Robust countermeasure against detector control attack in practical quantum key distribution system: supplementary material

YONG-JUN QIAN1,2,3,†, DE-YONG HE1,2,3,†, SHUANG WANG1,2,3,*, WEI CHEN1,2,3, ZHEN-QIANG YIN1,2,3, GUANG-CAN GUO 1,2,3, AND ZHENG-FU HAN1,2,3

1CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
2CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
3State Key Laboratory of Cryptology, P. O. Box 5159, Beijing 100878, China
*Corresponding author: wshuang@ustc.edu.cn
\†These authors contributed equally to this work

Published 11 September 2019

This document provides supplementary information to "Robust countermeasure against detector control attack in practical quantum key distribution system," https://doi.org/10.1364/optica.6.001178.

1. ANALYSIS OF THE DIFFERENCE OF VA’S VALUE

Here we explain the reason why the VA’s value should differ 3 dB. Assume that the attenuation value of VA in each VA-SPD is randomly set to x dB and y dB (x < y). As mentioned above in Sec. II, after the announcement of basis choices, \(|R_x, R_y|\) and \(|e_x, e_y|\) denotes the detection rates and QBERs with x dB and y dB, respectively. For the QKD system in normal operation, the ratio between detection rates of one VA-SPD with x dB and y dB attenuation satisfies

\[\alpha^* = \frac{R_x}{R_y} > 1, \]

(S1)

similarly, the QBERs with x dB and y dB attenuation should be less than the threshold. We get

\[|e_x, e_y| < e_{th}. \]

(S2)

In detector control attack without blinding light, \(P_{f,x}\) is defined as the detection probability with full optical power when the attenuation is x dB. \(P_{f,y}\) is likewise defined when the attenuation is y dB; similarly, with half power, \(P_{h,x}\) and \(P_{h,y}\) are defined as the detection probabilities when the attenuation are x dB and y dB, respectively. Suppose Eve select two measurement basis with equal probability. Then the detection rates with two attenuation values can be given by

\[R_{x}^{atk} = \frac{1}{4} P_{f,x} + \frac{1}{4} (2 P_{h,x}), \]

(S3)

\[R_{y}^{atk} = \frac{1}{4} P_{f,y} + \frac{1}{4} (2 P_{h,y}). \]

(S4)

For simplicity, we analyse the case that both VA-SPDs have the same attenuation value (x dB or y dB). Then the QBERs of Bob’s one VA-SPD with x dB and y dB attenuation values are given by

\[e_{x}(S) = \frac{2 P_{h,x} - P_{h,x}^2}{2 P_{f,x} + 2 (2 P_{h,x} - P_{h,x}^2)}, \]

(S5)

\[e_{y}(S) = \frac{2 P_{h,y} - P_{h,y}^2}{2 P_{f,y} + 2 (2 P_{h,y} - P_{h,y}^2)}. \]

(S6)

By substituting Eq. (S3)–Eq. (S4) into the Eq. (S5)–Eq. (S6) respectively, we get

\[2 P_{h,x} - P_{h,x}^2 < 2 \alpha^* e_{th}(P_{f,y} + 2 P_{h,y}) - 2 e_{th} P_{h,x}^2, \]

(S7)

\[\alpha^* (2 P_{h,y} - P_{h,y}^2) < 2 \alpha^* e_{th}(P_{f,y} + 2 P_{h,y} - P_{h,y}^2). \]

(S8)

By adding both sides of these inequalities, we deduce that

\[(2 P_{h,x} - P_{h,x}^2) - 4 \alpha^* e_{th} P_{f,y} + \alpha^* (2 - P_{h,y} - 8 e_{th}) P_{h,y} + 2 e_{th} P_{h,x}^2 + 2 \alpha^* e_{th} P_{h,y}^2 \geq 0, \]

(S9)

As \(e_{th} < 11\%\), \(0 \leq \{P_{f,x}, P_{h,x}, P_{f,y}, P_{h,y}\} \leq 1\) and \(\alpha^* > 1\), we know that \((2 P_{h,x} - P_{h,x}^2) + \alpha^* (2 - P_{h,y} - 8 e_{th}) P_{h,y} + 2 e_{th} P_{h,x}^2 + 2 \alpha^* e_{th} P_{h,y}^2 \geq 0, -4 \alpha^* e_{th} P_{f,y} \leq 0\). To make an effective countermeasure criteria, It should be guaranteed that Eq. (S9) cannot be satisfied for all the values of \(\alpha^*\), there are two following cases:
If $P_{h,x} \neq P_{f,y}$, whether the Eq. (S9) can be satisfied depends on the value of $P_{h,x}$, $P_{f,y}$, α^* and $P_{h,y}$, which means that the countermeasure criteria is not general.

