eously is difficult. When a new child phase is generated from the

win β , its new orientation can be obtained by 

 = I − 2 m 

β
� m 

β

 

˜ α = Q s α, m 

˜ α = Q m 

α. (16) 

The elastic tensor (in indicial notation) of the new child phase,

 

tw (β) 
i jkl 

, is defined by rotation from that of the parent phase, C ori 
pqrs ,

hich can be formulated as: 

 

tw (β) = C 
tw (β) 

i jkl 
= C ori 

pqrs Q ip Q jq Q kr Q ls . (17)

.3. Hardening model 

Here, we present hardening laws that capture the evolution of

lip resistance (τα
c ) and twinning resistance (τβ

c ) introduced in

qs. (11) and ( 13 ), respectively, accounting also for the tempera-

ure dependence. To date, there were limited experimental studies

ith regard to temperature dependence of different slip and twin

odes in single-crystal Mg ( Chapuis and Driver, 2011; Wonsiewicz,

966 ). It was demonstrated that the basal slip system and TT were

emperature-independent, while other slip modes and CT exhibited

ignificant temperature dependence. 

.3.1. Hardening law of slip 

Slip resistance is defined as, 

α
c = τα

0 + τα
HP + τα

f , (18) 

here τα
0 

, τα
HP 

and τα
f 

represent the initial lattice resistance, re-

istance from the barrier imposed by grain or twin boundaries

nd forest dislocation interaction, respectively. The first term is ob-

ained from ( Ardeljan et al., 2016; Beyerlein and Tomé, 2008 ): 

α
0 = 

{
s α0 (basal slip) 

s α0 exp 

(
− T 

T α

)
(non − basalslip) 

, (19) 

here s α
0 

is the reference initial lattice resistance, and T α is an em-

irical parameter. 

The second term, τα
HP 

, is considered for two cases: with and

ithout child phases in the crystal ( Beyerlein and Tomé, 2008 ),

nd is presented as a unified expression similar to the classical

all-Petch effect: 

α
HP (T ) = μα(T ) H 

α
I 

√ 

b α

d α
. (20)

Here, μα and b α are the shear modulus and Burgers vector of

lip system α, respectively. H 

α
I 

is the material parameter depend-

ng on the slip mode, with the subscript I indicating three pos-

ible conditions: I = 0 — no child phases in the crystal; I = 1 —

 predominant child phase resulting from TT; I = 2 — a predom-

nant child phase resulting from CT. Depending on the choice of

 , the parameter d represents grain size ( d g ) when I = 0 , or the

ean free path between adjacent child phases ( d α
m f p 

) when I = 1

r I = 2 ( Beyerlein and Tomé, 2008 ). Clearly, the presence of child

hases in a crystal (twin boundaries) introduces an additional bar-

ier for dislocation motion on top of the presence of grain bound-

ry, which manifests in the classical Hall-Petch effect. The mean-

ree-path, d α
m f p 

, depends on the orientation between the predom-

nant child phase and the slip plane ( Ardeljan et al., 2016 ), which

s expressed as 

 

α
m f p = 

(1 − f PT S ) λd g 

sin θ
, (21) 
here f PTS is the volume fraction of the predominant twin system

PTS) in the crystal, λ represents the ratio of the twin spacing and

rain size ( λ= 0 . 2 in this paper), and θ is the angle between the

lane of PTS and the slip plane. 

The forest dislocation interaction, τα
f 
( ̇ ε , T ) , is obtained from 

α
f = τα

f,sl↔ sl + τα
f,tw → sl = 

N s ∑ 

α′ =1 

τα
f,α′ + 

N tw ∑ 

β=1 

τα
f,β , (22)

here τα
f,sl↔ sl 

and τα
f,tw → sl 

represent the slip resistance due to the

lip-slip and twin-slip interactions, respectively. As an example,
α
f,α′ represents the interaction between slip systems α and α′ , and
α
f,β

represents the barrier of twin system β acting on slip system

. The slip-slip system interaction incorporates the effect of active

r self-slip-slip interactions (i.e. when α = α′ ) and latent slip-slip

nteractions (i.e. when α � = α′ ). We assume that these interactions

re related by 

α
f,α′ = q α′ ατ

α′ 
f,α′ (α

′ � = α) , (23)

here q α′ α is the latent interaction coefficient that generally

anges between 1 and 2. Here, it is assumed that q α′ α = 1 . As there

re some differences between the influences of TT and CT on slip,

t is important to distinguish these interactions ( Gan et al., 2016;

hang and Joshi, 2012 ), as: 

