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1. THE CONVENTIONAL WIENER-KHINCHIN THEOREM BASED ON MULTI-MODE MACH-ZEHNDER INTERFERENCE

In Section 1, we provide a multi-mode theory for Mach-Zehnder (MZ) interference. Based on the equations of this interferometry, we
can construct the conventional Wiener-Khinchin theorem (WKT), which is the foundation for the classical interferometric spectroscopy.
The setup of the MZ interference is shown in Fig. S1(a). Assume there is a single photon state |¢), which has a frequency distribution
(i.e., one-photon spectral amplitude) of f(ws)

9= [ dsflw)al (@) o), sH

where 4] is the creation operator and ws is the angular frequency.
The photons from the single photon source are split by the first 50/50 beam splitter (BS1) and then pass through path 1 and 2. Then,
after an optical delay 7, the photons combine at the second 50/50 beam splitter (BS2). The photons at the output port 3 of BS2 are

detected by a single photon detector D. The detection field operator of detector (D) is E(+)(t) = \/% I dwi(w)e !, where 4(w) is

the annihilation operator for the frequency w in the detection filed. By considering the relation of 4(w) = —=[41 (w)e™™“T + a4y (w)] =

V2
%ﬁs (w)(e7"T +1), where 41 and 4; are the annihilation operators for path 1 and path 2 respectively, the detection filed can be rewritten
as

B (1) = ﬁ | /0 % dewity () (79T 4 1)e it (S2)

The one-photon detection probability P(7) is determined by
P(r) = [ at (y[ECIED)]y). (S3)
Consider £(+) |y,

ﬁ /0 " deoits (w) (e 4+ 1)e~ it x /O % deos f(ws)at (ws) [0) = ﬁ /0 " deoe i () (7T 4 1), (S4)

(b)
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Fig. S1. The setups. (a)Mach-Zehnder (MZ) interference, (b) Hong-Ou-Mandel (HOM) interference, (c) NOON-state interference.
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A

where the relation of 45 (w)af (ws) — af (ws)ds(w) = 6(w — ws) is used. So,

<lP E(*)EA(+)‘¢> — %jbmdwefiwtf(w)(efi‘”—kl) « jOOO dw’eiw'tf*(w’)(eiw"[—ﬁ—l) )
= T deodr () (@) (e 4+ 1) (0T + 1)o@,
where f* is the complex conjugate of f . Finally,
P(r) = [at(p|EOED]|p)
= 1o Jo dwdew f(w)f*(w)(e T +1)(T +1)d(w — w) (s6)
00 * —iwT 2
= P dof(@)f* (@) [T + 1)
= 3 )5 dwf(@)]* [1+ cos(wr)].
In this calculation, the relation of §(w — w’) = 2 [% el(@=@)tdt is used. For a normalized f(w), i.e. Jo dw [f(w) > =1,
_1 * 2
P(r) = 311+ [ dw|f(w) cos(wr)] 7)

After omitting the constant component (“direct current” component) and the coefficients, we can define the first-order correlation
function as

Gi(r) = [ dw|flw) e, s9)

where P() = }[1 + Re{G;(7)}]. This definition is consistent with the definition in Eq. (3.3.9) on Page 94 of Book by R. Loudon [The
Quantum Theory of Light, 3ed, Oxford, (2000)]. The inverse Fourier transform of Gy (7) is

A = f@)f = 5 [ deGineer )

This is the traditional WKT, which express power spectrum in terms of autocorrelation function by Fourier transform. Therefore, we
can extract the frequency information of the photon source from the time-domain MZ interference pattern.

2. THE EXTENDED WIENER-KHINCHIN THEOREM FOR HONG-OU-MANDEL INTERFERENCE

In Section 2, we deduce the equations for the Hong-Ou-Mandel (HOM) interference using multi-mode theory. Based on this theory,
we can construct the extend WKT (e-WKT) for differential frequency. The setup of the HOM interference is shown in Fig. S1(b). The
two-photon state from a spontaneous parametric down-conversion (SPDC) process can be described as

) = [ deod (s, ) x)af () 00), 10

where w is the angular frequency; ' is the creation operator and the subscripts s and i denote the signal and idler photons from SPDC,
respectively; f(ws, w;) is the two-photon spectral amplitude (also called joint spectral amplitude) of the signal and idler photons.