If $P_{h,x} = P_{f,y}$, then $(2P_{h,x} - P_{h,x}^2) - 4a^*e_{ih}P_{f,y} \geq 0$, all the factors on the left of Eq. (S9) is greater than 0, which is contradictory to the right result of Eq. (S9). It means the two sub-cases: The one is the optical power before entering SPDs are equal, then half power with x dB is equal to the full power with y dB, so the difference of VA’s value between half power with x dB, with Eq. (S12) we have

\[
0 \leq \frac{2P_{h,x} - P_{h,x}^2}{1 + m_4P_{h,x}^2} \leq \frac{1}{2m_3m_4}.
\]

Then we get the range of $P_{h,x}$

\[
0 \leq P_{h,x} \leq 4m_3m_4 - m_4 - \sqrt{(4m_3m_4 - m_4)^2 - 8m_3m_4}.
\]

Then $R_{3(opp)}^\text{atk}$ is given by

\[
\frac{R_{3(opp)}^\text{atk}}{R_{3(opp)}^\text{atk}} = \frac{m_3m_4(2 - P_{h,x}) + 2m_4}{m_4 + 1 + m_4P_{h,x}}.
\]

Define $m = \min\{m_3, m_4\}$, then $m \geq \frac{1}{m_3} - 1$, we have

\[
R_{3(opp)}^\text{atk} = tR_0.
\]

In the case that the relationship of Eq. (2) is satisfied, Eq. (4) and Eq. (5) can be converted into

\[
P_{f,0} + 2P_{h,0} = 4R_0,
\]

\[
P_{f,3} + 2P_{h,3} = \frac{4R_0}{\alpha}.
\]

As $0 \leq \{P_{f,0}, P_{h,0}, P_{f,3}, P_{h,3}\} \leq 1$, by using Eq. (S22) and Eq. (S23), we have

\[
0 \leq tR_0 \leq 0.75.
\]

When both VA-SPDs in the same basis have the same attenuation value, then $e_{\text{atk}}^\text{0(s)}, e_{\text{atk}}^\text{3(s)}$ can be converted into

\[
e_{\text{atk}}^\text{0(s)} = \frac{2P_{h,0} - P_{h,0}^2}{8R_0 - 2P_{h,0}},
\]

\[
e_{\text{atk}}^\text{3(s)} = \frac{2P_{h,3} - P_{h,3}^2}{8R_0 - 2P_{h,3}}.
\]

According Eq. (S26) and Eq. (S23), we get

\[
P_{f,3} = P_{h,0} = 1 + \frac{4tR_0}{\alpha}e_{\text{atk}}^\text{3(s)} - \frac{2tR_0}{\alpha^2}.
\]

\[
0 \leq \left(1 + \frac{4tR_0}{\alpha}e_{\text{atk}}^\text{3(s)} - \frac{2tR_0}{\alpha^2}\right)^2 + 2(\frac{e_{\text{atk}}^\text{3(s)}}{2})^2\frac{8tR_0}{\alpha^2} - 8(tR_0)^2.
\]

thus we substitute Eq. (S27) to Eq. (S25). We can simulate the relationship of the QBERs with $0 dB (e_{\text{atk}}^\text{0(s)})$ and $3 dB (e_{\text{atk}}^\text{3(s)})$, we
set $tR_0 = 0.75$ for Eq. (S24), because $e_{atk}^{0(\text{opp})}$ and $e_{atk}^{3(\text{opp})}$ are increasing with decreasing tR_0. If Eq. (S27) is larger than 1 (smaller than 0), we take $1(0)$ for $P_{f,3}$. The result is shown with red and blue lines in Fig. 2.

Similarly, when both VA-SPDs in the same basis have the opposite attenuation value, $e_{atk}^{0(\text{opp})}$, $e_{atk}^{3(\text{opp})}$ can be converted into

$$e_{atk}^{0(\text{opp})} = \frac{2P_{h,0} - P_{h,0}P_{h,3}}{8tR_0 - 2P_{h,0}P_{h,3}}, \quad (S28)$$

$$e_{atk}^{3(\text{opp})} = \frac{2P_{h,0} - P_{h,0}P_{h,3}}{8tR_0 - 2P_{h,0}P_{h,3}}. \quad (S29)$$

According Eq. (S23) and Eq. (S29), we get $P_{h,3} = \frac{2tR_0}{a} - \frac{1}{2}P_{f,3}$.

$$P_{f,3} = P_{h,0} = \frac{2tR_0}{a} + 1 - \frac{4tR_0}{a}e_{atk}^{3(\text{opp})}$$

$$= \sqrt{\left(\frac{2tR_0}{a}e_{atk}^{3(\text{opp})} - \frac{2tR_0}{a} - 1\right)^2 - 4\left(e_{atk}^{3(\text{opp})} - \frac{1}{2}\right)^2 \left(\frac{8tR_0}{a}\right)^2}.$$ \quad (S30)

Take these equation to Eq. (S28). We can simulate the relationship of the QBERs with $0\,\text{dB}$ ($e_{atk}^{0(\text{opp})}$) and $3\,\text{dB}$ ($e_{atk}^{3(\text{opp})}$), we set $tR_0 = 0.75$ for Eq. (S24), because $e_{atk}^{0(\text{opp})}$ and $e_{atk}^{3(\text{opp})}$ are increasing with decreasing tR_0. Similarly, if Eq. (S27) is larger than 1 (smaller than 0), we take $1(0)$ for $P_{f,3}$. The result is shown with red and blue dashed lines in Fig. 3.