α
f,tw → sl = τα

f,T T → sl + τα
f,CT → sl = 

N TT ∑ 

β=1 

τα
f,β+ 

N CT ∑ 

β=1 

τα
f,β , (24) 

here N TT and N CT are the number of TT and CT systems, respec-

ively. Similar to slip-slip interactions, the TT-slip interaction is for-

ulated as: 

α
f,β = q T T → ατ

β
f,T T 

( TT → slip ) . (25)

Here τβ
f,T T 

is the self-resistance to TT of the system β , and

 TT → α is the interaction factor between TT and slip systems. The

T-slip interaction is assumed to follow a Taylor-hardening type

orm depending on the total volume fraction accumulated over all

he N CT CT systems ( Zhang and Joshi, 2012 ), as: 

α
f,CT → sl ( ̇ ε , T ) = 

N CT ∑ 

β=1 

τα
f,β ( ̇ ε , T ) 

= H CT → sl ( ̇ ε , T ) 

( 

N CT ∑ 

β=1 

f 
β
CT 

/ γ tw 

CT 

) 0 . 5 

( CT → slip ) , (26) 

here H CT → sl represents the initial hardening parameter of the CT-

lip interaction. 

According to Eqs. (22) –( 26 ), the dependence of forest disloca-

ion interaction (i.e. τα
f 

in Eq. (18) ) on temperature may be ex-

ressed by τα′ 
f,α′ , τ

β
f,T T 

(TT) and H CT → sl (CT). Since basal slip and

T are temperature-independent ( Chapuis and Driver, 2011; Won-

iewicz, 1966 ), we can write the following expressions 

τα′ 
f,α′ = s α

′ 
basal (basal slip) 

τβ
f,T T 

= s 
β
T T 

( TT ) , (27) 

here s α
′ 

basal 
and s 

β
T T 

represent the reference self-resistance for

asal slip and TT, respectively. For non-basal slip and the CT-slip

nteraction, the temperature dependence is defined based on the

ork of Kocks (1976) , as: 
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g  

A  

c  

v

 

t  

f  

t  

(  

a  

t  

e

ln 

( 

τα′ 
f, α′ 

s α
′ 

f 

) 

= − kT 

ξα′ μα′ ( b α′ ) 
3 

ln 

(
˙ ε 0 
˙ ε 

)
( non − basal slip ) 

ln 

(
H CT → sl 

H 

0 
CT → sl 

)
= − kT 

ξCT μCT (b CT ) 
3 

ln 

(
˙ ε 0 
˙ ε 

)
( CT → slip ) , (28)

where k is the Boltzmann constant, ˙ ε 0 is the reference strain rate

( ̇ ε 0 = 10 7 in this paper), ξα′ 
and ξ CT are the non-dimensional co-

efficients, s α
′ 

f 
is the reference self-resistance of non-basal slip, and

the constant H 

0 
CT → sl 

is the reference hardening parameter of CT-slip

interaction, respectively. 