The detection field operators of detector 1 (D1) and detector 2 (D2) are EEH () = \/% Jo~ dwrdy (wy)e~ 1"t and I:Z§+) () =
\/% fooo dwyiiy (wy)e ™2t where the subscripts 1 and 2 denote the photons detected by D1 and D2 respectively. The transformation
rule of the 50/50 beamsplitter (BS) after a delay time T is 41 (w1) = % [4s(w1) +8;(wq)e 1T and Az (wr) = % [4s(w2) — 8;(wp)e™1w2T].
So, we can rewrite the field operators as

E§+) () = \/% fooo dan [As (wl)e—iwltl + ﬁi(wl)efiwl(t1+r)]’ (S11)
and
B () = \/% 5 dewn s (wp)em w2t — d;(wp)e~iwaltt T, (512)

The two-photon detection probability P(T) can be expressed as
P(t) = //dtldtz (v |BEDE B w). (S13)
Consider EEHEEH |), only 2 out of 4 terms exist. The first term is

_ﬁ fooo fooo dwidwas(wy)a;(wy)e  Witiemiwa(+7) fooo fooo dwsdw; f (ws, w;)al (“’S)ﬁ?(wi) |00)

o (S14)
= =& J7 Jo” dwidew, f(wy, wp)e~ Wit emiwa(24T) |00) .

In the above calculation, the equations of 4s (w1 )af (ws) [0) = d(w; — ws) |0) and &;(wz)a! (w;) [0) = §(wz — w;) |0) are used.
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The second term is

ﬁ fooo fooo dwldwzﬁi(wl)ﬁs (wz)efiw](thT)eiiwztz fooo fooo dwsdwif(ws/ wi)ﬁ; (ws)ﬁj (wi) ‘OO>

1 oo oo i i (S15)
= 12 Jo Jo~ dwrdws f(wy, wy e rtitTemicatz |00)
Combine these two terms:
ESVET [y = fo S dwrdawne™ @t e b [ (w), wr)e T T — f(wr, wp)e T [00) . (S16)
Then,
<lp ‘EY)EY)EEHEV) ‘ ¢> = (&I I dwrdwrdew, dwye @@t pmilwa—wy)ts .
X [f* (), @4 )T — f* (@, wy)esT][f (wy, wy)e 1T = fwy, wy)e 2],
Finally,
P(r) = [ [dnde (p|E7 B EE )
= 1SS S dwndwrdwidawyd(wy — wy)d(ws — wy) ©18)

X[ (wy, @)™ — f* (@, wy) e [f (wn, wr)e 1T — f(wy, wa)e 7]
= 1o Jo dwidws|[f(wi,wa) = flwy, wi)e =T 2,
If we assume f* = f, i.e. f is real, we can further simplify the equation to be
P(t) = iy Jo dwrdws[|f(wr, @)+ |f(wr,w1)]? = 2f (w1, ws) f(wn, w1) cos(wr — ws)T]. (519)
For a normalized f(wy, wy), ie. [5° [y~ dwidws|f (w1, wo)]? =1,
P(r) = I[1- Jo Jo” dwrdws f(wr, ws) f(w, wr) cos(wy — wp)T]. (S20)
If we assume f (w1, w;) has the exchange symmetry of f(w1, wp) = f(wy, w1), we can further simplify the equation as
P(r) = 30— J5 Jg dwrdawn|f(wr,wn) ? cos(wy — w2)]. (s21)

In order to introduce less variables, Eq. (521) can be rewritten as

p(r) = %[1 - fooo fooo dwsdw;|f (ws, w;)[* cos(ws — w;)T]. (522)
Next, we introduce new parameters w4 = (ws + w;) and w— = (ws — w;). So, ws = %(w+ +w_)and w; = %(w+ —w_),and P(7)
can be rewritten as
P(t) = 3[1=3J5 [T dwidw_|f(ws,wi)?cos(w-T)] = 3[1 — [% dw_F(w-)cos(w-T)], (523)
where
_ 1= 2
Faw-) =5 [ do|f(ws @) (S24)
is the projection of | f(ws, w;)|? onto diagonal axis. For a normalized f(ws, w;), Fa(w_) is also normalized, i.e. [* F(w_)dw_ =1,

Note, the following rule is used in the change of variables in the double integral,

' a Ss i
//f(ws,wi)dwsdwi://f(ws(w+,w_),wi(w+,w_))‘%’dc@.du}_, (S25)
which can be further simplified as [ [ f(ws, w;)dwsdw; = %fff(ws,wi)dw_,_dw_,because

d(ws, w;) 1/2  1/2 1
i Sl et VA == 526
Hwr,w-) | 172 -1/2 2 (526)

So,

P(r) = i[1—[% dw_F(w-)cos(w_1)]. (827)

After omitting the constant component (“direct current” component) and the coefficients, we can define the second order correlation
function Gy (7) in the HOM interference.