As the growing forest dislocation interaction further increases

resistance to slip or results in an increase of the twin volume (e.g.

the CT-slip interaction in Eq. (26) ), a hardening law is also required

for slip-slip or TT-slip interaction. The hardening rate of slip resis-

tance due to the slip-slip interaction ( τα
f,α′ ) can be expressed in

terms of s α
′ 

basal 
or s α

′ 
f 

. The basal slip system is observed to follow a

linear hardening response based on experiments ( Kelley, 1967 ) 

˙ s α
′ 

basal = h basal ˙ γ α′ 
. (29)

For a non-basal slip system, the hardening rate of s α
′ 

f 
is formu-

lated in the form proposed by Asaro (1983) : 

˙ s α
′ 

f = h 

α′ 
0 sec h 

2 

(
h 

α′ 
0 γ

s α
′ 

s − s α
′ 

0 

)
˙ γ α′ 

, γ = 

N s ∑ 

α′ =1 

t ∫ 
0 

∣∣ ˙ γ α′ ∣∣dt , (30)

where h α
′ 

0 
is the initial hardening modulus and s α

′ 
s is the saturation

stress. Similarly, the hardening rate of slip resistance due to the

TT-slip interaction ( τα
f,T T 

) can be obtained from s 
β
T T 

(reference self-

resistance of TT system) according to Eq. (27) . The hardening law

of s 
β
T T 

is discussed in the Section 2.3.2 . 

2.3.2. Hardening law of deformation twinning 

The resistance to deformation twinning in Eq. (13) can be also

expressed as the sum of three terms (similar to Eq. (18) ), as: 

τβ
c = τβ

0 
+ τβ

HP 
+ τβ

f 
. (31)

The first term is expressed as 

τβ
0 

= 

{
s 
β
0 

( TT ) 

s 
β
0 

exp ( −T / T β ) ( CT ) 
(32)

The second term, τβ
HP 

, the effect of barriers due to grain or twin

boundaries, is also expressed in the Hall-Petch-like form ( Beyerlein

and Tomé, 2008 ): 

τβ
HP 

= 

{ 

H β√ 

d g 
, f � = 0 or β = PTS 

H β√ 

d m f p 

, f � > 0 & β � = PTS 
, (33)

where H 

β is the Hall-Petch coefficient. Finally, the last term, τβ
f 

,

accounting for the contributions from twin-twin ( τβ
f,t w ↔ t w 

) and

slip-twin interactions ( τβ
f,sl→ tw 

) is written as 

τβ
f 

= τβ
f,t w ↔ t w 

+ τβ
f,sl→ tw 

= 

N tw ∑ 

β ′ =1 

τβ
f,β ′ + 

N s ∑ 

α=1 

τβ
f,α

. (34)

The resistance to the evolution of TT and CT volume fractions

may be attributed to different underlying mechanisms. For exam-

ple, CT dislocations have lower mobility due to their narrow core-

width, which impedes a CT growth. In contrast, the core-width of

TT dislocation is about 3 ∼6 times of their CT counterpart; hence,

TT dislocations are easy to nucleate and propagate ( Zhang and

Joshi, 2012 ). Consequently, the twin-twin interactions are herein
iscussed by dividing them into two cases: TT-TT and CT-CT in-

eractions: 

β
f,t w ↔ t w 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

τβ
f,T T ↔ T T 

= 

N TT ∑ 

β ′ =1 

τβ
f,β ′ ( TT ) 

τβ
f,C T ↔ C T 

= 

N CT ∑ 

β ′ =1 

τβ
f,β ′ ( CT ) 

. (35)

The resistance due to the TT-TT interaction is expressed as: 

β
f,β ′ = q T T τ

β ′ 
f,T T 

( TT ) , (36)

here q TT is the interaction factor between TT systems, and it is

aken as q T T = 1 . 0 in this paper. As discussed before, the TT-TT in-

eraction is temperature-independent with τβ
f,T T 

= s 
β
T T 

. The harden-

ng rate of s 
β
T T 

can be expressed as (similar to Eq. (30) ) 

˙ 
 

β
T T 

= h 

β
0 

sec h 

2 

(
h 

β
0 
γT T 

s 
β
s − s 

β
0 

)
˙ γ β, γT T = 

N TT ∑ 

β=1 

∫ t 

0 

∣∣ ˙ γ β
∣∣dt . (37)

Based on the work of Zhang and Joshi (2012) , to characterise

he sluggish kinetics of the CT growth at early stages, the resis-

ance to CT evolution, τβ
f,CT 

, is expressed as: 

˙ 
β
f,C T ↔ C T 

( ̇ ε , T ) = 

N CT ∑ 

β ′ =1 

˙ τβ
f,β ′ = H C T ↔ C T ( ̇ ε , T ) 

( 

N CT ∑ 

β ′ =1 

f β
′ 

) η

˙ γ β, (38)

here H CT ↔ CT and η are the empirical parameters controlling the

ardening rate of CT-CT interaction. In general, the two parameters

hould satisfy the conditions of H CT ↔ CT ∼ GPaand η << 1 in order to

apture a characteristic of the CT growth. The temperature depen-

ence of τβ
f,C T ↔ C T 

is formulated as 

n 

(
H C T ↔ C T 

H 

0 
C T ↔ C T 

)
= − kT 

ξCT μCT ( b CT ) 
3 

ln 

(
˙ ε 0 
˙ ε 

)
, (39)

here H 

0 
C T ↔ C T 

is the reference hardening parameter for CT-CT in-

eraction. 

The effect of slip on deformation twinning (i.e. slip-twin

nteraction, τβ
f,sl→ tw 

) requires further studies. Capolungo et al.

2009b) studied the effect of slip on TT for Mg and demonstrated

t to be insignificant. Although there was no direct evidence of the

ffect of slip on CT in Mg, Capolungo et al. (2009a) concluded that

he onset of CT in Zr was insensitive to slip through series of me-

hanical test and multi-scale modelling. Based on these fundamen-

al studies, we assume the slip-twin interaction in Eq. (34) may be

eglected (i.e. τβ
f,α

= 0 ). 

. Scheme of bottom-up approach 

The T-SCP model proposed in Section 2 was implemented

n the commercial FE code ABAQUS/Explicit by employing the

ser subroutine VUMAT. It is necessary to point out that the

tress update algorithm was based on the Green-Naghdi stress

ate in ABAQUS/Explicit environment. Therefore, a conversion al-

orithm was required in order to evaluate a stress update in

BAQUS/Explicit based on the Jaumann stress rate defined in the

onstitutive law (e.g. Eq. (9) ); one can find more details in our pre-

ious work ( Liu et al., 2016c ). 

First, the model was used to simulate the effect of tempera-

ure on the stress-strain response and evolution of microstructure

or single-crystal Mg. The model parameters were calibrated using

he experimental data reported by Kelley (1967) and Wonsiewicz

1966) . Next, the T-SCP model was employed to predict the over-

ll mechanical properties and microstructure evolution of polycrys-

alline Mg using a three-dimensional (3D) representative volume

lement (RVE) modelling approach. 
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Fig. 2. Schematic of FE modelling for plane compression of single-crystal Mg. 

Fig. 3. 3D RVE model of polycrytal Mg. 
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The studies for single-crystal were carried out with the FE mod-

lling strategy illustrated in Fig. 2 . At room temperature, basal slip

s the easiest one to be activated among the four slip and two

win systems considered in this paper. A channel-die experimental

est may be performed to study an individual slip or twin system

 Kelley, 1967; Wonsiewicz, 1966 ). In these experiments, plane com-

ression loading is imposed on the single crystal in pre-decided

rientations, that is, homogeneous compression loading is imposed

n a chosen surface of a parallelepiped sample, while one orthog-

nal surface is held rigid and the third is left free. Seven loading

ases were modelled using T-SCP as shown in Fig. 2 and compared

ith experimental studies. In these test cases, pyramidal < c + a >

lip was primarily activated for cases A and B, prismatic slip for

ases C and D, tensile twinning for cases E and F, and basal slip

or case G. It is obvious that such channel-die tests significantly

implify model parameter calibration, and the involved details are

resented in Section 4.1 . 