G(t) = [ dw_F(w-)e @-T, (S28)
where, P(t) = }[1 — Re{G,(7)}. The inverse Fourier transform of G,(7) is
B(w-) = o [% dtGy(1)elw-T (S29)

This is the extended Wiener-Khinchin theorem (e-WKT) for the HOM interference, which can provide the differential frequency
information of the photon source from the time-domain HOM interference patterns.
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3. THE EXTENDED WIENER-KHINCHIN THEOREM FOR NOON-STATE INTERFERENCE

In Section 3, we deduce the equations for the NOON-state interference using multi-mode theory. Based on this theory, we can construct
the extended Wiener-Khinchin theorem (e-WKT) for sum frequency interference. The setup of the NOON-state interference is shown
in Fig. S1(c).

Assume we have the same input state as described in Section 2. The two-photon state from a spontaneous parametric down-
conversion (SPDC) process can be described as

/ / dwsdw; f (ws, w;)al (ws)al (w;) [00), (S30)

where w is the angular frequency; @' is the creation operator and the subscripts s and i denote the signal and idler photons from SPDC,
respectively; f(ws, w;) is two-photon spectral amplitude (also called the join spectral amplitude) of the signal and idler photons.
The detection field operators of detector 3 (D3) and detector 4 (D4) are Eéﬂ (t3) = \/%71 fooo dwsaz(wsz)e @3t and E"f) (ty) =
\/% fooo dwyfy(wy)e™“sts where the subscripts 3 and 4 denote the photons detected by D3 and D4 respectively. The transformation rule
of the second 50/50 beamsplitter (BS2) after a delay time 7 is 43(w3) = % (81 (w3)e 3T + dy(w3)] and d4(wy) = % 81 (wy)e T —
d(wy)]. The transformation rule of the first 50/50 beamsplitter (BS1) is d1 (w3) = % [4s(w3) + d;(w3)], do(w3) = % [4s(w3) — 8;(w3)],

d1(wy) = % [As(wy) + 8;(wy)] and 83 (wy) = \% [4s(wy) — 8;(wyq)]. So, we can rewrite the detection field operators as

BN (t3) = 5 b [ deosfs (s) (70T + T)e @t 4y s ) (e 1T — 1)eient] (531)
and
B (0a) = gz Iy deoalas o) (7147 — D)emint 4 3y aog) (e 07 + 1)t (532

The two-photon detection probability P(T) can be expressed as
P(t) = / / dtsdty (p|ESVETEVES | 9). ($33)

£ p(H)

Consider E, 3+ |), only 2 out of 4 terms exist. The first term is

% fooo fooo dwsdw,ds(ws) (e7193T 4 1)eiWsts 5 4;(wy) (e 14T 4 1)e iwsls fooo fooo dwsdwif(ws,wi)d;f(ws)ﬁ;‘(wi) |00)

, , . . (S34)
— # f0°° fOoo dWde4eflw3f3e*lw4t4f(w3, w4)(371w37 + 1)(671(04‘( 4 1) |00> .
In the above calculation, the equation of &(w)a’ (w) |0) = é(w — w’) |0) is used. The second term is
sz o Jo dwsdwsti(ws)(e7 T — 1)e™" b ag(wy) (e 4T — 1)e™™ b x [7* [ dwsdw; f (ws, w;)at (ws)af (w;) |00) (535)
— g J5° J5° deosdeos f(wy, wg) 645 — 1) (emienT — 1)e~intag=ints 00)
Combine these two terms:
A(+) p(+
ESVES 1) 36
=3l Jo dwsdwse™ e M [f(ws, wy) (7T + 1) (e T +1) + f(wy, ws) (€T = 1) (e 4T —1)]]00) .
Then,
¥ Eé—)éi—)ﬁ(ﬂﬁ(ﬂ‘ ¢>
— g 5 Je deodeoge st st (g, wg) (6T +1) T 1) 4 flwg, wg)(e T — (et 1)) (S37)
gl S5 i deoydey e [ (o o) (6957 1) (€447 + 1) £ (g ) (€457 — 1) (4 — 1))
Finally,
P(r) = [ [arsdty (BB EES v
= LIS IS dwsdwydwsdaw,d(ws — wy)d(ws — wy)
X [flws,wa) (7T +1) (e +1) + flws, w3) (e = 1) (74T —1)] (S38)

XL (0 @) (€T D(EAT 1) + £ (g 3) (€457 — 1) (67~ 1)