Next, based on the calibrated single-crystal model, a 3D RVE

odel was used to represent the initial microstructure of poly-

rystalline Mg as shown in Fig. 3 . Similar RVE models with such

dealized grains and meshes were also adopted in the work of

im et al. ( Lim et al., 2015, 2011 ). 200 (8 × 5 × 5) cubic grains

ere considered in the RVE model, in which each grain was

eshed with 64 C3D8 elements and assigned a random initial
rientation. A unidirectional tension test case (the loading direc-

ion was along the X axis marked in Fig. 3 ) was modelled us-

ng this 3D RVE model. The effects of temperature on the stress-

train response and microstructure (i.e. the evolution of twinning

nd texture) were predicted. In particular, the dependence of yield

tress on grain size (i.e. Hall-Petch relationship) was estimated at

ifferent tem peratures, and, hence, the effect of temperature on

he Hall-Petch relationship could be evaluated. Finally, the pre-

ented predictions were compared with the available experimental

ata ( Ono et al., 2004 ), which are used to validate effectiveness of

he T-SCP model at polycrystal meso-scale. 

. Simulation of single-crystal mg and discussions 

.1. Plane compression and unidirectional tension at room 

emperature 

First, single-crystal deformation mechanism at room tempera-

ure was characterised using the T-SCP model. The stress-strain

urves, obtained in FE simulations and experiments, are shown in

ig. 4 for the seven loading cases as illustrated in Fig. 2 . 

Fig. 4 (a) shows the stress-strain curves corresponding to the

oading cases with crystal slip dominated. Pyramidal 〈 c + a 〉 slip

as predominant in loading cases A and B with partial activation
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Fig. 4. Comparison of stress-strain curves of single-crystal Mg at room temperature for simulations (denoted by ‘Simu’) and experiments (denoted by ‘Exp’) for various 

loading cases: (a) A ∼D and G; (b) E and F (as illustrated in Fig. 2 ). 

Fig. 5. Predicted reorientation of single-crystal Mg under loading cases E (a) and F (b). 
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of CT. A similar observation was made in the study of Gan and co-

workers ( Gan et al., 2016 ). The stress level in loading case B was

higher than that of A. This may be understood by analysing Schmid

factor, which affects the magnitude of resolved shear stress. Under

plane compression, contributions to the Schmid factor come from

both the loading direction as well the specific direction in which

the constraints are imposed. In loading cases A and B, the load-

ing direction was identical; however, the effects due to constraints

lead to a Schmid factor of 0 for loading case A and −0.11 for load-

ing case B ( Zhang and Joshi, 2012 ). This implies that a higher level

of compressive stress is required to activate slip in loading case B.

Prismatic slip was the easiest to activate in loading cases C and

D similar to the conclusions drawn in literature ( Gan et al., 2016;

Zhang and Joshi, 2012 ). In contrast to cases A and B, the stress-

strain curves are nearly the same for cases C and D due to the

identical boundary constraint conditions. For loading case G, plas-

tic deformation was mainly accommodated by basal slip. As shown

in Fig. 4 (a), compared to other types of slip systems, basal slip had
he lowest slip resistance and the hardening rate is also relatively

ow. 

Fig. 4 (b) shows the stress-strain curves of loading cases E and F

here TT dominated at the initial stage. For both cases, it is clear

hat the initial yield stress was low due to the low resistance of TT.

t the initial stage, the stress level in case F was higher than that

f case E due to a difference in constraint boundary conditions.

owever, a noticeably large difference occurred after TT-induced

eorientation. In loading case E, stress increased rapidly after re-

rientation, and the strain-hardening phenomenon was significant

uring the whole loading process. In contrast, for loading case F,

tress value saturated after a rapid increase due to TT-induced re-

rientation. 

Reorientation of single-crystal Mg after macro-plane compres-

ion is depicted via pole figures in Fig. 5 . Here, the critical twin

olume fraction was as assumed to be f cr = 0 . 9 ; thus, orientation

ith relative low intensity represents the parent phase (or initial

rientation) in Fig. 5 . As shown in Fig. 5 (a), the c-axis is rotated
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