. . . . 2
= J5 5 deosdewy [ (w3, w3) (€T 1) (e AT 4 1) 4 g, w3) (e T — 1) (e — 1))
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In the above calculation, the relation of §(w — w’) = % 1=, el(@=w)t gt is used; f* is the complex conjugate of f. Assuming f has the
symmetry of f(ws3, wy)=f(ws,ws), P(T) can be further simplified as

P(t) = % /000 /000 dw3dw4|f(w3,w4)|2[cos(w3+w4)f+1}. (S39)

For a normalized f(ws, wy), ie. [;° [o° dwsdws|f (w3, wy)]? =1,

P(r) = 31+ [ [ dasday| (s, 0p) Peos(ws-+ou) ). (540)

In order to introduce less variables, Eq. (540) can be rewritten as
Pir) = 1+ [ [ dede] (s i) Peos(ws )T (541)
Next, we use the parameters w; = (ws + w;) and w— = (ws — w;), which are similar as in the case of HOM interference. So,

ws = %(aur +w_)and w; = %(w+ — w-), and P(7) can be rewritten as

P(t) = %[1 + % /ODO /j; dwidw_|f(ws,w;)|? cos(w4T)] = %[1 + /j:o dwy Fy(w4 ) cos(w4T)]. (542)
where,
R(ws) =y [ do|flwsw)P (543)
is the projection of | f(ws, w;)|? on to the anti-diagonal axis. So,
P(t) = 3[1+ [;° dwyFo(wy ) cos(wT)]. (544)

Omitting the constant component (“direct current” component) and the coefficients, we can define the second-order correlation
function Gy (7) in the NOON-state interference

Go(1) = [o7 dwy Fy(wy )e 0+, (545)
where, P»(7) = 1[1 + Re{Gy(7)}]. The inverse Fourier transform of G,(7) is

B(ws) = % fooo dtGy(T)e!w+T. (S46)

This is the extended Wiener-Khinchin theorem for the NOON-state interference, which can provide the sum frequency information of
the photon source from the time-domain NOON-state interference patterns.

4. SUMMARY OF THE WKT AND THE E-WKT

For simplicity in the deduction of these equations in Sections 1-3, the notifications in each section were “local variables”, which is
valid in each section. However, for comparison, here we slightly revise the notifications and summarize these equations using “global
variables” as follow.

A. The WKT
The input state in MZ interference is

) = [ dofi(@)i (@) o), (547)

where fi(w) is one-photon spectral amplitude. In order to keep the uniformity, here the integration range is enlarged from [0, co] to
[7 o, OO]
The one-photon detection probability is

1 e
Pi(t) = 5[1+ /700 dw |fi (@) cos(wT)). (548)
The first order correlation function is -
Gi(r) = [ _dwlfi(w)Pe . (349)
The connection between P; (7) and G(7) is
1
P(t) = 5[1 + Re{G1(7)}]. (S50)

The conventional WKT is 1 oo
Ri(w) = i) = 5= L Gy (). (S51)
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B. The e-WKT
The input state in HOM interference and NOON-state interference is

o) = [ [ dwsdaifalews, it ()il (@) [00), (552

where f;(ws, w;) is the two-photon spectral amplitude.
The two-photon detection probability P (7) is

Pf(r) = 1% [ [7 dwsdw;|fa(ws, w;)|? cos(ws £ w;)T], (S53)

where P2+ is for NOON-state interference, while P, is for HOM interference.
After the transformation of variables: w+ = ws + w;,

Pf(r) = Inx1[% % dwidw-|fr(ws, w;)]? cos(weT)]. (554)

Using the definition of the sum- or difference-frequency spectrum of the two-photon state, i.e.,
Fws) =y [ doslfw,w)p (555)

P (7) can be further simplified as
Pf(t) = L1+ [% dwiF(wy)cos(weT)]. (556)

Omittin, § the constant component (“direct current” component) and the coefficients, we can define the second-order correlation
function G5 (1) as

GE(1) = L _dwsFy(ws)e . (S57)

The connection between Pzi and GZi is,

1
P (1) = S+ Re{G5(1)}]. (S58)
G;' is for NOON-state interference, while G, is for HOM interference. The inverse Fourier transform of Gic (1) is
Ef (ws) = / dTGE (T)elsT. (S59)

This is the unified form of e-WKT.



	 The conventional Wiener-Khinchin theorem based on Multi-mode Mach-Zehnder interference
	The extended Wiener-Khinchin theorem for Hong-Ou-Mandel interference
	The extended Wiener-Khinchin theorem for NOON-state interference
	Summary of the WKT and the e-WKT
	The WKT
	The e-WKT




